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Abstract. Dimethylsulfide (DMS) emitted from seawater is a key precursor to new particle formation and acts
as a regulator in Earth’s warming climate system. However, DMS’s effects are not well understood in various
ocean regions. In this study, we estimated DMS emissions based on a machine learning method and used the
GEOS-Chem global 3D chemical transport model coupled with the TwO Moment Aerosol Sectional (TOMAS)
microphysics scheme to simulate the atmospheric chemistry and radiative effects of DMS. The contributions of
DMS to atmospheric SO4

2− aerosol and cloud condensation nuclei (CCN) concentrations along with the radia-
tive effects over the Asian region were evaluated for the first time. First, we constructed novel monthly resolved
DMS emissions (0.5◦× 0.5◦) for the year 2017 using a machine learning model; 4351 seawater DMS measure-
ments (including the recent measurements made over the Chinese seas) and 12 relevant environment parameters
were selected for model training. We found that the model could predict the observed DMS concentrations with a
correlation coefficient of 0.75 and fill the values in regions lacking observations. Across the Asian seas, the high-
est seasonal mean DMS concentration occurred in March–April–May (MAM), and we estimate the annual DMS
emission flux of 1.25 Tg (S), which is equivalent to 15.4 % of anthropogenic sulfur emissions over the entire
simulation domain (which covered most of Asia) in 2017. The model estimates of DMS and methane sulfonic
acid (MSA), using updated DMS emissions, were evaluated by comparing them with cruise survey experiments
and long-term online measurement site data. The improvement in model performance can be observed compared
with simulation results derived from the global-database DMS emissions. The relative contributions of DMS to
SO4

2− and CCN were higher in remote oceanic areas, contributing 88 % and 42 % of all sources, respectively.
Correspondingly, the sulfate direct radiative forcing (DRF) and indirect radiative forcing (IRF) contributed by
DMS ranged from −200 to −20 mWm−2 and from −900 to −100 mWm−2, respectively, with levels varying
by season. The strong negative IRF is mainly over remote ocean regions (−900 to −600 mWm−2). Generally,
the magnitude of IRF derived by DMS was twice as large as its DRF. This work provides insights into the source
strength of DMS and the impact of DMS on climate and addresses knowledge gaps related to factors controlling
aerosols in the marine boundary layer and their climate impacts.
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1 Introduction

Ocean-emitted dimethylsulfide (DMS) is a precursor of non-
sea-salt SO4

2− and controls the composition, size distribu-
tion, and number concentration of aerosols over the remote
oceanic areas. SO4

2− directly influences the climate system
directly by reflecting solar radiation back into the space and
indirectly by acting as cloud condensation nuclei (CCN) and
altering the albedo of clouds and changing cloud radiative
properties (Andreae and Rosenfeld, 2008). The “CLAW” hy-
pothesis proposed by Charlson et al. (1987) assumed that
negative feedback interactions between ocean plankton and
the climate system, where the Earth system acted to buffer
itself from warming, were linked through DMS produc-
tion. Thereafter, several studies found significant impacts of
DMS-induced aerosols on CCN and cloud albedos in remote
oceans (Park et al., 2017; Quinn et al., 2017; Kulmala et al.,
2014; Vallina and Simó, 2007), which lent credence to the
CLAW hypothesis. Nevertheless, due to the low sensitivity of
each step of the interactions to changes in force factors in the
CLAW climate feedback loop (e.g., low sensitivity of DMS
production to changes in incident solar radiation), Quinn and
Bates (2011) disproved the hypothesis. Whether the CLAW
climate feedback is positive or negative is still uncertain, and
further research is needed to quantify the climate effects of
DMS.

Building an accurate emission inventory is key to simu-
lating the climate effects of DMS. As many previous studies
have shown (Chen et al., 2018; Hodshire et al., 2019; Rap
et al., 2013; Yang et al., 2017; Zhao et al., 2021), the ma-
rine DMS emissions used in numerical models are mainly
estimated using an interpolation scheme (Kettle et al., 1999;
Lana et al., 2011), which estimates DMS climatology by in-
terpolating observed DMS data at limited sites to the global
ocean. Previously, observations from the Global Surface Sea-
water DMS Database have been grouped into 57 ecologi-
cal geographic ocean provinces, and weighted interpolations
from nearby provinces have been used to fill the values with-
out observations. Wang et al. (2020) pointed out that there
are uncertainties in using spatial and temporal averaged data
to fill regions without observations. However, artificial neu-
ral networks can potentially be trained and used to fill mea-
surement gaps (Wang et al., 2020). Galí et al. (2018) created
a remote sensing algorithm to estimate DMS concentrations
which is based on the relationship between a precursor of
DMS and plankton light exposure. Their results (Galí et al.,
2018) indicated that the remote sensing algorithms have bet-
ter ability to reproduce the climatological features of DMS
seasonality than interpolated DMS climatologies, which also
outweigh the disadvantage of the interpolation scheme used
in a previous study (Lana et al., 2011). In a recent study
(Bell et al., 2021), long-term in situ DMS measurements con-
ducted in the North Atlantic Ocean from 2015 to 2018 were

compared with the interpolated DMS climatologies (Lana et
al., 2011), predicted DMS concentrations from the remote
sensing algorithm (Galí et al., 2018), and a neural network
approach (Wang et al., 2020). The analysis revealed that both
the remote sensing algorithm and the neural network model
were better able to reproduce the seawater DMS trends bet-
ter than the interpolated climatologies. However, DMS pre-
dictions from two of the models (Galí et al., 2018; Wang
et al., 2020) underpredicted DMS concentrations, likely be-
cause the primary biological processes of DMS production
were not accounted for (Bell et al., 2021).

There are several modeling studies which have quantified
the aerosol direct and indirect radiative forcings of DMS on
a global scale. The global annual mean DMS aerosol in-
direct radiative forcing estimates have ranged from −6.55
to −0.23 Wm−2 in previous studies (Mahajan et al., 2015;
Thomas et al., 2010; Rap et al., 2013; Yang et al., 2017; Jin
et al., 2018). However, there have been few studies that have
reported the radiative effect of DMS on a regional scale. Choi
et al. (2020) adopted an empirical algorithm to estimate DMS
concentrations and calculated the direct radiative effect of
DMS aerosol to be−1.3 Wm−2 for the year 2014–2016 over
the East Asian seas, which was higher than the global aver-
age results (Yang et al., 2017; Rap et al., 2013). There were
no evaluations of the DMS predictions in the seawater or at-
mosphere in these studies, leading to an unknown reliability
of the results. The annual-mean direct radiative forcings due
to DMS-produced aerosol were −0.2 to −0.1 Wm−2 over
East Asia reported by Li et al. (2019), who used a DMS cli-
matology (Lana et al., 2011) with 1◦× 1◦ horizontal resolu-
tion for radiative forcing calculation. As mentioned before,
some uncertainties in the DMS climatology estimated by an
interpolation scheme and coarse grid (1◦× 1◦) may not be
appropriate for regional simulations. In the previous studies,
Li et al. (2020a, b) used long-term DMS measurements in
2011, 2013, 2015, 2016, and 2017 from a series of shipboard
field experiments and performed interpolation to map DMS
concentrations in the Chinese seas. The newest DMS mea-
surements were used to explore the impact of DMS on air
quality over coastal areas of China, but the radiative effect of
DMS was not reported.

To our knowledge, this is the first systematic study of
the Asian region that quantifies the impacts of DMS on
sulfate, particle number concentration, and radiative forc-
ing by using a state-of-the-art aerosol microphysics model
coupled to a global 3D chemical transport model. In this
study, we developed the regional DMS emissions for the year
2017 by training eXtreme Gradient Boosting (XGBoost) ma-
chine learning algorithms (Chen and Guestrin, 2016) using a
newly updated dataset. Then, the model estimates of DMS
and methane sulfonic acid (MSA) were evaluated by com-
paring the model simulations with shipboard field measure-
ments and long-term online measurement site data. Finally,

Atmos. Chem. Phys., 22, 9583–9600, 2022 https://doi.org/10.5194/acp-22-9583-2022



J. Zhao et al.: Simulating the radiative forcing of oceanic dimethylsulfide (DMS) in Asia 9585

the annual-average and seasonal impacts of DMS on sul-
fate/CCN concentrations and direct/indirect radiative forcing
were quantified.

2 Methods and data

2.1 GEOS-Chem-TOMAS

In this study, GEOS-Chem version 12.9.3
(https://doi.org/10.5281/zenodo.3974569, last access:
25 March 2021) coupled with the online TOMAS aerosol
microphysics model (Adams and Seinfeld, 2002) was
adopted to calculate atmospheric aerosol size, number, and
mass concentrations from marine DMS emissions. TOMAS
was used to simulate aerosol microphysics processes (i.e.,
nucleation, coagulation, condensation, cloud processing).
The advantage of TOMAS is the full aerosol size resolution
for all chemical species and the conservation of aerosol
number, which allows modelers to construct aerosol and
CCN number budgets that balance. GEOS-Chem-TOMAS
(GC-TOMAS) has been used in a range of previous studies
(Kodros and Pierce, 2017; Pierce and Adams, 2006; Kodros
et al., 2016; D’Andrea et al., 2013; Westervelt et al., 2013;
Lee et al., 2009; Trivitayanurak et al., 2008; Pierce et
al., 2007; Adams and Seinfeld, 2002; Jathar et al., 2020).
The model contains detailed hydrocarbon–nitrogen oxide
(NOx)–ozone(O3)–volatile organic compound (VOC)–
bromine oxide (BrOx) tropospheric chemistry (Bey et
al., 2001) and aerosol species (including sulfate, nitrate,
ammonium, black carbon, organic carbon, mineral dust,
and sea salt) (Duncan Fairlie et al., 2007; Pye et al., 2009;
Alexander et al., 2005; Park et al., 2004) that are fully
coupled to gas-phase chemistry, with the ISORROPIA II
algorithm to calculate the thermodynamic equilibrium
between aerosols and their gas-phase precursors (Fountoukis
and Nenes, 2007). The model includes a detailed wet and dry
deposition scheme for aerosols and gas species which have
been described in previous studies (Wesely, 2007; Liu et al.,
2001; Wang et al., 1998; Amos et al., 2012). This version
of GC-TOMAS tracks the total aerosol particle number and
the mass of each aerosol species (sulfate, mineral dust, sea
salt, hydrophilic and hydrophobic organic carbon, externally
and internally mixed elemental carbon, and aerosol water)
across 15 logarithmically size bins ranging from 3 nm to
10 µm (Lee and Adams, 2012; Lee et al., 2013). Since the
ammonium nitrate size distribution is not explicitly tracked
with GC-TOMAS, we assume that it follows the aerosol
water distribution (Bilsback et al., 2020a, b).

The simulation domain covering most of Asia (11◦ S to
55◦ N, 60–150◦ E) was discretized with a horizontal grid res-
olution of 0.5◦× 0.625◦ and 47 vertical layers and uses the
Modern-Era Retrospective Analysis for Research and Ap-
plications version (MERRA-2)-assimilated meteorological
field for meteorological inputs (Gelaro et al., 2017). To as-
sess radiative impacts of DMS emissions at a regional scale,

Table 1. Description of the simulation.

Simulation Description

XG DMS emissions on with updated DMS emissions
predicted by the XGBoost model.

LANA DMS emissions on with default DMS emissions
from Lana et al. (2011).

ND DMS emissions turned off.

we performed three different annual simulations for the year
2017 (Table 1). The “XG” simulation represents DMS emis-
sions that were calculated from our updated DMS emissions
estimates (see Sect. 2.3), and the “LANA” simulation refers
to DMS emissions from Lana DMS climatology (Lana et al.,
2011), which is the default setting in the current version of
the Geos-Chem model. The “ND” simulation has DMS emis-
sions turned off. Each simulation was conducted with a 1-
month spin-up period (December 2016). The boundary con-
ditions for the simulation domain were obtained from global
simulations at 2◦× 2.5◦ with 47 vertical layers.

For anthropogenic emissions in Asia, we used the re-
cently updated global anthropogenic emission inventories
(0.5◦× 0.5◦) or the year 2017 from the open-source Com-
munity Emissions Data System (CEDS) (McDuffie et al.,
2020), which applied scale factors from Zheng et al. (2018)
to update China’s emissions for the year 2017. Since there
is a significant reduction (62 %) in SO2 emissions in China
from 2010 to 2017 (Zheng et al., 2018), updated emissions
for China are crucial for quantifying contributions of bio-
genic sulfur sources over Asia. Biomass burning emissions
in GC-TOMAS are obtained from the Global Fire Emissions
Database Version 4 (van der Werf et al., 2017). Dust, bio-
genic VOCs, sea salt, soil NOx , and lighting NOx emissions
are calculated online based on the MERRA-2 meteorological
field. The Dust Entrainment and Deposition (DEAD) scheme
from Zender et al. (2003) was implemented in GEOS-Chem
to simulate dust mobilization. The Model of Emissions of
Gases and Aerosols from Nature from Guenther et al. (2012)
was used to generate biogenic VOC emissions. Soil and
lighting NOx emissions are calculated by the parameteriza-
tion scheme described in Hudman et al. (2012) and Price and
Rind (1992), respectively.

The sea–air flux of DMS is estimated using the following
the empirical formula as described in Lana et al. (2011):

F = Cw× kw× (1− γ ), (1)

where Cw is the seawater DMS concentrations, kw is the wa-
ter side gas transfer velocity and γ is the atmospheric gradi-
ent fraction. In this study, we selected the Nightingale et al.
(2000) parameterization (hereafter N00) for kw to represent
the DMS emissions over the global ocean.
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2.2 Radiative forcing calculation scheme

To calculate the top-of-the-atmosphere (TOA) all-sky di-
rect radiative forcing (DRF) and cloud-albedo indirect ra-
diative forcing (IRF), we used the Rapid Radiative Trans-
fer Model for Global Climate Models (RRTMG) (Iacono
et al., 2008) with monthly averaged aerosol number and
mass concentrations from GC-TOMAS output and meteo-
rological variables from MERRA2. For the DRF, we calcu-
lated aerosol optical depth (AOD) single scattering albedo
and the asymmetry parameter based on Mie theory (Bohren
and Huffman, 1983) and refractive indices from the Global
Aerosol Database (Koepke et al., 1997). In all cases, the
DRE was calculated for the core-shell optical assumption,
where, for each aerosol size bin, black carbon was repre-
sented as a spherical core within a homogenous shell of
all other hydrophilic species. For the cloud-albedo IRF, we
calculate cloud droplet number concentration (CDNC) us-
ing the activation parameterization from Abdul-Razzak and
Ghan (2002). Cloud-liquid water content is prescribed from
MERRA-2 and held fixed, and hence we only calculated the
cloud-albedo (Twomey) indirect effect. The changes in ef-
fective cloud drop radii were estimated following the cloud-
droplet-radius perturbation method used in previous studies
(Rap et al., 2013; Kodros et al., 2016; Scott et al., 2014).
Then, RRTMG was used to calculate the changes in TOA
radiative flux from the changes affecting cloud drop radii.
We limited this calculation to liquid clouds, which is a lim-
itation in this method. More detailed information about the
implementation of RRTMG in GC-TOMAS can be found in
Kodros et al. (2016).

2.3 Machine learning estimates of sea-surface DMS
concentration for calculating DMS emission flux

XGBoost (machine learning algorithm under the Gradient
Boosting framework) was used due to its many advantages.
For example, XGBoost is computationally efficient, has pre-
diction accuracy, requires less tuning, is scalable, has been
widely used in the field of geoscience (Sun et al., 2021; Ivatt
and Evans, 2020; Pan, 2018; Qian et al., 2020; Silva et al.,
2022; Cao et al., 2021), and generally outperformed other
models. Moreover, XGBoost is good for tabular data and
does not require large training datasets (Shwartz-Ziv and Ar-
mon, 2022). Thus, to better capture the nonlinear relation-
ship between DMS and the parameters that influence it, we
trained an XGBoost model with the entire dataset to predict
sea surface DMS concentrations in the place of missing ob-
servations.

Figure S1 in the Supplement shows the spatial distribution
of DMS measurements. The red points (1022 valid measure-
ments) represent the local DMS observation dataset (2011,
2013, 2015, 2016, and 2017) across several Chinese seas
from China Ocean University. Details can be found in our
previous studies (G.-P. Yang et al., 2014, 2015; J. Yang et al.,

2015; Xu et al., 2021; Zhai et al., 2020; Wu et al., 2020;
Jian et al., 2019; Yu et al., 2019; Mao et al., 2021). The
blue points (3329 valid measurements) represent the obser-
vations from the Global Surface Seawater DMS Database
(http://saga.pmel.noaa.gov/dms/, last access: 1 May 2021).
In total, 12 environmental parameters (Table S1 in the Sup-
plement) which strongly affect the growth of phytoplankton
and the production of DMS (Wang et al., 2015) were in-
cluded as predictors in machine learning estimates. Satel-
lite remotely sensed chlorophyll (Chl), photosynthetically
available radiation (PAR), particulate inorganic/organic car-
bon (PIC/POC), and diffuse attenuation coefficient at 490 m
(kd490) were from MODIS-Aqua products (daily, 8 d, and
monthly Level 3-binned 4 km resolution data). Nutrient data
(silicate, phosphate, and nitrate), sea surface temperature
(SST), salinity, and dissolved oxygen (DO) were obtained
from World Ocean Atlas 2018 (monthly 0.25◦ and 1◦ cli-
matology data). Monthly mixed-layer depth (MLD) clima-
tology (0.5◦× 0.5◦) was obtained from the Monthly Isopy-
cnal & Mixed-layer Ocean Climatology (MIMOC). Before
the implementation of the algorithm in Asia’s oceans, we per-
formed a model validation. First, the environmental param-
eters were matched with DMS measurements according to
sampling geographical coordinates and date. Take remotely
sensed Chl data, for example: if the daily binned data failed
to match the DMS observed data, we used the 8 d binned data
to take the place of daily binned data. After the data match-
ing, we then conducted filtering and quality control which
followed methods from Wang et al. (2020); the number of
data points in the simulation domain were reduced from
4351 to 3748 observation-based datasets for in situ DMS and
matched with environmental parameters. Table S1 has a de-
scription of the environmental parameters, sources, and their
filtering thresholds. Avoiding the possible large latitudinal
and seasonal variation in DMS, the sampling times and geo-
graphic coordinates were also included in machine learning
estimates. To solve issues in data discontinuity, these datasets
were converted to periodic functions as suggested in previ-
ous studies (Gade, 2010; Gregor et al., 2017; Wang et al.,
2020). To verify the prediction performance of the XGBoost
model, we divided the datasets into two parts: a validation
dataset and a training dataset. Considering that most of the
northern part of the simulation domain was land area, we
selected the data from 2◦ latitude bands between 11◦ S and
30◦ N as validation datasets (809 points), while the rest of
the data were all used as training data (2939 points). As sug-
gested by Wang et al. (2020), the measurement data collected
from the same cruise are highly intercorrelated, and using
near-neighbor values to predict validation data may cause the
model overfit. So, we selected the validation data manually
rather than automatically.

Figure 1 displays the validation results for the XGBoost
model, which reproduced DMS concentrations with high cor-
relation coefficients (R) of 0.75 and a low root-mean-square
error (RMSE) of 1.97 µmolm−3. The validation statistics are
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Figure 1. The scatter plot compares model predictions and obser-
vations of DMS. The color represents the percentile of distribution
of absolute difference between predicted and observation data.

comparable to other studies (R = 0.73–0.81 and RMSE=
1.92–2.00 µmolm−3) that used nonlinear/multilinear models
to predict sea-surface DMS concentrations over the global
ocean (Galí et al., 2018; Wang et al., 2020). Model per-
formance for predicting DMS concentration in each season
was illustrated in Table S2. Predicted DMS concentrations
were slightly underestimated in comparison with validation
datasets, with a mean bias (MB) of−0.59 to−0.21 µmolm−3

and a normalized mean bias (NMB) of−19.36 % to−6.51 %
across the four seasons. A lower RMSE of 1.81 µmolm−3

was observed in spring. The MB and NMB in spring were
smaller than those in other seasons, which indicated that the
model performed best in spring. Most of the available val-
idation datasets were concentrated in spring (about 67.9 %).
Thus, the imbalanced data may lead to less ideal performance
in other seasons.

The advantage of utilizing a machine learning method is
the ability to capture nonlinear relationships between DMS
and its affecting parameters to estimate DMS concentrations
with a plausible underlying basis in spatial–temporal vari-
ability. A shortcoming of the traditional geographical inter-
polation method is that relatively sparse data are typically in-
terpolated to the entire ocean, which has been highlighted by
previous studies (Galí et al., 2015, 2018; Wang et al., 2020).
In this study, the advantage of the machine learning method
is also demonstrated by comparing two different model sim-
ulations (see Sect. 3.2). In the implementation phase of the
machining learning algorithm to the regional ocean, the re-
motely sensed datasets used to predict DMS concentrations
are all from MODIS-Aqua products in 2017, and monthly
climatologies were interpolated to the 8 d or monthly periods
for the remotely sensed data; then, we trained the XGBoost
model to obtain grid values that did not have DMS measure-
ments. Finally, estimated DMS concentrations were tempo-

rally averaged to a seasonal period and spatially binned to the
0.5◦× 0.5◦ grid for the Asian region (see Sect. 3.1).

Decision-tree-based machine learning models have a high
interpretability. The SHapley Additive exPlanation regres-
sion (SHAP) (Lundberg et al., 2020) can provide a deeper
understanding of model predictions, which allows for indi-
vidualized feature attribution for every decision. Stirnberg
et al. (2021) quantified the impact of various meteorologi-
cal derivers on PM1 concentrations by using SHAP analysis,
and Silva et al. (2022) used SHAP to explore the errors in
the prediction of lightning occurrence in a widely used Earth
system model. In this study, SHAP was applied to investigate
the importance of each predictor in model-predicted DMS
concentrations.

3 Results

3.1 Spatial and temporal patterns of the seawater DMS

Regional DMS maps for sea surface DMS concentrations
predicted by XGBoost in four seasons are displayed in
Fig. 2. The data show distinct seasonal variations. The high-
est regional mean DMS concentrations were observed in
the MAM, that is, 2.52 µmolm−3, which was approximately
1.15, 1.24, and 1.31 times higher than those in June–July–
August (JJA), September–October–November (SON), and
December–January–February (DJF) (Table S3), respectively.
However, according to the previous studies (Lana et al.,
2011; Galí et al., 2018; Wang et al., 2020), the highest DMS
concentrations usually occurred in JJA, mainly due to ade-
quate solar irradiation and warm temperature being favor-
able for primary production. We assumed that this differ-
ence was caused by the fact that we examined a different
statistical region compared with previous results that were
based on global-scale estimates. For comparative purposes,
we extracted corresponding simulation domain (Fig. 2) es-
timate values from global-scale estimates’ results; they are
listed in Table S3. Across the Asian seas, all the highest sea-
sonal mean DMS concentrations occurred in MAM, demon-
strating that our estimates agreed well with the estimates of
2.21–2.33 µmolm−3 reported in previous studies (Wang et
al., 2020; Lana et al., 2011). As shown in Fig. S2, zonal mean
DMS concentrations between 10◦ S and 30◦ N latitude areas
of the simulation domain were higher in MAM than in JJA,
but those between the 30◦ N and 50◦ N latitude bands were
higher in JJA than in MAM. As mentioned in Sect. 2.3, most
of the ocean area is concentrated in the 10◦ S and 30◦ N lat-
itude band of the entire simulation domain (11◦ S to 55◦ N,
60–150◦ E), which leads to the highest regional mean DMS
concentrations being observed in MAM. This is most likely
due to the seasonal variation of solar irradiation, because
most of the ocean area (11◦ S to 30◦ N) in the simulation
domain was influenced more by the solar irradiation in the
MAM than in JJA. A similar result can be found in monthly
Hovmöller diagrams of DMS climatologies, depicted by Galí
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Figure 2. Sea-surface DMS concentrations predicted by the XGBoost model by season.

et al. (2018). Throughout the four seasons, there were some
high concentrations of DMS (higher than 4.3 µmolm−3) that
appeared in different coastal areas, which is probably rel-
evant to high nutrient and chlorophyll concentrations over
the coastal areas. Galí et al. (2015) also found that most of
the coastal regions have higher dimethylsulfoniopropionate
(DMSP) concentrations compared with the global ocean, and
DMS in the seawater was generated from the breakdown of
DMSP.

Figure S3 summarizes the ranked mean SHAP values of
each predictor across all prediction cases. The line ranges
represent the interquartile range across the distribution.
Larger SHAP value magnitudes are interpreted as more im-
portant for the prediction task as they have a larger contri-
bution from that variable to that prediction. In our study,
the most important environmental parameter for predicting
DMS concentrations was Chl, followed by MLD, PAR, POC,
and salinity. Above all, the SHAP value of Chl is more than
double its value of MLD and PAR and much larger than all
others. This is consistent with the known importance of Chl
in developing predicting models of surface water DMS con-
centrations because of its biogenic origin (Simó and Dachs,
2002; Galí et al., 2015; Wang et al., 2020; Deng et al., 2021).

We calculated regional sea–air DMS fluxes using the N00
gas transfer velocity and DMS concentrations predicted by
XGBoost (Fig. 3a). We estimated annual DMS emission

fluxes of 1.25 Tg (S), corresponding to 15.4 % of the anthro-
pogenic sulfur emissions over the entire simulation domain
(covering most of Asia) in 2017. The higher estimated val-
ues of DMS fluxes (higher than 250 t (S) per grid) occurred
over some coastal waters, which generally agreed well with
the estimated sea surface DMS concentration distribution.
The highest emission fluxes occurred over the Chinese seas
(reaching up to 450 t (S) per grid). These high fluxes can
be attributed to the local DMS observations dataset in the
Chinese seas (red point in Fig. S1) that were included in
the machine learning estimates. Our previous studies (Li et
al., 2020a, b) reported that DMS emissions fluxes calculated
with the local dataset are 3 times higher than the default
global database (Lana et al., 2011) over most areas of the
Chinese seas. The highest positive changes in DMS emis-
sions fluxes were mainly in the areas of the East China Sea
(up to 200 t (S) per grid) and some coastal regions (Fig. 3b).
However, there were more negative changes in DMS emis-
sions fluxes than positive changes in the seawater, which sug-
gested that the sea–air DMS flux estimated in this study was
generally lower than those from Lana et al. (2011). Similar
results can be found in Wang et al. (2020).
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Figure 3. Panel (a) presents annual DMS emission flux calculated based on N00 flux parameterization (Nightingale et al., 2000) from XG
sea surface concentrations. Panel (b) presents changes between DMS emission flux from updated (XG) and default climatology (LANA).

3.2 Model evaluation

3.2.1 Model performance of DMS and its oxidation
product MSA

Modeled atmospheric DMS concentrations were compared
with observations from the 2017 Cruise Survey Experiment
(CSE) 1–3 (Fig. 4). Due to the discontinuities in time and
gaps in observations, we averaged the whole period of each
CSE observation for our comparisons. The results in Ta-
ble S4 demonstrate moderate improvements in the model
performance of DMS predictions when using updated DMS
emissions relative to default DMS emissions; i.e., the dif-
ference between the observations and predictions (observa-
tion− prediction) became smaller (from−16.34 to 6.68 pptv
for CSE 1, −21.11 to −16.17 pptv for CSE 2, and −121.57
to 117.39 pptv for CSE 3, respectively). CSE 3 had much
higher DMS concentrations, because most of the measure-
ments were from the mouth of the Changjiang River, and it
is difficult for a coarse model grid (0.5◦×0.625◦) to represent
the high values that occur off coastal areas. MSA is a tracer of
DMS, because it is formed exclusively from DMS (Gondwe
et al., 2003). We also evaluated the model performances for
MSA by comparing the model simulations with long-term
online measurement site data (Zhou et al., 2021) from Hua
Niao Island (Fig. 4). Figure 5 displays time series of daily
mean MSA values of predictions (XG and LANA) and ob-
servations. The simulated MSA concentrations from XG and
LANA are both within the range of observed values, and the
trends of the MSA concentrations were relatively well repro-
duced, with mean values of 0.014, 0.020, and 0.023 µgm−3

for LANA, XG, and observations. Although in some periods
LANA simulation results were closer to the observations, and
XG simulations underpredicted, e.g., RMSE of 0.013 and
0.006 µgm−3 for LANA, 0.021 and 0.010 µgm−3 for XG
during the periods of 21 to 25 June and 28 June to 3 July,
respectively. However, on the whole, the simulation results
of XG in other periods were closer to the observations than

Figure 4. Locations of atmospheric DMS observations from cruise
survey experiments 1–3, and the MSA observation site on Hua Niao
Island.

those of LANA simulation results, with RMSEs of 0.024 and
0.018 µgm−3 for LANA and XG, respectively.

3.2.2 Model performance evaluation for PM2.5, AOD,
and CCN

The magnitude and distributions of PM2.5, AOD, and CCN
directly influence DRF and IRF estimates. To evaluate
whether GC-TOMAS can reproduce the spatial distribution
and temporal trends of these parameters over the simulation
area, we evaluated model performance by comparing simu-
lation results for XG with ground observations and satellite-
retrieved estimates. Since DMS impacts PM2.5 and CCN
over the ocean and some coastal areas (see Sect. 3.3) and the
ground observational data are all over land areas, we only
used one of the simulations for model evaluation.

Boylan and Russell (2006) suggested that model predic-
tions can be regarded as sufficiently accurate when the model
has a mean fractional bias (MFB) ≤±30 % and a mean frac-
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Figure 5. A comparison of simulated daily concentrations of MSA with observations at the Hua Niao Island site (units: µgm−3).

tional error (MFE) ≤±50 %. Figure S4 presents the distri-
butions of simulated annual mean PM2.5 concentrations and
observations at 366 city sites from the China National En-
vironmental Monitoring Center (CNEMC). The model per-
formed well against PM2.5 observations for the year 2017,
with MFB of 5.5 % and MFE of 23.1 %, which are both
within the range suggested by Boylan and Russell (2006)
and had a Pearson correlation coefficient (R) of 0.62. Simu-
lated PM2.5 concentrations were slightly underpredicted with
a MB of −1.3 µgm−3, which is probably ascribed to under-
prediction of PM2.5 in some parts of northern China. Fur-
ther, uncertainties in land-based emissions inventories tend
to cause different model performances in different regions.

Table S5 summarizes the collected in situ measurements
of CCN concentrations in other previous studies and corre-
sponding annual-mean simulated CCN concentrations which
were used for evaluation. The MFB and MFE were 28.17 %
and 34.16 %, which met the suggested benchmark; however,
the model estimates underpredicted the measurements in
most areas. Liu et al. (2020) adopted a satellite-based method
to retrieve CCN concentrations from 2013 to 2019 and re-
ported that they could reasonably reproduce the spatial pat-
tern of CCN in East Asia. In this study, monthly mean GC-
TOMAS CCN concentrations were compared with satellite-
retrieved CCN concentrations at supersaturation levels of ap-
proximately 0.2 % from Liu et al. (2020). A total of 8 months
of satellite-retrieved CCN concentrations were averaged on
the MERRA-2 grid (corresponding to 667 simulation grids)
for comparison (Fig. S5). The simulated CCN concentrations
presented generally similar monthly variations when com-
pared with the satellite-retrieved concentrations. The mod-
eled concentrations had a MFB of 17.23 % and a MFE
of 37.28 %, both meeting the criteria suggested by Boy-
lan and Russell (2006). The GC-TOMAS CCN concentra-
tions (430 cm−3) for 8 months underestimated the satellite-
retrieved concentrations (587 cm−3). This underestimation is
more apparent in July, August, September, and November.
However, for other months (February, April, May, and June),
the simulated CCN concentrations only slightly underpre-
dicted observations with a MB of −75 cm−3. This differ-
ence is more likely attributable to differences in model per-

formance in different regions. For example, the underpredic-
tions of CCN in May were mainly distributed in the east-
ern coastal area of China, the Korean Peninsula, and Japan.
However, in August and September, the underprediction of
model estimates’ discrepancies were mainly in the southern
and northern parts of China, respectively. Due to the limited
CCN monitoring data in our domain during the simulation
period, we compared predicted results with satellite-retrieved
CCN. However, as Liu et al. (2020) indicated, errors in re-
trieved data and the CCN counters might cause inaccuracy
of satellite CCN inversion results. Thus, we note that the
satellite-derived CCN cannot be treated as true as in situ ob-
servations when validating model results.

For AOD, monthly averages from the Aerosol Robotic
Network (AERONET) Version 3 spectral deconvolution al-
gorithm (SDA) level-2.0 measurements (Giles et al., 2019)
were used to validate the model estimations. In total,
there were 79 measurements within the simulation do-
main. Figure S6 displays annual-mean model estimates and
AERONET measurements AOD at 550 nm (the AERONET
AODs at 500 nm are converted to 550 nm using Ångström ex-
ponents at 500 nm). The model estimates compared well with
measurements with a Pearson R of 0.84 and only a slightly
underprediction of AOD with MB of −0.13. The respective
MFB and MFE were −28.64 % and 13.45 %, which all meet
the benchmark suggested in Boylan and Russell (2006).

3.3 Seasonal variations of DMS impacts to SO4
2−,

CCN, and radiative forcing

By updating the DMS emissions in GEOS-Chem (XG-ND),
we find an enhancement of near-surface SO4

2− concentra-
tions of 0.1–0.3 µgm−3 over most areas of seawater (Fig. 6a).
The highest impacts (approximately 0.3 µgm−3) occurred in
MAM around the South China Sea area due to the high-
est regional mean DMS concentrations in MAM. However,
the spatial distributions of SO4

2− concentrations enhanced
by addition of DMS emissions in the four seasons did not
exactly follow the spatial and temporal patterns of seawa-
ter DMS concentrations (Fig. 2). Sea surface wind speed has
noticeable impacts on the sea–air DMS flux and followed at-
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Figure 6. Spatial pattern of the seasonal mean absolute changes in surface SO4
2− (first column) and all-sky DRF (second column) between

the XG and ND (no DMS) simulations.

mospheric DMS concentrations, which caused higher atmo-
spheric DMS concentrations over the Indian Ocean in MAM.
Ambient oxidant level also plays an important role in the
subsequent DMS oxidation phase. For example, higher at-
mospheric DMS (300–400 pptv) and SO2 (0.2–0.3 µgm−3)
concentrations contributed by DMS can be found around the
areas of the East China Sea (Figs. S7 and S8) in MAM and

JJA. However, a higher contribution of DMS emissions to
near-surface SO4

2− concentrations occurred over the South
China Sea in DJF and MAM. The spatial disparities might
be due to the roles of oxidants in the conversion of SO2 into
SO4

2− in different seasons. Additionally, cloud cover could
also affect aqueous conversion.
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The magnitude of the all-sky sulfate DRF at the TOA con-
tributed by DMS ranged from −200 to −20 mWm−2 in four
seasons (Fig. 6b). The spatial patterns of DRF are highly con-
sistent with those of SO4

2− concentrations, with the stronger
negative DRF (−200 to −120 mWm−2) in the areas with
higher SO4

2− concentrations contributed by DMS such as
the South China Sea, Philippine Sea, and Japan Sea. It should
be noted that DRF calculation is from the whole column of
the atmosphere, whereas Fig. 6a just shows the surface layer
concentrations, yet the spatial results are still qualitatively
similar. As reported by some previous studies (Khan et al.,
2016; Chen et al., 2018; Zhao et al., 2021), DMS mainly
exists in the lower atmosphere, and the impacts of DMS
on SO2 and SO4

2− concentrations are limited to the lower
troposphere. So, the magnitude of sulfate DRF at the TOA
shown in Fig. 6b is mostly caused by lower-altitude SO4

2−

from DMS. SO4
2− aerosols are non-absorbing aerosols that

primarily scatter incoming radiation and the increase in re-
flected solar radiation flux at TOA and almost equally re-
duce the radiation at the surface (Ramanathan et al., 2001).
Thus, for sulfate aerosol, the magnitude of the cooling effect
can be estimated from the aerosol radiative forcing at the
TOA. The seasonal mean sulfate DRF has contributions of
−22.24, −18.79, −21.58, and −17.43 mWm−2 from DMS
over the simulation domain in DJF, MAM, JJA, and SON, re-
spectively. The magnitude of the DMS-induced sulfate DRF
in DJF and JJA is higher than other seasons, but the high-
est impacts of DMS emissions on SO4

2− concentrations oc-
curred in MAM followed by DJF. The all-sky DRF was
calculated based on the RRTMG model using aerosol mass
concentrations (whole column) and optical parameters along
with surface albedo and cloud fractions from MERRA-2-
assimilated meteorological data. Hence, aerosol mass con-
centrations as well as other parameters can impact the magni-
tude and spatial distributions of the DRF. For clear-sky con-
ditions, aerosol scatters more incoming solar radiation than
in all-sky conditions, which leads to aerosol DRF at the TOA
and surface increases compared with all-sky conditions.

Figure 7a shows the changes in seasonal mean CCN sur-
face concentrations at 0.2 % supersaturation (CCN 0.2 %) be-
tween the XG and ND simulations. Updating the DMS emis-
sions led to an increase in CCN concentrations by 3–42 cm−3

over most areas of seawater and an increase of 6–16 cm−3 in
some coastal regions. The highest increases occurred in DJF,
followed by MAM. The impacts of DMS on CCN concen-
trations are shown in Fig. 6a. The modeled DMS-induced
cloud-albedo IRF ranged from −900 to −100 mWm−2 in
the four seasons (Fig. 7b), which is much higher relative
to that of the sulfate DRF attributable to DMS. The sea-
sonal mean sulfate IRF had contributions of−43.29,−45.04,
−43.60, and −33.03 mWm−2 from DMS in our domain in
DJF, MAM, JJA, and SON, respectively. There are some
similarities in the spatial distribution of the effects of DMS
on IRF and CCN. However, the strong negative IRF was
mainly over remote oceans (−900 to −600 mWm−2), while

the higher contributions to CCN were concentrated within
coastal waters. One explanation for these differences was that
strong anthropogenic emissions in Asia led to intense compe-
tition for water vapor during cloud-droplet activation, which
further decreases the maximum supersaturation achieved in
updrafts and limits droplet activation (Kodros et al., 2016).
Also, the clouds are not necessarily at a height where CCN
changes are affected by DMS.

3.4 Annual DMS impacts on SO4
2−, CCN, and radiative

forcing

3.4.1 Annual DMS impacts on SO4
2−, CCN, and

radiative forcing between XG and ND simulation

Figure 8a shows the annual-mean percent changes and ab-
solute changes in SO4

2− and CCN between the XG and
ND simulations. Oceanic DMS emissions increased the near-
surface SO4

2− and CCN concentrations by 0.1–0.3 µgm−3

and 3–42 cm−3 over most areas of seawater across the four
seasons. Due to heavy amounts of anthropogenic pollutants
from the continent, DMS contributed 88 % of SO4

2− and
42 % of CCN in remote oceanic areas. More than 40 % of the
SO4

2− and 20 % of the CCN contributed by DMS emissions
were also found in the Philippine Sea and Indian Ocean, re-
spectively. DMS had a moderate impact of 0.1–0.18 µgm−3

for SO4
2− and 10–22 cm−3 for CCN when considering all

coastal regions of the simulation domain. Yang et al. (2017)
indicated that DMS emissions only have 20 %–40 % of con-
tributions to SO4

2− concentrations over downwind ocean ar-
eas of East Asia, which was much lower than the 40 %–
70 % contribution estimated in this study. This discrepancy
is mainly ascribed to a significant reduction (62 %) in SO2
emissions in China from 2010 to 2017 (Zheng et al., 2018).

The modeled all-sky DRF of DMS-induced sulfate here
ranges from −100 to −10 mWm−2 (Fig. 8b). The sulfate
DRF was strongest (−100 to −60 mWm−2) over the South
China Sea, which is consistent with the distributions of
SO4

2− concentrations contributed by DMS emissions. The
DMS-induced cloud-albedo IRF (−700 to −100 mWm−2)
here was higher than the all-sky DRF estimate. A relatively
strong cooling IRF (−700 to −400 mWm−2) induced by
DMS emissions can be seen in the vicinity of the equato-
rial belt in the Indian Ocean and northwestern Pacific Ocean.
The simulated annual mean sulfate DRF and IRF are−20.01
and −41.26 mWm−2 over the simulation domain, respec-
tively. Li et al. (2019) estimated the annual mean all-sky
DRF of −100 mWm−2 from DMS emissions over the East
China Sea. Our estimates (−20.01 mWm−2) were lower than
their result, which is likely attributable to discrepancies in the
DMS emissions used to drive the model.
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Figure 7. Spatial pattern of the seasonal mean absolute changes in surface CCN (0.2 %) (first column) and cloud-albedo IRF (second column)
between the XG and ND (no DMS) simulations.

3.4.2 Annual DMS impacts on SO4
2−, CCN, and

radiative forcing between XG and LANA
simulations

To quantify the impacts of DMS emissions changes on
SO4

2−, CCN, and radiative forcing, we compared the XG
and LANA simulations (Fig. S9a). Increases in SO4

2− and
CCN can be found in the areas of Indonesia and the north-

western Pacific Ocean (Fig. S9a), which was generally con-
sistent with the changes in DMS emissions fluxes between
XG and LANA (Fig. 3b). DMS emissions changes (between
XG and LANA) accounted for 4 %–20 % and 6 %–18 %
of SO4

2− and CCN concentrations over areas of Indone-
sia and 2 %–10 % and 3 %–6 % of those concentrations over
the northwestern Pacific Ocean, respectively. The largest de-
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Figure 8. Panel (a) presents the spatial distributions of annual mean percent changes and absolute changes in surface SO4
2− and CCN, and

panel (b) presents the spatial distributions of annual mean all-sky DRF and cloud-albedo IRF between XG and ND (no DMS) simulations.

creases were seen in the vicinity of the Indian Ocean, which
was −0.06 µgm−3 for SO4

2− and −10 cm−3 for CCN. Due
to the higher background concentrations contributed by an-
thropogenic sources, the relative percent change was smaller
over that area, where DMS emissions changes only ac-
counted for −8 % to −4 % for SO4

2− and −6 % to −3 %
for CCN. Also, changes in DMS fluxes around the equatorial
belt in the western Pacific Ocean (Fig. 3b) did not directly
link to negative changes in SO4

2− and CCN, which was
most likely offset by large-scale transport of sulfate caused
by DMS from the East China Sea. The changes in annual
mean DRF and IRF from XG–LANA simulation are shown
in Fig. S9b. Decreases in DRF (−20 to −5 mWm−2) mainly
were concentrated over the northwestern Pacific Ocean. The
largest increase in DRF (up to 40 mWm−2) was found in the
areas of the Japan Sea, and most of the increases in DRF
(5 to 20 mWm−2) were mainly distributed in the region of
the Indian Ocean and land areas of India. Their spatial pat-
terns were consistent with distributions of absolute changes
in SO4

2− concentrations. The largest changes in IRF were
found in areas of the northwestern Pacific Ocean and the Sea
of Okhotsk, with changes of up to −200 and 200 mWm−2.
The decreases in IRF from the XG–LANA simulation can
span most of the Pacific Ocean over the simulation domain
and some continental regions, and increases in IRF are more
concentrated within the Indian Ocean and Sea of Okhotsk.
Generally, our estimated sea–air DMS fluxes are lower than
those from Lana et al. (2011) over most of the ocean areas,
but the DMS-caused changes to SO4

2−, CCN, and radiative

forcing were more varied, with the increases over the north-
western Pacific Ocean for SO4

2− and CCN,and decreases in
the regions of Indian Ocean or increases in the regions of
the Indian Ocean for DRF and IRF and decreases over the
northwestern Pacific Ocean.

3.5 Limitations of this study

We found several limitations in our emission estimates and
modeling study. We try to use machine learning estimates of
DMS concentrations to fill the regions without observations.
While the recently measured 1022 seawater DMS observa-
tions over Chinese seas included a training period, for some
months (January, November, etc.) there were still not enough
data to create a monthly mean. Hence, we temporally aver-
aged input parameters to a seasonal period rather than use
monthly data, which is a limitation of this study, but as shown
in Sect. 3.1, the estimated results showed distinct seasonal
variations, and the results are comparable with other studies.
Due to the limited continuous measurements of atmospheric
DMS and MSA concentrations, we only presented all the av-
eraged cruise survey observations for DMS model evalua-
tion and temporal variation of MSA prediction performance
evaluated only from a single observation site. We acknowl-
edge that this is an important limitation of this study, which
prevents us from giving comprehensive estimates (on tempo-
ral and spatial scales) of the advantage of our updated DMS
emissions. More marine and atmospheric observational data
are necessary for further model evaluation.
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In addition, due to the limited high-temporal-resolution
monitoring data of CCN for the simulation year 2017 in
our domain, we verified the model performance of the CCN
simulation by comparing the modeled results with the col-
lected mean annual observed concentrations of CCN in other
previous studies and satellite-retrieved CCN concentrations.
We acknowledge that the CCN model–measurement compar-
isons listed in Table S5 are not the exact times where simu-
lated and satellite-retrieved CCN (given the uncertainty in
water uptake and size distributions) are not necessarily ac-
curate enough to represent true atmospheric CCN concentra-
tions in 2017.

Modeled AOD may be biased during cloudy conditions
when AERONET measurements cannot be made. Hence,
there would be an uncertainty in using monthly averaged
measurements and model predictions for comparison (Schut-
gens et al., 2016).

Different chemical mechanisms of various chemical-
transport models and the treatment of aerosol optical proper-
ties can also lead to differences in simulation results. Glob-
ally, the annual-mean DRF and IRF contributed by DMS re-
ported by other studies (as listed in Table S6) varied from
−0.23 to−0.074 W m−2 and from−6.55 to−0.3 Wm−2, re-
spectively. Aerosol–cloud interactions are a major source of
uncertainty in the prediction of climate change, impacting ra-
diative forcing estimates, especially the IRF calculation. Dif-
ferences in aerosol nucleation schemes, activation parame-
terizations, and emissions between models can contribute to
large discrepancies in their simulation results (Carslaw et al.,
2013). However, we did not explore the impact of different
nucleation schemes on radiative forcing. We recommend that
this should be done in future work to minimize uncertainties
in future modeling studies.

4 Conclusions

In this study, we utilized the XGBoost machine learning al-
gorithm to estimate seawater DMS concentrations by train-
ing 12 ocean environmental parameters on newly updated
DMS measurements; 1022 recent seawater DMS measure-
ments over Chinese seas were included in our training data,
and we used the machine learning method to fill the gap
at times and in locations without observations. The DMS
model–measurement validation results showed that our XG-
Boost estimates could capture the observed DMS concen-
trations with a correlation coefficient of 0.75. Zonal mean
DMS concentrations between 10◦ S and 30◦ N latitude areas
of simulation domain were higher in MAM than in JJA, and
most of the ocean area was concentrated in the 10◦ S and
30◦ N latitude band, which led to the highest regional mean
DMS concentrations observed in MAM. We estimated an-
nual DMS emission fluxes of 1.25 Tg (S), which accounted
for 15.4 % of anthropogenic sulfur emissions over the entire
simulation domain (covering most of Asia) in 2017. Com-

parative analysis revealed that the sea–air DMS flux esti-
mated in this study (from XG estimates) was generally lower
than those from global-database DMS emissions (Lana et al.,
2011). The model estimates of DMS and MSA from XG sim-
ulation were evaluated by comparing them with cruise survey
experiments and long-term online measurement site data. In
general, the improvement in model performance can be ob-
served by comparing XG with the LANA simulation, which
uses the global-database DMS emissions.

The modeled DMS-induced sulfate DRF and IRF
ranged from −200 to −20 mWm−2 and from −900 to
−100 mWm−2 across the four seasons, respectively. The
stronger negative DRF (−120 to −200 mWm−2) was in
the areas with higher SO4

2− concentrations contributed by
DMS, such as the South China Sea, Philippine Sea, and Japan
Sea. However, the strong negative IRF was mainly over re-
mote oceans (−900 to −600 mWm−2), which did not match
with the spatial distributions of contributions of DMS to
CCN concentrations due to the role of clouds in the IRF. An-
nually, DMS-induced sulfate IRF (−700 to −100 mWm−2)
here was obviously higher than those all-sky DRF (−100 to
−10 mWm−2). By adding our updated DMS emissions to a
simulation with no DMS (XG–ND), we predict the enhance-
ment of near-surface SO4

2− and CCN concentrations by 0.1–
0.3 µgm−3 and 3–42 cm−3, respectively, over most oceanic
areas in all four seasons. We found higher contributions from
DMS emissions to SO4

2− and CCN in MAM and DJF than
JJA and SON.

In this work, we quantified the contributions of DMS to
atmospheric SO4

2− and CCN aerosol concentrations along
with their radiative effect over a modeled Asian domain
(covering most of Asia). This work provides better insights
into the source strength of DMS and its impact on climate,
addressing knowledge gaps related to factors controlling
aerosols in the marine boundary layer and their climate im-
pacts. As discussed in Sect. 3.6, there are several limitations
that need to be improved upon in future work. More marine
and atmospheric observational data are necessary for further
DMS emission estimates and model evaluation to explore the
interactions of DMS with aerosols and radiative forcing. In
future work, we also need to explore the impact of differ-
ent aerosol nucleation schemes on radiative forcing to more
completely quantify the uncertainties in our modeling study.

Code availability. The GEOS-Chem model code is available at
https://doi.org/10.5281/zenodo.3974569 (The International GEOS-
Chem User Community, 2020) and the XGBoost code used is
available from https://doi.org/10.1145/2939672.2939785 (Chen and
Guestrin, 2016).

Data availability. The MERRA2 meteorology data are available
at http://ftp.as.harvard.edu/gcgrid/data/GEOS_2x2.5/MERRA2/
(Bosilovich et al., 2016). The LANA DMS climatology can be
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