$H_2 + OH \rightarrow H + H_2O$

- CH₄ concentrations
- Less OH available to react with CH₄ (OH is CH₃'s main sink)
- 2 Increased lifetime of CH₄
- CH₄ can now warm the climate for a longer period of time

- Tropospheric O₃ concentrations
- Tropospheric O₃ is formed via a chain of reactions:

$$\begin{aligned} & \text{H + O}_2 \rightarrow \text{HO}_2 \\ & \text{HO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{OH} \\ & \text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O} \end{aligned}$$

- $O + O_2 + M \rightarrow O_3 + M$ More transcriberic O_3 leads
- More tropospheric O₃ leads to further warming

- Stratospheric H₂O concentrations
- When reaction is in stratosphere, more water vapor increases infrared radiative capability of stratosphere
- Stratospheric cooling as more energy lost to space
- Overall warming of climate because energy emitted out to space is now

from a cooler temperature

TROPOSPHERIC EFFECTS

STRATOSPHERIC EFFECTS