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Abstract. Global and regional sources and sinks of carbon across the earth’s surface have been studied ex-
tensively using atmospheric carbon dioxide (CO;,) observations and atmospheric chemistry-transport model
(ACTM) simulations (top-down/inversion method). However, the uncertainties in the regional flux distributions
remain unconstrained due to the lack of high-quality measurements, uncertainties in model simulations, and rep-
resentation of data and flux errors in the inversion systems. Here, we assess the representation of data and flux
errors using a suite of 16 inversion cases derived from a single transport model (MIROC4-ACTM) but differ-
ent sets of a priori (bottom-up) terrestrial biosphere and oceanic fluxes, as well as prior flux and observational
data uncertainties (50 sites) to estimate CO; fluxes for 84 regions over the period 2000—2020. The inversion
ensembles provide a mean flux field that is consistent with the global CO, growth rate, land and ocean sink
partitioning of —2.9 +0.3 (& 1o uncertainty on the ensemble mean) and —1.6 +0.2 PgC yr~!, respectively, for
the period 2011-2020 (without riverine export correction), offsetting about 22 %-33 % and 16 %—18 % of global
fossil fuel CO, emissions. The rivers carry about 0.6 PgCyr~! of land sink into the deep ocean, and thus the
effective land and ocean partitioning is —2.3 0.3 and —2.2 £ 0.3, respectively. Aggregated fluxes for 15 land
regions compare reasonably well with the best estimations for the 2000s (~ 2000-2009), given by the REgional
Carbon Cycle Assessment and Processes (RECCAP), and all regions appeared as a carbon sink over 2011-2020.
Interannual variability and seasonal cycle in CO;, fluxes are more consistently derived for two distinct prior
fluxes when a greater degree of freedom (increased prior flux uncertainty) is given to the inversion system. We
have further evaluated the inversion fluxes using meridional CO; distributions from independent (not used in
the inversions) aircraft and surface measurements, suggesting that the ensemble mean flux (model-observation
mean * 1o standard deviation = —0.3 &= 3 ppm) is best suited for global and regional CO, flux budgets than an
individual inversion (model-observation 1o standard deviation = —0.35 £ 3.3 ppm). Using the ensemble mean
fluxes and uncertainties for 15 land and 11 ocean regions at 5-year intervals, we show promise in the capability
to track flux changes toward supporting the ongoing and future CO, emission mitigation policies.
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1 Introduction

Carbon dioxide is the most important anthropogenic green-
house gas in the Earth’s atmosphere. Due to human in-
fluences, e.g., fossil fuel consumption and cement pro-
duction (FFC), the concentration of atmospheric CO; in-
creased (by 38 %) from 289.9 3.3 ppm in 1850-1900 to
398.8 = 7.3 ppm in 2010-2019, with the fastest growth in
the past 5 decades (Canadell et al., 2021). To limit global
warming below 1.5°C by 2100, as per the Paris Agreement,
a drastic and sustained reduction in CO; emissions from an-
thropogenic activities is recommended in the IPCC’s sixth
assessment report (AR6). The IPCC AR6 Working Group
1 estimated remaining carbon budgets (starting from 1 Jan-
uary 2020) for limiting global warming to 1.5, 1.7, and 2.0 °C
as 140, 230, and 370 PgC, respectively, based on the 50th per-
centile of the transient climate response to cumulative emis-
sions of carbon dioxide (TCRE) (Canadell et al., 2021). With
the present FFC emissions of about 10 PgCyr~! (Jones et al.,
2021), the remaining carbon budget will be consumed within
decades.

The sinks on the land and ocean constitute a major com-
ponent of nature-based solutions to mitigate the rise in CO»
concentration, as discussed in the IPCC AR6 (Canadell et
al., 2021). During 2010-2019, the CO; emissions from hu-
man activities (average rate of 10.9+0.9PgCyr~!) were
distributed between three Earth system components: 46 %
accumulated in the atmosphere (5.1 4 0.02 PgCyr~!), 23 %
was taken up by the ocean (2.5+0.6PgCyr~!), and
31% was stored by vegetation in terrestrial ecosystems
(3.4£0.9PgCyr~!) (Table 5.1 in Canadell et al., 2021).
Large uncertainties persist for the total global land and ocean
sink partitioning in the [IPCC assessment, up to about 25 % of
the global total land and ocean sinks. The uncertainty in land
and ocean sink partitioning of about 1 PgCyr~—! in the IPCC
ARG is based on the annual carbon budget of the Global Car-
bon Project (GCP) (Friedlingstein et al., 2020). One of the
impediments to making policy for CO, emission reduction is
poor knowledge of the regional sources and sinks of carbon
in Earth’s disturbed and undisturbed ecosystems on land and
in the ocean (Kondo et al., 2020). To estimate regional CO,
sources and sinks, the country-scale socio-economic statis-
tics, field studies, and remote sensing of the earth’s envi-
ronment are most commonly used (bottom-up or inventory
estimation), which often suffers from reliable data or regu-
lar data updates (Ito, 2019; Jones et al., 2021). In the other
method (top-down estimations), observations and model sim-
ulations of atmospheric concentrations are used to estimate
CO; sources and sinks in the terrestrial biosphere and the
oceans (Peylin et al., 2013).

Top-down inverse models estimate residual natural or non-
FFC CO; fluxes from land and ocean regions because inver-
sion calculations do not explicitly optimize the FFC emis-
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sions; i.e., the FFC emissions are not revised, but the a priori
land and ocean sinks are revised. When different sources of
FFC emissions are used in inversions, post-inversion correc-
tions are applied for comparison between inversions (Peylin
et al., 2013; Thompson et al., 2016). More recently, the in-
verse model inter-comparison experiments use prescribed
FFC emissions, e.g., the global carbon project (Friedlingstein
et al., 2020) or the OCO-2 flux intercomparison (Crowell
et al., 2019), to avoid the post-inversion correction. How-
ever, the impacts of biases in FFC emissions on inversion
estimated CO, fluxes remained relatively unexplored (Saeki
and Patra, 2017). The FFC emission biases affect the region
of FFC emission and the regions linked closely by atmo-
spheric transport. This is because (1) the prior flux uncer-
tainties set for each of the inversion regions may not be suf-
ficient to allow for fully compensatory correction by inver-
sion, (2) the model transport biases could move FFC emis-
sion signals slowly or quickly from the source region, and (3)
emission signal goes undetected within the region when there
are not enough measurement sites in the source region of bi-
ased FFC. Most FFC emission inventories are based on the
data available from the International Energy Agency (IEA)
and British Petroleum and mainly differ in spatial distribu-
tion within a given country (Crippa et al., 2020; Jones et al.,
2021; Oda et al., 2018).

The GCP annual updates of inversions provide a metric
for evaluating inversions using independent measurements,
mainly from aircraft campaigns (e.g., Friedlingstein et al.,
2020). Evaluation of predicted fluxes from model-data dif-
ferences may not be straightforward due to the underlying
assumptions of a flux inversion system, e.g., for flux correla-
tion lengths or the radius of influence for the measurements,
observational data uncertainty, prior flux uncertainty (Baker
et al., 2010; Chevallier et al., 2007; van der Laan-Luijkx et
al., 2017; Miyazaki et al., 2011; Niwa et al., 2017; Roden-
beck et al., 2003), while the data assimilation system will fit
the model concentrations to the observed values. For exam-
ple, a model-observation difference within & 1 ppm and/or
vertical concentration gradient simulation within lo stan-
dard deviation of the observed gradient resulted in more than
1PgCyr~! flux differences between models at regional or
sub-hemispheric scales (Gaubert et al., 2019; Stephens et al.,
2007; Thompson et al., 2016). Another way of improving our
knowledge about uncertainties in regional flux estimations is
to employ multiple types of datasets from both bottom-up
and top-down modeling systems (Ciais et al., 2021; Kondo
et al., 2020), which we have adapted here for checking the
regional inversion fluxes, in addition to the GCP-like evalua-
tion using independent aircraft data.

The uncertainties in the regional fluxes mainly arise from
prior flux distribution and seasonality, selection of observa-
tional network and data uncertainty, transport model reso-
lution leading to site-representation error, and uncertainties
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arising from parameterization of transport processes (Basu
et al., 2018; Patra et al., 2005a; Philip et al., 2019; Qu et al.,
2021; Wang et al., 2018). The uncertainties associated with
the subcontinental-scale CO; fluxes are often much greater
than the interannual and interdecadal flux changes in non-
FFC sectors, which allows us to make a better assessment of
the changes in regional CO, fluxes compared to knowledge
gained in regional flux magnitudes (Baker et al., 2006; Gur-
ney et al., 2008; Patra et al., 2005a, b; Peylin et al., 2013;
Rayner et al., 2008; Rodenbeck et al., 2003). Typically, a
multi-model assessment of flux estimation uncertainties is
performed by collecting inversions from different transport
models, e.g., in TransCom (Baker et al., 2006; Gurney et al.,
2008; Peylin et al., 2013), for inversions using GOSAT mea-
surements (Houweling et al., 2015) or for inversions using
OCO-2 (Crowell et al., 2019; Peiro et al., 2022). Such inter-
comparisons used single inversions from different modeling
groups and provided the range in total CO, flux uncertainty
due to the choices of prior fluxes distribution, prior flux un-
certainty, observational data uncertainty, and the model trans-
port uncertainties.

Here we show an ensemble-based inversion approach
based on different choices of prior flux uncertainties and rep-
resentation of measurement data uncertainties, using a single
chemistry-transport model (JAMSTEC’s MIROC4-ACTM).
The details of the MIROC4-ACTM, observed and model data
processing, inversion setup are given in Sect. 2, followed by
the results and discussion in Sect. 3. The fluxes and uncer-
tainties are presented at regional and global scales, along
with their validation using inversion-independent observa-
tions. Although the inversions are performed for the period
1998-2020, results are discussed mainly for the 2 most re-
cent decades (2001-2010 and 2011-2020), with the only ex-
ception of comparing land—ocean flux partitioning with the
IPCC ARG6. Conclusions are given in Sect. 4.

2 Materials and method

2.1 JAMSTEC’s MIROC version 4 atmospheric
chemistry-transport model (MIROC4-ACTM)

The Model for Interdisciplinary Research on Climate ver-
sion 4 (MIROC4; Watanabe et al., 2008) atmospheric general
circulation model (AGCM)-based chemistry-transport model
(referred to as MIROC4-ACTM,; Patra et al., 2018) is used
for the forward simulations of CO;. The MIROC earth sys-
tem model is developed at JAMSTEC in collaboration with
the University of Tokyo and the National Institute of Envi-
ronmental Studies (NIES) (Kawamiya et al., 2020). Simula-
tions of long-lived gases (CO2, CH4, N>O, SFg) in the atmo-
sphere are performed at a horizontal resolution of T42 spec-
tral truncations (~2.8° x 2.8° latitude—longitude grid) with
67 vertical hybrid-pressure layers between the Earth’s sur-
face and 0.0128 hPa (~ 80km) (Bisht et al., 2021; Chandra
et al., 2021; Patra et al., 2017, 2018). The simulated horizon-
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tal winds (U, V) and temperature (7') are nudged with the
Japan Meteorological Agency Reanalysis data product (JRA-
55; Kobayashi et al., 2015) at the altitude range of ~ 980—
0.018 hPa for better representation of the atmospheric trans-
port at synoptic and seasonal timescales. An accurate rep-
resentation of transport is essential for performing inverse
model calculation by minimizing biases in horizontal and
vertical gradients in the simulated tracer fields. We tested the
large-scale interhemispheric transport and Brewer—Dobson
circulation in the MIROC4-ACTM using the SFg simulations
in the troposphere and the CO,-derived age of air in the tro-
posphere and stratosphere (Bisht et al., 2021; Patra et al.,
2018). A close match between observed and modeled SFg
and photochemically inert CO, vertical gradient in the tro-
posphere and lower stratosphere manifests the accurate trans-
port in the MIROC4-ACTM. Reasonably good model trans-
port in MIROC4-ACTM enables us to use any mismatch be-
tween observation and simulations to estimate the land and
oceanic fluxes using the inverse modeling technique (details
in Sect. 2.4).

2.2 A priori CO2 simulations

We simulated CO; tracers corresponding to the FFC (Cng),
land biosphere fluxes (C012“d), fire emissions (COE‘“”), and
ocean exchanges (CO5") from different sets of prior
(bottom-up) emissions (Table 1). Cng is simulated using
the gridded fossil fuel emission dataset (GridFED; Jones et
al., 2021). COIZnd tracers are simulated using two sets of ter-
restrial biosphere fluxes from the Carnegie-Ames-Stanford
Approach (CASA) biogeochemical model (Randerson et al.,
1997) and Vegetation Integrative Simulator for Trace Gases
(VISIT) (Ito, 2019). The CASA fluxes are annually balanced,
seasonally varying flux due to terrestrial photosynthesis and
respiration, while the VISIT simulation accounts for CO;
fertilization (increasing photosynthesis due to rising atmo-
spheric CO,), LUC (perturbation on terrestrial carbon budget
due to land-use change), and climate variability. VISIT sim-
ulates a large land sink on the net (Table 1). The CASA and
VISIT monthly-mean fluxes are downscaled to 3-hourly time
intervals by redistributing respiration and gross primary pro-
duction (Olsen and Randerson, 2004) using JRA-55 meteo-
rology, i.e., 2 m air temperature and incoming solar radiation
at the earth surface (Table 1). Monthly-mean fire emissions
are used from GFEDv4.1s (van der Werf et al., 2017) for sim-
ulating the COSre tracer. Sea—air CO; fluxes are taken from
an upscaling model of shipboard measurements of pCO» (re-
ferred to here as TT09: Takahashi et al., 2009), and an empir-
ical model of the Japan Meteorological Agency (JMA; lida
etal., 2021) for simulating CO5" tracers. The seasonal cycle
for TT09 sea—air exchange flux is stationary, like that of the
CASA, over the analysis period, while the JMA oceanic CO;
fluxes vary interannually, as in the case of VISIT. The model
and prior fluxes’ details are given in Table 1.
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Table 1. Transport model setup and a priori CO; emissions used for simulating the atmospheric CO; concentrations. The range in prior
fluxes (2001-2020) is also given in petagrams of carbon per year (PgC yr_l) for the study period.

Model properties

Transport model

MIROC4-ACTM

Resolutions 2.8° x 2.8° lat-long grid, 67 vertical layers (surface—0.0128 hPa)

Meteorology

Nudged with JRA-55

Prior emissions/sinks (2001-2020)

Source/sink types Abbreviated name  Global total: (PgC yr_l)

Fossil fuel and cement production GridFED 7.10-9.54

Terrestrial biosphere CASA-3hr 0 (net annual flux)

(offline diurnal cycle by Yousuke Niwa,  VISIT-3hr —5.9-(—6.2)

using JRA-55 meteorology)

Fires GFEDvV4.1s 1.7-2.2

Ocean exchange TTO09 —1.41 (cyclostationary)
IMA —1.55-(—-2.78)

We prepare two cases of prior CO; simulations by adding
the CO, flux tracers in different combinations as follows:

gc3t = CO,T(GridFED) 4+ CO,™(CASA-3hr)

+ CO,°"(TT09) (1a)
gvjf = CO,T(GridFED) 4+ CO,™(VISIT-3hr)
+ CO,*"(IMA) + CO, 1. (1b)

The gvjf case includes all the known interannual variabil-
ity in land fluxes due to climate as simulated by VISIT and
ocean fluxes by JMA. In contrast, the gc3t case has no in-
formation on interannual variability in land and ocean fluxes
and the annual land sink. These two a priori flux cases are
designed to evaluate the strength of MIROC4-ACTM inver-
sions to derive fluxes consistently (or the lack of it) given the
information on CO, measurements from a network of sites
and the statistics of prior flux uncertainty (PFU) and model
data uncertainty (MDU)).

2.3 Atmospheric data selection and curve fitting

We used CO; observations from 50 measurement sites
(marked in Fig. 1) for the inverse modeling (Supple-
ment Table S1). Observations are taken from GM-
L/NOAA (38 sites), CSIRO (four sites), LSCE/IPSL
(one site), SIO (two sites), SAWS (one site), ECCC (one
site), and JMA (three sites). Data until 2019 are taken
from obspack_co2_1_GLOBALVIEWplus_v6.1_2021-
03-01 (Schuldt et al., 2021), and JMA data
are taken from WDCGG. Extension to ob-
spack_co2_1_GLOBALVIEWplus_v6.1 for 2020 is com-
piled from GML/NOAA (https://gml.noaa.gov/aftp/data/
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trace_gases/co2/flask/, last access: 12 July 2022) and WD-
CGG (https://gaw.kishou.go.jp/, last access: 12 July 2022)
websites as appropriate. We further extended the 2020
values into 2021 based on the growth rate determined for
January—March observed at Minamitorishima (MNM) as
available on the WDCGG (the results of 2021 will not be
used in any analysis and will be treated as the spin-down
year of inversion). The model simulations are sampled at the
observation time and the grid point nearest to the observation
location at hourly intervals. We selected the sites where the
temporal data gaps are minimum, no more than 6-month
data gaps at a stretch for the inversion period (1999-2020).
These temporal data gaps (1-6 months) are filled using the
curve fitting method based on the digital filtering technique
(Nakazawa et al., 1997). We fit the measured and simulated
time series at daily-weekly time intervals with six harmonics
(extracts the sinusoidal component, i.e., seasonal cycle) and
Butterworth digital filter with a cutoff length of 24 months
(determines the long-term trends).

2.4 Inverse method

Inverse analysis of atmospheric CO; helps to link the atmo-
spheric observations to carbon fluxes from land and ocean.
We use a time-dependent Bayesian inversion system, initially
developed by Rayner et al. (1999). The inversion formalism
specifies prior estimates of both the fluxes and their uncer-
tainty (called prior flux uncertainty (PFU)) and optimizes
fluxes over 54 land and 30 ocean regions (Fig. 1) by mini-
mizing the difference between the CO, mixing ratios simu-
lated by the MIROC4-ACTM and observed at 50 measure-
ment sites for 1998-2021. We exclude the first 2 years and
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last year of inversion from our analysis period (2000-2020)
to avoid the edge effect.

In the Bayesian inversion, when the relation between
model parameters and data parameters is linear (d = Js), the
misfit function (x?2) is constructed as (Rayner et al., 2008;
Tarantola, 2005)

1
x> = 5 [(s —50)"Cs0) ™" (s — s0)
+Js—ad)C@ " Js - d)]. )

Assuming that the elements of C(d) are uncorrelated, the so-
lutions for s and C(s) can then be written as

<§>=s50+ (JTC(d)‘lJ + C(So)_l>_1
JTCd)™ (dops — dactv) &)

and posterior error covariance

-1
C(s) = (Ic@I+ce™) )

where sq is the prior source for the 84 regions and 288
months in 1998-2021, C(sg) is the prior source error co-
variance matrix, dops 1S the measurement data at 50 sites for
288 months, and C(d) is the data error covariance matrix.
dactMm(~ Jsg) is the forward model simulation time series
using a priori fluxes, run continuously for the whole period
of analysis and sampled at the time and locations of the in-
dividual measurement before calculating monthly means. J
is the Jacobian matrix of sensitivities of observations with
respect to s, calculated using simulations of unitary pulse
sources for a month for the 84 basis regions and sampled at
the 50 measurement sites. The unitary pulses are simulated
for 4 years (1 month of emissions and 47 months of zero
emissions) and originated for each month of year 2011 for
all regions (84 regions x 12 months = 1008 tracers per year).
One set of J matrix is reused for all years. The elements of
J for later months are kept constant at the value of the 48th
month. We have shown in Fig. S1 and associated text that the
use of annually repeating J does not significantly affect the
inversion results as the majority of the spatial and temporal
flux variabilities are coming from the a priori flux, which are
simulated using interannually varying meteorology. The el-
ements in s are the optimized CO; fluxes (referred to as a
posteriori or predicted flux) from 84 regions at monthly time
intervals. The off-diagonal elements of C(sg) are kept zero,
assuming the a priori fluxes are uncorrelated to one another
region or time. The correction fluxes (s — s¢ in Eq. 3) are pri-
marily determined by the term (d actm — dobs), scaled by the
data/flux uncertainty.

The inversion settings based on the choice of a priori
fluxes, MDU, and PFU are crucial for flux estimation. The
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9219

MDU refers to the degree to which the predicted concentra-
tions are required to be fitted by the inverse model. In ad-
dition to measurement precision, MDU incorporates the in-
ability of coarse spatial-resolution global ACTMs to simu-
late the concentrations at the observation sites. PFU decides
the degree of freedom or allowed flux adjustment for each
of the 84 regions to match the atmospheric data. It deter-
mines to what extent the priors are relied upon to constrain
the posterior flux estimates. To determine the robustness of
our results, we have performed sensitivity analysis by vary-
ing PFU and MDU (Table 2). In the first approach, we assign
uniformly 2 PgC yr~! uncertainty to each of the 54 land re-
gions and 0.75 PgC yr~! to each of the 30 ocean regions (re-
ferred to as PFU = “ct]”). In the second approach, we assign
the land uncertainty by scaling the regional total FLUXCOM
gross primary productivity (GPP) (Jung et al., 2017), while
the uncertainty for the ocean regions is kept at 0.5 PgCyr—!.
In this case, regional total GPPs were multiplied by 2, and
the upper limit is set at 2PgCyr~! (referred to as gpp_v2;
PFUs varied from 0.2-2.0 PgC yr~—!). We construct two ad-
ditional PFU cases (gpp_v3 and gpp_v4) by multiplying the
regional total GPPs by a factor of 3 and 4, respectively, and
the allowed range is set at 0.3-3.0 and 0.4—4.0PgCyr—!.
The land PFUs varied as 0.4-3.0 and 0.6-4.0 PgCyr~! for
the gpp_v3 and gpp_v4, respectively. The ocean PFUs were
setat 0.75 PgCyr~! for gpp_v3 and 1.0 PgC yr~! for gpp_v4
(Table 2). Selection of a wide range of PFUs, in the range of
0.5-1.0 PgC yr~! for the ocean regions and 0.2—4.0 PgC yr~!
for the land regions, allows us to understand the stability of
the inversion system by assessing the range of a posteriori
fluxes for aggregated subcontinental/basin regions or the land
and ocean totals.

The monthly-mean residual standard deviation (RSD),
from the difference between measured and fitted data, plus
a constant value to account for the measurement accuracy, is
used for monthly varying MDU at each station for inverse
modeling calculations. The absolute magnitude of MDU is
chosen in such a way that the estimated flux is optimized
to the data only to an appropriate level commensurate with
the ability of ACTM to model them. We prepared two MDU
cases by multiplying the RSDs by a factor of 2 (referred
to as “ux2”) and 4 (referred to as “ux4”) and added these
to an estimated measurement uncertainty of 0.1 ppm. Based
on different combinations of four PFU (ctl, gpp_v2, gpp_v3,
gpp_v4), two MDU (ux2, ux4), and two prior flux cases (gc3t
and gvjf), we run 16 sets of inversion cases (Table 2). Based
on the inversions with multiple priors, PFUs and MDUs, we
will present estimated mean/median fluxes and spread as lo
standard deviations from 16 ensemble members.

Figure 2 shows the examples of simulated and observed
time series of CO, (top row) and simulated—observed differ-
ences (bottom row) at two selected sites, Alert and Syowa.
The results show faster (slower) CO, increase rates for the
a priori-flux-simulated case gc3t (gvjf), mainly because of
no land sink in CASA flux and stronger land sink in VISIT

Atmos. Chem. Phys., 22, 9215-9243, 2022
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Figure 1. Divisions of 54 land and 30 ocean regions for inverse modeling and 50 observation sites (a). Panel (b) shows the analysis regions
adopted in this study (15 land and 11 ocean), which are consistent with the boundaries of the RECCAP phase 2 (RECCAP2) land regions
(Ciais et al., 2022) and TransCom ocean regions (Gurney et al., 2002).

Table 2. List of 16 inversions based on the combinations of four different prior flux uncertainty (PFU) and model data uncertainty (MDU)
cases. Each PFU and MDU combination case is run for the two prior flux distributions, (1) ge3t (GridFED 4 CASA-3hr 4+ TT09) and (2) gvjf
(GridFED + VISIT-3hr + JMA ocean + Fires — GFED). The abbreviation of inversion cases is arranged as PFU_MDU_Prior Flux.

PFU MDU Inversion cases

(PgCyrh) (ppm)

gc3t gvjf
ctl ux2 = ctl_ux2_gc3t ctl_ux2_gvjf
land =2.0; 0.142 x 4/RSD ctl_ux4_gc3t ctl_ux4_gvjf
ocean =0.75
gpp_v2 ux4 = gpp_v2_ux2_gc3t gpp_v2_ux2_gvjf
land = 0.2-2.0; 0.1+4 x /RSD gpp_v2_ux4_gc3t gpp_v2_ux4_gvjf
ocean =0.50
gpp_v3 RSD: residual gpp_v3_ux2_gc3t gpp_v3_ux2_gvjf
land =0.4-3.0; standard deviation gpp_v3_ux4_gc3t gpp_v3_ux4_gvjf
ocean =0.75
gpp_v4 gpp_v4_ux2_gc3t gpp_v4_ux2_gvjf
land = 0.64.0; gpp_v4_ux4_gc3t gpp_v4_ux4_gvijf
ocean=1.0

flux (broken red and purple lines, respectively). Using the 2.5 Performance of inversion using a posteriori
mean of these two a priori flux scenarios, the prior CO, con- uncertainty

centrations show a better match with the CO, growth rates
(refer to the grey lines in the lower row; Fig. 2). Even af-
ter inversion, mild overestimation (underestimation) of the
CO, growth rate for gc3t (gvjf) cases persisted, and by tak-
ing the ensemble mean inversion flux, the CO, growth rates
are perfectly matched with the observations (Fig. 2), which is
sometimes set as an evaluation metric for atmospheric CO;
inversions (Friedlingstein et al., 2020).

The inverse model output monthly mean flux corrections and
a posteriori flux uncertainty for each of the 84 regions and
the full error covariance matrix of dimension 24192 x 24192
(=84 regions x 12 month x number of inversion year). The
monthly time and spatial covariances are accounted for flux
uncertainty calculation when annual mean values are calcu-
lated for aggregated regions or global budgets. In the aggre-
gation scheme, the larger regions have to follow the bound-
aries of 84 regions, contrary to the method proposed in
Sect. 2.6 using ensemble inversions where ensemble spreads
can be calculated for any region of interest.

Atmos. Chem. Phys., 22, 9215-9243, 2022 https://doi.org/10.5194/acp-22-9215-2022
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Figure 2. Time series of observed and model CO; time series for two a priori (apr) simulation cases (gc3t and gvjf) and posterior (post)
flux simulation cases using control MDU and PFU case ux4 (a, b). Results for the mean of two a priori flux cases and ensemble mean
inversion case are also shown. The model-observation differences are shown in (c¢) and (d). Results are shown for two sites, Alert (82° N,
63° W; measurements by Environment Canada) and Syowa (69° S, 40° E; measurements by Tohoku University/National Institute of Polar

Research).

We use flux uncertainty reduction (FUR, in %), based on
the mean values without time aggregation, to identify which
regions are well constrained by the data. FUR is a standard
diagnostic of Bayesian estimation and is defined by

) x 100,

where Oprior and Opredicted T€present the mean prior and
predicted flux uncertainties, averaged over January 2001—
December 2020. High values (FUR towards 100) indicate
strong data constraints, while low values (close to 0) indicate
that the data are not able to move the estimates away from
the prior flux. To identify which parts of the land and ocean
have been constrained significantly by the inversions, PFU,
predicted flux uncertainty, and FUR are plotted in Fig. 3 for
the four PFU cases of the gc3t and ux4 setup. The PFU cases
“gpp_v4” and ctl show observational constraint over most
of the region (grey shaded areas in the right column). Rea-
sonable constraints (larger FUR) are obtained for Northern
America, Russia, Southern Ocean, Tropical Pacific, South In-
dian, and North Atlantic, highlighting the large long-running
observational programs by US, Japanese, and European re-
search groups. The poor constraints (low FUR) are observed
over South Asia, West Asia, Northern Africa, and the Trop-
ical Indian Ocean due to the lack of observations. It is also
noted that FUR is influenced by PFU settings. For example,

FUR = (1 __ Opredicted

Oprior

https://doi.org/10.5194/acp-22-9215-2022

a smaller a priori uncertainty, i.e., gpp_v2, achieved lower
FUR. As discussed later in this article, the FUR is only in-
dicative of the observational constraint on the regional fluxes;
the spread of ensemble inversions provides a measure of un-
certainty of the regional CO; sources and sinks.

2.6 Flux processing and regional uncertainty
estimations

The predicted fluxes from 84 regions (54 land and 30 oceans)
are regridded to the 1° x 1° spatial resolutions based on the
land and ocean basis functions. Once regridded, the fluxes
were aggregated into 15 land and 11 ocean regions for fur-
ther analysis (ref. Fig. 1b). First, the fluxes from each in-
version are averaged for different analysis periods (monthly,
annual, 5-year, decadal). Then, we averaged the individual
means (n = 16) to estimate the ensemble mean and stan-
dard deviations. The ensemble mean (here and, in the follow-
ing, referred to as “ensm”) is the best estimate (i.e., a mea-
sure of central tendency) of land—air and sea—air exchange
carbon flux. The best estimate criterion is based on the
closest agreement of the global total (FFC emissions + land
and ocean sinks) fluxes with the global mean growth rate
(Sect. 3.2). There are different options to characterize “un-
certainty” in CO flux estimates, for example, the standard
deviation, standard error, 95 % confidence intervals, and in-

Atmos. Chem. Phys., 22, 9215-9243, 2022
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(a) Prior Flux Uncertainty
(Tprior)

PgC yr!

(b) Posterior Uncertainty
(Tpred)
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(c) Uncertainty Reduction
(1-Opred!/Oprior)x100

0.0 0.1 1.0 50 10.015.020.025.030.0

PgC yr1 %o

Figure 3. Prior and posterior flux uncertainties for four different PFU (four rows: ctl, “gpp_v2”, “gpp_v3”, gpp_v4) cases are shown in the
left and middle column, respectively, and the flux uncertainty reduction (FUR) in the right column. The FUR is an indicator of constraint
provided by atmospheric observations. High values (towards 100) in uncertainty reduction indicate strong data constraints, while low values
(close to 0) indicate that the data are not able to move the estimates away from the prior flux. All cases correspond to the MDU case ux4 and
gc3t inversion case. The circles show the 50 observation sites used for inverse analysis.

terquartile ranges. Here, we followed the standard devia-
tion of the multi-inversion means as a metric of the uncer-
tainty (i.e., variability) in the multi-inversion estimates. The
regional and global land/ocean flux uncertainties estimated
from the 16 ensemble members cover those that arise from
priori flux distributions, PFU and MDU. The uncertainties
due to data coverage and model transport errors are not as-
sessed here.

Atmos. Chem. Phys., 22, 9215-9243, 2022

2.7 Observations used for predicted flux validation

The predicted fluxes are validated by comparing the poste-
rior 3-dimensional CO, mixing ratios fields to independent
(i.e., not used in the inversions) aircraft observations. The air-
craft observations used for validation include data published
in obspack_co2_1_GLOBALVIEWplus_v6.1 (Schuldt et al.,
2021).

https://doi.org/10.5194/acp-22-9215-2022
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2.7.1 HIPPO and ATom observations

We used the CO; from two sets of aircraft campaigns: the HI-
APER Pole-to-Pole Observations (HIPPO) during the period
7 January 2009 to 15 September 2011 (Wofsy, 2011) and the
Atmospheric Tomography Missions (ATom) during the pe-
riod 29 July 2016 to 21 May 2018 (Wofsy et al., 2018) to vali-
date the latitude—altitude gradients covering different seasons
over the Pacific and Atlantic oceans. The four HIPPO cam-
paigns (HIPPO-1 in January 2009, HIPPO-2 in October/De-
cember 2009, HIPPO-3 in March/April 2010, and HIPPO-
4 in May/July 2011), performed from 82° N to 67°S over
the Pacific (but also partly cover the North American con-
tinent) and with continuous profiling between ~ 150 and
8500 m altitudes at approximately 2.2° latitude intervals, are
used for the validation. The ATom mission is built upon
the HIPPO mission but with a wider horizontal extent with
global coverage over the Pacific, the Atlantic, and the Arctic
oceans. The comparisons performed for all the four ATom
circuits occurred in July—August 2016 (ATom-1), January—
February 2017 (ATom-2), September—October 2017 (ATom-
3), and April-May 2018 (ATom-4). The mission consisted of
48 science flights and 548 vertical profiles over the Pacific
and Atlantic basins.

2.7.2 NOAA measurements

We also used 16 NOAA regular aircraft-based vertical pro-
files (Figs. S7, S8) to validate the simulated vertical gradi-
ents in the troposphere (Sweeney et al., 2015). These air-
craft sites are located mainly over the North American con-
tinent (Table S4). The aircraft profiles include measurements
over the Southern Great Plains (SGP: 2006-2019), operated
by the U.S. Department of Energy (Biraud et al., 2013).
Most of the aircraft profiles range between the surface and
350 hPa. For shorter periods, flights up to 150 hPa are avail-
able for the sites Charleston, South Carolina (SCA), SGP, and
Cartersville, Georgia (VAA), also covering the UTLS (upper
troposphere—lower stratosphere) region.

2.7.3 CONTRAIL measurements

The CONTRAIL (Comprehensive Observation Network for
Trace gases by AlrLiners) program uses automatic air sam-
pling equipment (ASE) for flask sampling and continuous
CO; measuring equipment (CME) for in situ CO, measure-
ments (Machida et al., 2008; Matsueda et al., 2008). These
instruments have been installed on several Boeing aircraft
operated by Japan Airlines (JAL) with regular flights from
Japan to Australia, Europe, Asia (East, South, and South-
east), Hawaii, and North America, providing large spatial
data coverage across the globe, particularly in the North-
ern Hemisphere. The ASE performed flask samplings in the
upper troposphere and lower stratosphere (altitude range of
~7-12km). The CME data are recorded at 1s intervals
during ascent/descent (~ 100 m intervals in altitude) and at

https://doi.org/10.5194/acp-22-9215-2022
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1 min intervals during cruise (~ 15 km intervals horizontally)
as well as in-flight aircraft positions. CME is not operated
within ~600m of the ground surface to avoid heavy pol-
lution around airports. The CME has obtained thousands of
CO, vertical profiles over many airports since 2005. The
ASE and CME, along with NOAA aircraft measurements of
CO;, are used to estimate the latitudinal bias in predicted
fluxes.

2.7.4 Evaluation metrics

We calculate correlation coefficients (R), mean bias (MB),
and root-mean-square errors (RMSEs) to evaluate the pre-
dicted fluxes with aircraft observations. The mean bias and
RMSE are defined as

1 n
MB = (; Z (xgoz - x302>i)

i=1

1 & 2
RMSE = (Z > (w0, - ngZ)i),

i=1

where x?:oz is observation, xgo is predicted CO; mole frac-
tion sampled at the ith aircraft location, and n is the num-
ber of aircraft observations. The MB infers the magnitude of
underestimation/overestimation of CO; mixing ratios by the
model. The RMSE includes errors (both random and system-
atic) in the predicted CO;. The MB and RMSE could be due
to uncertainties in predicted fluxes. Model transport is one of
the sources leading to uncertainties in the predicted fluxes,
but the simulations of SF¢ and the age of air confirm the low
transport error in MIROC4-ACTM (Bisht et al., 2021; Patra
et al., 2018). Hence, the magnitude of biases and RMSE indi-
cates predominantly the accuracy of the predicted fluxes (the
errors due to model transport and measurement network are
not explored in this study).

3 Results and discussion

3.1 Global flux distributions

Figure 4 shows the spatial distributions of annual mean CO,
fluxes. While the spatial distributions of a priori oceanic flux
are similar for the JMA and TTO09, the terrestrial biosphere
fluxes are vastly different. The annually neutral CASA fluxes
show near-zero values for most grid cells. However, strong
sinks are observed over most of the densely vegetated regions
of the globe for the VISIT+GFED fluxes, mainly because
the VISIT simulation produces stronger sinks by the ecosys-
tem (Fig. 4a, d). Anomalously strong sources are also seen in
Fig. 4d due to the fire emissions estimated by GFED based
on the satellite-derived burned area anomaly. The a posteri-
ori results make reasonable corrections regardless of which a
priori fluxes they start from, e.g., the gc3t case with net-zero
annual flux or the “gvjf” case with strong sink. Consistently
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predicted fluxes are seen for North America, Europe, Rus-
sia, or East Asia for the PFU = ctl case (middle row). Simi-
larities are slightly less when the PFU is scaled to the GPP
of 84 regions of the inverse model (bottom row). This sug-
gests that the greater PFU is more suitable for the inversion
when the region has observational sites (Fig. 1). In the case of
PFU = gpp_v2, the fluxes are not allowed to change much in
the boreal regions, except for the summer months. However,
the gpp_v2 inversion may be preferred over the dry region
of Northern Africa, where the control PFU case produces an
east (weak source)-west (weak sink) dipole. Performance of
the inversions to retrieve the flux distributions over tropical
America and tropical Africa is unclear. They show large de-
pendence on the prior flux distributions, possibly due to the
lack of observations within the land regions in our inversion.
The main focus of this study is to better understand the to-
tal regional emissions and their trends over the past 20 years.
The inversion does not revise the fine structures within each
of the 84 regions of the inversion by the design of the sys-
tem, where the regional basis functions assume a fixed pat-
tern for constructing the source—receptor relationships (J ma-
trix). The degree of freedom of our inversions is a few times
smaller than the gridded inversions when spatial flux corre-
lations of 1000-2000 km are assumed (Peylin et al., 2013).

3.2 Global total fluxes

Figure 5 shows the trends and interannual variability in the
global fossil fuel (FF) emissions (used as input for the inverse
model), land-biosphere, ocean, and annual atmospheric CO;
growth rate for 16 inversion ensemble members based on
two combinations of land—biosphere and ocean prior fluxes
(VISIT and CASA for land—atmosphere and TT09 and JMA
for sea—air) and eight combinations of prior flux/data uncer-
tainties (PFU and MDU). The uncertainty in the ensemble
means the flux of 16 inversion cases is calculated using + 1o
spread in the time-averaged fluxes for 10- or 5-year peri-
ods in this study. The uncertainties in the predicted fluxes
due to different priors are 0.35 PgCyr~! for global land and
0.1PgCyr~! for the global ocean. The uncertainty due to
PFU and MDU is less than 0.15 PgC yr~! for land and ocean
carbon uptake for gc3t or gvjf inversions. It indicates that
prior flux patterns and trends alter the predicted global land
and ocean fluxes. Ensemble mean land and ocean fluxes are
in excellent agreement with the IPCC “mean” estimates, no-
tably within the 1o uncertainty estimated from 16 ensemble
member inversions (Table 3). The ensemble spread is much
lower (Table 3; MIROC4-ACTM columns) compared to the
inversion-predicted flux uncertainties, which are in the range
of 1.4 and 0.7 PgC yr~! for the global land and ocean, respec-
tively, even after accounting for the monthly time and spatial
covariances (vary from low values of 0.8 and 0.5 PgCyr~!
for gpp_v2 cases to 1.6 and 0.9 PgCyr~! for the gpp_v4 in-
versions).

Atmos. Chem. Phys., 22, 9215-9243, 2022
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The year-to-year variability in land and ocean carbon sink
(Fig. 5b, c) shows considerable agreement across the inver-
sion cases because of the strong constraint provided by atmo-
spheric CO, measurements at the global scale due to global
tracer mass conservation. The year-to-year variability in at-
mospheric CO; growth rate is linked to the variability in nat-
ural sources and sinks of carbon from land and ocean for
given FFC emissions. The observed CO, growth rate from
NOAA (Dlugokencky and Tans, 2020) is compared with the
estimated CO, growth rate (by inversion), defined as the dif-
ference between fossil fuel emissions and total sink over
land and ocean on an annual basis (Fig. 5d). The NOAA
growth rate (ppmyr~!) is converted to units of petagrams
of carbon per year (PgCyr~!) using a conversion factor of
2.13PgCppm~! (Raupach et al., 2011). The resulting mean
carbon budget imbalance (in PgCyr!), calculated as the
mean absolute difference between the inversion estimated
(FFC emissions + a posteriori land and ocean sinks) and the
observed CO, growth rates, is given in the legend (Fig. 5).
The year-to-year variability in the global annual total of net
CO», flux is robust across different inversion cases (r = 0.97)
and with the observed growth rates (r = 0.9); however, the
global totals over 2001-2020 show slight bias with that ob-
served. Compared to the observed CO, growth rate, the in-
version shows systematic positive (range 0.1-0.3) and neg-
ative (range 0.0-(—0.2)) imbalances for gc3t and gvjf in-
versions, respectively. The ensemble mean of 16 inversions
(ensm) agrees well with the observed growth rate within the
uncertainty of the predicted fluxes over the 20 years (Fig. 5d).

Inversions suggest that both the terrestrial land and ocean
sinks increased during our analysis period 2000-2020. The
ensemble means of terrestrial land CO; sink increased
from —2.3140.21 PgCyr~! in the 2000s (2000-2009) to
—2.940.26PgCyr~! in the 2010s (2010-2019), with sig-
nificant interannual variations up to 2PgCyr~'. The inter-
annual variability in land CO, flux is predominately asso-
ciated with the response of the terrestrial biosphere to El
Nifio—Southern Oscillation (ENSO)-induced changes in the
weather pattern. In 2015-2016, and to a lesser extent in
2010, El Nifio conditions reduced carbon uptake by the land
ecosystems in the tropics (e.g., Baker et al., 2006; Bous-
quet et al., 2000; Patra et al., 2005b). The average ocean
sink intensified from —1.46 £0.10PgCyr~! in the 2000s to
—1.6240.17PgC yr~! in the 2010s, with interannual varia-
tions of the order of a few tenths of petagram of carbon per
year (PgCyr~!) (Chatterjee et al., 2017; Feely et al., 1999;
Patra et al., 2005a). The global ocean biogeochemistry model
(GOBM) products, and those based on pCO, measurements,
also show similar decadal variability patterns (DeVries et al.,
2019; Hauck et al., 2020).

This gradual increase in the ocean CO; sink is caused
by the increasing pCO, difference between the marine air
and sea-surface water. The strong increase in the net sink by
the terrestrial biosphere during 2001-2009 is sometimes at-
tributed to the bias in FFC emissions from China (Saeki and
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Figure 4. Spatial distributions of CO, prior flux for two different sets of land and ocean flux combinations (a, d). The middle (b, e) and
bottom (c, f) panels show predicted CO, fluxes using two different prior flux uncertainty patterns (ctl, gpp_v2).

Patra, 2017), and the gradual sink increase can be attributed
to CO;, fertilization or water-use efficiency as more carbon
is available for assimilation by photosynthesis (Keeling et
al., 2017; Kondo et al., 2018). In addition, the land CO; up-
take efficiency in the period of this analysis could partly be
controlled by a decadal shift in the frequency of natural cli-
mate variability, such as ENSO. In the 2000s, no extreme
El Nifio conditions were observed, resulting in suppressed
fire emissions and lowered drought occurrences, while the
opposite conditions prevailed in the 2010s (intense El Nifio
in 2010, 2015-2016, and 2019-2020), which is likely to re-
duce net uptake by the land ecosystems (Patra et al., 2005b).

https://doi.org/10.5194/acp-22-9215-2022

Fire emissions with an estimated peak-to-trough change of
about 0.5PgCyr~! (Table 1) alone cannot explain the large

changes in land sinks of the order of 2-3 PgCyr~!.

3.3 Subcontinental-scale land and ocean fluxes

Here, we present interannual variability in a priori and
predicted carbon fluxes over 15 lands (Fig. 6) and 11
ocean regions (Fig. 7). The uncertainty in the predicted
carbon fluxes is estimated as lo spread among the 16
inversion cases. Significant differences are seen between
a priori (VISIT) fluxes over Russia (—0.76PgCyr1),
East Asia (—0.55PgCyr~!), and Europe (—0.54PgCyr~')

Atmos. Chem. Phys., 22, 9215-9243, 2022
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Figure 5. Global annual CO, emissions from fossil fuel (a) and estimated land (b) and ocean (c) carbon sink from two sets of prior and 16
sets of predicted fluxes based on different combinations of priors (gc3t and gvjf), prior flux uncertainties (PFU: ctl, gpp_v2, gpp_v3, gpp_v4)
and measurement data uncertainties (MDU: ux2, ux4). Negative values show uptake by land/ocean, and positive values show sources to
the atmosphere. The net flux is calculated by subtracting the total sink (land 4 ocean) from the fossil fuel and compared with the observed
global growth rate of atmospheric CO; concentration from the NOAA/ESRL (magenta line in panel (d); Dlugokencky and Tans, 2020). The
atmospheric CO; growth rate is converted using a factor of 2.13 PgC ppnf1 . The numbers in the brackets in the legend are the mean budget
imbalance between annual means of net flux and observed CO, growth rate (units: PgC yr_l). The background shading (positive/brown for
El Nifio and negative/blue for La Nifia) shows the multivariate El Nifio-Southern Oscillation (ENSO) index or MEI (Wolter and Timlin,

2011).

and ranges of inversion estimations —0.33 to —0.37,
—0.42 to —0.57, and 0.08 to —0.09PgCyr~', respec-
tively. In general, the inversions suggest substantial uptakes
over Temperate North America (—0.59#+0.14PgCyr~1),
followed by East Asia (—0.49+0.09PgCyr~!), Bo-
real North America (—0.38+0.1PgCyr~!), and Russia
(—0.35 £ 0.05 PgC yr~!) for the study period.

The large spread in the predicted fluxes over Temperate
North America, Temperate South America, and Europe indi-
cate that the estimated flux is more sensitive to the selection
of PFU and MDU when there are measurement sites within
the region or in the neighborhood. The carbon fluxes over

Atmos. Chem. Phys., 22, 9215-9243, 2022

tropical (Tropical America, Brazil, South Asia, and South-
east Asia) and extratropical (Temperate South America, Cen-
tral Africa, Southern Africa, and Oceania) land regions are
found relatively less certainly; the ensemble of inversions
splits into weak source or sink groups based on the land
priors. For example, inversions using the VISIT flux show
a net source signal over all the three African regions, while
those using the CASA flux exhibit a net sink. Similarly, all
inversion cases based on the CASA prior flux show almost
no carbon sink for South Asia, while VISIT-based inversion
cases show a net sink of —0.18 £0.11 PgCyr~!. The VISIT
prior flux consists of strong sinks over all three South Amer-
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N. Chandra et al.: Estimated regional CO» flux and uncertainty

9227

Table 3. Comparison of global total land and ocean CO, exchanges estimated by the inversion model with those from the IPCC 2021
(Table 5.1; Canadell et al., 2021). The inversion uncertainties due to PFU and MDU for each inversion family based on priors represent + 1o
decadal estimates from the individual inversions. The inversion means and 1o standard deviations are shown for two prior flux cases (8 each
for gc3t and gvjf) and all 16 ensemble members (ensm). The IPCC global land and ocean CO, uptakes are corrected for the river export fluxes.
This correction to the net ocean and land uptakes is required because the inverse model estimates fluxes across the land/ocean—atmosphere
interface, while the part of the land carbon exchange is exported to the ocean via the rivers and streams.

CO, budget

2000-2009 (PgC yr—1)

\ 2010-2019 (PgCyr—1)

IPCC 2021 (Canadell et al., 2021)

MIROC4-ACTM |

IPCC (2021) MIROC4-ACTM

FFC emissions 7.7+£04 7.99 ‘ 9.4+£0.5 9.67
Atmospheric 4.1+£0.02 4.33 £ 0.08 (gc3t) 5.1+£0.02 5.28 £0.08 (gc3t)
increase 4.10+0.06 (gvjf) 5.02 +£0.07 (gvjf)

4.22 4+ 0.14 (ensm) 5.154 0.15 (ensm)
Ocean uptake —2.1+£0.5 —1.52+£0.03 (gc3t) —-2.5+0.6 —1.66 £0.05 (gc3t)

River export +0.8

—1.40£0.11 (gvjf) +0.8

—1.58 £0.23 (gvif)

Ocean exchange =—-13+05 —1.46+ 0.10 (ensm) =—-17+£06 —1.62%+ 0.17 (ensm)
Land uptake + —29+0.8+ —2.14£0.1 (gc3t) —3.4+£09+ —2.73£0.11 (gc3t)
land-use change 14+£0.7 —2.49+£0.14 (gvjf) 1.6 0.7 —3.07£0.26 (gvjb)
(=net flux) (=-1.5+£1.06) —-231+ 0.21(ensm) | (=—1.8+1.14) —2.90+£ 0.26 (ensm)
River export -0.8 -0.8
Land exchange —23+1.06 —26+1.14

ica regions. For all the regions, the inversions moderated the
sinks, thus producing fluxes closer to the inversions using the
CASA prior flux even though the regions have no measure-
ment sites (Fig. 6; Table S2). These regions of Africa, South
America, and South Asia are weakly constrained in the in-
versions due to the limited observations representing these
regions. However, for most of these regions lacking in obser-
vations, the VISIT- and CASA-based inversions are moving
toward a common flux value; i.e., the range of the two prior
fluxes is usually much greater than the 16-inversion ensem-
ble spread.

The predicted land carbon sink over East Asia tends to in-
crease, which is tied to a rapid increase in FFC emissions
for 2001-2009. The rapid increase in CO; emissions from
FFC could impose an artificial trend in the terrestrial land
flux estimate for the East Asia region (Saeki and Patra, 2017).
Because the atmospheric data constrain the total net surface
flux regionally when fluxes are constrained by observations,
a biased high increase in fossil fuel emissions is required
to be compensated by a biased high increase in the natu-
ral land uptake by inversion. If there are absolutely no con-
straints by observations, the compensation will occur in the
regions where the prevailing winds transport the biased FFC
signals. The South Asian uptake remains almost constant for
the study period. For West Asia, both sets of inversion show
the land CO; flux fluctuates around zero with slight interan-
nual variation, indicating a stable trend of land flux changes
and a small contribution to uptake of all the tropical regions.
The annual trend in Southeast Asian carbon fluxes is over-
whelmed by large interannual variability, driven mainly by
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ENSO-induced fire emission variability (Patra et al., 2005b;
van der Werf et al., 2017). Over the African continent, Cen-
tral Africa shows the highest interannual variability, mainly
due to biomass burning emissions under the influence of
ENSO. The CO» flux anomalies in the case of gvjf inversions
support the fire emission anomalies taken from GFEDv4.1s
as included in the prior flux, and what is more impressive for
us is the ability of the gc3t inversions to produce a similar
phase and magnitude of the flux variabilities, starting from a
prior flux that has no interannual variability (even for these
relatively unconstrained regions).

Figure 7 shows good agreement among the predicted
fluxes for the 11 ocean regions and the decadal flux variabil-
ity, which are derived from the TTO09 prior flux with no in-
terannual variability and the JMA flux, including interannual
variability. The inversion results show substantial changes in
the estimated interannual variability caused by the assumed
PFU and MDU. The Northern Ocean shows a significant
spread from the mean (—0.1340.14 PgCyr~!) for higher
MDU, particularly for 20112015 (—0.01 £0.06 PgC yr—")
in the gvjf inversions. In the opposite phase a similar spread
is also found for the neighboring Boreal North America, Eu-
rope, and Russia land fluxes. Because the flux variabilities
over land regions are larger than ocean regions (by about
a factor of 2), the Northern Ocean fluxes can be perturbed
by relatively unnoticeable anomalies in the neighboring land
fluxes. These features appear likely because of the incom-
plete measurement constraint in the inversions that permits
“dipoles” of flux errors to occur between the neighboring re-
gions (compensating for errors of opposite sign due to the in-
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Figure 6. Interannual variation of terrestrial land CO, fluxes derived from 16 sets of inversion. The variations are shown for 15 aggregated
regions shown in the map. The negative values are counted as CO; removals from the atmosphere, while CO, emissions are counted

positively.

ability of the measurements to completely correct the source
or sink in the right place). It is indicative that an analysis of
fluxes for one region may be challenging to interpret when
isolated from the rest of the world in an inversion of long-
lived species because of the large-scale mixing by transport.

A significant difference in the priors over the South At-
lantic is observed; the JMA fluxes suggest a 2-fold higher
CO; uptake (0.33 PgC yr_l) than in the TT09 (Table S2).
The inversion results largely follow their priors over this re-
gion, which is observationally unconstrained by sites within
the region. Both the prior and predicted fluxes show that

Atmos. Chem. Phys., 22, 9215-9243, 2022

the East Pacific is a significant source of CO; to the atmo-
sphere, caused by the upwelling of deep ocean water (that
brings CO;-rich water from the ocean interior to the surface)
off the west coast of the South American continent. A small
net outgassing signal occurred over the Tropical Indian and
Tropical Atlantic oceans. Because of a tighter constraint due
to the relatively extensive coverage of observation sites, all
16 predicted fluxes converged on consistent Southern Ocean
decadal trends and interannual variability, even though we
have not accounted for interannual variability or trends in
the TTO9 prior flux. The Southern Ocean CO, sink intensity
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Figure 7. Interannual variation of sea—air CO, fluxes derived from 16 sets of inversion. The variations are shown for 11 aggregated regions
shown in the map. The negative values are counted as CO, removals from the atmosphere, while CO, emissions are counted positively.

shows considerable variability from interannual to decadal
timescales, and sink stabilization after 2010 may have been
caused by a regional shift in sea level pressure and surface
winds (Keppler and Landschiitzer, 2019).

3.4 Interannual variations in regional CO> fluxes

To examine the regional pattern of anomalies in the land and
ocean CO» sink, following Patra et al. (2005a, b), we calcu-
lated the monthly anomalies by subtracting a long-term mean
seasonal cycle from the monthly emissions from 2001-2020
(Fig. 8). Thus, the time series contains the interannual vari-
ability (IAV) and long-term trends for the analysis period.
The anomalies from both inversion cases are consistent over
most regions; however, the magnitude differs. Despite the ab-
sence of IAV in the “gc3t” prior fluxes, the consistent interan-
nual variability suggests that inversion is robust in constrain-
ing the TAV in carbon fluxes. The correlations between gc3t
and gvjf inversions over land are greater than 0.7, which are
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statistically significant at p<0.0001. The correlations were
less than 0.3 between the gc3t inversion and the gvjf prior
fluxes, which can be inferred as only some of the interannual
variabilities were present in the gvjf prior fluxes, and the in-
terannual flux variability for gvjf inversions is significantly
different from the gvjf prior fluxes. These results imply that
the VISIT land ecosystem fluxes and GFEDv4.1s fire emis-
sions inadequately represent CO; flux signals that are ob-
served at the 50 measurement sites in our inversion. Large-
scale cyclic patterns of climate anomalies such as ENSO ac-
count for a large part of CO» flux variabilities on interannual
to sub-decadal timescales. Climate anomalies are associated
with changes in temperature distributions and large-scale cir-
culations of the ocean water and the atmosphere.

The CO; flux anomalies in the tropical regions are strongly
correlated with the ENSO index, while temperate and boreal
regions are weakly correlated, as expected from the areas of
ENSO influences (Table S3). In the northern high latitude re-
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Figure 8. The 3-monthly running averages of CO; flux anomalies as estimated by the inversions for land and ocean regions from atmospheric
CO, data, with varying prior flux uncertainty and different a priori emissions. The flux anomaly is calculated by subtracting an average
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and multivariate ENSO index are shown in Table S3.

gions of Europe, America, and Asia, a negligible correlation
was found between CO; flux anomalies and the ENSO in-
dex. It is because, over these regions, the North Atlantic Os-
cillation (NAO)/Arctic Oscillation (AO) or Pacific Decadal
Oscillation (PDO) is the dominant climate factor for the CO,
flux anomaly, likely through the temperature variation (Patra
et al., 2005). The warmer weather in these regions may lead
to a negative CO» flux anomaly (Russia) since that condition
stretches the growing season length (Dye and Tucker, 2003).

Atmos. Chem. Phys., 22, 9215-9243, 2022

The correlation coefficient between CO; flux anomalies for
different aggregated land and ocean regions is given in Ta-
ble S3.

In 2015, a strong El Nifio induced severe drought and
biomass burning in equatorial Asia. It was one of the most
significant El Nifio events after the well-known major El
Nifo in 1997/1998 (L’Heureux et al., 2017; Santoso et al.,
2017). Patra et al. (2005b) estimated that a massive amount
of carbon (~5.5PgCyr~!) was released into the atmo-
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sphere in 1997/1998, largely contributed from tropical re-
gions in Asia, South America, and Africa. Figure 8 shows
that during the extreme El Nifio period in 2015-2016, a large
amount of carbon was also released from Tropical America
and Southeast Asia, followed by Central Africa and Brazil.
However, the timing and strength of the peaks are differ-
ent. The fire emission peak (for gvjf case) appeared in Au-
gust 2015 over Southeast Asia (1.34 PgCyr~!) and in Jan-
uary 2016 over Tropical America (1.12PgC yr—!). The gc3t
inversion suggests a peak in October 2015 for Southeast Asia
(0.42PgCyr~") and in January 2016 for Tropical America
(0.82PgC yr’l). Niwa et al. (2021) showed that regular sam-
pling of aircraft CO, measurement under the CONTRAIL
project has enormous potential for capturing the footprint
of biomass burning. By advanced inverse analysis, they es-
timated equatorial Southeast Asia emission at 0.27 PgC yr~!
during September—October 2015 (note that northern South-
east Asia is not included).

Over the Oceania regions, the gvjf inversion shows large
interannual variability. The inversion suggests emission
peaks in 2019-2020 over Oceania, consistent with the sub-
stantial CO; released from the fire in the atmosphere during
the 2019-2020 summer season over Australia (van der Velde
et al., 2021). They concluded that the CO, emission from
these fires was more than thrice the estimate derived from the
long-term mean of CO, uptake over this region and broadly
consistent with estimates based on the GFED fire emissions.
van der Velde et al. (2021) estimated a CO; flux anomaly
in the range of 0.14-0.24 PgC from November 2019 to Jan-
uary 2020, which is lower than our estimation of 0.7 PgC.

The gc3t CO, flux variabilities over East Pacific, West
Pacific, and South Pacific show negligible correlations with
ENSO, while both JMA-based prior and posterior fluxes
show high correlation (Table S3). Over the North Pacific,
both inversion ensembles show an insignificant correlation
with ENSO. The oceanographic observations indicate that
sea surface temperature and pCO; in the equatorial warm
pool areas (5°N-5°S, west of the dateline) are not sensi-
tive to El Nifio conditions (Takahashi et al., 2003), but a
strong correlation is found for the West Pacific region in the
case of the JMA ocean prior flux that is driven by pCO;
measurements and sea surface temperature. Due to the lack
of observational coverage, the gc3t inversions did not pro-
duce an expected (negative) correlation for CO, fluxes and
ENSO index for the East and West Pacific regions. Patra et
al. (2005a) showed that the global ocean flux variability is
significantly underestimated or even produced the opposite
phase for strong El Nifio of 1997/1998 if the Pacific Ocean
cruise data are not used in inversions. CO, flux anomalies
are estimated to be positive for South Pacific and negative
for East Pacific during the 2015-2016 El Nifio event. On the
contrary, observations show that the sea-to-air CO; flux is
suppressed during the intense El Nifio event by warm low-
CO; surface waters from the west. The atmospheric observa-
tions are limited over these regions. Thus, we consider that
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the anomalies during the intense El Nifio period 2015-2016
are likely to be an artifact because of the lack of observational
constraints. The interannual variability over the tropical At-
lantic, tropical Indian, and south Indian is low. Though the
TAV is low, we find a significant correlation for the tropical
Atlantic for both predicted fluxes, in contrast to a negligible
correlation between the prior flux and ENSO.

3.5 Mean seasonal cycles of regional CO» fluxes

The net CO, uptake in the moist and warm growing sea-
son is partially compensated by net CO; release in the dry
and cold non-growing season. However, the magnitude of
seasonal compensations differed significantly between re-
gions. The compensation drives the net regional strength
of CO, uptake. For example, the maximum uptake in the
growing season is shown by Russia (~ 10PgCyr~!), fol-
lowed by Boreal North America (~5PgCyr~!) and Tem-
perate North America (4 PgCyr~!) (Fig. 9). However, the
strength of net sink is almost twice over Temperate North
America (—0.59+0.14PgCyr~!) than in Russia and Bo-
real North America because the release of CO; in the non-
growing season over Russia and Boreal North America is
greater than Temperate North America. Thus, the seasonal
cycles in global and regional emissions are essential for un-
derstanding the drivers of CO, changes in the atmosphere.

The seasonal cycle amplitude for the CASA prior flux for
the land total is 33.6 PgC yr~!, and that for VISIT is weaker
at 23.8 PgC yr~!, and the peak of the growing season (when
the net flux is most negative) occurred in July for CASA that
is 1 month after VISIT (Fig. 9, top-left panel). The seasonal
phase of gc3t-predicted fluxes are in close agreement with
the CASA prior, but inversions diverge for the net CO; up-
take in the growing season and release in the dormant sea-
son. Our inverse analysis indicates a more considerable CO;
uptake rate (—26.2 +2.1 PgC yr~!; June-July) and net CO,
release rate (4.1 4= 2.0 PgC yr—!; January—April) than CASA-
based terrestrial land flux. Contrary to the CASA prior, in-
versions using the VISIT prior flux increase sinks signifi-
cantly, by up to about 10PgC yr~!, in June—July compared
to the a priori flux. Inversion fluxes using CASA and VISIT
show high consistency for the total land CO, flux seasonal-
ity. Overall, the averaged gc3t and gvjf show good agreement
(r =0.98) after inversion as compared to a priori (r = 0.8).
Inversions do not achieve similar consistency for the total
global ocean fluxes for both TT09 and JMA a priori fluxes
(third row from bottom, left column); the correlations re-
duced from 0.95 to 0.58 after the inversion.

Northern land fluxes drive the global land seasonality,
with a close agreement regarding the magnitude and phas-
ing of the growing season and dormant season fluxes. Sea-
sonality for the tropical land (South Asia, Tropical America,
Central Africa, Southeast Asia) is smaller than the northern
land regions (Boreal North America, Temperate North Amer-
ica, Russia), with the inversion suggesting maximum uptake
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Figure 9. Seasonal variations in monthly-mean CO, fluxes at regional scales over 15 lands (upper four rows) and 11 oceans (lower three
rows) regions, along with global land and ocean totals. We prepare the average (2001-2020) separately for inversion ensemble cases based
on gc3t (broken line) and gvjf (solid line) prior. The shade around means shows 10 SDs for the respective inversion cases. The individual
inversion cases are plotted in the Supplement (Fig. S2). Note that all panels use different y scales.

around June—July over northern land and July—September
over tropical land. The a priori and predicted fluxes are more
consistent for the extratropical land regions than their tropi-
cal counterparts. This is because the temperate biosphere is
better simulated by the ecosystem models, such as VISIT or
CASA, by taking into account the temperature and light ef-
fects, while the tropical ecosystems are more often limited by
water availability or suffer from extreme heat, e.g., the mon-
soon driven South Asia (Patra et al., 2013). Posterior fluxes
for the tropical regions also do not converge well, mainly
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because of the general sparseness of CO, data (Patra et al.,
2013).

Over Tropical America, CASA shows maximum carbon
uptake (flux =—2.0PgCyr~!) in August and an extended-
release period in the dormant season from January to April
(flux = 1.1 PgC yr~ 1), while VISIT shows a relatively small
seasonal variation. However, the inversions derive a con-
sistent seasonal phase and amplitude, although the region
does not include any measurement site. Thus, the adjoin-
ing neighborhoods’ observations are helping us to capture
the signal from this region, which is probably enabled by
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a good transport simulation by MIROC4-ACTM. A similar
improved consistency in predicted seasonal cycle phase and
amplitude, relative to the a priori, is also obtained for many
other regions (Fig. 9a, b, c, f, g, k, n). Nevertheless, the a pri-
ori models play significant roles in estimations of CO; flux
seasonality for South Asia (peak uptake flux —0.43 PgCyr~!
in August-September for VISIT and —1 PgC yr~! for CASA
in October—November), and East Asia (CASA peak uptake
in August, VISIT peak uptake in April).

The global ocean prior fluxes show the weak up-
take of CO; during July—September (average up-
take flux of —0.53+0.09PgCyr~! for TT09 and
—1.1240.14PgCyr~! for JMA). From September on-
wards, a sharp increase in uptake occurs, with a maximum
uptake of 2.43PgCyr~! for TT09 and 2.91PgCyr~! for
JMA fluxes in December (Fig. 9, left, third row from
bottom). Over the Northern Ocean, the gvjf inversion cases
tend to show a large CO, release as the MDU increases
during May—October. We believe the broader uptake seasons
for Boreal North America, Europe, and Russia, leading to
stronger early summer land uptake in the case of VISIT a
priori, caused positive CO, flux seasonality for the Northern
Ocean. Even for the gc3t inversion case, we find the peak in
the seasonal cycle in the summer season, when the oceanic
biosphere activity is at its peak and pCO, in water is lower
in summer than in the winter (Goto et al., 2017; Yasunaka
et al., 2018). It is not easy to put forward a hypothesis for
the weaker sink in summer than in winter of the Northern
Ocean, while we can speculate that the atmospheric CO;
decrease in polar air due to the strongest flux seasonal
cycle on boreal land (Fig. 9a, f, j) exceeds the decrease
that occurs over the surface seawater and reduced solubility
of CO, in warmer water. Indeed, Yasunaka et al. (2018)
have shown that the Greenland—Norwegian seas and the
Barents Sea indeed act as a milder sink of CO; (flux =—4
to —5mmol m~2d~!) during June-August compared to the
October-March (flux = —10 to — 15 mmol m—2 d~1), and the
Chukchi Sea and Arctic Ocean show the strongest uptake in
October. Thus, as a whole, the Northern Ocean of our study
could act as the weakest sink in the summer months. Further
studies are needed to identify the role of ice-covered areas
(close to zero CO» flux) in the seasonal cycle. Note here that
the oceanic basis functions in the polar ocean regions use a
climatological sea-ice cover map, and fluxes are not revised
over the sea-ice-covered areas.

Overall, all the land regions, except South Asia, South-
east Asia, Central Africa, and Oceania, show excellent agree-
ment between averaged gc3t and gvjf cases after inversion
(r =0.63-0.97), as compared to the prior flux (r = —0.48—
0.90). A good agreement over the Northern Ocean, West Pa-
cific, and Tropical Atlantic Ocean seasonal cycle is observed
after the inversion (Table S3).
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3.6 Regional CO» fluxes and flux uncertainties

Different regions across the globe emit different amounts of
CO, from FFC emissions, which is one of the main discus-
sion points in the emission reduction policymaking, e.g., un-
der the Kyoto Protocol (1997) and Paris Agreement (2015),
for limiting global warming below a certain level. The recent
IPCC ARG of Working Group I suggested that the global total
CO; emissions from FFC have to be removed gradually on a
net annual basis by 2050 to sustainably limit global warming
below 1.5°C (Canadell et al., 2021). Because the elimina-
tion of FFC usage is challenging to envisage in the coming
3 decades, pathways for reducing FFC emissions are being
explored. Carbon capture and storage and other technologi-
cal management are considered alongside nature-based solu-
tions. The land and ocean have been helping to remove more
than 50 % of the FFC emissions in the past decades. The on-
going natural sinks of CO; and their maintenance/enhance-
ment constitute the major theme of the nature-based solu-
tions. Thus, it is imperative to understand global and regional
carbon fluxes for developing national and international pol-
icy to reduce net CO, emissions.

Figures 10, S3, and S4 show regional CO; fluxes and flux
uncertainties from the 16-member ensemble inversions for
15 land and 11 ocean regions and global land and ocean at
5-year intervals for the past 2 decades. The global flux un-
certainties are found to be smaller than the regional flux un-
certainties because the former are constrained strongly by the
atmospheric CO, growth rate for given FFC emissions. Flux
estimates for all the land regions remain quite uncertain, as
seen from the 5 to 95 percentile range of the 16-inversion en-
semble (whiskers) at about 0.3 PgC yr~! for the land regions
and typically less than 0.2PgCyr~! for the ocean regions.
The fluxes at the 25 to 75 percentiles range show slightly
reduced uncertainties — a large reduction is not seen com-
pared to the 5 to 95 percentile range because the two a priori
models often formed two different sets of CO, flux values
(ref. Figs. 6 and 7). However, it has to be noted that each
of the 15 land analysis regions has predicted flux uncertain-
ties in the range of 2.1 (Boreal North America) to 3.8 (West
Asia) PgCyr~! for the control gc3t case, as the reduction
from prior flux uncertainties was small by inversion for most
of the region (Fig. 3). Thus, by employing the 16-inversion
ensemble approach, we could obtain flux uncertainties that
are smaller and often less than the regional fluxes themselves.
The mean/median fluxes are consistent for the ensemble in-
versions and represent the true state of CO, flux estimation
for the MIROC-ACTM and 50 sites used in the inversion.

Global land sink increased by ~ 63 % from 2001-2005 to
2016-2020, with an uncertainty range of ~ 6 %—12 %. The
highest increase (about 73 %) in the land sink is observed
from 2001-2005 to 2011-2015, while a decrease (~ 11 %) is
observed from 2011-2015 to 2016-2020. The northern ex-
tratropical land accounted for ~ 80 % of the global land sink,
followed by tropics (~ 13 %) and southern extratropical land
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Figure 10. CO; fluxes for land and ocean sink using 16 sets of inversion cases. Box plots represent inversions for different time periods.
Based on different prior fluxes, PFU, and MDU, the different inversion cases are first averaged for the selected time period. The box shows 25
and 75 percentiles spread, and the vertical line shows 5 and 95 percentiles from the mean CO5 flux of 16 ensemble inversion cases. Horizontal
lines inside box plots denote the median CO; flux of 16 inversion ensembles. Mean and spread for the whole study period (2001-2020) are

given in Table S2.

(~7%) (Fig. S3). The ocean carbon sink shows a gradual
increase (by ~ 30 %) from 2001-2005 to 2016-2020. The
southern extratropical land represents about 85 % of global
ocean sink for 2001-2020, followed by the northern extrat-
ropical land (~ 60 %). The tropical ocean regions act as a net
source of carbon emissions, representing 45 % of the global
ocean carbon sink (Fig. S4). One of the most intriguing fea-
tures is that the 5-year mean fluxes for the ocean have in-
creased gradually, as expected from the increase in pCO;
partial pressure difference due to increased loading of FFC
emissions, but the land flux increases only during 2001-2005
and 2006-2010. This step increase in flux could be related to
the biased FFC emissions from China, affecting the natural/-
managed land flux estimation by inversion (Saeki and Patra,
2017).

Amazonia in Brazil hosts the Earth’s largest tropical forest
and hence is an important region of carbon sink. Our study
shows a slight decrease in carbon sink over this region from
2011-2020. A recent study based on aircraft measurements
(Gatti et al., 2021) also suggests a decline in carbon sink
from 2010-2018 over Amazonia due to factors such as de-
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forestation and climate change. A very high correlation is
also seen for the interannual and decadal variations in CO»
fluxes (Figs. 6d, 10) and the Brazilian Amazon deforestation
rate, which showed a strong and systematic decline from the
period 2002-2004 to 2012-2014 and a steady increase after-
ward (Silva Junior et al., 2021).

Our results show that Africa is a small sink of carbon on
an annual scale, agreeing with the RECCAP-1 estimation
for 2000-2009 (Table 4). At the subregional level, northern
Africa shows a small sink, while Central and Southern Africa
show a minor source for the same period. Central Africa
turned from a small source in 2000-2009 to a sink in 2010-
2019, while the carbon flux behaviors remained persistent
for the Northern and Southern Africa regions. Though Cen-
tral Africa is the main carbon sink region over the African
continent because of its evergreen tropical forest, the pro-
longed dry season due to weak El Nifio during 2001-2005
could have turned it into a net source for the 2000s. The av-
erage annual mean fluxes over East Asia for the 2000s are re-
markably consistent with the RECCAP estimates (Table 4),
based on the average estimate from inventory, bottom-up,
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and inversion fluxes (Piao et al., 2012). We have observed
less sink for Russia than RECCAP best estimate (Dolman et
al., 2012). Other regional fluxes also agree well with REC-
CAP estimates, although the period and regional boundaries
of the RECCAP assessment do not match precisely (Table 4).

Our analysis suggests that the most prominent land
carbon sink in the Northern Hemisphere is located
in Temperate North America (—0.5940.14PgCyr 1),
followed by East Asia (—0.4940.09PgCyr~!), Bo-
real North America (—0.3840.10PgCyr~!), and Russia
(—0.35+0.05PgCyr~!) for 2001-2020, and they account
for 70% of the total global CO, uptake by land bio-
sphere. Overall, our results suggest about 40 % of Temper-
ate North America’s (1.49PgCyr~!), 17%-19% of East
Asia’s (2.74PgCyr~!), 200% of Boreal North America’s
(0.19PgCyr~1), and 80 % of Russia’s (0.44 PgCyr~!) CO,
emissions from FFC are offset by carbon accumulation in
their terrestrial ecosystems for 2001-2020. Overall, no area
shows net carbon source from the land biosphere for recent
decades (2010-2019). Further, the inversion suggests sub-
stantial oceanic CO; uptake is in the North Pacific, with
a mean flux of —0.5540.05PgCyr~'. A considerable rate
of CO; uptake is also observed in the Southern Ocean re-
gion; the CO, flux increased from —0.12 +0.07 PgCyr~!
in 2001-2009 to —0.33 +0.06 PgCyr—! in 2010-2019. The
Southern Ocean CO; flux for 2010-2019 agrees well with
a recent assessment of —0.5340.23 PgCyr~! (net uptake)
in the region south of 45° S during 2009-2018 (Long et al.,
2021).

3.7 Validation of CO» fluxes using aircraft data

We evaluate the quality of inversion flux estimates by com-
paring CO, simulations with independent observations (ob-
servations that are not used in the inversions due to a lack
of long measurement time series record). The CO, simula-
tions are derived from three sets of prescribed fluxes: gc3t
(case: ctl_ux4_gc3t in Table 2), gvjf (case: ctl_ux4_gvjf),
and ensm (average of all 16 inversions). The observations
in the lower troposphere (from surface to ~2km) are more
sensitive to regional fluxes. Hence, we compare the simu-
lated CO, with that measured by HIPPO and ATom airborne
campaigns in the lower troposphere. Figure 11 shows com-
parisons over the transects from high northern (~ 80° N) to
high southern latitudes (~ 70° S) at the location and time of
HIPPO and ATom airborne campaigns, spanning all four sea-
sons. HIPPO shows the lower CO; over 30-80° N than 0—
30° N for May—July due to the large uptake in high northern
latitudes; however, the values are slightly higher than South-
ern Hemisphere (Figs. 11, S5). ATom shows a lower con-
centration over 30—80°N than the rest of the latitudes during
July—August (Figs. 11, S6). All the model cases capture the
meridional gradient, slope, and other features well at RMSEs
less than 1.5 ppm, mean bias in the range —0.5—-(—0.3) ppm,
and correlation greater than 0.8.
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The ensm inversion shows the lowest mean bias and
RMSE than the other two predicted simulations over most
aircraft campaigns (Fig. 11, statistics on each panel for dif-
ferent fluxes identified by color). The comparison also in-
dicates latitude- and season-dependent accuracy in the pre-
dicted fluxes. The NOAA aircraft observations show a high
bias during boreal summer throughout the troposphere over
the United States and Canada, implying possible seasonally
dependent errors in posterior fluxes over these latitude re-
gions (Fig. S7). When the aircraft data are over the high-
latitude continental regions, the model-observation compar-
ison suggests a stronger surface CO, sink is estimated by
inversion compared to what is suggested by vertical pro-
file gradients. HIPPO for July also shows negative model—
observation mismatches near the surface (Fig. S6). But the
mismatches turn positive in the higher altitudes, above about
1 km, and thus the model and observations averaged over 0—
2 km are in much closer agreement (Fig. 11c). Based on these
comparisons, the simulations from the ensemble mean of 16
inversion cases (ensm) show the lowest mean bias in compar-
ison with gc3t or gvjf inversions and are suggested to be the
most suitable flux estimation for quantifying the global land
and ocean carbon sink on the timescale of the annual mean
and its decadal trend.

Further, all available aircraft profiles, measured on a cam-
paign basis or at regular intervals, are also used to evaluate
the predicted fluxes (Table S4). Compared to NOAA vertical
profiles of CO,, model simulations agree well in the free tro-
posphere (defined here between 2 and 8 km), with an average
bias (averaged over 2000-2020) close to zero (Fig. S7, top
panel: bias as a function of altitude, averaged over all sites).
The inversions underestimate (~ 1 ppm; Fig. S7, top panel)
the observations within the boundary layer (between the sur-
face and 2km); however, the RMSE is higher (~ 1 ppm)
compared to that of the free troposphere. It could be be-
cause many of the NOAA aircraft profiles are over the United
States (see the map inset in the middle row, left panel of
Fig. S7), close to regional CO; sources.

Following the GCP budget evaluation method (Friedling-
stein et al., 2020), Fig. 12 shows the mean bias over four
latitude bands for three periods. The mean bias is cal-
culated separately from all available aircraft data in ob-
spack_co2_1_GLOBALVIEWplus_v6.1 (Fig. 12a—c) and 50
observation sites (Fig. 12d—f) used in the inversion (shown
in Fig. 1). The biases show the dependency on latitude and
are different for each inverse model case and provide infor-
mation on biases in the surface fluxes (Gaubert et al., 2019;
Houweling et al., 2015). All the three predicted CO; concen-
trations show the smallest bias (less than 0.1 ppmv) over the
high southern latitudinal band for 2001-2010. However, for
2011-2020, predicted CO; concentrations show large posi-
tive (0.47 &= 0.47 ppm) and negative (—0.23 £ 0.47 ppm) bias
for gc3t- and gvjf-predicted fluxes. The positive and nega-
tive biases for gc3t and gvjf inversions, respectively, are also
consistent with the surface sites, which arise due to the biases
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Table 4. Mean + 1o standard deviation of annual net land—atmospheric exchange of CO, (in PgCyr~!) from predicted fluxes for 15 land
regions by decade. The predicted fluxes are shown for the best estimates, obtained from the ensemble mean of all 16 inversion cases based
on different priors (gc3t and gvjf) and uncertainties (MDU and PFU). The £ 1o in the decadal mean fluxes denotes the range of uncertainty.
The estimations for the 2000s are compared with the REgional Carbon Cycle Assessment and Processes phase 1 (RECCAP-1).

Regions 2000s  Fluxes from RECCAP 2010s
(2000-2009)  (2000-2009) (2010-2019)
Boreal N. America —0.364+0.09 —0.474+0.28 —0.39+0.11
Temp. N. America —0.61+0.13  (King et al., 2015) —0.58£0.14
Tropical America —0.11+£0.11 —0.16 £0.11
Brazil 0.044+0.10 0.13+£0.29 —0.01+£0.07
Temp. S. America —0.07£0.13  (Gloor et al., 2012) —0.12+0.16
Europe —0.08+0.11 —0.20£0.07 0.07£0.12
(Luyssaert et al., 2012)
Northern Africa —0.03+0.08 —0.614+0.58 —0.08 +0.06
Central Africa 0.03+0.18 (Valentini et al., 2014) —0.10£0.13
Southern Africa 0.02+0.13 0.07+0.12
Russia —0.31+0.04 —0.55t0 —0.66 —0.39+0.06
West Asia —0.044+0.04 (Dolman et al., 2012) —0.08 £0.06
South Asia —0.15+0.09 —-0.15£0.23 —0.2+£0.12
(Patra et al., 2013)
East Asia —0404+0.07 —-041+£0.14 —0.58£0.11
(Piao et al., 2012)
Southeast Asia —0.10£0.11 NA —0.15+0.18
Oceania —0.08+0.06 0.04+0.03 —0.15+0.09

(Haverd et al., 2013)

NA: not available.

in simulated CO, growth rates (an overestimated growth rate
for gc3t for the positive budget imbalance (Fig. 5), the op-
posite being the case for the gvjf inversion with a negative
budget imbalance). The mean biases turned from negative to
large positive by moving from 0-45° N averages to 45-90° N
averages. In contrast to aircraft observations, the surface sites
show a large negative bias over 45-90° N, consistent with the
discussions earlier based on Figs. S5-S8. Overall, the ensm
case shows consistent results in all three different time pe-
riods of this analysis, reiterating the appropriateness of the
ensemble mean CO; fluxes for global (e.g., Fig. 5) and re-
gional budget analysis (e.g., Table 4).

4 Conclusions

The terrestrial biosphere (2.58PgCyr~!) and ocean
(1.54PgCyr~!) absorb about 46 % of the emissions due to
fossil fuel and cement production (8.9 PgCyr~!) in the pe-
riod 2001-2020. The variability in these fluxes significantly
affects the year-to-year variability of the carbon dioxide
(CO») accumulation rate in the atmosphere. We estimated
global and regional sources and sinks of carbon across
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the earth’s surface, using observations and simulations of
atmospheric CO,. We tested the relative role of prior flux
uncertainty (PFU) and model data uncertainty (MDU) on the
land and ocean’s global and regional carbon flux estimates.
For this, we use a single transport model (JAMSTEC’s
MIROC4-ACTM) to estimate the global and regional carbon
flux and associated uncertainty based on different prior
fluxes (two land biosphere fluxes (CASA and VISIT + Fire)
at 3-hourly intervals with distinct global total CO, sink
strengths and two sea—air exchange fluxes (Takahashi
and JMA)), choices of prior flux uncertainties (PFU: four
cases), and representation of measurement data uncertainties
(MDU: two cases). Based on different combinations of prior
fluxes, PFU, and MDU, we run 16 ensembles of inversion
cases using CO, measurements from a set of 50 sites
spreading over the globe, and inversion results are analyzed
for 2001-2020. The 16 ensemble members are averaged,
and the result (ensm) is treated as the best estimate (i.e.,
a measure of central tendency) flux. The spread between
the ensemble members provides us a reasonable measure
of the inversion-estimated flux uncertainty but lacks the
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Figure 11. Observed and modeled meridional CO; distribution during HIPPO and ATom campaigns. We aggregate the observed and sim-
ulated mole fractions for the lower troposphere (between 0.5 and 2.0 km) at 2.5° latitudinal bins. The correlation coefficient, mean model—
observation bias, and root-mean-square error (RMSE) are also shown in each plot.

quantification of the roles of transport model uncertainty or
the inherent errors in the measurements and the prior fluxes.

Although each inversion used common observation sites,
there is still considerable uncertainty in the estimated fluxes
due to the prior fluxes and uncertainties (PFU and MDU).
On a global scale, the uncertainty in the predicted fluxes due
to prior flux is relatively larger than that of PFU and MDU.
However, at a regional scale, uncertainties due to priors and
PFU and MDU are primarily comparable and drove inter-
inversion disparity. The lack of constraints makes the tropical
(Tropical America, South Asia, and Southeast Asia) and ex-
tratropical southern (Southern Africa, Oceania) land regions
highly uncertain. The ensemble of inversions splits into a
“near-neutral” group and a “strong source/sink” group based
on the prior fluxes for the tropical and extratropical southern
land regions. Overall, the prior flux differences have a neg-
ligible effect on the estimation of the global land total and
ocean total sink but are significant at the regional scale.

The interannual variability in the land fluxes (driven
mainly by ENSO) is much more considerable than in the
ocean and tends to show greater consistency across the 16
inversion cases. The land flux seasonality is prominent in the
Northern Hemisphere, with good agreement across the in-
version ensemble cases. The ocean seasonality is slight and
in less agreement relative to the magnitude of the seasonal-
ity of land fluxes. We comprehensively evaluated predicted
fluxes by extensively comparing the simulated posterior CO,
to independent CO; observations from several aircraft mea-
surements by NOAA, CONTRAIL, HIPPO, ATom, and the

https://doi.org/10.5194/acp-22-9215-2022

NOAA MBL reference sites. The evaluation suggests that the
ensemble mean of 16 inversion cases (ensm) is well suited
(mean bias is found minimum) for quantifying the global
land and ocean carbon sink. Thus, we used the ensm case
(best estimate) for estimating the carbon fluxes and associ-
ated uncertainties.

In summary, our best estimate suggests that 22 %—
33% (16 %—-18 %) of global CO, emissions from FFC
have been offset by global land (ocean) carbon flux from
2001-2020. The land and ocean sink partitioning are esti-
mated to be —2.27+0.2 (&£ lo uncertainty on mean) and
—1.46 4+ 0.09 PgC yr~!, respectively, for the period 2001—
2009, and —2.85 4 0.25 and —1.63 +0.17 PgC yr~!, respec-
tively, for the period 2010-2019 (without riverine export cor-
rection), which are in excellent agreement with the IPCC
ARG values (Table 3). The decadal mean values for the REC-
CAP are also in good agreement for North America, South
America, East Asia, South Asia, and Oceania (Table 4). Note
that the region boundaries and period of evaluations do not
match perfectly between RECCAP-1 and our inversion for
most regions.

Our analysis suggests that the most prominent land
carbon sink in the Northern Hemisphere is located in
Temperate North  America (—0.59 £0.14PgCyr~1),
followed by East Asia (0.4940.09PgCyr—!), Boreal
North America (—0.38+£0.10PgCyr~!), and Russia
(—0.35+0.05PgCyr~!) for 2001-2020. Overall, our
results suggest about 40 % of Temperate North America’s
(1.49PgCyr~"), 17 %—19 % of East Asia’s (2.74 PgCyr~!),
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Figure 12. Evaluation of the atmospheric inversion products (solid lines; legend in panel a). The mean of model-observation differences
is shown for four latitude bands of 45° intervals in three time periods: (a, d) 2001-2010, (b, e) 2011-2020, and (c, f) 2001-2020. The
simulations from three inversion cases are compared to independent CO, measurements made on board aircraft (a—c: top row) over various
parts of the world between 2 and 8 km above sea level. Bottom row shows the model-observation differences for 50 surface sites that are used
in the inversion (d—f) and mismatches between the a posteriori model (as obtained after optimizing regional sources by inversion) and CO,
data (broken lines; legend in panel d). Land and ocean data are used without distinction. The number in each panel shows the total number
of data points used for computing bias for each latitude bin. The observation data are taken from obspack_co2_1_GLOBALVIEWplus_v6.1

(Schuldt et al., 2021).

200 % of Boreal North America’s (0.19 PgC yr~!), and 80 %
of Russia’s (0.44PgCyr~!) CO, emissions from FFC are
offset by carbon accumulation in their terrestrial ecosystems
for 2001-2020. Further, the inversion suggests substantial
oceanic CO; uptake in the North Pacific with a mean flux of
—0.55+0.05PgCyr~!, and also considerable CO, uptake
is estimated for the Southern Ocean, where CO;, uptake
increased from —0.124+0.07PgCyr~! in 2001-2009 to
—0.33+£0.06PgCyr~! in 2010-2019. Overall, no area
shows net carbon source from the land biosphere for recent
decades (2010-2019).

Code availability. The CO, inversion code is based on
that was provided by TransCom, and the revised inversion
code is available from https://github.com/prabirp/co212r84
(https://doi.org/10.5281/zenodo.6826842, Patra, 2022).
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