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Abstract. A powerful methodology, based on the multivariate curve resolution alternating least squares (MCR-
ALS) method with quadrilinearity constraints, is proposed to handle complex and incomplete four-way atmo-
spheric data sets, providing concise results that are easy to interpret. Changes in air quality by nitrogen dioxide
(NO2), ozone (O3), and particulate matter (PM10) in eight sampling stations located in the Barcelona metropoli-
tan area and other parts of Catalonia during the COVID-19 lockdown period (2020) with respect to previous
years (2018 and 2019), are investigated using such methodology. The MCR-ALS simultaneous analysis of the
three contaminants among the eight stations and for the 3 years allows the evaluation of potential correlations
among the pollutants, even when having missing data blocks. Correlated profiles are shown by NO2 and PM10
due to similar pollution sources (traffic and industry), evidencing a decrease in 2019 and 2020 due to traffic
restriction policies and the COVID-19 lockdown period, especially noticeable in the most transited urban areas
(i.e., Vall d’Hebron, Granollers and Gràcia). The O3 evidences an opposed interannual trend, showing higher
amounts in 2019 and 2020 with respect to 2018 due to the decreased titration effect, more significant in rural
areas (Begur) and in the control site (Obserbatori Fabra).

1 Introduction

Monitoring studies of air quality have always been indispens-
able to assess the impact of air pollutants on human health
and the environment. Most evaluated air pollutants include
the ones linked to industrial and traffic emissions, such as
tropospheric ozone (O3), nitrogen dioxide (NO2) and partic-
ulate matter (PM10), due to its potential effects on human
health (Zúñiga, et al., 2016; Khaniabadi et al., 2017), and are
the chemicals evaluated in the present study.

The chemistry of nitrogen oxides (NOx) and O3 is highly
complex because NOx is the responsible for tropospheric O3
production but also for its elimination (Lerdau et al., 2000;
Crutzen, 1979). On the one hand, the formation of tropo-
spheric O3 is a consequence of the photochemical reaction
of the sunlight with NOx and volatile organic compounds
(VOCs) released by car exhausts and industries, according
to the following equation: NOx +VOC+hv→O3. Thus,
(NOx) behave as catalysts in the photochemical production
of O3, especially at higher solar radiation and during hours
of high traffic. However, at hours of low solar radiation and
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during nighttime, NOx are responsible for the O3 destruction
in a process called titration: NOx +O3→NOx +O2. In in-
ner rural areas with low anthropogenic activities, the latter
titration effect produced by NOx emissions is generally not
observed, resulting in higher average O3 concentrations than
in urban areas. Overall, the complex equilibrium among O3
and NOx species results in continuous concentration changes
of O3, which is difficult to attribute to a unique source.

Conversely, the chemistry of PM10 is not directly corre-
lated to NOx and O3, but it is also complex due to its multiple
and diverse emission sources. Different PM10 sources exist,
including city background (background levels of emissions
such as construction, demolition and domestic heating), traf-
fic (motor emissions and tire, pavement and brakes abrasion
products), industry (high levels of sulfate, nitrate, and other
burning products), and natural sources (i.e., marine aerosols
and air masses, especially African dust) (Querol et al., 2004;
Saud et al., 2011).

Different approaches exist to assess air quality by eval-
uating concentration changes of these chemical pollutants.
In classical air quality monitoring studies, the data treatment
strategy generally involves data arrangement and analysis us-
ing traditional statistics. However, these methods require ex-
tensive computer calculations and their results are often lim-
ited and restricted. Instead, chemometric methods are power-
ful data analysis tools used to investigate the sources of data
variance in experimentally measured environmental monitor-
ing big data sets, such as air quality data sets that often con-
tain some missing blocks. These methods can be used to ex-
tract and summarize the information often hidden in these
environmental big data sets. Among these methods, the Mul-
tivariate Curve Resolution Alternating Least Squares (MCR-
ALS) method (Tauler, 1995), originally used in the spectro-
chemical analysis of chemical mixtures, has also been proved
to be a competitive method in air pollution studies (Malik and
Tauler, 2013; Alier et al., 2011). The MCR-ALS method is
a flexible, soft-modeling factor analysis method that allows
for the introduction of natural constraints, like non-negativity
of the factor solutions. Although it only requires the fulfill-
ment of a bilinear model for the factor decomposition, it can
be easily adjusted to the analysis of more complex multiway
data structures and multilinear models, such as three-way and
four-way environmental data sets (Tauler, 2021), which can
be analyzed using trilinear and quadrilinear MCR-ALS mod-
els, as shown in this study. The results of the application of
the MCR-ALS method can be used for the discovery of the
main driving factors (latent variables) responsible for the ob-
served data variance, in this case, the observed changes in the
measured chemical pollutants.

The present study is focused on promoting and extend-
ing the use of the MCR-ALS method, including trilinear
and quadrilinear constraints, for the investigation of NO2,
O3, and PM10 air pollution. In addition, this study is aimed
at providing different strategies to deal with and estimate
missing data, also using the MCR-ALS methodology (Alier

and Tauler, 2022). The selected chemometric strategy is ul-
timately used to evaluate the temporal patterns of the three
pollutants during 2018, 2019, and 2020 in eight monitoring
stations located in Catalonia (Spain), including three urban,
one control site, one semi-urban, and three rural stations. The
different stations were specifically selected to evaluate the in-
fluence of the geographical location on air pollution. The pe-
riod of time evaluated (i.e., 1 January to 31 December 2018,
2019, and 2020) was chosen to cover the COVID-19 lock-
down period in Catalonia, and to enable a comparison with
respect to the same time period in the previous 2 years. Con-
sidering that the strictest COVID-19 lockdown period in Cat-
alonia occurred in the month of April 2020, a specific evalu-
ation of air quality changes produced during this time period
with respect to the previous 2 years is provided in this study.

2 Materials and methods

2.1 Air quality data

The experimental data used in this work consisted of O3,
NO2, and PM10 concentrations recorded from eight air qual-
ity monitoring stations, operated by the Department of En-
vironment of the Catalan Autonomous Government. The se-
lected air quality monitoring stations consisted of three urban
stations (Gràcia, Vall d’Hebron and Granollers), one semi-
urban stations (Manlleu), and one control site (Observatori
Fabra), all located in the province of Barcelona, and three
rural stations, i.e., Juneda and Bellver de Cerdanya in the
province of Lleida, and Begur (Costa Brava, NE Catalonia)
in the province of Girona. More detailed information about
the characteristics of the stations is provided in a previous
air quality monitoring study by the authors (Gorrochategui
et al., 2021). The NO2 concentrations were measured by
means of chemiluminescence according to the UNE method
77212:1993, using automatically operated MCV 30QL ana-
lyzers. The O3 concentrations were measured by means of
UV photometry according to ISO FDIS 139464:1998, auto-
matically operated with MCV 48 AUV analyzers. The PM10
concentrations were measured by means of gravimetric de-
termination, using manually operated high volume samplers
(MCV CAV-A/MS). The generated databases with all the
concentrations measured were compiled by the Department
of Air Monitoring and Control Service of the Generalitat
de Catalunya (Xarxa de Vigilància i Previsió de la Con-
taminació Atmosfèrica, XVPCA. Departament de Territori i
Sostenibilitat, 2020).

2.2 Experimental data multisets

In this study, two experimental data multisets were analyzed
(see Fig. 1). Both of them contained hourly concentrations of
NO2, O3, and PM10 measured in the eight air quality moni-
toring stations but for distinct periods of time. The first data
multiset contained air quality data recorded in the month of
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April 2018, April 2019, and April 2020 (i.e., the latter being
the time when the strictest COVID-19 lockdown occurred
in Catalonia, Gobierno de España, 2020b) in the different
stations. The second data multiset contained air quality data
recorded in the same eight stations, but during a longer pe-
riod of time: from 1 January to 31 December 2018, 2019,
and 2020. The latter multiset was built in order to evaluate
annual trends of air pollution; especially interesting in 2020,
an extraordinary year due to the COVID-19 pandemic.

As observed in Fig. 1, both data multisets contained some
missing data blocks, which were not included in the MCR-
ALS analyses of individual contaminants, apart from some
spot values, which were further estimated to undergo chemo-
metric analysis.

In the data set of the month of April, no missing data ex-
isted for NO2 and O3. However, for PM10, data for 3 months
of April were missing (i.e., Begur 2018, Begur 2020, and Ob-
servatori Fabra 2018), as observed in Fig. 1a. In the data set
for the entire 3 years (Fig. 1b), for NO2 and O3, the months
of January and February 2018 in the Observatori Fabra sta-
tion were missing, respectively. For PM10, data from three air
quality monitoring stations were missing: Gràcia (September
and October, 2018), Begur (months from January to October,
2018, and months from January to July 2020) and Observa-
tori Fabra (months from January to September 2018).

2.3 Data sets arrangement

In this study, the two data multisets were separately ar-
ranged to further undergo individual MCR-ALS analyses of
the complete experimental data sets (Fig. 1).

To conduct the analysis of the month of April, data ma-
trices for NO2, O3, and PM10 were separately arranged in
a first step. For each contaminant, a total of 24 data ma-
trices, one per year (3 years) and per monitoring station
(eight stations), of size 30× 24 (month days× hourly mea-
surements), were obtained. As observed in Fig. 1a, these 24
data matrices were labeled as Dstation–year; with the name of
the corresponding air quality station (V: Vall d’Hebron, Gn:
Ganollers, M: Manlleu, J: Juneda, Bl: Bellver, Ga: Gràcia,
Bg: Begur, and O: Observatori Fabra) and the 2 last digits of
the year (2018, 2019, and 2020). These 24 data matrices were
then arranged using a column-wise augmentation, obtain-
ing 3 augmented data matrices: Dcaug-April-NO2 , Dcaug-April-O3
and Dcaug-April-PM10 . The first two augmented matrices (NO2
and O3) contained concentration measures for the month of
April for each station and each year folded one on top of
the other, first performing the augmentation for the 3 years
(30×3) and then for the eight stations (30×3×8), as shown
in Fig. 1a. The resulting dimensions of these two column-
wise augmented data matrices for further MCR-ALS analysis
were 720×24. However, as previously stated, for PM10, data
of 3 months were missing and thus, the final column-wise
augmented matrix was built only with the six stations con-

taining no missing data (30×3×6), resulting in a (540×24)
matrix (yellow-shaded area in Fig. 1a).

To conduct the analysis of the entire 3 years, data matrices
for NO2, O3, and PM10 were also separately arranged in a
second step. For each contaminant, a total of 24 data matri-
ces, one per year and per monitoring station, of size 365×24
(year days× hourly measurements), were obtained.

These 24 data matrices were then arranged using a
column-wise arrangement, obtaining three augmented
data matrices: Dcaug-allyear-NO2 , Dcaug-allyear-O3 , and
Dcaug-allyear-PM10 (Fig. 1b). In this case, for the three
contaminants, some data were missing (white gaps in the fig-
ure). For NO2 and O3, some data from the Observatori Fabra
station was missing. Thus, the resulting augmented matrices,
Dcaug-allyear-NO2 and Dcaug-allyear-O3 , contained information of
the whole year, seven stations and the 3 years (365× 3× 7),
resulting in 7655× 24 matrices, as shown in the figure. For
PM10, data of three stations were missing (white gaps in
the figure) corresponding to Gràcia, Begur and Observatori
Fabra. Thus, in order to perform the MCR-ALS analysis,
the resulting PM10 column-wise augmented matrix only
contained information of five stations with no missing data
(365×3×5), resulting in a 5475×24 matrix (yellow-shaded
area in Fig. 1b).

Data arrangement for the simultaneous study of the three
pollutants considering the whole incomplete multiblock ex-
perimental data sets is further described in Sect. 2.7.

2.4 Estimation of missing data

Estimation of missing data was used for the case when fail-
ures of stations and/or their malfunction caused the absence
of measurements for a few hours or a few days. In order to
estimate such missing data, the nearest-neighbor method (Pe-
terson, 2009) (i.e., knn imputation) was used. In this study,
the function mdcheck (i.e., missing data checker and infiller)
of PLS Toolbox version 8.9.1 (Eigenvector Inc., WA) was
utilized to perform the imputation. This function checks for
missing data and infills them using a PCA model imputa-
tion from distinct algorithms. In our case, three algorithms
were tested consisting of “SVD” (Singular Value Decompo-
sition), “NIPALS” (Nonlinear Iterative Partial Least Squares)
and “knn”, the latter providing the better estimation results in
our case, and thus, the one that was finally used in this study.

It is important to mention that estimation of missing data
was not performed in cases where the entire month was miss-
ing. For those cases, the station was not included in the MCR-
ALS analysis of the complete data set. For the analysis of in-
complete multiblock data sets, an especial arrangement was
performed using a particular data fusion strategy, as further
explained in Sect. 2.7.
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Figure 1. Data arrangement for individual analysis of completed data sets. Concentrations of NO2, O3, and PM10 in the month of April (a)
and the entire year, for one year and one station (b) can be arranged in a data matrix with the days in the rows and the 24 h measurements
in the columns Dstation-April or Dstation-year. These individual data matrices are arranged in three (one per each pollutant) column-wise
augmented data matrices. For the data set of April in 2018–2019–2020 (a), the augmented matrices are Dcaug-April-NO2

, Dcaug-April-O3
(720,

24) and Dcaug-April-PM10
(540, 24). For the data set of the entire year in 2018–2019–2020 (b), the augmented matrices are Dcaug-allyear-NO2

,
Dcaug-allyear-O3

(7655, 24) and Dcaug-allyear-PM10
(5475, 24). Stations containing missing data (white gaps in the figure) are excluded for

further MCR-ALS analysis (yellow-shaded area). VH: Vall d’Hebron, Grn: Granollers, Mn: Manlleu, Jun: Juneda, Bell: Bellver, Gra: Gràcia,
Beg: Begur, OF: Observatori Fabra.
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2.5 MCR-ALS analysis of the experimental data

Different chemometric methods have been proposed in the
literature for the analysis of environmental monitoring data.
The MCR-ALS method is frequently used in spectrochemi-
cal mixture data analysis, which can also be easily extended
to the analysis of environmental source apportionment data
sets (Alier et al., 2011). The MCR-ALS is a flexible, soft-
modeling factor analysis tool which allows for the applica-
tion of natural constraints (see below), and it can be easily
adapted to the analysis of complex multiway (multimode)
data structures, such as three- and four-way environmental
data sets using trilinear and quadrilinear model constraints
(De Juan et al., 1998; Smilde et al., 2004; Malik and Tauler,
2013).

The simplest application of the MCR-ALS method is
based on a bilinear model that performs the factor decom-
position of a two-way data set (i.e., a data table or a data
matrix). Equation (1) summarizes this bilinear model in its
element-wise way, while Eq. (2) presents the same model in
a matrix linear algebra format:

di, j =

∑N

n=1
xi, nyj, n+ ei, j i = 1, . . . I (days),

j = 1, . . . J (hours) (1)

D= XYT
+E. (2)

In Eq. (1), the individual data values, di, j elements (in this
case the O3, NO2 or PM10 concentration values measured on
1 d (i) at a particular hour (j )) are decomposed as the sum
of a reduced number of contributions (components), n= 1,
. . .N . Each one of them are defined by the product of two fac-
tors, xi, n (scores) and yj, n (loadings). In addition, the term
ei, j is the residual part of di, j , which cannot be explained by
these N components and accounts as experimental noise and
uncertainties. In Eq. (2), the data matrix, D, of dimensions
I ×J is decomposed into the scores factor matrix X (I ×N )
and the loadings factor matrix, YT (N × J ). The number of
components, N , is selected to explain the data variance as
much as possible, while the unexplained small contributions
of data variance and experimental noise are in E. Multivariate
Curve Resolution (MCR; Tauler, 1995) performs the bilinear
model factor decomposition shown in Eqs. (1) and (2) using
an alternating least squares (ALS) algorithm under a set of
constraints which reduce the extent of the bilinear model ro-
tation ambiguities (Abdollahi and Tauler, 2011) and allow the
physical identification and interpretation of the factor matri-
ces X and YT , for example, the application of non-negativity
constraints to the elements of the factor matrices X and YT

(Bro and De Jong, 1997; De Juan and Tauler, 2003). Models
with a different number of components can be tested and a
final decision is taken considering the data fit and the shapes
and reliability of the resolved profiles. The ALS algorithm
also needs initial estimates of either X or YT factor matrices.
These initial estimates can be obtained from the more “dis-
similar” rows or columns of the original data matrix (Wind-

ing and Guilment, 2002). Equation (2) for D is solved itera-
tively, which updates the solutions (vector profiles in X and
YT matrices) until they fit the data optimally and fulfill the
proposed constraints.

In this work the MCR-ALS method has been applied, ei-
ther to the individual data matrices Dstation, year described in
the previous section and in Fig. 1 for every pollutant (O3,
NO2 or PM10), at one period of time (April or full year),
and at one monitoring station, or to the augmented matrices
of the same three pollutants for the 3 years (k = 1, . . . 3) si-
multaneously and for the different stations (l = 1, . . . ,8), con-
catenated vertically in Dcaug-April or Dcaug-allyear (see Fig. 1).
In the case of the individual data matrices described above
for the period of time (April or full year), Dstation,april or
Dstation, year, the factor (scores) matrix X will have the April
or full year day profiles of the components, respectively, and
the factor (loadings) matrix YT will have the corresponding
hour profiles of these components. In the case of the column-
wise augmented data matrices Dcaug-April or Dcaug-allyear, bi-
linear model Eq. (2) was extended as

Dcaug = XcaugYT
+Ecaug, (3)

where Xcaug is now the augmented factor (scores) matrix
with the augmented day profiles concatenated vertically for
the different years and stations, and YT is the matrix of the
hour profiles again, which are common for all the concate-
nated matrices in Xcaug. During the ALS optimization of the
bilinear model in Eq. (3), constraints can be also applied, and
the same aspects relating to the number of components and
convergence as for solving Eq. (2), are considered.

2.6 MCR-ALS analysis of the complete experimental
data sets using trilinear and quadrilinear constraints

Solving Eq. (3) using bilinear MCR-ALS does not take into
account the temporal and spatial structure of the data in the
vertical concatenated mode, which includes the information
of the day, year and station. This data structure can be con-
sidered in the trilinear and especially in the quadrilinear ex-
tensions of the bilinear models described in Eqs. (1)–(3).

The factor decomposition model given before can be ex-
tended to a three-way dataset, D, or to a four-way data set,
D
=

, expressed individually for every data value as given by
Eqs. (4) and (5).

di, j, kl =

∑N

n=1
xi, nyj, nzkl, n+ ei, j, kl (trilinear model) (4)

di, j, k, l =

∑N

n=1
xi, nyj, nzk,n,wl,n+ ei, j, k, l (quadrilinear model), (5)

where di, j, kl are the individual data values (concentrations of
O3, NO2 or PM10) in the four experimental data modes: the
day of April or of the full year i = 1, . . .30 or i = 1, . . . ,365,
the hour of the day j = 1, . . .,24, and the year–station kl =

1, . . .24 in the case of the trilinear model, and di, j, k, l has the
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year–station third mode separated in year k = 1,2,3, and sta-
tion, l = 1, . . . ,8 in the quadrilinear model. These data val-
ues are modeled as the sum of a number of components (con-
tributions), n= 1, . . .N , defined by the product of three fac-
tors xi, n, yj, n, and zkl, n in the case of the trilinear model and
in four factors in the case of the quadrilinear model,= xi, n,
yj, n, zk, n and wl, n. These factors are related to the three and
four data modes, respectively (day, hour and year–station or
day, hour, year and station). ei, j, kl and ei, j, k,l are the part of
di, j, kl and di, j, k,l not explained by the contribution of these
N components. These trilinear and quadrilinear models can
be written in a matrix form using the decomposition of ev-
ery individual Dkl data slice (every individual matrix Dkl), as
shown in Eqs. (6) and (7).

Dkl = X Zkl YT
+Ekl (trilinear model) (6)

Dkl = X Zk Wl YT
+Ekl (quadrilinearmodel) (7)

Under the trilinear model, all individual data matrices, Dkl ,
(I , J ) are simultaneously decomposed with the same number
of components N and the same daily X (I, N ) and hourly
YT (N, J ) profiles. Thus, they differ only in a diagonal ma-
trix Zkl (N, N ), different for every one of the kl = 1, . . . ,24
year–stations (year–station profiles), which gives the relative
amounts of the N components in every data matrix (year–
station), Dkl . These N diagonal elements of Zkl can also be
grouped in the third factor matrix Z (K ×L, N ). Under the
quadrilinear model, all individual data matrices, Dkl , (I, J )
are simultaneously decomposed with the same number of
components N and the same daily X (I, N ) and hourly YT

(N, J ) profiles. Thus, they differ in the diagonal matrices Zk

(N, N ) and Wl (N, N ), which are different for every year
(k) and station (l), which give the relative amounts of the
N components in every data matrix Dkl , respectively. These
N diagonal elements of the Zk and Wl matrices can also be
grouped in the third- and four-factor matrices Z (K, N ) and
W (L, N ). Therefore, the proposed trilinear and quadrilin-
ear models take advantage of the natural structure of the ana-
lyzed data sets, especially in relation to their different tempo-
ral modes (i.e., hourly, daily, yearly) and the different type of
monitoring stations analyzed simultaneously. The implemen-
tation of trilinear and quadrilinear models as a constraint in
the MCR-ALS method has been described in previous works
(Tauler, 2021; Malik and Tauler, 2013; Alier et al., 2011).
Here only a brief explanation of the implementation of the
quadrilinear model constraint for the case of study is shown.

Figure 2 shows the practical implementation of the quadri-
linearity constraint in the MCR-ALS analysis of the four-way
data set obtained in the two types of data, when the April data
of the three parameters (O3, NO2 and PM10) were studied
over the 3 years (2018–2019 and 2020), and over the dif-
ferent monitoring stations described above, and also for the
analogous four-way data set when instead of April data, the
full-year data were considered for the same years and sta-
tions.

The individual data sets with the concentrations of the
three parameters (one per year and station), were arranged in
the column-wise augmented data matrix Dcaug of dimensions
30 (April) or 365 d× 3 years× 8 stations, giving a total num-
ber of 720 rows for April data or of 8760 rows for the full-
year data, and 24 hourly measures in columns. These number
of row elements is for the case of no-missing data, however
they will be lowered for the cases of missing data, especially
in the case of the full-year data (see previous section in miss-
ing data). The application of the quadrilinearity constraint
implies that the augmented profiles of every component n,
xn

aug, having the vertically concatenated information of days
× years × stations is first refolded in the data matrix Xn

aug
of dimensions 30 (April) or 365 (all year) × 3 (years) rows
by 8 (stations). This augmented factor matrix is decomposed
by SVD considering only the first singular component into
the product of two vector profiles, one long vector profile
xn

caug (90 or 1095× 1) of the combined day–year profile by
a vector profile wn (8× 1) describing differences among the
different stations for the component n. The xn

caug long vec-
tor day–year profile can be further refolded in a matrix and
decomposed by SVD into the product of two new vector pro-
files, one related to the year profile, zn, and another to the
day profile xn, for the considered component n. In this way,
for every component (contribution), the concentration of any
one of the three parameters (O3, NO2, and PM10) is decom-
posed in the product of four profiles, one related to the day
(of April or of the whole year), xn, another related to the hour
of the day, yn, another to the considered year, zn, and another
to the monitoring station, wn. This factor decomposition al-
lows a detangled interpretation of the temporal and spatial
sources of variation for the observed concentrations of the
three pollutants. Therefore, the application of this quadrilin-
earity constraint implies that for every component, the daily
changes are described by the same single xn vector profile
which changes over the years and station by station by the
corresponding scalar values in zn and wn. Once the three
profiles in the three augmented modes, xn, zn and wn, are
obtained, they can be multiplied using the Kronecker product
(Soloveychik and Trushin, 2016) to reconstruct the long vec-
tor profile, xn

aug, (see Fig. 2) and rebuild the bilinear model in
the next iteration of the general ALS optimization. Finally,
the vector profiles for every component n in the different
modes, can be grouped in the corresponding factor matrices
X, Z, and W, which together with YT give the full quadrilin-
ear decomposition of the four-way data set, D

=
. See previous

works for a more detailed description of the algorithm used
for the practical implementation of the quadrilinearity con-
straint in MCR-ALS (De Juan and Tauler, 2001; De Juan et
al., 1998).
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Figure 2. MCR-ALS with the quadrilinearity constraint. Graphical description of the implementation of the quadrilinearity constraint during
the Alternating Least Squares (ALS) optimization. See Eqs. (4)–(7) and their explanation in the paper.

2.7 MCR-ALS simultaneous analysis of incomplete
multiblock experimental data

The simultaneous analysis of the NO2, O3, and PM10 experi-
mental data can be done one step forward using a data fusion
multiblock strategy. This would imply building a single MCR
model for the whole multiset data obtained for the three pol-
lutants, NO2, O3, and PM10 in April or in the whole year,
for the 3 years, 2018, 2019, and 2020, and for the different
monitoring stations. This is expressed in the following data
matrix equation (see also Fig. 3):

Dcraug = [DcaugNO2 ,DcaugO3 ,DcaugPM10 ]

= Xcaug[YT
NO2

,YT
O3

,YT
PM] = XcaugYT

raug. (8)

In this Equation the column-wise augmented data matrices,
DcaugNO2 , DcaugO3 , and DcaugPM10 described previously (and
analyzed separately by MCR-ALS with different factor de-
composition models, bilinear, trilinear and quadrilinear), are
now concatenated horizontally giving the new single row
and column-wise super-augmented data matrix Dcraug, which
is decomposed in the two new augmented factor matrices,
Xcaug and YT

raug, using the MCR bilinear model and con-
straints, like it was described in Sect. 2.4. The resolved hour
profiles for the three contaminants YT

NO2
, YT

O3
, and YT

PM will
be in the augmented rows of the new YT

raug. In addition, if
the trilinearity/quadrilinearity constraints are applied to the
columns of the resolved factor matrix Xcaug as described
above in Sect. 2.6 using matrix decompositions of Eqs. (6)

and (7), the common day, year and station profiles will be
separately recovered and analyzed.

However as previously described, April and the whole-
year individual data sets were not obtained for all stations,
years, and pollutants. Therefore, they could not be fitted to-
gether in a rectangular super-augmented data matrix contain-
ing all the data for all the years and stations as shown in
Eq. (8) for Dcraug. Some of the individual data sets were miss-
ing (see Sect. 2.3 and 2.4). In particular, in the case of April,
two different data blocks could be arranged. First, the NO2,
O3 and PM10 concentrations data for 3 years and 6 stations
were arranged in the complete row- and column-wise aug-
mented April data block, DA1craug, with 540 rows (30 d× 3
years× 6 stations) and 72 columns (24 h for NO2+ 24 h for
O3+ 24 h for PM10). Secondly, the additional NO2 and O3
concentration data for 3 years and 2 stations were arranged
in the complete row- and column-wise augmented April data
block DA2craug with 180 rows (30 d× 3 years× 2 stations)
and 48 columns (24 h for NO2+ 24 h for O3). These two
April data blocks can be analyzed independently, but a new
data set can be built concatenating the two data blocks as
shown in Fig. S1, which will be reformulated and analyzed
as shown in the next Equation.

DA12craug = [DA1craug; [DA2craug,NaN(180,24)]] =

= XA12caugYA12T
raug = XA12caug[YNO2 ,YO3 ,YPM10 ] (9)

This new incomplete data set DA12craug is built using the
two data blocks previously defined, DA1craug and DA2craug,
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Figure 3. MCR-ALS with the quadrilinearity constraint for the simultaneous analysis of the three contaminants in the incomplete multiblock
data set for the month of April. See Eq. (9) and their explanation in the paper.

both concatenated vertically and filling the empty data block,
corresponding to the unknown concentrations of PM10 for
two missing stations with the NaN notation. The application
of MCR-ALS to this incomplete data set is decomposed us-
ing a bilinear model (see in Fig. 3), giving the two factor ma-
trices XA12caug and YA12T

raug. The factor matrix XA12caug
has the column-wise augmented day× year× station profiles
in its columns and the YA12T

raug factor matrix has the row-
wise augmented hour profiles for NO2 (YNO2 ), O3 (YO3 ), and
PM10 (YPM10 ) in its rows. As previously stated, the trilinear-
ity/quadrilinearity constraints can be applied during the ALS
factor decomposition to the XA12caug factor matrix and al-
low the separate recovery of the day, year and station profiles,
a part of the hour profiles for NO2, O3 and PM10 obtained in
YA12T

raug.
Analogous equations can be described for the NO2, O3,

and PM10 experimental data measured not only in April but
during the whole year. In this case however, the two data
blocks, DY1craug and DY2craug, will have different sizes than
for the only April month data because they are for all the
days of the whole year. Different data sets were missing in
this case. The data for 5 stations with 5475 rows (365 d× 3
years× 5 stations) and 72 columns (24 h for NO2+ 24 h for
O3+ 24 h for PM) is contained in DY1craug, and DY2craug
has the additional data for 2 stations, but only for NO2 and O3
concentrations, with 2190 rows (365 d× 3 years× 2 stations)
and 48 columns (24 h for NO2+ 24 h for O3) (see Fig. S2).

For the whole year data, the bilinear factor decomposition
can be described by the new Eq. (10):

DY12craug = [DY1craug; [DY2craug,NaN(2190,24)]] =

XY12caugYY12T
raug = XY12caug[YNO2 ,YO3 ,YPM10 ], (10)

where DY12craug is now the new incomplete data set built
with the two data blocks DY1craug and DY2craug concate-
nated vertically, and NaN (2190,24) is for the missing PM10
concentrations during 3 years in the missing 2 stations
(see Fig. S2 in the Supplement). The two factor matrices,
XY12caug and YY12T

raug, are now obtained in the bilinear de-
composition of DY12craug. The first factor matrix XY12caug
has the column-wise augmented day× year× station profiles
in its columns and the second factor matrix YY12T

raug has
the hour profiles for NO2, O3, and PM10 in its rows. Simi-
larly, as previously stated, the trilinearity/quadrilinearity con-
straints applied during the ALS factor decomposition to the
XY12caug factor matrix will allow the separate recovery of
the day, year and station profiles, apart from the hour pro-
files for NO2 (YNO2 ), O3 (YO3 ), and PM10 (YPM10 ) obtained
in YY12T

raug. The difference with the results of April data is
that now the column-wise augmented profiles in XY12caug
will have information about the 365 d of the whole year and
not only for the 30 d of April. Figure S3 in the Supplement
is given to graphically illustrate the bilinear model applied to
the incomplete two-block data set.

In the proposed approach, missing data blocks were not
included in the least squares estimations of the factor solu-
tions (XY12caug and [YNO2 , YO3 , YPM10 ] in Eq. 10). On the
one hand, this is an advantage of the proposed method since
linear equations are only solved for the known data blocks;
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but on the other hand, some data regions of the factor solu-
tions (those corresponding to the missing data blocks, NaN
block in Eq. 10) will not give so much overdetermined lin-
ear equations from a least squares point of view as the other
data blocks without missing values. Therefore, this can be
reflected in the reliability of some parts of the factor estima-
tions. This is an important aspect that needs further investi-
gation and some research is pursued in this direction.

2.8 Evaluation of MCR-ALS results

The final evaluation of the MCR-ALS fitting results is per-
formed calculating the explained data variances (R2) using
Eq. (11):

R2
= 100×

1−

∑m
i=1
∑n

j=1

(
dij − d̂ij

)2

∑m
i=1
∑n

j=1d
2
ij

 , (11)

where dij are the experimental predicted O3, NO2, or PM10

concentrations, and d̂ij are the corresponding calculated val-
ues by MCR-ALS using either the bilinear (Eqs. 1–3), tri-
linear (Eqs. 4 and 6), or quadrilinear (Eqs. 5 and 7) models.
Apart from the global fitting with the full model (all com-
ponents), the explained variances can also be calculated in-
dividually for every MCR-ALS component, where now the
calculated values, d̂ij , only take one of the n components of
the model into account. In this way, the relative importance of
the different contributions can be evaluated, as well as their
overlapping degree with the other contributions or compo-
nents.

2.9 Software

The development platform MATLAB 9.10.0 R2021a (The
MathWorks, Inc., Natick, MA, USA) was used for data anal-
ysis and visualization. The new graphical interface MCR-
ALS GUI 2.0 (Malik and Tauler, 2013), freely available as a
toolbox at the web address http://www.mcrals.info/ (last ac-
cess: 6 July 2022), was used for bilinear and trilinear data
sets. Statistics ToolboxTM for MATLAB and PLS Toolbox
8.9.1 (Eigenvector Research Inc., Wenatchee, WA, USA)
were also used in this work. A new specific MCR-ALS com-
mand line code for incomplete multiblock data sets is under
final development and it can be requested from one of the
authors (RT, email:roma.tauler@idaea.csic.es).

3 Results and discussion

Results of MCR-ALS will be shown separately for the anal-
ysis of the month of April and for the analysis of the en-
tire years. In the study of the month of April, the individ-
ual analysis of the three contaminants per separate is ini-
tially performed, using only data from stations with no miss-
ing blocks (i.e., data matrices Dcaug-April-NO2 , Dcaug-April-O3

and Dcaug-April-PM10 , yellow-shaded area of Fig. 1a). Then,
a simultaneous analysis of the three contaminants contain-
ing incomplete data is performed (i.e., data matrix DA12craug,
Fig. S1). In the study of the entire years, again the individ-
ual analysis of the three contaminants per separate is ini-
tially performed, using only data from stations with no miss-
ing blocks (i.e., data matrices Dcaug-allyear-NO2 , Dcaug-allyear-O3
and Dcaug-allyear-PM10 , yellow-shaded area of Fig. 1b). Then,
a simultaneous analysis of the three contaminants contain-
ing incomplete data is performed (i.e., data matrix DY12craug,
Fig. S3). In all cases the selection of the number of compo-
nents and the initial estimates for MCR-ALS were performed
as described in Sect. 2.5. A summary of the explained vari-
ances of the MCR-ALS analyses for the different data sets
with non-negativity and either bilinear, trilinear or quadrilin-
ear modeling, and with a different number of components is
given in Table 1.

The MCR-ALS bilinear analysis of April data in the
Dcaug-April-NO2 , Dcaug-April-O3 and Dcaug-April-PM10 data ma-
trices with non-negativity constraints explained respectively
94.40 %, 98.4 % and 91.8 % of the total variance when four,
three, and three components were considered (Table 1).
These values indicate the higher complexity of the NO2 data
compared to O3 data, as will be shown also below. When
the quadrilinearity constraint was applied, these values de-
creased to 78.4 %, 92.9 % and 78. 4 % respectively, recon-
firming the less complex and more regular changes of O3
concentrations in the 3 years at the different monitoring sta-
tions. Variances explained by the individual components are
given in the figures shown below. The amount of variance
overlap (also given in Table 1) in every case can be obtained
by subtracting the sum of the individual variances from the
variance obtained with all the components simultaneously.
Again, this difference is larger in the case of NO2. In Ta-
ble 1, the variances obtained when the trilinearity constraint
was applied, instead of the quadrilinearity constraint, are also
given, with similar results to those obtained by both multi-
linear models. In the case of MCR-ALS for all-year data of
the Dcaug-allyear-NO2 , Dcaug-allyear-O3 and Dcaug-allyear-PM10 data
matrices, rather similar results to those from April were ob-
tained in terms of explained variances for all three types of
models (see Table 1), again reflecting the higher complexity
of the NO2 data over the years and stations compared to O3
data, and the intermediate behavior of PM10 data, although
the latter is more similar to the NO2 data.

Possible correlations between NO2, O3, and PM10 data
sets during the month of April of 2018, 2019, and 2020
as well as in the eight stations were investigated using
the incomplete data arrangement described in Sect. 2.7 and
Fig. S1. The MCR-ALS analysis of DA12craug with five com-
ponents and with only negativity constraints gave a total
explained variance of 96.2 % (Table 1). When the quadri-
linearity constraint was applied, the total explained vari-
ance decreased to 90.7 % (91.2 % for the trilinear MCR-ALS
model). Such a decrease of only 5 % between bilinear and
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Table 1. MCR-ALS decomposition and explained variances for the different models.

Explained variances: April 2018–2019–2020

MCR-ALS
bilineala

MCR-ALS
quadrilinealb

MCR-ALS
trilinealc

Dd
caug-April-NO2

(4 comp)
All 94.4 %
Sum 125.2 %

All 78.4 %
Sum 109.8 %

All 79.2 %
Sum 113.5 %

Dd
caug-April-O3

(3 comp)
All 98.4 %
Sum 143.5 %

All 92.9 %
Sum 118.3 %

All 93.5 %
Sum 126.4 %

Dd
caug-April-PM10

(3 comp)
All 91.8 %
Sum 126.5 %

All 78.4 %
Sum = 112.9

All 79.0 %
Sum= 113.0 %

DA12d
craug

(5 comp)
All 96.2 %
Sum 135.5 %

All 90.7 %
Sum 111.3 %

All 91.2 %
Sum 114.4

Explained variances: All year 2018–2019–2020

Dd
caug-allyear-NO2

(4 comp)
All 95.1.0 %
Sum 131.0 %

All 80.3 %
Sum 116.2 %

All 80.5 %
Sum 115.7 %

Dd
caug-allyear-O3

(3 comp)
All 97.5 %
Sum 132.2 %

All 90.1 %
Sum 130.2 %

All 90.6 %
Sum 129.2 %

Dd
caug-allyear-PM3

(3 comp)
All 88.1 %
Sum 116.6 %

All 72.4 %
Sum 105.0 %

All 72.6 %
Sum 103.2 %

DY12d
craug

(5 comp)
All 94.7 %
Sum 126.8 %

All 86.4 %
Sum 125.8 %

All 86.8 %
Sum 126.6 %

a MCR-ALS for raw data with non-negativity constraint.
b MCR-ALS for raw data with non-negativity and quadrilinearity constraint.
c MCR-ALS for raw data with non-negativity and trilinearity constraint.
d Augmented data matrices and number of components (see Fig. 1, Eqs. 3, 9 and 10, and explanation in
“Data sets arrangement” section).

quadrilinear MCR-ALS models indicated a good quadrilin-
ear behavior of the whole system in April. The explained
variances of each component individually are given below
with the corresponding figures of the resolved profiles. The
case of the simultaneous study of NO2, O3, and PM10 profiles
along all 3 years (i.e., 2018, 2019 and 2020) in the seven sta-
tions using the incomplete data arrangement is described in
Sect. 2.7 and Fig. S3. Results using five components also in-
dicated a rather good quadrilinear behavior of the system. A
more detailed description of the profiles, describing the con-
centration changes of the three pollutants and of the behavior
of the whole systems formed by all of them in the different
stations and during the 3 years, separately for April and for
the entire year, is given below.

3.1 Study of the month of April

3.1.1 NO2 study (Dcaug-April-NO2
data matrix)

In Fig. 4, from left to right, the profiles of the different modes
of the four components are shown: X – day (blue), Z – year
(black), W – station (green), and Y – hours (red). Component

profiles in the four modes obtained by MCR-ALS when us-
ing non-negativity and quadrilinearity constraints are shown
in Fig. 4.

The NO2 hour profile of the first component (C1) showed a
narrow maximum between 09:00–11:00 LT (Spain, through-
out) coincident with the rush-hour traffic and due to fuel
combustion by vehicles. In the second component (C2) this
hour profile presented a much wider peak during daily hours
(10:00–20:00 LT), again potentially attributed to the com-
bined effects of traffic emissions and O3 formation (see be-
low). The third component (C3) reached an hourly maximum
in the late evening, approximately at 22:00 LT, whereas the
fourth component (C4) showed a maximum between 00:00
and 05:00 LT, describing the NO2 nighttime behavior. As
observed in the year profiles (Z-mode), for all the compo-
nents, NO2 contributions showed a significant decrease in
2019 and even higher in 2020 with respect to 2018; the lat-
ter possibly attributed to the COVID-19 curfew and mobil-
ity restrictions. Moreover, as observed in the station profiles
(W-mode), such a depletion was consequently more noto-
rious in the three urban stations (Vall d’Hebron (1), Gra-
nollers (2) and Gràcia (6)), which were the stations with
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Figure 4. MCR-ALS analysis of NO2 concentrations in the column-wise super-augmented data matrix Dcaug-April-NO2
(Eq. 3) using non-

negativity and quadrilinearity constraints. Profiles of the four different data modes are given in different colors: (X) in blue – days of April;
(Z) in black – year 1= 2018, 2= 2019 and 3= 2020; (W) in green – stations 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 5:
Bellver, 6: Gràcia, 7: Begur, 8: Observatori Fabra; and (Y) in red - hours of the day.

higher NO2 concentration levels. Considering that the prin-
cipal emission source of NO2 is traffic, it is reasonable that
the four MCR-ALS resolved components evidenced a de-
cline in the year-mode, corresponding to a diminution in
April 2020 (under the strictest lockdown), compared to 2019
(under no pandemic) and 2018 (under no pandemic and no
other traffic restrictions in Barcelona, such as the low emis-
sion zones (LEZs; LEZ – Àrea Metropolitana de Barcelona,
2020). Moreover, as stated in a previous study of the au-
thors (Gorrochategui et al., 2021), in April 2020 a historical
record of rainfall was registered in the control site of Obser-
vatory Fabra (8). Therefore, the highly rainy conditions of
April 2020 favored the cleansing of the atmosphere, includ-
ing NO2 gases. Finally, the day profiles (X-mode) for the dif-
ferent components did not show any particular pattern for the
different days of the month.

3.1.2 O3 study (Dcaug-April-O3
data matrix)

Profiles obtained by MCR-ALS for the three components us-
ing non-negativity and quadrilinearity constraints are shown

in Fig. 5. The MCR-ALS hourly (Y-mode) resolved profiles
of the first component (C1) showed a maximum between
14:00–22:00 LT, due to the cumulative solar radiation. There
was practically no difference in this component among sta-
tions, years or the days of the month. The MCR-ALS hourly
resolved profile of the second component (C2) showed a dif-
ferent O3 profile, corresponding to the concentration at night.
As observed in the W-mode, O3 concentration at night was
higher in the rural station of Begur (7) and in the control site
Observatori Fabra (8). The latter is emplaced in Collserola
mountain and only receives some impact from Barcelona’s
city. The higher nightly O3 concentration observed in these
stations is due to the fact that in inner rural areas, as well
as in the control site, with low anthropogenic activities, the
titration effect (i.e., O3 destruction under no solar radiation)
produced by NO2 emissions is generally not observed, result-
ing in higher average O3 concentrations than in urban areas.
Finally, the third component (C3) also showed a maximum
between 16:00–21:00 LT, similar to the behavior described
by C1, but narrower and with a pattern among stations dif-
ferent to C1.
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Figure 5. MCR-ALS analysis of O3 concentrations in the column-wise super-augmented data matrix Dcaug-April-O3
(Eq. 3) using non-

negativity and quadrilinearity constraints. Profiles of the four different data modes are given in different colors: (X) in blue – days of April;
(Z) in black – year 1= 2018, 2= 2019 and 3= 2020; (W) in green – stations 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 5:
Bellver, 6: Gràcia, 7: Begur, 8: Observatori Fabra; and (Y) in red – hours of the day.

3.1.3 PM10 study (Dcaug-April-PM10 data matrix)

Profiles obtained by MCR-ALS for these three compo-
nents using non-negativity and quadrilinearity constraints are
shown in Fig. 6. The MCR-ALS hourly resolved profiles
in the Y-mode for the three resolved components indicated
a wide maximum between 00:00–15:00 LT (C1), between
15:00–22:00 LT (C2), and between 10:00–20:00 LT (C3). As
observed in the year profile (Z-mode), the PM10 contribution
decreased in 2019 but most significantly in 2020, probably
due to the COVID-19 lockdown period. This same behav-
ior was observed for NO2 (Fig. 4), and it is due to the fact
that among the PM10 sources, traffic should also be included.
Moreover, such a depletion was more evident in the urban
stations profile (W-mode) of Vall d’Hebron (1), Granollers
(2), and Gràcia (6).

3.1.4 NO2, O3 and PM10 simultaneous study
(DA12craug data matrix)

The MCR-ALS resolved profiles of the DA12craug data ma-
trices (see “Materials and methods” Sect. 2.7) are given in
Fig. 7. Results obtained for the hour profiles (Y-mode, in
red) of the three pollutants, NO2, O3 and PM10, are over-
laid in the same plot with the same time axis. In this way,
possible correlations among the different pollutants can be

better explored in these plots. Profiles of components 1 (C1)
and 2 (C2) mostly described the O3 pollution: C1 hour pro-
file showed an O3 daytime profile with a wide maximum
between 12:00–22:00 LT and C2 described the O3 night-
time profile, again with a large maximum between 00:00–
10:00 LT. Component 3 (C3) described both PM10 and NO2
correlated pollution sources, with PM10 having the highest
contribution. The correlation between NO2 and PM10 can be
due to the common sources of these contaminants (i.e., traf-
fic and industry). Component 4 (C4) described the nighttime
profile of NO2 and lastly, component 5 (C5) showed the daily
NO2 profile with two maxima, one in the morning (10:00–
15:00 LT) and another in the late evening (20:00–22:00 LT),
probably attributed to the traffic. From the year profiles in Z-
mode, the evolution of the pollution in the month of April
along 2018, 2019 and 2020 could be elucidated. Interest-
ingly, for C1 and C2 (mostly describing O3 pollution), the
variation remained rather constant for the month of April
during these 3 years. Moreover, the variation among stations
in the profiles (W-mode) for the first two components was
very little. Only in C2, the stations of Begur (7) and Ob-
servatori Fabra (8) showed a higher O3 contribution, prob-
ably due to the lower titration effect produced in rural ar-
eas and in the Observatori Fabra control site (8), as previ-
ously observed in the individual MCR-ALS analysis of O3
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Figure 6. MCR-ALS analysis of PM10 concentrations in the column-wise super-augmented data matrix Dcaug-April-PM10
(Eq. 3) using non-

negativity and quadrilinearity constraints. Profiles of the four different data modes are given in different colors: (X) in blue – days of April;
(Z) in black – year 1= 2018, 2= 2019 and 3= 2020; (W) in green – stations 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 5:
Bellver, 6: Gràcia; and (Y) in red – hours of the day.

data. In contrast, the variation among stations and among
years was more significant for the rest of the components
(C3–C5), mainly describing NO2 and PM10 contamination.
As observed in Z-modes, contamination by NO2 and PM10
was lower in 2019 and even lower in 2020. Considering that
the most important source of NO2 is traffic, the decrease in
2019 can be explained by the implementation of LEZs (LEZ
– Àrea Metropolitana de Barcelona, 2020) in Barcelona, as
a traffic restriction policy, first implemented in 2017 and fi-
nally put into permanent effect on 1 January 2020. However,
the decrease observed in 2020 might be mostly associated
with the COVID-19 lockdown restrictions, being April 2020,
the time when the strictest confinement was declared in Cat-
alonia (Gobierno de España, 2020a). Regarding the varia-
tion among stations, C3–C5 showed a higher NO2 and PM10
contribution in three urban stations (Vall d’Hebron (1), Gra-
nollers (2), and Gràcia (6)), which is in accordance with the
higher traffic density registered on these sites. The results ob-
served for C3–C5 regarding NO2 and PM10 pollution were in
concordance with those of their respective individual models,
evidencing the good performance of the MCR-ALS simulta-
neous analysis of the incomplete multiblock data sets and the
confirmation of the reliability of the proposed approach.

3.2 Study of the entire years

3.2.1 NO2 study (Dcaug-allyear-NO2
data matrix)

Profiles obtained by MCR-ALS using non-negativity and
quadrilinearity constraints are shown in Fig. S4. The hour
profiles of the four resolved components in the analysis of
the entire years were similar to those obtained in the analy-
sis of the month of April: C1 hour profile in April’s model
was equivalent to C3 hour profile in all years’ model, and C2
and C4 hour profiles were equivalent in both models. Also,
the diminution observed in Z-mode profile in 2019, and to a
greater extent in 2020, in the month of April was also pro-
duced when analyzing all the years, but to a lesser extent.
This might be due to the fact that the traffic restriction poli-
cies were mostly implemented during the strictest confine-
ment (from 14 March to 4 May in Catalonia) and were grad-
ually removed in the de-escalation phases (Gorrochategui et
al., 2021). Also, the extraordinary rainy conditions registered
in April 2020 (Gorrochategui et al., 2021) were not regis-
tered for the rest of the months, making the NO2 depletion
less noticeable in the analysis of the entire year. Regarding
stations, the ones showing the higher contribution were the
same three urban stations (i.e., Vall d’Hebron (1), Granollers
(2) and Gràcia (6)) observed in the study of the month of
April. In the day-of-year X-mode, some seasonal tendencies
can be observed in C1 and C2, with their lower intensities
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in the middle of the profile corresponding to the warmer sea-
sons with higher sunlight radiation and higher NO2 depletion
due to the photochemical reaction to form O3. The year pro-
files in C3 and C4 did not show major differences over the
years.

3.2.2 O3 study (Dcaug-allyear-O3
data matrix)

Only few differences between the analysis of the entire years
versus that of the month of April were observed in the inter-
year Z-mode (Fig. S5). Component 2 in all years’ model, cor-
responding to a late evening peak of O3, suffered a slightly
significant increase in 2019 and 2020 with respect to 2018,
which was not observed in the analysis of the month of April.
Such increments can be explained by the reduction of the
titration effect, which was a little higher when considering
the entire years. The diminution of C3 in 2019 and in 2020
was also more evident when analyzing the entire years. In
this case, this component was associated with the daily max-
imum of O3, coincident with the sunlight hours and summer
and spring seasons, when the photochemical reactions with
NOx take place to form O3. The reason why the changes in
O3 were more evident when considering the all-year analysis
instead of just the month of April, as opposed to what hap-
pened with NO2, might be due to the fact that despite the traf-
fic restrictions being gradually removed in the de-escalation
phases, the curfew policies remained, causing a potential cu-
mulative suppression of the titration effect.

3.2.3 PM10 study (Dcaug-allyear-PM10 data matrix)

As with NO2 and O3, the profiles of the components in the
MCR-ALS analysis of PM10 of the all years’ model were
similar to those obtained in the analysis of the month of
April (Fig. S6). The hour profiles of C1 and C3 in April’s
model were equivalent to that of C3 and C1 in all years’
model, respectively, and C2 described the same PM10 pro-
file in both models. Also, the diminution observed in 2019
and to a greater extent in 2020 in the month of April was
also produced when analyzing all the years, but to a lesser
extent, as stated for NO2. Moreover, the meteorological sta-
tions with higher contribution in the model were the same as
in the model of April, except for Manlleu (3), which showed
a significant contribution in C2 of this model for the first time
when the entire years’ PM10 data were investigated.

3.2.4 NO2, O3 and PM10 simultaneous study
(DY12craug data matrix)

The MCR-ALS resolved profiles of DY12craug are given in
Fig. 8. As observed in the Y-mode profiles, C1 and C2 mostly
described O3 pollution: C1 showed an O3 profile with lit-
tle daily variation whereas C2 described a wide O3 maxi-
mum between 14:00–20:00 LT. Moreover, the seasonal trend
of C2 (X-mode) showed a wide maximum, coincident with

the solar radiation registered in summer and spring months.
The C2 was higher in the urban stations and lower in the
rural station of Begur (7), which could indicate that such
O3 resulted from the photochemical reaction among NOx in
the presence of sunlight in highly transited areas. The night-
time profile of O3 was clearly showed by C3, with a wide
maxim between 17:00–00:00 LT. Interestingly, C3 was the
only component to clearly show an increase in 2019 and
2020 with respect to 2018. As explained in the individual
model, such an increase is due to the diminution of the titra-
tion effect. The NO2 profile is described in C4, with a first
maximum between 09:00–12:00 LT and a second but lower
maximum in the late evening (20:00–00:00 LT). Component
5 described the simultaneous contribution of NO2 and PM10,
with a higher contribution of PM10, also having the same
two-maxima profile observed in C5 for NO2. Interestingly,
both C5 and C6 presented maximums in the urban stations
(Vall d’Hebron (1), Granollers (2), and Gràcia (6)), and a de-
crease in 2020, due to the traffic diminution registered during
the COVID-19 lockdown period.

4 Conclusions

The MCR-ALS method with quadrilinearity constraints has
demonstrated to be a powerful tool to resolve the principal
contamination profiles of four-way environmental data sets,
even when containing missing data blocks. The main advan-
tage provided by the use of quadrilinearity constraints is the
better and easier interpretability of the profiles, which appear
more condensed and concise.

In this study, resolved MCR profiles using quadrilinear-
ity constraints have been shown to adequately describe the
different patterns and evolution of NO2, O3, and PM10 con-
tamination during the different hours of the day, during the
different days (hourly and daily variations) for the two peri-
ods of time evaluated: the month of April versus the entire
year for 2018, 2019 and 2020. For each period of time stud-
ied, the individual models of the contaminants together with
their simultaneous analysis have been performed.

The simultaneous analysis of the incomplete multiblock
data sets allowed the exploration of the potential correla-
tions among the three contaminants, which was easily inter-
pretable with the representation of overlapped hour profiles
of NO2, O3 and PM10 . Interestingly, both in the study of the
month of April and the study of the entire years, the simulta-
neous analysis of the three contaminants evidenced a correla-
tion between NO2 and PM10, due to their common pollution
sources (i.e., traffic and industry). Moreover, the profiles of
these two contaminants showed an inter-year decrease, due
to the introduction of LEZs (LEZ – Àrea Metropolitana de
Barcelona, 2020) in 2019 and due to the COVID-19 lock-
down restrictions as well as the high amount of rainfall reg-
istered in April 2020 (Gobierno de España, 2020b). Such a
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Figure 7. MCR-ALS analysis of NO2, O3 and PM10 concentrations in the column-wise super-augmented incomplete April data matrix
DA12craug (see Eq. 9) using non-negativity and quadrilinearity constraints. Profiles of the four different data modes are given in different
colors: (X) in blue – days of the year; (Z) in black – year 1= 2018, 2= 2019 and 3= 2020; (W) in green – stations 1: Vall d’Hebron, 2:
Granollers, 3: Manlleu, 4: Juneda, 5: Bellver, 6: Gràcia, 7: Begur, 8: Observatori Fabra; and (Y) in red – hours of the day.

Figure 8. MCR-ALS results of the simultaneous analysis of NO2, O3 and PM10 for the entire years (incomplete super-augmented data
matrix DY12craug) using non-negativity and quadrilinearity constraints. Profiles of the four different data modes are given in different colors:
(X) in blue – days of the month April; (Z) in black – year; (W) in green – stations; and (Y) in red – hours. In the Y-mode, the hour profiles
of the three contaminants are overlapped. The different stations are indicated as 1: Vall d’Hebron, 2: Granollers, 3: Manlleu, 4: Juneda, 5:
Bellver, 6: Gràcia, 7: Begur.
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decrease was consistently higher in the three most transited
urban stations studied: Vall d’Hebron, Granollers and Gràcia.

On the other hand, MCR-ALS O3 profiles, both in indi-
vidual and simultaneous models, presented an opposite inter-
year trend, especially when analyzing the entire years. Glob-
ally, O3 profiles showed an increase in 2019 and in 2020 with
respect to 2018, which can be attributed to the diminution of
the titration effect linked to the lockdown and curfew restric-
tions. Such an effect was more evident in inner rural areas
and in the control site (i.e., Begur and Observatori Fabra),
where the amount of NOx necessary to react with O3 and to
produce its suppression is lower compared to urban areas due
to the smaller traffic density and industrial activity.

Overall, this work contributes to the better knowledge
of the evolution of NO2, O3 and PM10 contamination in
eight rural and urban areas of Catalonia during the 2 years
before the COVID-19 (i.e., 2018 and 2019) and the year
of the pandemic itself (i.e., 2020). The work also high-
lights (a) the capacity of MCR-ALS with quadrilinearity con-
straints to perform simultaneous analysis of different con-
tamination sources to study potential correlations among
them and (b) the good performance of this approach in the
analysis of complex four-way environmental data sets con-
taining missing data blocks,providing concise and easily in-
terpretable results.
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