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Abstract. In this study, we employ a regional inverse modelling approach to estimate monthly carbon fluxes
over the Australian continent for 2015–2019 using the assimilation of the total column-averaged mole frac-
tions of carbon dioxide from the Orbiting Carbon Observatory-2 (OCO-2, version 9) satellite. Subsequently,
we study the carbon cycle variations and relate their fluctuations to anomalies in vegetation productivity and
climate drivers. Our 5-year regional carbon flux inversion suggests that Australia was a carbon sink aver-
aging −0.46± 0.08 PgC yr−1 (excluding fossil fuel emissions), largely influenced by a strong carbon uptake
(−1.04 PgC yr−1) recorded in 2016. Australia’s semi-arid ecosystems, such as sparsely vegetated regions (in
central Australia) and savanna (in northern Australia), were the main contributors to the carbon uptake in 2016.
These regions showed relatively high vegetation productivity, high rainfall, and low temperature in 2016. In
contrast to the large carbon sink found in 2016, the large carbon outgassing recorded in 2019 coincides with an
unprecedented rainfall deficit and higher-than-average temperatures across Australia. Comparison of the poste-
rior column-averaged CO2 concentration with Total Carbon Column Observing Network (TCCON) stations and
in situ measurements offers limited insight into the fluxes assimilated with OCO-2. However, the lack of these
monitoring stations across Australia, mainly over ecosystems such as savanna and areas with sparse vegetation,
impedes us from providing strong conclusions. To a certain extent, we found that the flux anomalies across
Australia are consistent with the ensemble means of the OCO-2 Model Intercomparison Project (OCO-2 MIP)
and FLUXCOM (2015–2018), which estimate an anomalous carbon sink for Australia in 2016 of −1.09 and
−0.42 PgC yr−1 respectively. More accurate estimates of OCO-2 retrievals, with the addition of ocean glint data
into our system, and a better understanding of the error in the atmospheric transport modelling will yield further
insights into the difference in the magnitude of our carbon flux estimates.
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1 Introduction

On average, each year, the global terrestrial biosphere ab-
sorbs about one-quarter of the total global fossil fuel CO2
emissions that human activities add to the atmosphere
(Friedlingstein et al., 2020). Carbon uptake by the terrestrial
biosphere plays an important role in the Earth’s carbon cy-
cle and in future climate projections, as it can slow down
the rise in the atmospheric CO2 concentrations. Due to the
uncertainties in quantifying carbon fluxes using terrestrial
biosphere models (Sitch et al., 2015), scientists are unsure
whether the growth rate of emissions in the atmosphere is
going to increase or decrease in the future. In particular, the
contributions of semi-arid regional ecosystems, such as those
in Australia, are uncertain and are subject to high variabil-
ity (Trudinger et al., 2016). Identifying and understanding
the main drivers behind carbon flux variability in semi-arid
ecosystems are crucial processes, not only for understanding
the global carbon cycle but also for predicting future trends
in atmospheric CO2 concentration and, consequently, the fu-
ture of climate change.

Australia’s contribution to interannual global carbon cy-
cle variability has been a topic of interest to the carbon cy-
cle research community due to an unusually large land car-
bon sink anomaly of about −0.70 PgC yr−1 (relative to the
2003–2012 value) recorded in 2011, which alone accounted
for 57 % of the global terrestrial carbon uptake anomaly in
this period. Poulter et al. (2014) suggested that the reason
for this large carbon uptake in Australia was an increase in
vegetation cover as the result of increased precipitation in
2011, which was one of the wettest years on record for Aus-
tralia. Another study performed by Trudinger et al. (2016)
found similar results to Poulter et al. (2014); they estimated
a carbon uptake anomaly of −0.40 to −0.61 PgC yr−1 (rela-
tive to the 1982–2013 value). Global atmospheric inversions
based on atmospheric CO2 concentrations also support this
unexpected large sink over Australia. A study carried out by
Detmers et al. (2015), based on the assimilation of Green-
house Gases Observing Satellite (GOSAT) retrievals, found
that the carbon sink anomaly in Australia in 2011 was about
−0.23 PgC yr−1 (relative to the June 2009–June 2013 pe-
riod). All of these studies agree that the main driver behind
the carbon sink anomaly in 2011 was an increase in the gross
primary productivity (GPP) which arose from an increase in
rainfall that coincided with a La Niña event that occurred
from 2010 to 2011. Haverd et al. (2016) suggested that the
carbon sink anomaly recorded in 2011 was 90 % attributable
to higher-than-expected carbon uptake by semi-arid ecosys-
tems, such as savanna and sparsely vegetated regions, which
was mostly driven by a positive response from these ecore-
gions to precipitation anomalies.

Ma et al. (2016) suggested that the size of the 2011 carbon
sink anomaly in Australia was abruptly reduced in 2012 and

then nearly eliminated in 2013 (0.08 PgC yr−1) due to a de-
crease in rainfall across Australia. In this study, the authors
show that productivity in Australia’s semi-arid ecosystems
is strongly influenced by drivers such as rainfall and tem-
perature. A recent continental-scale inverse modelling study,
utilizing Orbiting Carbon Observatory-2 (OCO-2) satellite
data, suggests that Australia was a −0.41± 0.08 PgC yr−1

sink of CO2 for 2015 (Villalobos et al., 2021). In this study,
the authors indicate that the stronger carbon sink estimated
in 2015 was primarily driven by an increase in productivity
over savanna and sparsely vegetated regions. Moreover, the
authors propose that periods with a stronger carbon uptake
were likely related to increased rainfall in Australia’s semi-
arid ecosystems.

The current study builds upon the work of Villalobos et al.
(2021), who only performed an inversion for 2015 and fo-
cused on the total mean carbon flux for that period. In this
work, we assimilate the total column-averaged retrieval from
NASA’s OCO-2 to study the interannual variability in the
Australia carbon fluxes for the 2015–2019 period. An inter-
esting question that arises is whether the large carbon sink
estimated in 2015 over semi-arid ecosystems will follow the
same patterns after this year or whether such patterns will be-
come stronger or weaker due to changes in precipitation and
temperature.

The paper is organized as follows: Sect. 2 describes the
methodology and data that we used to perform the inversion,
including a description of the climate drivers and auxiliary
data. Section 3 presents the results of our 5-year inversion, in-
cluding the analysis of the inversion performance, the study
of the prior and posterior Australian carbon fluxes, and an
assessment of the GPP carbon flux estimate derived from the
CABLE model. In this section, we also assess the robust-
ness of the inversion (against independent data) and provide
an analysis of the interannual variability in rainfall, temper-
ature, and the enhanced vegetation index (EVI) over semi-
arid ecosystems across Australia. Section 4 discusses how
well our assimilated OCO-2 carbon fluxes align with other
global products – OCO-2 MIP (OCO-2 Model Intercompar-
ison Project) global inversions and FLUXCOM – and gives
some directions for future work. Finally, in Sect. 3, we sum-
marize the results of this study.

2 Method and data

We follow the same four-dimensional variational data assim-
ilation approach used to estimate the Australia carbon fluxes
described in Villalobos et al. (2021). In this section, we will
give a brief description of the system and the data used in
the inversion. Further details can be found in Villalobos et al.
(2020, 2021).
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2.1 Inversion set-up

Our regional inversion system optimizes monthly mean grid-
based surface carbon emissions x using a four-dimensional
variational data assimilation method that was configured to
utilize the Community Multiscale Air Quality (CMAQ, ver-
sion 5.3) model and its adjoint (version 4.5.1; Hakami et al.,
2007). Each year of the 5-year period was run independently,
with a spin-up of 1 month for each year. Our system opti-
mizes CO2 surface fluxes by finding the minimum of the cost
function J (x) shown in Eq. (1). Notation in this study follows
Rayner et al. (2019).

J (x)=
1
2

[(
x− xb

)T
B−1

(
x− xb

)]
+

1
2

[
(H(x)− y)TR−1 (H(x)− y)

]
(1)

This cost function measures the mismatch between the
CMAQ forward model simulation H and OCO-2 satellite ob-
servations y as well as the deviation of the control vector x

from its background (also termed prior) estimate xb. In our
case, the control vector x (the vector of unknowns) consists
not only of the gridded CO2 surface fluxes but also incorpo-
rates initial and boundary conditions (BCs). These two latter
variables were incorporated into the control vector to reduce
any potential biases related to the boundary inflow that could
affect our system (details of how we treat the boundary and
initial conditions in our system can be found in Sect. 2.2 in
Villalobos et al., 2020, 2021), and a brief description of this
treatment is found in Sect. 2.2. R represents the observational
error covariance matrix, which was defined as a diagonal ma-
trix (a full description of this covariance matrix is found in
Sect. 2.3 in Villalobos et al., 2020), and a brief explanation
of how it was constructed is found in Sect. 2.4. B is the as-
sociated error covariance matrix of xb, boundary and initial
concentrations, and includes off-diagonal terms. In these off-
diagonal values, we only include spatial and non-temporal
correlations of the prior fluxes (details of the structure of the
prior error covariance matrix are found in Sect. 2.4 in Villalo-
bos et al., 2020), and a summary of its description is found
in Sect. 2.3.

The minimization procedure involves iterative calculations
of J (x) and its gradient ∇xJ (x), using the CMAQ forward
model H and its adjoint HT , as shown in Eq. (2):

∇xJ = B−1
(
x− xb

)
+HT

(
R−1 [H(x)− y

])
. (2)

The method that our inversion system uses to minimize the
J (x) is the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS-B) algorithm (Byrd et al., 1995), imple-
mented in the “SciPy” Python module. The L-BFGS-B al-
gorithm iteratively adjusts x until J (x) reaches a minimum.
We reached a reasonable convergence for each year run af-
ter iteration 25. The ratio between the cost function and the
number of observations was close to the theoretical expected

Figure 1. The horizontal WRF-CMAQ modelling domain (shown
using lighter colours) based on the Lambert conformal projection.

value (see details in Sect. 3.1). Posterior uncertainties in this
study were assumed to be the same as Villalobos et al. (2020,
Sect. 2.4); however, we increase their value by a factor of 1.2
to satisfy the theoretical assumption in the variational opti-
mization (p.211, Tarantola, 1987).

2.2 Initial and boundary conditions

To avoid the effect of initial conditions (ICs) and boundary
conditions (BCs) on our OCO-2 assimilated carbon fluxes,
we optimized them within the control vector x. Each lateral
boundary (south, east, north, and west) of our regional WRF-
CMAQ (Weather Research and Forecasting – Community
Multiscale Air Quality) model domain was split into two re-
gions. Lateral BCs in the lower layer of the atmosphere were
taken from σ = 1 to σ = 0.96, corresponding (on average) to
a pressure of 972.5 hPa, whereas the upper boundary layer
was solved from 972.5 up to 50 hPa. Each lateral BC was
solved at a monthly scale. Boundary and initial concentra-
tions were taken from CAMS (Copernicus Atmosphere Mon-
itoring Service) global CO2 atmospheric inversion product
data (v19r1) (Frédéric Chevallier, personal communication,
2019). BC uncertainties were assumed to be the standard de-
viation (1σ uncertainty) in the perimeter of each region of
the boundaries, and IC uncertainties were set at 1 % (approx-
imately 4 ppm). A diagram of the WRF-CMAQ domain is
illustrated in Fig. 1.

2.3 Transport model and prior fluxes

The CMAQ model was used to simulate atmospheric trans-
port and dispersion. These simulations, which were run of-
fline from the meteorological model, were conducted without
atmospheric chemistry. The meteorological data used as in-
put for the CMAQ model were taken from the WRF model,
version 4.1.1 (Skamarock et al., 2008). We run the CMAQ
model at an hourly resolution at a grid cell scale of 81 km.
The model has 32 vertical levels using the terrain-following
σ vertical coordinate system. Details of the parameteriza-
tions are listed in Villalobos et al. (2021, Sect. 2.4, Table 1).

https://doi.org/10.5194/acp-22-8897-2022 Atmos. Chem. Phys., 22, 8897–8934, 2022
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We run WRF at a spatial resolution of 81 km on a single do-
main (i.e. non-nested). WRF initial conditions were taken
from the ERA-Interim global atmospheric reanalysis (Dee
et al., 2011), which has a resolution of approximately 80 km
on 60 vertical levels from the surface up to 0.1 hPa. Sea sur-
face temperatures were obtained from the National Centers
for Environmental Prediction/Marine Modeling and Analy-
sis Branch (NCEP/MMAB). The WRF model was run with
a spin-up period of 12 h.

The prior flux estimates used in our inversion consisted
of four datasets: land–biosphere fluxes, fossil fuel, fires,
and ocean fluxes. Biosphere carbon fluxes were simulated
by the Community Atmosphere Biosphere Land Exchange
(CABLE) model set up in the BIOS3 modelling environ-
ment, a fine resolution offline environment built on capabil-
ity developed for the Australian Water Availability Project
(AWAP) (King et al., 2009), hereafter referred to as CA-
BLE BIOS3 (Haverd et al., 2018). The CABLE land surface
model consists of a biophysical core: a biogeochemical mod-
ule including a nitrogen and phosphorous cycle (Wang et al.,
2010), the “Populations-Order-Physiology” (POP) module
for woody demography and disturbance-mediated landscape
heterogeneity (Haverd et al., 2013b), and a module for land
use and land management (POPLUC; Haverd et al., 2018).
However, the functionality of POPLUC was not considered
in BIOS runs, and the land use change remained static at the
year 2000. CABLE can be run at global or regional scales.
For our regional study case, CABLE was run at a regional
scale (resolution 0.25◦), and it was forced with Australian
regional drivers and observations (BIOS3 set-up). Biosphere
fluxes from CABLE (roughly net biome productivity – NBP)
include gross primary productivity (GPP) and net ecosystem
respiration (autotrophic and heterotrophic respiration); how-
ever, they do not include carbon losses from fire disturbances,
harvest, erosion, and export of carbon in river flow. We used
the averages of 3-hourly NBP estimates as input for CMAQ
(further details of how we constructed NBP can be found in
Sect. 2.3 in Villalobos et al., 2021). The prior error covari-
ance matrix of the terrestrial biosphere flux from CABLE
was assumed to be an approximation of the net primary pro-
ductivity (NPP), following the approach of Chevallier et al.
(2010), with a ceiling of 3 gC m−2 d−1. We assumed that
these uncertainties were spatially correlated with length scale
of 500 km over land, following Basu et al. (2013). Within our
inversion system, no temporal correlations were considered.

Fossil fuel emissions used here were based on two dif-
ferent inventory datasets: the Open-source Data Inventory
for Anthropogenic CO2 (ODIAC, version 2019; Oda et al.,
2018) and the Emissions Database for Global Atmospheric
Research (EDGAR; Crippa et al., 2020). We added some
missing sectors from the EDGAR inventory to ODIAC (such
as aviation climbing and descent, aviation cruise, and avia-
tion landing and take-off datasets). ODIAC is a global grid-
ded product distributed at a 0.1◦× 0.1◦ spatial resolution
over land that uses power plant profiles (emission intensity

and geographical location) and satellite-observed night-time
lights. We used ODIAC monthly fluxes and incorporated a
diurnal scale factor to estimate diurnal CO2 emission vari-
ability (Nassar et al., 2013). Given that the ODIAC prod-
uct only covers the period from 2015 to 2018, we repeated
the data from 2018 in 2019 but increased the value in each
grid cell by 1.7 %, which represents the mean annual growth
rate of these emissions from 1970 to 2018. EDGAR is also
gridded at 0.1◦× 0.1◦ with a monthly temporal resolution.
There is no EDGAR gridded product for 2016–2019, so we
repeated the 2015 product to cover the other years. We in-
creased EDGAR aviation emissions by 2.5 %, which repre-
sents the mean growth rate in this emissions sector from 2016
to 2019. Fossil fuel prior uncertainties were assigned to be
0.44 times the value of the monthly fossil fuel estimates de-
scribed above (see details in Sect. 2.3 in Villalobos et al.,
2021). Errors in fossil fuel emissions were assumed to be un-
correlated.

Ocean flux estimates were selected from CAMS global
data (v19r1) (Frédéric Chevallier, personal communica-
tion, 2019). Ocean prior uncertainties were assumed to be
0.2 gC m−2 d−1 and uniform across the ocean, as in Cheval-
lier et al. (2010). Similar to correlations for biosphere prior
uncertainties, uncertainties in ocean fluxes were assumed to
be correlated in space with a length scale of 1000 km. Fire
prior emissions were selected from the Global Fire Emissions
Database (GFED, version 4.1s), which includes emissions
from small fires. Fire emission uncertainties were assumed
to be 20 % of the GFED emissions and correlated in space
with a length scale of 500 km, but they were not assumed to
be correlated in time. The combination of all prior fluxes was
regridded to the spatial resolution of the CMAQ model.

2.4 OCO-2 observations and their uncertainties

Our regional inversion assimilates satellite observations de-
rived from NASA’s Orbiting Carbon Observatory-2 (OCO-
2; Eldering, 2018). The OCO-2 satellite instrument carries
a single instrument that incorporates three-channel imag-
ing grating spectrometers developed to measure sunlight re-
flected by the Earth’s surface in three spectral bands: two
CO2 spectral bands in the short-wave infrared (SWIR) at 1.6
and 2.1 µm respectively and one in the near-infrared (NIR) at
0.76 µm (O2 A-band). From these radiance spectra, it is pos-
sible to calculate the column-averaged dry-air mixing ratio
of carbon dioxide. The OCO-2 employs three different sam-
pling strategies to collect data: nadir mode, glint mode, and
target mode. Nadir observations provide useful information
over land because the satellite points straight down at the sur-
face of the Earth (surface solar zenith angle is less than 85◦).
In glint mode, the instrument points to the bright glint spot
on Earth where solar radiation is directly reflected off the
Earth’s surface (local solar zenith angle is less than 75◦). In
target mode, the instrument points towards a specific location
on the ground. Target mode is use for validation, where the
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performance of the instrument is validated against ground-
based observations from the Total Carbon Column Observa-
tion Network (TCCON) (Wunch et al., 2011).

In this study, the regional inversion was performed us-
ing a combination of both land (nadir and glint – LNLG)
OCO-2 observations (version 9). We used the combination of
both datasets, as Miller and Michalak (2020) demonstrated
that combining both modes provides a stronger and better
constraint on CO2 fluxes at regional scales. Moreover, both
datasets present negligible bias (O’Dell et al., 2018). We did
not incorporate ocean glint measurements in our inversion,
as ocean observations still have undetermined biases (O’Dell
et al., 2018) that might impact the Australian carbon flux es-
timates.

OCO-2 LNLG data from December 2014 to Decem-
ber 2019 were selected. We considered OCO-2 data from
December 2014, as we ran CMAQ with a spin-up of 1 ex-
tra month. As an example, Fig. E1 in the Appendix shows
the spatial pattern of OCO-2 soundings (LNLG) that fall in
our CMAQ domain for 2015. In this figure, we can see that
OCO-2 data provide a very good coverage of the Australian
region. Such spatial coverage offers good potential to help
constrain regional biosphere CO2 fluxes.

Given that the OCO-2 spatial resolution
(1.29 km× 2.25 km) is higher than the CMAQ model
grid cell resolution (81 km× 81 km), the OCO-2 data were
averaged to the CMAQ model grid level following the two-
step process described in Villalobos et al. (Sect 2.3, 2021):
the first step involves averaging all OCO-2 soundings across
1 s intervals, while the second step involves averaging these
1 s averages into the CMAQ vertical column (approximately
11 s averages). The algorithm to estimate the uncertainties
across 1 s averages follows Crowell et al. (2019). Here, we
considered three different forms of uncertainty calculation.
First, we assumed that uncertainties that fall within a 1 s span
were perfectly correlated in time and space (uncertainties
defined as σs). Second, given that the average of OCO-2
uncertainties (σs) is relatively low compared with the real
OCO-2 uncertainties (mainly because they only consider
the errors from measurement noise and are not systematic
errors), we also used the spread (standard deviation) of the
OCO-2 retrievals in the 1 s average (uncertainties defined as
σr). Third, we also considered a baseline uncertainty (defined
as σb) for cases where the number of OCO-2 soundings was
not high enough to compute a realistic spread. Our baseline
uncertainties were assumed to be 0.8 ppm over land and
0.5 ppm over ocean. Finally, we selected the maximum value
between these three uncertainties (σs, σr, and σb). For each
grid cell, we also added (in quadrature) 0.5 ppm to this term
as the contribution of the CMAQ model uncertainty (defined
as σm). We also increased the final observation uncertainty
by a factor of 1.2 to satisfy the theoretical assumptions of
the inversion (Villalobos et al., 2021). We interpolated the
retrieval OCO-2 profile to the CMAQ model vertical profile
as described in Villalobos et al. (2020, Sect. 2.6). Note that

we only selected bias-corrected data and OCO-2 retrievals
with a quality flag of “0”, as described by Kiel et al. (2019).

2.5 Validation data

2.5.1 TCCON

For validation of our inversion, we compared our posterior
column-averaged concentration simulated by CMAQ with
the TCCON sites located in Australia and New Zealand
(Fig. 2). TCCON is a network of ground-based Fourier
transform spectrometers (FTSs) recording direct solar spec-
tra in the NIR and SWIR spectral regions (Wunch et al.,
2011). From these spectra, accurate and precise total column
amounts of CO2 and other trace gases are retrieved. In our
study domain, there are three TCCON stations (Darwin, Wol-
longong, and Lauder). The Darwin and Wollongong sites are
located within Australia, whereas the Lauder site is located
in New Zealand. The Darwin and Wollongong sites are oper-
ated by the Centre for Atmospheric Chemistry at the Univer-
sity of Wollongong, Australia (Griffith et al., 2017a, b). The
Lauder site is operated by New Zealand’s National Institute
of Water and Atmospheric Research (NIWA) (Sherlock et al.,
2017; Pollard et al., 2019). As is shown in Fig. 2, the Lauder
monitoring station is located on the South Island of New
Zealand, 2 km north of the town of Lauder; it is sheltered
from the prevailing wind direction by the Southern Alps,
which increases the number of days with clear skies and re-
sults in an air mass that is largely unmodified by regional an-
thropogenic sources (Pollard et al., 2017). Since mid-2015,
the Darwin site has been located about 9 km east of Darwin
city, approximately 4.5 km south-east of its previous location
(Deutscher et al., 2010). The Wollongong site is a coastal site
that is close to populated areas and industry to the north and
close to native forest and less densely populated areas to the
south and west (Deutscher et al., 2014). At each site, TC-
CON data were selected within 1 h windows and averaged to
be consistent with the temporal resolution of the output of
the CMAQ simulations. Each TCCON retrieval is provided
with an averaging kernel and a prior profile, which were in-
terpolated to the CMAQ vertical profiles. After the interpo-
lation, we applied the averaging kernel (following Eq. 15 in
Connor et al., 2008) to compute the TCCON CMAQ simu-
lated CO2 concentrations. The residual between CMAQ and
TCCON was constructed based on monthly mean concentra-
tions, which were calculated by taking local time averages
between 10:00 and 14:00 LT, when the solar radiation inten-
sity is most stable (Kawasaki et al., 2012).

2.5.2 Ground-based in situ measurements

We also compared our posterior concentrations against four
ground-based in situ monitoring sites: Cape Grim, Gunn
Point, Burncluith, and Ironbark, whose geographic locations
are shown in Fig. 2. These monitoring sites form part of the
Global Atmosphere Watch (GAW) programme of the World
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Figure 2. Location of the Total Carbon Column Observing Net-
work (TCCON) sites across Australia and New Zealand (red points)
and in situ sites (blue points). This map also shows a classification
of six bioclimatic regions for Australia.

Meteorological Organization (WMO), and they are operated
by the Climate Science Centre of the Commonwealth Sci-
entific and Industrial Research Organisation (CSIRO), lo-
cated in Aspendale, Australia. We used hourly data from
these monitoring sites, but the monthly mean averaged data
shown in Sect. 3.4.2 were calculated using local time aver-
ages (12:00–05:00 LT, Australian local time, with respect to
the monitoring site locations).

Atmospheric CO2 concentration measurements at the
Gunn Point, Ironbark, and Burncluith sites are made continu-
ously at high frequency (∼ 0.3 Hz) using Picarro cavity ring-
down spectrometers. Instruments located at the Gunn Point
and Ironbark sites are the Picarro model G2301, whereas the
Burncluith site uses the Picarro model G2401. All of the in-
lets are placed at a height of 10 m. Descriptions of the Iron-
bark, Gunn Point, and Burncluith installations can be found
in Etheridge et al. (2016). Cape Grim also operates a Picarro
G2301 analyser; however, the inlet is positioned at 70 m.
The instrument precision for these spectrometers is better
than 0.1 ppm (Etheridge et al., 2014), and all measurements
are calibrated to the WMO CO2 X2007 mole fraction scale
(Zhao and Tans, 2006), ensuring comparability between all
measurements used. We note that we used “baseline” and
“non-baseline” data from Cape Grim. Baseline data are se-
lected when winds blow straight off the Southern Ocean and
have not been in recent contact with land. In this study, we
used both datasets because our inversion only uses OCO-2
soundings located over land.

2.6 Australian bioclimatic classification

To understand which ecosystems contributed the most to
the Australian interannual carbon flux variability between

2015 and 2019, we divided the continent into six bioclimatic
classes: tropics, savanna, warm temperate, cool temperate,
Mediterranean, and sparsely vegetated (Fig. 2). We used the
same six bioclimatic regions at a 0.05◦ spatial resolution as
in Haverd et al. (2013a). The classes were regridded over our
CMAQ grid (81 km× 81 km) resolution.

2.7 Climate data

In order to analyse the impact of climatic drivers on Aus-
tralian terrestrial carbon cycle variability, we investigated the
anomalies of rainfall and temperature across Australia for the
2015–2019 period. Rainfall data were selected from the Aus-
tralian Water Availability Project (AWAP), Bureau of Meteo-
rology (BOM) (Jones et al., 2009), for the 2015–2019 period.
AWAP is a gridded product at a 0.05◦ resolution. It is gener-
ated by spline interpolation of in situ rainfall observations.
We also used air temperature data at 2 m above the land sur-
face from ERA5, the fifth generation of European Centre for
Medium-Range Weather Forecasts (ECMWF) atmospheric
reanalyses. The dataset selected from ERA5 was monthly
and was gridded at a 0.25◦ spatial resolution. We constructed
3-month running means of rainfall anomalies and air tem-
perature anomalies relative to a mean across 2015–2019.
These anomalies were calculated by subtracting their long-
term mean (2015–2019) for each month from the raw time
series and constructing the 3-month running mean on the re-
sultant time series. We regridded the rainfall anomalies onto
the grid of the CMAQ model in order to simplify the com-
parison with the estimated terrestrial carbon uptake from the
flux inversions.

2.8 The enhanced vegetation index (EVI) as an
indicator of the vegetation greenness

Plant photosynthesis and respiration are two fundamental
physiological processes in the carbon cycle. Physiological
and structural changes in vegetation modulate the exchange
of CO2 between the land and atmosphere. In order to under-
stand what physiological factors drive the interannual vari-
ability in our posterior fluxes, we studied the anomalies of
the enhanced vegetation index (EVI). The EVI provides in-
formation on vegetation state, and we used it to character-
ize changes in Australian vegetation greenness and activity
(e.g photosynthesis) from 2015 to 2019. The EVI product
was derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) – which flies on board Terra, a NASA
Earth-observing satellite (Didan, 2014) – MOD13C1 Version
6 data product. The MODIS EVI is a gridded product that
has a 16 d composite temporal resolution and a 0.05◦ spatial
resolution. The EVI ranges from −0.2 to +1, where values
less than 0 indicate a lack of green vegetation or arid areas.
We calculate the 3-month running mean of EVI anomalies in
Australia relative to the long-term mean from 2015 to 2019
and subtract the mean seasonal cycle. These monthly EVI
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MODIS products were also regridded into the CMAQ do-
main to calculate the temporal correlation between prior and
posterior flux anomalies.

2.9 Gross primary productivity (GPP)

To understand the difference between posterior and prior
fluxes, we compared the climatological seasonal cycle of the
gross primary productivity (GPP) from the CABLE BIOS3
model against the remote-sensing-based DIFFUSE model
(Donohue et al., 2014) and against the latest MODIS Terra
GPP product (MOD17A2H Version 6) (Running et al., 2015)
for the 2015–2019 period. We also calculated the 3-month
running mean GPP anomalies for these three datasets.

The DIFFUSE GPP estimates are taken to be the product
of the fraction of photosynthetically active radiation (PAR)
absorbed by vegetation and the light use efficiency. These
datasets have a temporal resolution of 16 d at a 250 m spatial
resolution. Similar to the DIFFUSE estimates, the MODIS
GPP product is based on a light use efficiency approach
and provides a cumulative 8 d composite product gridded at
500 m. For comparison, the CABLE BIOS3, DIFFUSE, and
MODIS GPP products were averaged to a monthly resolution
and regridded over the CMAQ domain.

2.10 Global atmospheric inversions

We compared our Australian assimilated fluxes against nine
independent global atmospheric inversions: AMES, PCTM,
CAMS, CMS-Flux, CSU, CT, OU, TM5-4DVAR, and UT
(Sect. 4). These global inversions are part of the OCO-
2 Model Intercomparison Project (OCO-2 MIP) (Crowell
et al., 2019; Peiro et al., 2022). In this study, we used the
OCO-2 MIP flux version found in Peiro et al. (2022). In Peiro
et al. (2022), the global inversions were performed using the
assimilation of OCO-2 data (version 9, bias corrected) from
2015 to 2018. A summary of these nine global inversions is
given in Table 1, and a complete description of them and their
input fields can be found in Peiro et al. (2022, Appendix A:
model information). We can see from Table 1 that all global
inversions were run using different inverse systems and were
configured at different spatial resolutions with different at-
mospheric transport models and prior fluxes. Some global
inversion methods use a four-dimensional variational (4D-
Var) approach, whereas others utilize a technique known as
ensemble Kalman filter (EnKF) or Bayesian synthesis.

2.11 FLUXCOM carbon fluxes

We also compared our assimilated fluxes against the FLUX-
COM net ecosystem exchange (NEE) ensemble mean prod-
uct. The FLUXCOM dataset is created using machine learn-
ing approaches, which combine data from FLUXNET eddy
covariance towers (site-level observations) with satellite re-
mote sensing, and meteorological data to estimate carbon

fluxes, such as NEE, along with their uncertainties (Jung
et al., 2020; Tramontana et al., 2016). For this study, we
downloaded the products at a monthly temporal resolu-
tion from the data portal of the Max Planck Institute for
Biogeochemistry (https://www.bgc-jena.mpg.de, last access:
6 April 2022).

3 Results

3.1 Inversion performance

In our inversion system, the L-BFGS-B algorithm iteratively
adjusts the control vector until the cost function reaches an
optimal solution. In Bayesian inverse problems, we require
that the observational residuals (simulated – observed) and
increments (posterior – background) are consistent with the
assumed probability density functions (PDFs). This implies
that the cost function should be approximately half the num-
ber of observations (Tarantola, 1987, p. 211). Table 2 shows
the analysis of convergence for our 5-year inversion. In this
table, we can see that, for each year, the ratio between final
cost function J (x ) and observation was about 0.5, indicating
that our system is self-consistent.

Figure 3 shows the monthly bias and the root-mean-square
error (RMSE) between the prior and posterior column-
integrated concentrations simulated by CMAQ against the
OCO-2 observations. In this figure, we can see that the in-
version generally reduces prior biases significantly to values
close to zero. As an indication of the overall inversion per-
formance, the Australian mean prior bias for 2015–2019 was
reduced from 0.23 to 0.06 ppm and the RMSE was reduced
from 0.90 to 0.76 ppm (Fig. A1).

While we see that inversion reduces the prior biases sig-
nificantly, relatively small positive systematical posterior bi-
ases remain (0.05 ppm). These systematic positive posterior
biases across Australia are likely driven by sampling and
residual retrieval biases in the OCO-2 data. Some studies
suggest that the existing OCO-2 cloud-screening algorithm
(Taylor et al., 2016) has difficulty identifying clouds near the
surface (shallow-layer clouds). Unresolved low-level clouds
introduce significant biases in the retrieved column of CO2
concentration.

We note that the data gap in August and September was
caused by a satellite outage. In November 2017, we observed
that the prior concentration underestimated the observations
significantly, with biases of about −0.56 ppm and an RMSE
of 1.29 ppm. High prior biases in this month were found
along the east coast of Australia, suggesting that the CABLE
model might likely be underestimating the carbon outgassing
in this area and, therefore, the prior retrieval column CO2
concentration. The reduction of the prior biases in this month
was about 90 % (−0.06 ppm with an RMSE of 0.94).
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Table 1. Summary of the configuration of the OCO-2 MIP (version 9) design.

Acronym
Transport Meteorological Grid spacing Prior land Prior Inverse
model fields (in degrees) biosphere fire system

AMES GEOS-Chem MERRA-2 4◦× 5◦ CASA-GFED4.1s GFED4.1s 4D-Var
Baker PCTM MERRA-2 6.7◦× 6.7◦ CASA-GFED3 GFEDv3 4D-Var
CAMS LMDz ERA-Interim 1.9◦× 3.75◦ CMEMS GFEDv4 Variational
CMS-Flux GEOS-Chem GEOS-FP 4◦× 5◦ CARDAMOM GFED4.1s 4D-Var
CSU GEOS-Chem MERRA-2 1◦× 1◦ SIB4 GFED4 Bayesian synthesis

CT TM5 ERA-Interim
3◦× 2◦ CT2019 CT2019

EnKF
1◦× 1◦ CASA GFED4.1s CASA-GFED4.1s

OU TM5 ERA-Interim 4◦× 6◦ CASA-GFED3 GFEDv3 4D-Var
TM5-4DVAR TM5 ERA-Interim 2◦× 3◦ SIB-CASA GFEDv4 4D-Var
UT GEOS-Chem GEOS-FP 4◦× 5◦ BEPS GFEDv5 4D-Var

Table 2. Convergence diagnostics of the inversion system using OCO-2 satellite data.

Year J0 (x ) ∇xJ0 Jf (x ) ∇xJf N observations Theoretical J (x ) Ratio (Jf (x ) and N )

2015 5653.15 5177.65 4403.01 394.17 8766 4383 0.50
2016 5561.51 5371.69 4380.64 853.07 8946 4473 0.49
2017 4485.17 4794.40 3477.63 335.92 7514 3757 0.46
2018 5118.29 3825.28 4112.01 365.46 9679 4839 0.42
2019 5582.00 2719.85 4443.32 387.14 10373 5186 0.43

3.2 Seasonal cycle and spatial distribution of the
Australian prior and posterior carbon fluxes

Before assessing the interannual variability in the fluxes de-
rived by the assimilation of OCO-2 observations, we first ex-
amine the monthly, seasonal, and annual means between the
prior and posterior fluxes. This step is relevant for the subse-
quent evaluation of how well the posterior column-averaged
concentrations simulated by the CMAQ model fit with inde-
pendent data. Assessing the robustness of our inversion with
independent data will allow us to better explain the posterior
flux anomalies derived by our inversion.

Figure 4a shows the long-term mean of the prior and poste-
rior carbon fluxes aggregated across Australia for the 2015–
2019 period, and Figs. 4b and c show the annual and sea-
sonal cycle of these estimates. Posterior flux uncertainties
from 2016 to 2019 were assumed to be the same as those
calculated for 2015, which were estimated by five different
observing system simulation experiments (OSSEs; see more
details in Villalobos et al., 2021).

Our 5-year inversion suggests that Australia was a carbon
sink of −0.46± 0.09 PgC yr−1, compared with the prior flux
estimate of 0.11± 0.17 PgC yr−1 (Fig. 4a). Here, the prior
flux estimate (fluxes derived by the CABLE model) repre-
sents the current knowledge of the Australian carbon budget.
Due to the size of the uncertainties in the prior estimate, it
cannot be concluded with high confidence whether Australia
was a sink or source of CO2 for the 2015–2019 period. The
annual posterior fluxes also suggest that Australia’s terres-
trial biosphere is able to absorb more carbon from the atmo-

sphere than the CABLE model estimate (Fig. 4b). Moreover,
we see that 2016 was the year that contributed most to the
long-term mean sink estimated by the OCO-2 inversion.

In terms of a seasonal cycle, we can see that the posterior
flux estimates show a stronger seasonality compared with the
prior flux estimate (Fig. 4c). Over the 5 years from 2015 to
2019, we observe that OCO-2 sees a strong seasonal bio-
spheric carbon uptake each year between June and Septem-
ber (winter and early spring in Australia) as well as a stronger
carbon source from November to December (late spring and
early summer in Australia). As we showed in Fig. 3, the
stronger carbon uptake seen in winter and early spring occurs
because the prior column-averaged concentration simulated
by CMAQ model overestimates OCO-2 observations during
this period.

To identify the Australian regions in which the OCO-2
satellite sees a stronger carbon uptake, we plotted the annual
difference between the posterior and the prior fluxes (Fig. 5).
In Fig. 5a, we see that the majority of the posterior long-term
mean flux for the 2015–2019 period is distributed in one half
of the continent (in the north-east, central, and southern re-
gions of the continent). However, we note that this was not
the case for the coastal region in these areas, where we ob-
serve that OCO-2 recorded a stronger carbon release com-
pared with the prior estimate.

The substantial difference between the prior and posterior
flux in 2015 and 2016 comes from the northern and south-
eastern regions of Australia (excluding coastal areas in the
south-east of the continent). In Sect. 3.5, we show that the
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Figure 3. Bias and root-mean-square error (RMSE) between OCO-2 and the prior and posterior concentrations simulated by the CMAQ
model. The respective orange and blue lines represent prior and posterior concentration biases, and the respective orange and purple shaded
areas represent the prior and posterior RMSE.

Figure 4. (a) Long-term mean carbon flux, (b) annual mean carbon flux, and (c) monthly mean prior (orange dots) and posterior (blue dots)
carbon fluxes as well as their uncertainties (in PgC yr−1) over Australia for the 2015–2019 period. Uncertainties in the prior and posterior
fluxes are indicated by bars. The dashed orange and blue lines represent a smooth line for the prior and posterior fluxes respectively. Within
these estimates, we only included the terrestrial part of the Australian carbon cycle, including fires but not fossil fuel emissions.

stronger carbon uptake recorded by the inversion (relative to
the prior) in these 2 years was driven by an increase in vege-
tation productivity due to a rise in rainfall and lower temper-
atures across these regions. Despite the fact that 2016 was
one of the strongest El Niño events on record in the Pacific
Ocean, the rain over Australia was above average for most
of the continent. The annual climate report from the Bureau
of Meteorology for 2016 indicates that the annual rainfall
over Australia was 17 % above the 1961–1990 average. In
2017, prior and posterior differences were seen in the north-
ern, central, and eastern coastal areas of Australia. Rainfall
in 2017 was below average for much of eastern Australia and
along the west coast of Australia. For 2019, OCO-2 recorded

a stronger carbon release in western and central Australia.
These results are not unexpected, as 2019 was an excep-
tional year (the hottest and driest year on record in Australia)
with a mean temperature that was 1.52 ◦C above the 1961–
1990 average (Annual climate statement, Bureau of Meteo-
rology, 2019). We also noticed a large carbon uptake (rela-
tive to prior) in the south-eastern corner of Australia in 2019
(Fig. 5f).
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Figure 5. Annual spatial pattern of the differences between posterior and prior carbon fluxes for 2015–2019 (gC m−2 yr−1).

3.3 Climatological seasonal cycle of the prior and
posterior carbon fluxes aggregated by bioclimatic
region

To further examine what might potentially be the cause of
the difference between the posterior and prior fluxes de-
scribed above, we compared the climatological seasonal cy-
cle (Fig. 6) against the climatological seasonal cycle of the
gross primary productivity (GPP) fluxes derived from CA-
BLE BIOS3, MODIS, and the DIFFUSE model (Fig. C1).
We made this comparison by aggregating the fluxes over six
bioclimatic regions.

It is evident that the largest difference between prior and
posterior flux estimates is over savanna (Fig. 6b) and sparsely
vegetated (Fig. 6d) ecosystems. Over the savanna region, the
most notable difference is seen from June to September. The
absolute difference in this period is about 0.4 to 0.5 PgC yr−1.
According to MODIS and DIFFUSE GPP estimates, the
stronger posterior sink observed in this period may be due to
an underestimation of GPP simulated by the CABLE BIOS3
model (Fig. C1b). The GPP estimated by MODIS from June
to September was about 0.90 PgC yr−1 compared with the
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CABLE BIOS3 estimate of 0.59 PgC yr−1. DIFFUSE GPP
estimates were around 0.68 PgC yr−1.

Over the sparsely vegetated region, the seasonal discrep-
ancy between the prior and posterior flux is more evident
than for savanna. The seasonality of the posterior flux is
stronger (relative to the prior estimate) from April to Septem-
ber. In this ecosystem, the largest absolute difference be-
tween the prior and posterior fluxes is seen from June to Au-
gust (0.5 PgC yr−1). In July, for example, the inversion shifts
the prior flux from −0.05± 0.09 to −0.56± 0.06 PgC yr−1.
Again, in Fig. 6d, we can see that a possible reason of this
shift may be associated with an underestimation of the GPP
by CABLE BIOS3. It is evident that MODIS and DIFFUSE
GPP have a stronger seasonality than CABLE BIOS3 GPP.
For example, from June to August, the CABLE BIOS-3
GPP was about 0.4 PgC yr−1 compared with DIFFUSE and
MODIS, which were 0.9 and 1.3 PgC yr−1 respectively. We
did not find a seasonal correlation between the prior fluxes
and MODIS and DIFFUSE GPP fluxes (Table G1), but we
did find a positive correlation between the posterior fluxes
and the GPP estimated by MODIS and DIFFUSE (R = 0.44
and R = 0.45 respectively).

Regarding the tropical, warm temperate, cool temper-
ate, and Mediterranean ecosystems, the seasonal correlations
with the MODIS or DIFFUSE GPP estimates were stronger
for the prior than for the posterior fluxes (Table G1). A
stronger correlation between the prior flux and MODIS and
DIFFUSE might be attributable to the fact that the assimi-
lated coastal fluxes might somehow be less constrained by
the inversion in these ecosystems, mainly because they are
mostly influenced by ocean fluxes where the uncertainties
have less freedom to be modified by the inversion.

3.4 Evaluation of the inversion against independent data

To evaluate the accuracy of the posterior fluxes discussed
in the previous section, we assess the fit between the poste-
rior concentration CO2 field (derived by running the CMAQ
model with the fluxes assimilated by OCO-2) and indepen-
dent CO2 measurements: TCCON (Darwin, Wollongong,
and Lauder) and in situ measurements (Gunn Point, Ironbark,
Burncluith, and Cape Grim).

3.4.1 Comparison with TCCON data

Figure 7a, c, and e show the time series of the monthly mean
column-averaged CO2 concentrations at the TCCON sites
(Darwin, Wollongong, and Lauder) compared to the column-
average concentrations from the prior and posterior simu-
lated by CMAQ for 2015–2019. Figure 7b, d, and f show
the bias and root-mean-square error (RMSE) from these av-
erages. Monthly averages were computed using data selected
between 10:00 and 14:00 LT (Australia or New Zealand local
time with respect to the site location).

For all TCCON sites, we found that assimilating OCO-2
data only slightly reduced the prior bias and RMSE. At the
Darwin site (Fig. 7a), the fit between the posterior column-
averaged concentration and TCCON notoriously degraded
at the beginning of 2017, 2018, and 2019 (mainly Febru-
ary and March). High negative posterior biases (2 ppm) may
be related to the small number of OCO-2 soundings located
around the site or local biases in the OCO-2 data (Peiro et al.,
2022). The small number of OCO-2 observations around
Darwin is due to the presence of cloud cover and aerosols.
While northern Australia experiences a wet season in sum-
mer (November to April), which is highly impacted by mon-
soonal rains and storms, winter (the dry season in this region)
is affected by fires. Some studies (e.g. Taylor et al., 2016)
suggest that some OCO-2 retrievals can be biased by clouds
during the wet season and by smoke aerosol plumes during
the dry season, mainly because the OCO-2 cloud-screening
algorithms have some difficulty in identifying clouds near
the surface. With respect to the correlation analysis, we also
found that the relationship between observations and the pos-
terior simulations is improved in some periods (Table F1).

Evaluation at the Wollongong site (Fig. 7c) also shows sys-
tematic differences with our posterior concentrations. From
2016 onwards, we see a persistent slight underestimation of
the prior and posterior column average simulated by CMAQ.
Similar to Darwin, the posterior estimates derived from the
inversion do not help much to reduce the prior biases at this
site. In general, we see that the prior and posterior biases re-
main almost the same (biases are less than 1 ppm) except in
winter 2015, when biases are about 1.5 ppm. A considerable
reduction in the prior biases is only seen in summer in 2016
and 2017 (November and December), when the prior biases
decreased by 20 % and 80 % respectively. As discussed in
Villalobos et al. (2021), the improvement in bias is negligi-
ble when the wind blows from the ocean to this site or not
many OCO-2 soundings were found around the monitoring
location. Improvements in the correlation at the Wollongong
site are shown in Appendix F (Table F3).

Unlike the Wollongong site, we see a persistent overes-
timation of both the prior and posterior estimates at the TC-
CON Lauder site (Fig. 7c). However, posterior biases are less
than 1 ppm. Prior biases at the Lauder site were mainly re-
duced in winter and early spring. The reduction in the biases
at this site was modest (about 10 %–25 %). New Zealand is
(relative to the Australian mainland) much smaller and nar-
rower in the south-west to north-east direction; thus, it is
strongly affected by oceanic airflow. The smaller size means
that relatively few OCO-2 soundings are retrieved over this
area. Ocean fluxes that affect New Zealand have less freedom
to be modified due to the small prior uncertainties assumed
in the inversion. Analysis of the correlation is shown in Ap-
pendix F (Table F2).
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Figure 6. Climatological seasonal cycle of prior (orange points) and posterior (blue points) terrestrial carbon fluxes (2015–2019). The dashed
orange and blue lines represent a smooth line for the prior and posterior fluxes respectively.

3.4.2 Comparison with ground-based in situ
measurements

Figure 8a, c, and e show the comparison between ground-
based in situ measurements (Gunn point, Burncluith, Iron-
bark, and Cape Grim) and the prior and posterior simulated
by the CMAQ model at the surface for 2015–2019, and
Fig. 8b, d, and f show the bias and root-mean-square error
(RMSE) from these averages. Averages were computed using
data selected between 12:00 and 17:00 LT (Australian local
time with respect to the individual site).

We note that the posterior column-averaged concentra-
tions generally underestimate the observations at the Gunn

Point site. The prior concentration indicates a better agree-
ment, but biases are still significant. Some possible explana-
tions for these results might be related to the limited vertical
resolution of these retrievals and, consequently, the relative
inability of OCO-2 to constrain fluxes at the scale relevant
to this site (total column measurements are less sensitive at
the surface than in situ sampling). Another possible expla-
nation is that, within our model, Gunn Point is a coastal site
that is affected by prevailing offshore winds. If winds come
from the ocean, our fluxes are less constrained by OCO-2 re-
trievals (see the plot of wind directions in the Supplement,
Figs. S20 and S24, for January–February).
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Figure 7. Comparison between the monthly mean column-averaged bias and root-mean-square error (RMSE) at the (a, b) Darwin, (c,
d) Wollongong, and (e, f) Lauder TCCON sites and the CMAQ prior and posterior modelled CO2 concentrations for 2015–2019. In panels (a),
(c), and (e), the orange and blue circles represent the respective prior and posterior mean concentrations, and the grey dots represent TCCON
observations.

The data for the Burncluith site span from July 2015 to
May 2018 (Fig. 8b). At this site, posterior biases seem to
vary seasonally. It is clear that the posterior biases are larger
(relative to the prior bias) in the winter season (June, July,
and August) compared with the summer season (e.g. Jan-
uary and February) and spring (e.g. September and October).
In this period, the prior concentrations show a better agree-
ment with the observations, with biases ranging from 0.54
to −0.46 ppm, compared with the posterior biases (range
from −2.79 to −3.57 ppm). Large negative posterior biases
at this site could be related to errors in the transport in
the CMAQ model (e.g. associated with the parameterization

scheme within the planetary boundary layer) or erroneous
meteorological inputs from our WRF simulations (forcing
errors). Transport errors in the vertical mixing near the sur-
face associated with the incorrect treatment of atmospheric
turbulence can cause significant biases in the simulated con-
centrations (Gerbig et al., 2008; Lauvaux et al., 2012). The
atmospheric boundary layer mixing height is an important
property in atmospheric modelling because it gives the vol-
ume of a column of air in which the fluxes contribute to the
CO2 concentration. In this study, it is difficult to quantify the
likely error in the simulation of the boundary layer height
because the site lacks the relevant physical measurements. A
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more detailed discussion of these findings is found in Sect. 4.
We also did not find much improvement in the correlations
at this site (Table G4).

Results for the Ironbark monitoring station are similar
to Burncluith. These results were not unexpected given the
stations’ proximity (Fig. 2). For 2015 and 2016, validation
against the Ironbark site also shows that the posterior mean
concentrations were in good agreement with the observations
for the summer and spring seasons. In February 2018, we see
that the posterior biases were about−11.4 (RMSE of 21.61).
The difference between the posterior simulation and the ob-
servations may be related to a single event visible to the sur-
face station but not seen by OCO-2. On 7 February, Ironbark
registered a CO2 concentration of 459.87 ppm. It is possible
that fires may have caused the high CO2 concentration reg-
istered in this period (see information for February 2018 on
the NASA Fire Information for Resource Management Sys-
tem; FIRM, 2020). From 18 to 20 April, we also see a sim-
ilar event that was not captured by the inversion, causing a
posterior concentration bias of −6.44 ppm (RMSE of 9.82).
During these 3 d, the concentrations registered at Burncluith
were greater than 450 ppm.

Cape Grim is the only site with a complete time series of
observations during this period (Fig. 8d). Like Gunn Point,
Cape Grim is a coastal site affected by strong westerly winds
that blow from the ocean into Tasmania. In Fig. 8d, we
see that there is an evident underestimation of our posterior
fluxes from 2015 to 2019. However, there are some months
in 2015, 2016, and 2017 for which we see a significant re-
duction in the prior bias. In May 2015, for example, the
reduction in the biases was 87 %. For November 2016 to
April 2017, the reduction in the biases was more noticeable;
in April 2017, for example, we found a reduction of about
70 %. Stable winds during the period might be associated
with the improvement in the biases (see Fig. S37 in the Sup-
plement). In general, all of the negative large posterior biases
for all of the months (2–5 ppm approximately) are associ-
ated with strong westerly and north-westerly winds that come
from the ocean to Tasmania. As previously mentioned, Cape
Grim is a coastal station whose aim is to record clean air that
blows from the Southern Ocean, and it is not representative
of Tasmania’s air mass.

A poor fit between the posterior concentrations and sur-
face sites raises doubts about the reliability of the OCO-2
assimilated fluxes estimated over warm temperate, tropical,
and cool temperate ecosystems. Therefore, in the upcoming
section, we assess the analysis of the variability in the pos-
terior fluxes only over the savanna and sparsely ecosystems,
where our posterior carbon fluxes derived by OCO-2 data are
likely more trustworthy than fluxes assimilated over areas di-
rectly impacted by offshore ocean fluxes.

3.5 Australia’s carbon flux anomalies

Figure 9a and b illustrate the 3-month running mean of the
prior and posterior flux anomalies and the 3-month running
means of EVI, rainfall, and air temperature anomalies for the
2015–2019 period aggregated over sparsely vegetated and
savanna ecosystems. Figure 10 shows the spatial distribution
pattern of the annual anomalies of the posterior flux estimate
for the 2015–2019 period.

It is clear that the anomalous prior and posterior carbon
land sink recorded over the sparsely vegetated ecosystem
from August 2016 to April 2017 is likely due to the com-
bination of a higher-than-average increase in land produc-
tivity (positive EVI anomalies) and rainfall (positive rain-
fall anomalies) as well as a lower-than-average decrease in
air temperature (negative temperature anomalies). It is also
evident that the strong carbon release (positive carbon flux
anomalies) recorded after April 2017 is due to a lower-than-
average greenness of the vegetation (negative EVI anoma-
lies) and rainfall (negative rainfall anomalies) as well as an
increase in the air temperature (positive temperature anoma-
lies). In this ecoregion, we found that the temporal correla-
tion between EVI anomalies and carbon flux anomalies is in
better agreement with the posterior (R =−0.5) than the prior
(R =−0.32) anomalies. The posterior and EVI correlations
become even stronger when we see them at each grid point
Fig. 11b (R = 0.5–0.9). Spatial averaging smooths grid point
anomalies and, thus, dilutes signals. The spatial distribution
of correlations between rainfall anomalies (Fig. 11d), tem-
perature anomalies (Fig. 11f), and posterior carbon anoma-
lies also improved in some areas in this large ecosystem.

Similar to the findings for sparsely vegetated regions, we
also see a higher-than-average increase in land productivity
(positive EVI anomalies) and rainfall as well as a decrease
in air temperature recorded from August 2016 to April 2017
over the savanna ecosystem. However, unlike the results for
sparsely vegetated regions, the carbon sink anomaly only co-
incides with the negative posterior carbon anomaly in 2016.
In 2017, we see that the positive EVI and rainfall as well
as the negative anomalies recorded from January to April do
not align with the larger-than-average posterior carbon re-
lease in this period. We believe that the few OCO-2 sound-
ings found in this period limit the potential of our inversion
to constrain the surface fluxes in the savanna ecosystem (see
Fig. S2a, b, and c in the Supplement). We found similar re-
sults in September and November 2017. As mentioned in
Sect. 3.1, there was a long data outage of 51 d from August to
September 2017. In September, the number of OCO-2 obser-
vations in Australia was only 221, and most of the soundings
were seen over sparsely vegetated regions (in central Aus-
tralia) compared with the savanna ecosystem (see Fig. S2h
and i in the Supplement). In 2019, we also see that a lower-
than-average land productivity, in combination with a rain-
fall deficit and an increase in temperature, led to a stronger
carbon release into the atmosphere. In this category, the tem-
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Figure 8. Comparison between monthly mean CO2 concentrations (ground-based stations) at the (a) Gunn point, (c) Burncluith, (e) Ironbark,
and (g) Cape Grim sites and the CMAQ prior and posterior modelled CO2 concentrations for 2015–2019. Bias and root-mean-square error
(RMSE) between the model and observations are shown in panels (b), (d), (f), and (h). The purple and violet circles in the aforementioned
panels represent the respective prior and posterior concentration biases, and the purple and violet bars represent the respective prior and
posterior RMSE values.

https://doi.org/10.5194/acp-22-8897-2022 Atmos. Chem. Phys., 22, 8897–8934, 2022



8912 Y. Villalobos et al.: Interannual variability in the Australian carbon cycle

poral correlation between the posterior anomalies and EVI
anomalies was moderate (R =−0.38) compared with the
prior flux anomalies and EVI anomalies (R =−0.52). We
note that the time series temporal correlation between EVI
anomalies and posterior anomalies at the grid-cell-scale res-
olution (Fig. 11a) is slightly stronger for the prior than the
posterior correlations (Fig. 11b). Similar results were found
between the link of the rainfall and posterior flux anomalies,
where the correlation tends to degrade compared with the
prior. The spatial correlation between temperature anomalies
and posterior correlation is more variable, and we see that
correlations for the posterior flux anomalies are stronger in
the north-west area of the continent.

In general, the better agreement between posterior, cli-
mate, and vegetation parameters over regions with sparse
vegetation is because the CABLE model likely underesti-
mates GPP anomalies. We found that the correlation be-
tween the posterior anomalies and CABLE BIOS3, DIF-
FUSE, and MODIS GPP anomalies was stronger than that for
the prior anomalies. For example, the correlation between the
prior and CABLE BIOS3 GPP anomalies was −0.46 com-
pared with the posterior (R =−0.61). Correlations between
the posterior anomalies and DIFFUSE and MODIS GPP
(−0.5) were also stronger than the prior (R =−0.3) (more
details in Table D2). These findings are significant for Aus-
tralia because they suggest that our OCO-2 inversion might
likely be better at capturing the anomalies of this ecosys-
tem (the largest ecosystem in Australia) compared with the
biosphere–land model.

4 Discussion

In Sect. 3.4, we saw that validating the posterior concentra-
tions against the current Australian greenhouse gas monitor-
ing system is challenging due to the small number of sta-
tions across the continent (approximately five). In addition,
some of these sites, such as Cape Grim, provide no mean-
ingful constraint on Australian fluxes and, therefore, leave
the question of accuracy in the posterior carbon fluxes unan-
swered over savanna and sparsely vegetated regions, where
our inversion suggests a stronger carbon sink for the study
period compared with the prior estimate made by the bio-
sphere model.

To assess and discuss how well our monthly assimi-
lated OCO-2 carbon fluxes align the current understand-
ing of the Australian carbon cycle, we compare our re-
sults to other global products: OCO-2 MIP global inversions
(AMES, PCTM, CAMS, CMS-Flux, CSU, CT, OU, TM5-
4DVAR, and UT) and FLUXCOM for 2015–2018 (Fig. 12).
The annual OCO-2 MIP ensemble mean of carbon fluxes
shown in Fig. 12 suggests that Australia was a carbon
sink of −0.26± 0.22 for 2015–2018, similar to our poste-
rior flux estimate (−0.52± 0.08 PgC yr−1) considering the
OCO-2 MIP ensemble spread of the nine models as rep-

resenting the uncertainty. The annual FLUXCOM ensem-
ble mean also suggests that Australia was a slight carbon
sink of −0.06± 0.04. In terms of seasonality, we can ob-
serve (from Fig. 12) that, for several periods between 2015
and 2018, the monthly mean of our posterior carbon fluxes
falls within the uncertainties of the OCO-2 MIP ensem-
ble mean, except for some months in winter. For example,
we notice that the large carbon sink estimated by our in-
version (−2.92± 0.27 PgC yr−1) in August 2016 does not
fall within the ensemble monthly MIP mean of that pe-
riod (−1.28± 0.78 PgC yr−1). However, the carbon flux es-
timate derived by the PCTM (−2.31 PgC yr−1) and CSU
(−2.66 PgC yr−1) global models shows similar results to our
flux estimate. These findings are also observed throughout
2015, 2017, and 2018, when our posterior carbon flux es-
timates closely follow PCTM and CSU seasonal patterns.
The seasonality of FLUXCOM agrees with our assimilated
fluxes, mostly in summer but not in winter.

We also studied the carbon flux anomalies derived by
OCO-2 MIP and FLUXCOM and compared them with the
prior and posterior flux anomalies (3-month running mean)
that we have discussed throughout this study (Fig. 13). In
Fig. 13, we see that all carbon flux estimates agree that
2016 was the period in which Australia recorded the largest
carbon uptake relative to the 2015–2018 mean. Throughout
this study, we saw that 2016 was a year in which Australia
recorded above-average precipitation and low temperatures
that certainly drove the increase in vegetation productivity
across the country. Similar findings were reported by Haverd
et al. (2016) for 2011; their study suggested that the varia-
tions in carbon fluxes over Australia’s semi-arid ecosystems
show a direct physiological response of vegetation produc-
tivity to water availability fluctuations. Other regional stud-
ies conducted in Africa (e.g. Williams et al., 2008; Archibald
et al., 2009; Merbold et al., 2009) have also indicated that
the interannual carbon fluctuations in semi-arid ecosystems
largely depend on water availability, which is driven by vari-
ations in rainfall between years. Water availability is the
most important factor that controls the vegetation productiv-
ity of ecosystems across most of Australia, such as grasslands
and shrublands/desert (see Fig. 2 in Churkina and Running,
1998).

In terms of the amplitude of carbon flux anomalies, we
can see that the prior and the FLUXCOM anomalies ex-
hibit a lower amplitude than the one derived by our inver-
sion and the majority of the models in the MIP. Australian
FLUXCOM estimates are likely not a good representation of
the carbon flux estimates for the continent, given the spar-
sity of the flux tower network. FLUXCOM carbon fluxes use
machine learning methods to empirically upscale flux tower
data. In Australia, the number of OzFlux monitoring sites is
small (approximately 30 towers), and most of the flux towers
are located far away from semi-arid/arid ecosystems. This is
relevant for Australia because semi-arid/arid ecosystems rep-
resent about 70 % of the Australian landscape.
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Figure 9. Time series of the 3-month running mean posterior (black line) and prior (grey line) terrestrial carbon flux anomalies (PgC yr−1)
and 3-month running mean EVI anomalies (turquoise dashed line) between 2015 and 2019 aggregated by two agroclimatic regions: (a)
sparsely vegetated and (b) savanna ecosystems. Anomalies over tropical, warm temperate, cool temperate, and Mediterranean ecosystems
are shown in Appendix D (Fig. D1). The grey shaded area represents a 1.0 standard deviation range around the mean for the prior and
posterior flux uncertainty.

With respect to OCO-2 MIP global inversions, we observe
that five global inversions (PCTM, CMS-Flux, CT, OU, and
UT) agreed with our findings for 2016 and suggested Oc-
tober as the month of peak uptake. The ensemble mean of
FLUXCOM also agrees with our results (−0.42 PgC yr−1);
however, the size of the uptake is half of our estimates
(−1.12 PgC yr−1). In terms of the peak of carbon release,
there is no agreement between MIP, FLUXCOM, and prior
and posterior carbon estimates. We observe that almost all
OCO-2 MIP inversions agree that the largest outgassing oc-
curred in November 2015. Our inversion places the maxi-
mum outgassing in October 2017, whereas the FLUXCOM

and the prior have the maximum outgassing period in Octo-
ber and July 2018 respectively.

The analysis of the interannual (peak-to-peak) variability
shows that PCTM (3.05 PgC yr−1) and CSU (2.46 PgC yr−1)
produce the largest amplitude of variability compared with
our prior (0.70 PgC yr−1) and posterior (1.89 PgC yr−1)
anomalies. We also note that OU and AMES exhibit the low-
est carbon amplitude of the variability, with values of 1.06
and 1.86 respectively. The disagreement between the global
inversion and our study might also be driven by transport dif-
ferences (Basu et al., 2018; Schuh et al., 2019).

The larger seasonal cycle amplitude of the anomalies sug-
gested by our regional inversion and OCO-2 MIP compared

https://doi.org/10.5194/acp-22-8897-2022 Atmos. Chem. Phys., 22, 8897–8934, 2022



8914 Y. Villalobos et al.: Interannual variability in the Australian carbon cycle

Figure 10. Spatial distribution maps of the annual posterior terrestrial carbon flux anomalies (gC m−2 yr−1) for 2015–2019 (a, b, c, d, e).
Negative anomalies correspond to a larger-than-average uptake of carbon by land ecosystem, whereas positive anomalies correspond to a
larger-than-average release of carbon to the atmosphere from the land.

with the flux anomalies derived by the CABLE model and
FLUXCOM raises some questions. For example, why do
Australia’s semi-arid ecosystems capture more carbon diox-
ide (based on our OCO-2 inversion) than the process-based
model estimate? Could it be possible that the larger poste-
rior carbon uptake and its larger anomalies estimated by the
inversion (relative to the prior and FLUXCOM) are because

the CABLE model is not well calibrated against the insuffi-
cient number of eddy covariance flux towers across the con-
tinent? Could the remaining OCO-2 biases in version 9 and
potential errors in the transport model be causing deviation
from the true flux? More work needs to be done to reconcile
and disentangle what is being found by the inversions and
the Australia CABLE model. In future work, we could run

Atmos. Chem. Phys., 22, 8897–8934, 2022 https://doi.org/10.5194/acp-22-8897-2022



Y. Villalobos et al.: Interannual variability in the Australian carbon cycle 8915

Figure 11. Spatial map of the monthly temporal correlation between (a, b) EVI prior and posterior anomalies, (c, d) rainfall prior and
posterior anomalies, and (e, c) air temperature prior and posterior anomalies for the 2015–2019 period.

this regional inversion using the latest version of OCO-2 data
(version 10) in combination with ocean glint data, for which
recent verifications confirm reductions in both the bias and
standard deviation compared with the TCCON data (OCO-
2 Data Quality Statement, 2020). Another direction for fu-
ture work would be to explore the impact of transport model
errors on the resulting assimilated OCO-2 fluxes. Such as-
sessment could be done by choosing, for example, different

planetary boundary schemes within the CMAQ model. As
mentioned in Sect. 3.4.2, a misrepresentation of vertical mix-
ing near the surface in atmospheric transport models leads to
uncertainties in modelled CO2 mixing ratios. Mixing within
the planetary boundary layer influences the redistribution of
the surface fluxes to the atmospheric column. Another way of
evaluating the transport error of the model would be through
a model intercomparison. This approach is well known in the

https://doi.org/10.5194/acp-22-8897-2022 Atmos. Chem. Phys., 22, 8897–8934, 2022



8916 Y. Villalobos et al.: Interannual variability in the Australian carbon cycle

Figure 12. Comparison between monthly mean posterior (blue line), prior (orange line), FLUXCOM ensemble mean (green line), OCO-2
MIP ensemble (black line) carbon fluxes, and the monthly carbon fluxes from the nine models that participate in OCO-2 MIP: AMES, PCTM,
CAMS, CMS-Flux, CSU, CT, OU, TM5-4DVAR, and UT (in PgC yr−1).

Figure 13. Comparison between 3-month running mean posterior (black line), prior (grey orange), FLUXCOM ensemble, OCO-2 MIP
ensemble carbon flux anomalies, and 3-month running mean anomalies of the nine models that participate in OCO-2 MIP: AMES, PCTM,
CAMS, CMS-Flux, CSU, CT, OU, TM5-4DVAR, and UT (in PgC yr−1).

global inversion TransCom group community (Law et al.,
2008; Peylin et al., 2013; Basu et al., 2018); examples of
such intercomparisons are the recent Model Intercompari-
son Project (MIP), organized by the OCO-2 Science Team
(Crowell et al., 2019; Peiro et al., 2022), and the recent Eu-
ropean atmospheric transport inversion comparison (EURO-
COM) project (Monteil et al., 2020).

Finally, we could say that previous inversion studies over
Australia have been limited by the lack of in situ data. The
OCO-2 data certainly allow for a quantum leap in resolution,
but this is still reasonably coarse, especially when one recalls
that the prior covariance structures we use impose smooth
variations up to the correlation length of 500 km. Instruments
with scanning geometries that allow higher-resolution obser-
vations, such as OCO-3 (Eldering et al., 2019), may signifi-
cantly improve the available resolution of fluxes. This is par-
ticularly important when assessing the roles of drivers, such
as rainfall, that may vary on smaller scales. We also note

that continuing improvement of the OCO retrievals them-
selves should allow the joint assimilation of land and ocean
measurements, hopefully improving the visibility of coastal
fluxes and the comparison with coastal in situ measurements
such as Cape Grim and Gunn Point, as shown by Villalobos
et al. (2021).

5 Conclusions

We estimated monthly carbon fluxes over Australia for
2015–2019, based on the assimilation of Orbiting Carbon
Observatory-2 (OCO-2) satellite data (land nadir and glint
data, version 9). We investigated the effect of vegetation
productivity (using EVI anomalies as a proxy) and cli-
mate driver variations such as rainfall and air tempera-
ture on the Australian terrestrial carbon flux variability. The
mean of our 5-year inversion suggests that Australia was a
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Table 3. Summary of the peak-to-peak amplitude of 3-month running mean posterior, prior, and FLUXCOM flux anomalies as well as
3-month running mean anomalies of the nine different models from OCO-2 MIP (in PgC yr−1).

Carbon flux estimates Models Maximum Date Minimum Date Amplitude
(yyyy-mm) (yyyy-mm)

CMAQ-OCO-2 inversion Posterior 0.73 2017-10 −1.16 2016-10 1.89
BIOS-CABLE3 Prior 0.20 2018-07 −0.50 2016-11 0.70

OCO-2 MIP AMES 0.85 2015-12 −1.01 2016-10 1.86
PCTM 1.44 2015-11 −1.61 2016-10 3.05
CAMS 1.09 2015-12 −1.23 2016-11 2.33
CMS-Flux 0.54 2015-11 −0.68 2016-12 1.23
CSU 0.95 2018-10 −1.51 2016-10 2.46
CT 0.46 2015-11 −0.60 2016-10 1.06
OU 0.83 2015-11 −0.60 2016-10 1.43
TM5-4DVAR 1.28 2015-12 −1.19 2016-11 2.47
UT 1.23 2015-11 −1.07 2016-12 2.30

OCO-2 MIP Ensemble 0.82 2015-11 −1.09 2016-10 1.91

FLUXCOM Ensemble 0.22 2018-10 −0.42 2016-10 0.64

−0.46± 0.08 PgC yr−1 carbon sink, which was driven partly
by large carbon uptake (−1.04 PgC yr−1) recorded in 2016
over savanna and sparsely vegetated ecosystems. We found
that negative carbon flux anomalies recorded in this period
over these ecosystems coincide with an increase in the vege-
tation greenness (positive EVI anomalies) driven by higher-
than-average rainfall anomalies and lower-than-average air
temperature anomalies. The 2017 sink over Australia also
contributed to the 2015–2019 long-term mean, but its con-
tribution was not as significant as that for 2015 and 2016.
Negative carbon flux anomalies recorded in 2017 also co-
incided with positive rainfall anomalies and below-average
temperatures in that period over areas with sparse vegetation.
In 2018, we did not find significant terrestrial flux anomalies
across Australia, and 2019 was mainly affected by positive
carbon flux anomalies, which were also in line with a rainfall
deficit and positive temperature anomalies.

With respect to the validation of our inversion with inde-
pendent data, we found it challenging to validate our poste-
rior column-averaged concentration using the current Aus-
tralian monitoring sites. Despite the fact that the posterior
concentration biases at the TCCON monitoring site were less
than 1.0 ppm for several periods between 2015 and 2019,
OCO-2 data were not able to reduce prior biases significantly.
We associate this slight improvement or lack of improvement
with the fact that these monitoring stations are strongly af-
fected by ocean fluxes, for which no OCO-2 data were con-
sidered. Similar findings were reported for in situ measure-
ments at coastal sites such as Cape Grim and Gunn Point.
Despite the weak comparison with independent monitoring
data, the comparisons to the OCO-2 MIP global inversion
for 2015–2018 and the FLUXCOM ensemble mean present
similar results to our regional inversion, suggesting that the
year 2016 was a period in which Australia acted as a strong
carbon (CO2) sink.
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Appendix A: Histograms: the CMAQ model and
OCO-2 differences

Figure A1. Probability density distribution of the difference between the CMAQ column-averaged CO2 concentration and OCO-2 obser-
vations (in ppm). The orange histogram presents the prior CMAQ column-averaged simulated concentration minus OCO-2, whereas the
blue histogram presents the posterior column-averaged simulated concentration minus the OCO-2. The mean differences and the RMSE are
indicated in the legend.
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Figure A2. Probability density distribution of the difference between the CMAQ column-averaged CO2 concentration and OCO-2 obser-
vations aggregated by six bioclimatic classifications (in ppm). The orange histogram presents the prior CMAQ column-averaged simulated
concentration minus OCO-2, whereas the blue histogram presents the posterior column-averaged simulated concentration minus the OCO-2.
The mean differences and the RMSE are indicated in the legend.
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Appendix B: Spatial distribution of the prior and
posterior annual means (2015–2019)

Figure B1. Posterior fluxes assimilated using LNLG OCO-2 satellite observations averaged for 2015–2019 (fossil fuel emissions are ex-
cluded).
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Figure B2. Prior fluxes derived by the CABLE model using the BIOS3 set-up in combination with fire emissions selected by GFED averaged
for 2015–2019 (fossil fuel emissions are excluded).
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Appendix C: Climatological seasonal cycle and GPP
anomalies (2015–2019)

Figure C1. Climatological seasonal cycle of the GPP (2015–2019) derived from the CABLE BIOS3 model (light green dashed line), MODIS
(dark green dashed line), and the DIFFUSE model (pink dashed line).
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Figure C2. Time series of the 3-month running mean GPP anomalies derived from the CABLE BIOS3 model (light green dashed line),
MODIS (dark green dashed line), and the DIFFUSE model (orange dashed line) between 2015 and 2019.
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Appendix D: Carbon flux anomalies aggregated by
bioclimatic regions

Figure D1. Time series of the 3-month running mean posterior (black line) and prior (grey line) terrestrial CO2 flux anomalies (PgC yr−1)
and 3-month running mean EVI anomalies (turquoise dashed line) between 2015 and 2019 aggregated by four agroclimatic regions: (a)
tropics, (b) warm temperate, (c) cool temperate, and (d) Mediterranean. The grey shaded area represents a 1.0 standard deviation range
around the mean for the prior and posterior flux uncertainty.
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Appendix E: Spatial distribution of OCO-2 soundings
(land nadir and glint data) over the CMAQ domain for
2015

Figure E1. Spatial distribution of OCO-2 soundings (land nadir and glint data) over the CMAQ domain for 2015.
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Appendix F: Analysis of the residual TCCON

Table F1. Analysis of the residual between CMAQ prior and posterior simulation values and the TCCON Darwin site for the 2015–2019
period, showing the averaged bias (Bias), root-mean-square error (RMSE), and Pearson coefficient (R).

Darwin

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015-01 0.12 0.51 0.81 -0.04 0.82 0.75 2017-01 – – – – – – 2019-01 – – – – –
2015-02 0.69 0.85 0.78 0.38 0.63 0.78 2017-02 – – – – – – 2019-02 −1.31 1.34 −0.49 −1.40 1.43 −0.61
2015-03 0.93 1.10 0.14 0.18 0.59 0.29 2017-03 0.32 0.58 0.60 −1.34 1.45 0.59 2019-03 −0.78 0.87 0.60 −1.42 1.55 0.39
2015-04 0.85 0.94 0.38 0.60 0.74 0.42 2017-04 – – – – – – 2019-04 – – – – – -
2015-05 0.97 1.05 0.37 0.90 0.99 0.52 2017-05 – – – – – – 2019-05 – – – – – –
2015-06 0.90 0.97 0.21 1.24 1.27 0.23 2017-06 −0.12 0.44 −0.02 0.24 0.46 0.25 2019-06 – – – – – –
2015-07 1.51 1.55 −0.18 1.07 1.10 0.22 2017-07 −0.13 0.74 0.07 0.04 0.69 0.16 2019-07 – – – – – –
2015-08 1.44 1.46 0.34 1.06 1.10 0.35 2017-08 0.19 0.39 0.09 0.28 0.49 0.15 2019-08 – – – – – –
2015-09 1.12 1.16 0.02 0.81 0.86 0.10 2017-09 −0.15 0.32 0.14 −0.16 0.31 0.13 2019-09 −0.30 0.66 0.25 −0.40 0.73 0.18
2015-10 0.55 0.63 0.53 0.63 0.69 0.62 2017-10 −0.92 1.05 0.42 −0.51 0.72 0.46 2019-10 −0.91 1.01 0.72 −0.87 0.95 0.78
2015-11 −0.25 0.51 0.66 0.11 0.42 0.75 2017-11 −1.12 1.21 0.06 −0.76 0.99 −0.20 2019-11 −1.31 1.37 0.70 −0.96 1.06 0.61
2015-12 −0.34 0.48 0.18 −0.02 0.31 0.26 2017-12 −0.67 0.79 0.37 −0.74 0.97 0.26 2019-12 −1.37 1.43 0.35 −1.22 1.32 0.26
2016-01 0.27 0.55 0.39 0.09 0.60 0.28 2018-01 −0.57 0.85 0.08 −1.15 1.30 −0.08
2016-02 0.34 0.63 0.34 −0.25 0.66 0.29 2018-02 −0.90 1.04 0.08 −1.98 2.11 −0.13
2016-03 0.44 0.63 0.36 −0.09 0.58 0.30 2018-03 −0.62 1.06 −0.65 −1.46 1.67 −0.59
2016-04 0.80 0.93 0.34 0.86 0.95 0.48 2018-04 – – – – – –
2016-05 0.26 0.41 0.58 0.41 0.53 0.54 2018-05 – – – – – –
2016-06 0.37 0.45 0.16 0.21 0.38 0.18 2018-06 −0.27 0.51 −0.08 −0.09 0.40 0.22
2016-07 0.18 0.42 0.17 0.07 0.38 0.34 2018-07 −0.34 0.52 −0.16 −0.34 0.48 0.04
2016-08 0.09 0.33 0.04 −0.07 0.33 0.27 2018-08 −0.34 0.49 0.05 −0.94 0.99 0.07
2016-09 −0.17 0.40 0.25 −0.20 0.40 0.26 2018-09 −0.57 0.69 0.09 −0.90 0.99 0.09
2016-10 −0.31 0.42 0.01 −0.30 0.47 0.27 2018-10 – – – – – –
2016-11 −0.40 0.42 0.75 −0.43 0.47 0.67 2018-11 – – – – – –
2016-12 – – – – – – 2018-12 – – – – – –

Table F2. Analysis of the residual between CMAQ prior and posterior simulation values and the TCCON Lauder site for the 2015–2019
period, showing the averaged bias (Bias), root-mean-square error (RMSE), and Pearson coefficient (R).

Lauder

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015–01 0.48 0.58 0.31 0.71 0.85 0.06 2017–01 0.571 0.71 0.39 0.60 0.79 0.39 2019–01 0.89 1.01 0.53 1.10 1.38 0.55
2015–02 0.61 0.74 0.22 1.03 1.17 0.34 2017–02 0.187 0.41 0.24 0.65 1.03 0.07 2019–02 0.94 1.02 0.21 1.10 1.40 0.12
2015–03 0.54 0.62 0.51 0.73 0.84 0.53 2017–03 0.16 0.41 0.35 0.27 0.48 0.35 2019–03 0.64 0.75 0.53 0.95 1.25 0.69
2015–04 0.50 0.59 0.77 0.51 0.60 0.79 2017–04 0.35 0.52 0.22 0.20 0.32 0.21 2019–04 0.83 0.88 0.58 0.80 0.94 0.54
2015–05 0.82 0.89 0.30 0.83 0.90 0.23 2017–05 0.191 0.40 0.54 0.16 0.24 0.59 2019–05 0.73 0.81 0.65 0.62 0.75 0.67
2015–06 0.65 0.86 0.60 0.61 0.82 0.56 2017–06 0.44 0.58 0.77 0.32 0.46 0.76 2019–06 0.63 0.76 0.85 0.46 0.68 0.82
2015–07 0.69 0.82 0.79 0.64 0.79 0.76 2017–07 0.44 0.56 0.30 0.26 0.39 0.38 2019–07 0.81 0.88 0.73 0.65 0.80 0.69
2015–08 0.57 0.64 0.64 0.57 0.64 0.66 2017–08 0.71 0.81 0.64 0.63 0.87 0.63 2019–08 1.14 1.22 0.75 1.15 1.42 0.74
2015–09 0.71 0.73 0.83 0.63 0.67 0.83 2017–09 1.30 1.35 0.73 1.58 1.76 0.71 2019–09 0.96 1.07 0.60 0.97 1.24 0.63
2015–10 0.75 0.82 0.65 0.74 0.82 0.59 2017–10 1.01 1.08 0.72 1.28 1.51 0.76 2019–10 1.09 1.13 0.72 1.23 1.42 0.62
2015–11 0.52 0.72 0.36 0.43 0.65 0.37 2017–11 0.74 0.90 0.50 0.79 0.97 0.50 2019–11 0.99 1.06 0.79 1.09 1.33 0.78
2015–12 0.71 0.76 0.79 0.77 0.81 0.81 2017–12 0.83 0.91 0.63 1.37 1.65 0.67 2019–12 1.03 1.10 0.70 0.82 1.11 0.52
2016–01 0.43 0.51 0.81 0.40 0.51 0.78 2018–01 0.64 0.73 0.33 1.04 1.43 0.16
2016–02 0.23 0.40 0.54 0.18 0.33 0.49 2018–02 0.52 0.61 0.62 0.46 0.62 0.63
2016–03 0.24 0.45 0.57 0.23 0.32 0.53 2018–03 0.59 0.74 0.35 0.52 0.83 0.33
2016–04 0.17 0.45 0.72 0.19 0.25 0.71 2018–04 0.63 0.74 0.44 0.53 0.71 0.42
2016–05 0.39 0.54 0.61 0.29 0.46 0.55 2018–05 0.91 1.04 0.40 0.99 1.46 0.39
2016–06 0.21 0.50 0.44 0.22 0.38 0.48 2018–06 0.70 0.89 −0.42 0.68 0.98 −0.44
2016–07 0.59 0.78 0.74 0.58 0.82 0.74 2018–07 0.99 1.03 0.69 0.88 1.13 0.43
2016–08 0.32 0.55 0.55 0.30 0.41 0.55 2018–08 0.75 0.79 0.77 0.60 0.72 0.78
2016–09 0.31 0.62 0.11 0.34 0.62 0.16 2018–09 0.96 1.03 0.41 0.94 1.16 0.45
2016–10 0.30 0.55 0.10 0.58 0.75 0.37 2018–10 1.011 1.11 0.48 1.34 1.58 0.55
2016–11 0.93 0.97 0.68 1.30 1.47 0.66 2018–11 1.25 1.30 0.63 2.10 2.31 0.65
2016–12 0.58 0.78 0.22 1.16 1.78 0.16 2018–12 1.35 1.40 0.33 2.897 3.15 0.33
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Table F3. Analysis of the residual between CMAQ prior and posterior simulation values and the TCCON Wollongong site for the 2015–2019
period, showing the averaged bias (Bias), root-mean-square error (RMSE), and Pearson coefficient (R).

Wollongong

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015–01 −0.04 0.72 0.21 0.07 0.75 0.23 2017–01 −0.76 0.99 0.25 −0.35 0.84 0.16 2019–01 −2.20 2.55 0.07 −2.23 2.51 0.20
2015–02 −0.21 0.56 0.48 0.16 0.63 0.51 2017–02 −0.79 1.08 0.37 −0.82 1.13 0.14 2019–02 −0.47 0.84 0.28 −0.65 0.93 0.32
2015–03 0.66 0.94 0.19 0.51 0.88 0.16 2017–03 −0.83 1.26 −0.07 −0.82 1.32 0.01 2019–03 −0.33 0.65 0.48 −0.51 0.78 0.45
2015–04 0.72 0.96 0.07 0.82 1.06 0.15 2017–04 −0.52 1.11 0.03 −0.55 1.13 −0.09 2019–04 −0.50 0.83 0.16 −0.65 0.95 0.16
2015–05 1.26 1.40 0.12 1.54 1.72 0.02 2017–05 −0.42 0.66 0.31 −0.50 0.74 0.26 2019–05 0.03 0.67 0.26 −0.06 0.71 0.21
2015–06 1.41 1.53 0.68 1.61 1.72 0.68 2017–06 −0.24 0.53 0.67 −0.24 0.53 0.68 2019–06 0.20 0.75 0.17 −0.14 0.60 0.40
2015–07 1.37 1.56 0.32 1.14 1.38 0.28 2017–07 −0.01 0.55 0.42 −0.11 0.59 0.37 2019–07 0.17 0.70 0.17 −0.04 0.62 0.17
2015–08 1.42 1.57 0.25 1.61 1.76 0.28 2017–08 0.17 0.89 −0.19 0.16 0.91 −0.19 2019–08 −0.29 0.52 0.82 −0.77 0.87 0.79
2015–09 1.19 1.44 0.16 1.11 1.42 0.19 2017–09 0.31 0.86 −0.06 0.17 0.68 0.12 2019–09 −0.05 0.67 −0.10 −0.67 0.98 −0.18
2015–10 0.07 0.72 0.03 0.29 0.83 0.00 2017–10 – – – – – – 2019–10 −0.36 0.64 0.38 −0.74 0.97 0.22
2015–11 −0.74 1.22 −0.08 −0.40 1.13 −0.05 2017–11 – – – – – – 2019–11 −0.14 0.80 0.62 −0.63 0.95 0.69
2015–12 −0.45 0.69 0.14 −0.60 0.85 −0.03 2017–12 – – – – – – 2019–12 0.99 1.77 0.67 −1.31 1.44 0.69
2016–01 −0.29 0.51 0.58 −0.19 0.42 0.50 2018–01 – – – – – –
2016–02 −0.93 1.09 0.24 −1.00 1.18 −0.13 2018–02 – – – – – –
2016–03 −0.18 0.56 0.59 −0.36 0.69 0.54 2018–03 −0.72 0.94 0.47 −0.98 1.15 0.30
2016–04 0.10 0.69 −0.20 0.07 0.57 −0.19 2018–04 −0.221 0.66 0.52 −0.59 0.78 0.55
2016–05 −0.07 0.65 0.31 −0.12 0.71 0.17 2018–05 −0.011 0.59 0.20 −0.17 0.58 0.11
2016–06 −0.21 0.71 −0.13 −0.52 0.87 −0.16 2018–06 −0.03 0.39 0.72 −0.11 0.45 0.66
2016–07 0.04 0.66 0.52 −0.05 0.71 0.49 2018–07 −0.15 0.65 0.21 −0.33 0.68 0.19
2016–08 0.48 0.80 0.17 0.07 0.70 0.22 2018–08 0.08 0.51 0.42 0.23 0.57 0.37
2016–09 −0.05 0.89 0.40 −0.37 1.05 0.36 2018–09 −0.25 0.78 0.13 −0.49 0.91 0.03
2016–10 −0.14 0.78 0.17 −0.16 0.86 0.16 2018–10 −0.352 0.78 −0.08 −0.64 1.00 −0.22
2016–11 −0.53 0.93 0.30 0.41 0.87 0.32 2018–11 −0.808 1.05 0.64 −0.29 0.93 0.52
2016–12 −0.77 1.1305 0.06 −0.13 0.87 0.07 2018–12 −1.10 1.31 0.66 −0.81 1.10 0.75

Appendix G: Analysis of the residual in situ data

Table G1. Analysis of the residual between CMAQ prior and posterior simulation values and the Cape Grim site for the 2015–2019 period,
showing the averaged bias (Bias), root-mean-square error (RMSE), and Pearson coefficient (R).

Cape Grim

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015–01 −2.31 3.38 0.28 −2.33 3.22 0.28 2017–01 −2.27 3.15 0.01 −2.04 2.48 0.59 2019–01 −1.81 3.15 −0.11 −2.99 3.65 0.07
2015–02 −2.65 3.68 0.57 −2.59 3.91 0.53 2017–02 −2.08 2.93 −0.11 −1.99 2.53 0.40 2019–02 −1.13 3.06 −0.14 −2.22 2.98 0.31
2015–03 −1.25 2.02 0.53 −2.70 3.07 0.29 2017–03 −1.70 4.22 0.17 −2.60 4.57 0.24 2019–03 −1.67 3.33 0.37 −2.51 3.22 0.60
2015–04 −2.33 3.22 0.41 −2.16 3.54 0.19 2017–04 −2.23 3.21 0.58 −1.95 3.25 0.45 2019–04 −1.60 3.46 −0.24 −2.79 3.41 0.49
2015–05 −1.85 3.27 0.36 −0.60 2.82 0.46 2017–05 −2.22 4.21 0.06 −2.71 3.95 0.30 2019–05 −2.46 3.64 0.22 −2.60 3.46 0.46
2015–06 −1.77 2.79 0.14 −0.88 2.28 0.20 2017–06 −1.77 2.81 −0.01 −2.17 2.88 0.21 2019–06 −2.31 3.81 −0.07 −6.70 8.35 −0.59
2015–07 −0.96 2.05 0.10 −2.18 3.20 −0.03 2017–07 −1.64 2.71 −0.06 −3.01 3.65 0.30 2019–07 −1.50 2.37 −0.15 −2.80 3.18 0.30
2015–08 −1.91 2.93 −0.05 −2.12 3.22 0.02 2017–08 −1.66 2.37 0.09 −1.82 2.46 0.01 2019–08 −1.64 2.45 −0.17 −4.35 4.98 0.21
2015–09 −2.29 3.63 −0.02 −4.18 4.94 0.16 2017–09 −1.08 2.02 −0.02 −1.55 2.17 0.10 2019–09 −2.23 2.95 0.19 −4.35 4.97 −0.31
2015–10 −2.34 3.44 0.08 −2.52 3.75 0.00 2017–10 −2.03 2.93 0.03 −3.26 4.07 −0.14 2019–10 −2.58 4.07 0.13 −4.71 6.14 −0.18
2015–11 −2.35 3.32 0.34 −3.07 4.28 −0.06 2017–11 −1.60 3.09 0.09 0.76 3.38 0.52 2019–11 −1.81 2.94 0.52 −2.14 3.61 −0.05
2015–12 −1.86 2.51 0.58 −2.34 2.89 0.49 2017–12 −1.88 2.51 0.07 −1.77 2.44 0.38 2019–12 −1.31 3.86 −0.07 −5.14 5.76 0.05
2016–01 −1.53 2.44 0.60 −2.40 3.01 0.55 2018–01 −2.23 3.96 0.05 −2.88 3.66 0.46
2016–02 −2.28 3.49 0.35 −3.65 4.78 0.06 2018–02 −1.72 3.92 −0.08 −3.52 4.20 0.48
2016–03 −1.64 2.79 0.43 −3.54 4.25 0.19 2018–03 −1.80 2.88 0.05 −2.95 3.38 0.16
2016–04 −2.15 3.22 0.57 −3.26 4.20 0.40 2018–04 −1.85 3.71 0.05 −3.48 4.36 0.20
2016–05 −1.62 2.51 0.68 −1.56 2.60 0.61 2018–05 −1.55 2.74 0.22 −3.14 3.91 0.01
2016–06 −2.26 3.23 0.28 −2.96 3.80 0.28 2018–06 −1.89 3.18 0.07 −2.03 3.04 0.27
2016–07 −1.22 2.07 0.52 −1.64 2.32 0.55 2018–07 −1.38 2.28 −0.06 −2.59 3.19 0.01
2016–08 −1.42 2.74 0.31 −3.24 3.90 0.60 2018–08 −1.35 2.11 0.05 −1.37 2.23 0.29
2016–09 −1.43 2.61 0.24 −1.60 2.77 0.22 2018–09 −1.69 2.79 −0.16 −2.44 3.08 0.15
2016–10 −2.36 2.82 0.48 −2.22 2.79 0.48 2018–10 −1.61 2.70 0.13 −2.94 3.46 0.31
2016–11 −2.79 3.47 0.03 −1.89 2.50 0.56 2018–11 −1.97 3.35 0.15 −0.85 3.17 0.30
2016–12 −2.22 3.26 0.30 −1.15 2.96 0.38 2018–12 −2.05 3.53 −0.20 −1.17 2.78 0.36
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Table G2. Analysis of the residual between CMAQ prior and posterior simulation values and the Gunn Point site for the 2015–2019 period,
showing the averaged bias (Bias), root-mean-square error (RMSE), and Pearson coefficient (R).

Gunn Point

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015–01 −1.16 4.83 0.37 −2.11 4.87 0.26 2017–01 – – – – – – 2019–01 −3.19 5.56 −0.20 −7.19 9.22 -0.07
2015–02 -2.88 4.73 0.41 −3.55 4.07 0.47 2017–02 – – – – – – 2019–02 −5.04 5.80 0.24 −6.25 7.12 0.28
2015–03 −1.93 4.21 −0.06 −3.36 4.84 −0.06 2017–03 – – – – – – 2019–03 −2.99 4.37 0.37 −6.36 7.13 0.30
2015–04 −1.07 2.92 0.33 −2.74 3.44 0.28 2017–04 – – – – – – 2019–04 −0.27 4.03 0.27 2.12 5.48 0.29
2015–05 −1.76 2.78 0.35 −3.65 3.38 0.53 2017–05 – – – – – – 2019–05 −1.40 3.42 0.45 0.11 4.24 0.60
2015–06 −0.96 1.68 0.29 1.90 4.07 0.31 2017–06 – – – – – – 2019–06 −0.23 1.75 0.45 −4.04 3.70 0.57
2015–07 −2.53 16.46 0.00 −7.71 17.67 0.06 2017–07 – – – – – – 2019–07 1.69 2.65 0.01 −2.12 3.78 0.20
2015–08 1.70 2.43 0.41 −2.88 4.21 0.25 2017–08 – – – – – – 2019–08 1.17 4.47 -0.03 −1.75 4.59 −0.12
2015–09 1.81 2.13 0.28 −0.32 1.54 0.04 2017–09 – – – – – – 2019–09 2.69 3.02 0.23 1.08 1.42 0.47
2015–10 2.19 2.44 0.15 3.24 3.84 −0.03 2017–10 – – – – – – 2019–10 2.31 3.25 −0.30 3.51 4.28 −0.01
2015–11 −0.52 2.30 −0.67 0.66 2.63 −0.63 2017–11 – – – – – – 2019–11 −0.63 1.99 −0.04 2.21 2.52 0.18
2015–12 −2.69 3.34 0.38 −4.03 4.45 0.36 2017–12 – – – – – – 2019–12 −1.36 2.11 0.15 −0.42 3.96 0.03
2016–01 −3.70 4.66 0.16 −3.74 3.95 0.16 2018–01 – – – – – –
2016–02 −3.40 4.71 0.33 −5.19 6.22 0.36 2018–02 – – – – – –
2016–03 −2.74 4.03 −0.02 −3.30 4.30 0.02 2018–03 – – – – – –
2016–04 1.21 3.14 -0.38 1.92 3.12 −0.03 2018–04 – – – – – –
2016–05 −1.69 4.84 −0.27 −0.50 4.45 0.02 2018–05 – – – – – –
2016–06 −2.91 3.12 0.68 −4.28 4.02 0.79 2018–06 – – – – – –
2016–07 – – – – – – 2018–07 – – – – – –
2016–08 – – – – – – 2018–08 0.51 1.61 0.47 −6.16 5.70 −0.29
2016–09 – – – – – – 2018–09 0.83 1.37 0.15 −1.95 1.65 0.01
2016–10 – – – – – – 2018–10 0.09 0.76 0.39 0.89 0.92 0.77
2016–11 – – – – – – 2018–11 −4.24 4.63 −0.11 −4.08 5.45 0.05
2016–12 – – – – – – 2018–12 −3.63 4.60 0.02 −4.70 5.88 0.31

Table G3. Analysis of the residual between CMAQ prior and posterior simulation values and the Iron bark site for the 2015–2019 period,
showing the averaged bias (Bias), root-mean-square error (RMSE), and Pearson coefficient (R).

Iron Bark

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015–01 −1.61 2.28 0.32 0.43 2.33 0.23 2017–01 −1.02 1.09 0.77 0.82 0.90 0.01 2019–01 – – – – – –
2015–02 −1.07 1.30 0.44 0.71 1.14 0.06 2017–02 – – – – – – 2019–02 – – – – – –
2015–03 −0.34 2.85 0.35 −1.32 3.61 0.49 2017–03 – – – – – – 2019–03 – – – – – –
2015–04 -1.11 2.13 0.50 −1.48 2.52 0.00 2017–04 – – – – – – 2019–04 – – – – – –
2015–05 −2.15 2.77 0.37 −1.56 2.45 0.00 2017–05 – – – – – – 2019–05 – – – – – –
2015–06 −2.12 2.63 0.46 −2.29 3.26 0.83 2017–06 – – – – – – 2019–06 – – – – – –
2015–07 −0.35 1.66 0.49 −2.33 2.77 0.00 2017–07 – – – – – – 2019–07 – – – – – –
2015–08 1.44 2.55 0.26 0.92 2.84 0.87 2017–08 – – – – – – 2019–08 – – – – – –
2015–09 1.27 1.83 0.55 1.58 2.40 0.00 2017–09 – – – – – – 2019–09 – – – – – –
2015–10 −0.81 2.04 0.28 −0.90 2.04 0.00 2017–10 – – – – – – 2019–10 – – – – – –
2015–11 −2.28 2.86 0.53 0.05 1.93 0.00 2017–11 – – – – – – 2019–11 – – – – – –
2015–12 -1.50 2.77 0.50 −3.33 4.34 0.00 2017–12 – – – – – – 2019–12 – – – – – –
2016–01 −1.05 1.97 0.62 −1.61 2.83 0.00 2018–01 – – – – – –
2016–02 −1.60 2.99 0.24 −1.04 3.49 0.04 2018–02 −12.94 20.86 0.99 −11.41 21.61 0.18
2016–03 −1.27 2.10 0.42 −1.50 2.20 0.00 2018–03 – – – – – –
2016–04 0.37 1.58 0.53 0.91 2.21 0.00 2018–04 −5.00 9.30 0.20 −6.95 10.66 0.72
2016–05 −0.09 1.71 0.40 −2.02 2.52 0.00 2018–05 – – – – – –
2016–06 −2.12 2.87 0.16 −4.22 4.99 0.64 2018–06 – – – – – –
2016–07 −0.43 2.34 0.34 −3.83 4.47 0.00 2018–07 – – – – – –
2016–08 1.10 2.44 0.21 −2.25 3.59 0.02 2018–08 – – – – – –
2016–09 1.63 3.86 0.23 0.68 3.39 0.00 2018–09 – – – – – –
2016–10 −0.04 1.53 −0.51 −0.26 2.00 0.00 2018–10 – – – – – –
2016–11 −0.96 1.60 0.66 1.65 3.03 0.11 2018–11 – – – – – –
2016–12 – – – – – – 2018–12 – – – – – –
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Table G4. Analysis of the residual between CMAQ prior and posterior simulation values and the Burncluith site for the 2015–2019 period,
showing the averaged bias (Bias), root-mean-square error (RMSE), and Pearson coefficient (R).

Burncluith

Months Prior Posterior Months Prior Posterior Months Prior Posterior

yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R yyyy-mm Bias RMSE R Bias RMSE R

2015–01 – – – – – – 2017–01 −0.44 2.74 0.34 0.21 2.68 0.28 2019–01 – – – – – –
2015–02 – – – – – – 2017–02 0.368 1.77 0.34 1.39 1.97 0.68 2019–02 – – – – – –
2015–03 – – – – – – 2017–03 −1.06 2.24 0.21 0.58 2.61 0.12 2019–03 – – – – – –
2015–04 – – – – – – 2017–04 −0.77 2.02 0.36 0.31 1.60 0.65 2019–04 – – – – – –
2015–05 – – – – – – 2017–05 −1.77 2.55 0.33 −1.28 2.02 0.56 2019–05 – – – – – –
2015–06 – – – – – – 2017–06 −0.7 1.82 0.16 −1.79 2.49 0.14 2019–06 – – – – – –
2015–07 0.86 2.12 0.41 −1.03 2.33 0.29 2017–07 −0.75 2.46 0.23 −2.58 3.60 −0.07 2019-07 – – – – – –
2015–08 2.20 3.06 0.38 1.57 3.10 0.09 2017–08 1.133 1.79 0.25 0.90 1.54 0.47 2019–08 – – – – – –
2015–09 2.03 2.69 0.44 2.08 3.16 0.27 2017–09 1.226 1.72 0.50 0.83 1.07 0.84 2019–09 – – – – – –
2015–10 0.21 1.84 0.26 0.01 1.87 0.20 2017–10 −1.24 3.07 0.48 0.94 2.44 0.72 2019–10 – – – – – –
2015–11 −1.24 2.23 0.73 1.21 2.30 0.69 2017–11 −0.37 1.98 -0.10 2.80 3.28 0.20 2019–11 – – – – – –
2015–12 0.33 2.52 0.45 −1.32 3.23 0.21 2017–12 −1 1.94 0.28 0.41 1.51 0.50 2019–12 – – – – – –
2016–01 0.92 2.78 0.46 0.01 3.30 −0.11 2018–01 −0.16 1.99 0.60 −0.93 2.17 0.63
2016–02 −0.35 2.88 0.14 0.16 3.50 −0.22 2018–02 −2.31 3.11 0.38 −2.47 3.40 0.17
2016–03 −0.50 2.06 0.58 −0.58 2.04 0.59 2018–03 −0.27 2.77 0.37 −0.23 3.08 0.09
2016–04 1.78 2.90 0.30 2.13 3.20 0.27 2018–04 −0.32 1.84 0.49 −1.58 2.11 0.51
2016–05 0.92 2.05 0.30 −1.04 2.05 0.14 2018–05 −0.46 3.01 0.04 -1.47 3.35 −0.08
2016–06 −1.46 2.59 0.12 −3.57 4.68 −0.13 2018–06 – – – – – –
2016–07 −0.482 1.99 0.38 −3.90 4.45 0.40 2018–07 – – – – – –
2016–08 0.5448 2.52 0.07 −2.79 4.26 −0.02 2018–08 – – – – – –
2016–09 1.1873 2.70 0.58 0.36 2.37 0.62 2018–09 – – – – – –
2016–10 0.8141 1.79 0.48 0.43 2.06 0.13 2018–10 – – – – – –
2016–11 −0.308 1.96 0.55 1.63 3.75 −0.08 2018–11 – – – – – –
2016–12 −0.548 1.34 0.78 0.62 1.44 0.77 2018–12 – – – – – –

Appendix H: Prior, posterior, and GPP flux anomaly
correlation analysis

Table H1. The Pearson correlation (R) values of prior and posterior climatological seasonal fluxes with GPP fluxes derived from the respec-
tive CABLE BIOS3, MODIS, and DIFFUSE models.

Bioclimate regions Climatological seasonal cycle (2015–2019)

Prior and posterior Prior and CABLE BIOS3 GPP Prior and DIFFUSE GPP Prior and MODIS Post. and CABLE BIOS3 GPP Post. and DIFFUSE GPP Post. and MODIS

Tropics 0.73 −0.66 −0.50 −0.51 −0.46 −0.32 −0.33
Savanna 0.67 −0.58 −0.40 −0.40 −0.40 −0.25 −0.32
Warm temperate 0.57 0.19 0.35 0.28 0.26 0.42 0.30
Cool temperate 0.76 −0.28 −0.17 −0.27 −0.11 −0.03 −0.15
Mediterranean 0.83 −0.27 −0.15 −0.19 −0.30 −0.19 −0.26
Sparsely vegetated 0.33 −0.23 0.01 0.00 −0.21 −0.12 −0.30

Table H2. The Pearson correlation (R) values of prior and posterior flux anomalies with GPP anomalies derived from the respective CABLE
BIOS3, MODIS, and DIFFUSE models.

Bioclimate regions Anomaly correlations (2015–2019)

Prior and posterior Prior and CABLE BIOS3 GPP Prior and DIFFUSE GPP Prior and MODIS Post. and CABLE BIOS3 GPP Post. and DIFFUSE GPP Post. and MODIS

Tropics 0.59 −0.63 −0.20 −0.38 −0.34 −0.02 −0.15
Savanna 0.59 −0.73 −0.61 −0.63 −0.50 −0.45 −0.38
Warm temperate 0.43 −0.64 −0.52 −0.52 −0.32 −0.32 −0.29
Cool temperate 0.20 −0.65 −0.50 −0.52 0.10 −0.03 −0.09
Mediterranean 0.35 −0.71 −0.50 −0.45 −0.18 −0.16 −0.02
Sparsely vegetated 0.49 −0.46 −0.31 −0.34 −0.61 −0.49 −0.48
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