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Abstract. Emissions inventories are crucial inputs to air quality simulations and represent a major source of
uncertainty. Various methods have been adopted to optimise emissions inventories, yet in most cases the methods
were only applied to total anthropogenic emissions. We have developed a new approach that updates a priori
emission estimates by source sector, which are particularly relevant for policy interventions. At its core is a
perturbed emissions ensemble (PEE), constructed by perturbing parameters in an a priori emissions inventory
within their respective uncertainty ranges. This PEE is then input to an air quality model to generate an ensemble
of forward simulations. By comparing the simulation outputs with observations from a dense network, the initial
uncertainty ranges are constrained, and a posteriori emission estimates are derived. Using this approach, we were
able to derive the transport sector NOx emissions for a study area centred around Beijing in 2016 based on a
priori emission estimates for 2013. The absolute emissions were found to be 1.5–9× 104 Mg, corresponding to a
57 %–93 % reduction from the 2013 levels, yet the night-time fraction of the emissions was 67 %–178 % higher.
These results provide robust and independent evidence of the trends of traffic emission in the study area between
2013 and 2016 reported by previous studies. We also highlighted the impacts of the chemical mechanisms in the
underlying model on the emission estimates derived, which is often neglected in emission optimisation studies.
This work paves forward the route for rapid analysis and update of emissions inventories using air quality models
and routine in situ observations, underscoring the utility of dense observational networks. It also highlights some
gaps in the current distribution of monitoring sites in Beijing which result in an underrepresentation of large
point sources of NOx .
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1 Introduction

Nitrogen dioxide (NO2) is an important atmospheric trace
gas whose adverse health impacts have been extensively
studied. Controlled human exposure experiments have
shown associations between short-term exposure to very high
levels of NO2 and airway inflammation (Blomberg et al.,
1999), increased bronchial reactivity (Folinsbee, 1992), in-
creased susceptibility to respiratory virus infections (Goings
et al., 1989), etc. Chronic exposure to lower doses of NO2
(e.g. those currently observed in Europe and North Amer-
ica) has also been linked to lower lung function and deficits
in lung function growth among children (Gauderman et al.,
2000; Peters et al., 1999), chronic respiratory symptoms
(Zemp et al., 1999) and increased cardiopulmonary mortality
(Hoek et al., 2002) among adults in epidemiological studies.
A key challenge for these epidemiological studies is to sep-
arate out the health effects due to NO2 exposure from those
due to exposure to other pollutants, whose concentrations are
often highly correlated with those of NO2.

NO2 belongs to the highly reactive group of nitrogen ox-
ides (NOx), whose emissions occur primarily in the form
of nitric oxide (NO) with a small proportion of NO2 (i.e.
NOx =NO+NO2). NO is quickly oxidised by ozone (O3)
to NO2, which, in daylight hours, rapidly photolyses to re-
form NO and (via O(3P)) O3. Thus, during daytime, NO,
NO2 and O3 reach a photostationary state, typically on the
timescale of a few minutes (Leighton, 1961). The presence
of volatile organic compounds (VOCs) perturbs this null cy-
cle by producing hydroperoxyl radicals (HO2) and organic
peroxy radicals (RO2) which oxidise NO without consum-
ing O3, leading to faster NO-to-NO2 conversion and net O3
production. This results in a non-linear response of O3 con-
centrations to reductions in the emissions of NOx and VOCs
(Seinfeld and Pandis, 2016). It is therefore crucial to have
accurate emission estimates for developing effective and syn-
ergetic control strategies for these interdependent pollutants
(Cohan et al., 2005).

NOx can be produced from both anthropogenic and natu-
ral/biogenic sources such as fossil fuel combustion, biomass
burning, soil microbial processes and lightning (Lee et al.,
1997). Global total anthropogenic NOx emissions flattened
around 2008, as reductions in Europe and North America
were offset by increases in Asia (Hoesly et al., 2018). China,
in particular, witnessed a rapid rise in anthropogenic NOx
emissions until 2011–2012 (with the exceptions of a few re-
gions where the emissions peaked earlier), which resulted
from economic growth along with an absence of regula-
tions (van der A et al., 2017; Liu et al., 2016; Zheng et
al., 2018). Emission reduction targets were first announced
in the 12th Five-Year Plan (2011–2015) (People’s Repub-
lic of China, 2011), followed by the Action Plan on Pre-
vention and Control of Air Pollution (2013–2017) (State
Council of the People’s Republic of China, 2013) and the
Three-Year Action Plan for Winning the Blue Sky Defence

Battle (2018–2020) (State Council of the People’s Republic
of China, 2018). The main measures implemented included
the installation of selective catalytic reduction equipment in
power-generating and industrial facilities and the implemen-
tation of stricter vehicle emission standards combined with
accelerated fleet turnover (Liu et al., 2020). Decreases in an-
thropogenic sources are accompanied by an increased im-
portance of soil NOx emissions, which are largely driven
by nitrogen fertiliser application and can reach up to 20 %
of the anthropogenic emissions in the crop-growing season
in some regions with high agricultural activities (Lu et al.,
2021). These emissions are relatively poorly quantified and
currently unabated (State Council of the People’s Republic
of China, 2018).

Numerous studies have quantified China’s NOx emissions
and evaluated the short- or long-term trends in emissions.
Some have used a bottom-up method that combines specific
emission factors (i.e. mass of a pollutant emitted per unit fuel
consumption or industrial production) with the correspond-
ing activity rates (i.e. fuel consumption or industrial produc-
tion), thus providing sector- or process-resolved emission es-
timates (Liu et al., 2016; Zhang et al., 2009; Zhao et al.,
2013; Zheng et al., 2018). However, the underlying data are
mostly not immediately available, resulting in an inevitable
time lag between the occurrence of emissions and the estab-
lishment of an inventory (Janssens-Maenhout et al., 2015).
Moreover, they can introduce potentially large and poorly
quantified uncertainties into the emission estimates (Hong
et al., 2017; Zhao et al., 2011), which can be further prop-
agated through modelled pollutant concentrations into dis-
ease or mortality burden (Crippa et al., 2019) and economic
loss estimates (Solazzo et al., 2018). Other studies have in-
ferred top-down estimates of emissions using satellite obser-
vations (Ding et al., 2020; Lin et al., 2010; Qu et al., 2017;
Zhang et al., 2012). This method requires tropospheric col-
umn densities of NO2, which are retrieved by transforming
slant column densities to vertical column densities, remov-
ing the stratospheric contribution and correcting for the ef-
fects of albedo, cloud and aerosols (Leue et al., 2001). Ear-
lier studies used a mass balance approach that assumes a lin-
ear relationship between emission rates and column densi-
ties (Martin et al., 2003) or between the normalised differ-
ences in the two quantities (Lamsal et al., 2011). The linear
coefficient was determined from a chemical transport model
(CTM) using an a priori emissions inventory. The linear re-
lationship in one grid cell is assumed to be unaffected by at-
mospheric transport and chemistry in neighbouring grid cells
(Mijling and Van Der A, 2012; Streets et al., 2013). For pol-
lutants of longer lifetimes or at finer model resolutions, how-
ever, it is important to account for non-local sensitivities of
pollutant concentrations to emissions. Advanced data assim-
ilation techniques such as Kalman filter (Napelenok et al.,
2008), ensemble Kalman filter (Miyazaki et al., 2012) and
four-dimensional variational assimilation (Kurokawa et al.,
2009) have been increasingly adopted to combine satellite
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observations and CTM simulations with prior emission es-
timates to derive a posteriori emission estimates. These in-
verse methods provide more timely emission estimates of
high spatial and temporal coverage (based on the nature of
satellite observations). Nonetheless, the derived emission es-
timates are not resolved by source sector. They are also sub-
ject to uncertainties propagated from the satellite retrievals
and the model simulations. For instance, Archer-Nicholls
et al. (2021) showed large differences in the NO2 column
density simulated by two chemical mechanisms with differ-
ent treatment of non-methane volatile organic compounds
(NMVOCs), which are integrated into the same model with
identical NOx emissions. When used in inverse modelling,
these modelled NO2 quantities would result in different a
posteriori NOx emissions.

This study introduces a novel approach that provides
timely updates of a priori emission estimates by source sector
using readily available in situ air quality observations. Using
this approach, a priori NOx emissions in a bottom-up inven-
tory compiled for Beijing for the year 2013 are updated for
2016. Uncertainties associated with emission trends between
2013 and 2016 were sampled by a perturbed emissions en-
semble (PEE), which was constructed on the basis of an ex-
pert elicitation. The PEE was then input to an atmospheric
dispersion model to generate an ensemble of air quality sim-
ulations. By comparing the simulated surface concentrations
of NO, NO2 and O3 with observations from a dense moni-
toring network, the initially estimated uncertainties could be
reduced, and a posteriori emissions could be derived. The
sensitivity of the results to the chemical mechanisms in the
model was also evaluated.

2 Methods

2.1 Observations

Emission estimates were constrained using pollutant concen-
trations measured in ground-based networks of high spatio-
temporal resolution. NO2 and O3 are measured hourly at the
long-term air quality monitoring sites operated by the Beijing
Municipal Environmental Monitoring Center using reference
instruments. Figure 1 shows the 33 sites that were in opera-
tion in 2016 and located within the study area (also see Ta-
ble S1 in the Supplement), determined by extent of the base
emissions (see Sect. 2.2) and a classification according to the
local environment. Traffic monitoring sites are situated up to
20 m from the curbside of major roads, while urban and sub-
urban sites monitor air quality in built-up areas not in close
proximity to traffic in the six central districts and the outer
districts, respectively. Clean and regional background sites
that are away from built-up areas and major pollution sources
measure the baseline concentrations. In addition, measure-
ments at the regional background sites are representative of
pollution transport from and to neighbouring regions (Min-
istry of Environmental Protection of the People’s Republic of

China, 2013). We used provisional real-time measurements
from 2016 archived at https://quotsoft.net/air/ (last access:
22 August 2020), as ratified historical data are not publicly
available.

In addition, we used high-frequency (20 s) measurements
of NO, NO2 and O3 from November–December 2016, the
winter campaign period of the Atmospheric Pollution & Hu-
man Health in a Chinese Megacity (APHH-Beijing) research
programme (Shi et al., 2019). The measurements were made
with low-cost sensors also deployed in a variety of near-
surface locations in Beijing (with an average measurement
height of 8 m) and are hereinafter referred to as SNAQ (Sen-
sor Network for Air Quality) (Fig. 1 and Table S2). The
dataset has been validated against reference instrument mea-
surements also obtained during the campaign and those from
the aforementioned long-term monitoring sites.

2.2 Perturbed emissions ensemble

We used a special version of the Multi-resolution Emission
Inventory for China (MEIC) v1.3 (Li et al., 2017; Zheng
et al., 2018) developed for use in the APHH-Beijing pro-
gramme. The inventory characterises emissions of CO, NOx
(and NO2), total VOC (TVOC), SO2, PM10 and PM2.5 from
the industry, power, residential and transport sectors in 2013.
It extends 120 and 150 km in the north–south and east–west
directions, respectively, covering most of Beijing and parts
of Hebei Province with 3 km× 3 km horizontal resolution.
In the vertical, there are seven layers with the top of each
layer at 38, 90, 152, 228, 337, 480 and 660 m above ground,
respectively. Each source sector is associated with a specific
set of diurnal, monthly and vertical variation profiles that is
applied to emissions of all pollutants from the sector. This
inventory has been used to simulate street level air quality
(Biggart et al., 2020) and quantify regional pollution trans-
port (Panagi et al., 2020) and has been compared with di-
rect flux measurements (Squires et al., 2020). To focus on
locations where observations were available, we cropped the
original extent to a smaller region of 105 km× 144 km (start-
ing from the Northwest) and used it as the a priori emissions,
hereinafter referred to as the base emissions. Annual NOx
emissions in this region are shown in Fig. S1 by source sec-
tor.

NOx and TVOC emissions in Beijing were reported to
have decreased substantially between 2013 (the year of the
emission estimates) and 2016, when the observations were
made (Cheng et al., 2019; Xue et al., 2020). In the sur-
rounding provinces, NOx emissions also revealed a down-
ward trend, while no apparent trend has been identified for
TVOC emissions (Zheng et al., 2018). In addition to spa-
tial disparities, emissions from individual source sectors also
showed different patterns. In Beijing, for example, vehicle
emission control contributed the most NOx reductions, while
the largest TVOC decrease was found in the petrochemi-
cal industry (Cheng et al., 2019; Xue et al., 2020). Hence,
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Figure 1. The modelling domain as set by the extent of the base emissions (see Sect. 2.2) with the locations of air quality measurements
used in this study, including a magnified view of the area within the 5th Ring Road of Beijing (right panel). Long-term monitoring sites
are colour-coded according to the site type and labelled by their acronyms. Full names and coordinates are listed in Table S1. Locations of
low-cost sensor (SNAQ) measurements are shown in dark grey, and the coordinates can be found in Table S2. The weather station where the
input meteorological observations were made is marked by the grey star symbol. The administrative divisions of Beijing are shown by light
grey outlines.

uncertainties associated with the NOx emissions from each
sector in the base emissions were estimated separately. Due
to a lack of long-term observations, uncertainties associated
with the TVOC emissions were not investigated, the impact
of which on the constrained NOx emissions is discussed in
Sect. 4.

To reduce subjectivity, the uncertainties were determined
based on elicitation of expert knowledge. Table 1 shows the
NOx emission parameters investigated. To facilitate the ex-
pert elicitation and the subsequent construction of PEEs, the
parameters were defined as ratios of the 2016 values to the
corresponding 2013 estimates in the base emissions. An ex-
ception is the last parameter which represents the night-time
fraction (in percentage) of transport sector NOx emissions
in 2016, irrespective of that in 2013. It allowed for pertur-
bations to the diurnal distributions of traffic NOx emissions
on top of perturbations to the total magnitude. In the initial
PEE (see below and Sect. S1), the night-time fraction was de-
fined as emissions occurring between 23:00 and 06:00 local
time (UTC+8) (inclusive) following Biggart et al. (2020),
who provided evidence of an underestimation in the night-
time vehicle sources of NOx in the a priori emissions inven-
tory. This was attributed to an underrepresentation of emis-
sions from heavy duty diesel trucks, which typically travel
from surrounding provinces into Beijing at night, as they
are banned from entering the central urban areas during the
day. After reviewing a previous study which summarised the
varying traffic rules and restrictions for different types of

vehicles in Beijing (Zhang et al., 2019), the definition was
modified to traffic NOx emitted during 00:00–05:00 LT (in-
clusive) for the adjusted PEE.

To simultaneously perturb the total magnitude and the ver-
tical distribution of emissions, the three-dimensional indus-
try sector was split into two parameters, namely ground-level
emissions (i.e. from the lowest vertical layer) and elevated
emissions (i.e. from all upper layers). This was also intended
for the power sector. However, as emissions from the sector
are present in all but the lowest layer, their vertical variation
profile was effectively unchanged in the initial PEE. The is-
sue was fixed by introducing two new parameters for power
sources below and above 152 m (top height of the fourth ver-
tical layer), respectively, for the adjusted PEE. Residential
and transport emissions are only found in the ground layer
and were thus represented each by a single parameter.

An online questionnaire was designed for the elici-
tation (available at https://cambridge.eu.qualtrics.com/jfe/
form/SV_3eGxf9XvC7WXESV, last access: 14 April 2022)
and circulated via the mailing list of the APHH-Beijing pro-
gramme. A total of seven responses was received. Despite
constituting a relatively small group, the participants in-
cluded researchers with expertise in compiling an emissions
inventory for the region of interest and researchers who used
the same a priori emissions inventory in their own work. The
fact that their responses were largely consistent also backs
the credibility of the results. Specifically, the participants
were invited to advise a lower and an upper bound of un-
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Table 1. Emission parametersa and the respective uncertainty ranges sampled by the initial and the adjusted perturbed emissions ensembles
(PEEs). n/a – not applicable.

Parameter Initial Adjusted
PEE PEE

Min Max Min Max

Industry sector ground-level NOx emissions 0.4 1.6 0.05 1.6
Industry sector elevated NOx emissions 0.4 1.4 0.05 1.4
Power sector NOx emissionsb 0.2 1.4 n/a n/a
Power sector NOx emissions below 152 m n/a n/a 0.05 1.6
Power sector NOx emissions above 152 m n/a n/a 0.05 1.6
Residential sector NOx emissions 0.4 1.5 0.05 1.5
Transport sector NOx emissions 0.4 2 0.05 1.5
Night-time fraction of transport sector NOx emissionsc 10 40 10 30

a All parameters are defined as ratios of the 2016 emissions to the base emissions from 2013, except for the
night-time fraction of transport sector NOx emissions which is defined as a percentage (%) of the daily totals in
2016. b Power sector NOx emissions are effectively represented by one parameter in the initial PEE. In the adjusted
PEE, the emissions are split into two parameters, namely emissions below and above 152 m. c Night-time fraction
of transport sector NOx emissions is defined as those occurring during 23:00–06:00 LT in the initial PEE. In the
adjusted PEE, it is modified to NOx emitted during 00:00–05:00 LT from the transport sector.

certainty for each emission parameter, such that it would be
very unlikely for the true value to fall outside this range. The
responses from the first round of elicitation were sent back
to the participants anonymously for review. Finally, the max-
imum and minimum values advised by all participants for
each parameter in the second round were adopted (Table 1,
“Initial PEE” column). These wide uncertainty ranges also
compensated for the small size of the expert group.

Model simulations using the initial PEE as inputs showed
substantial overestimation of NO2 concentrations, such that
many members of the ensemble were unusable for constrain-
ing the emissions (see Sect. S1). Hence, we designed an ad-
justed PEE by decreasing the elicited lower bounds of uncer-
tainty for all parameters concerning the magnitude of NOx
emissions from a certain source sector. The upper bound of
uncertainty for the transport emissions was also reduced, as
the modelled diurnal concentration profiles indicated posi-
tive biases linked specifically to the sector. Lastly, the uncer-
tainty range of the night-time fraction of transport emissions
was adjusted following the new definition described above
(Table 1, “Adjusted PEE” column).

As this study also sought to improve emission estimates
of CO in the base emissions (the results of which are pre-
sented in Yuan et al., 2021), the uncertainty ranges of rel-
evant emission parameters were also elicited and modified
in the same processes as the NOx emission parameters. The
14 parameters in total (i.e. 7 for NOx , 7 for CO) determined
for the adjusted PEE constituted a 14-dimensional uncertain
space, which was probed efficiently using the maximin Latin
hypercube sampling, which maximises the minimum inter-
sample distance (Johnson et al., 1990). A rule of thumb is to
have a sample size 10 times the dimension (Loeppky et al.,
2009). We drew 140 samples, effectively doubling the sam-
ple size generally required (i.e. if only NOx emission param-

eters were perturbed). A simultaneous perturbation to both
CO and NOx was justified by the fact that CO is treated as an
inert pollutant in the model used (see Sect. 2.3); thus varying
CO emissions do not affect the modelled NOx concentrations
(and vice versa). The sample values were then used as spatio-
temporally uniform scaling factors to perturb the correspond-
ing values in the base emissions to construct a 140-member
PEE, hereinafter referred to as the adjusted PEE. Figure 2
shows the total NOx emissions by source sector and vertical
layer and the mean diurnal variations of NOx emissions in
the ensemble members. In each member, the set of scaling
factors applied to NOx was also applied to the emissions of
NO2, such that primary NO2 (f -NO2, i.e. the proportion of
NOx emitted directly as NO2) in the base emissions remained
unchanged, with a value of 6.7 % in all source sectors (and
thus grid cells). In reality, however, the f -NO2 varies be-
tween sectors. Much attention has been paid to the f -NO2 in
vehicle exhausts, while little is known about the f -NO2 in
residential emissions. It is thus difficult to evaluate whether
the 6.7 % in the base emissions is representative of the aggre-
gated NOx emissions in the study area.

2.3 Model description and simulation setup

We used ADMS-Urban (version 4.2), a state-of-the-
art urban-scale high-resolution quasi-Gaussian dispersion
model (McHugh et al., 1997; Owen et al., 2000). The model
has been applied in air quality simulations in cities world-
wide including Beijing (Biggart et al., 2020; He et al., 2019;
Hood et al., 2018). Dispersion calculations are based on the
state of the atmospheric boundary layer, which is parame-
terised based on Monin–Obukhov similarity theory (Venka-
tram, 1996). The parameterisation is explained in detail in
previous studies (e.g. Biggart et al., 2020). The minimum
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Figure 2. (a) Annual total NOx emissions shown by contributions
from individual source sectors in the 140-member adjusted per-
turbed emissions ensemble (PEE) and the base emissions (marked
by black frames). (b) Vertical distributions of the annual total NOx
emissions in the adjusted PEE and the base emissions. The height
represents the top height (above local ground level) of each verti-
cal layer. (c) Annual mean diurnal variations (in local time) in total
NOx emissions in the adjusted PEE and the base emissions. In pan-
els (b) and (c), the base emissions are marked by black lines and tri-
angle symbols, while the adjusted PEE members are colour-coded
according to their annual total NOx emissions, with darker colours
indicating higher values.

required meteorological input data including hourly wind
speed, wind direction and cloud cover were measured at
a weather station at Beijing Capital International Airport
(see Fig. 1) and archived in the NOAA Integrated Surface
Database (Smith et al., 2011). Local disturbance to the mean
flow field by individual buildings and street canyons was
not accounted for as such data were unavailable. Nonethe-
less, differences in the near-surface dynamics at the weather
observatory (situated in open landscape) and at the mea-
surement sites (the majority of which are located in built-
up areas) were represented by different values of roughness
length and minimum Obukhov length, as described in Yuan
et al. (2021).

Chemistry calculations are enabled by two fast chemistry
schemes for the NOx photolytic chemistry and the formation
of sulfate aerosols, respectively (Cambridge Environmental

Research Consults Limited, 2017). The former is based on
the Generic Reaction Set (Azzi et al., 1992) which reduces
the complex mechanisms involving NOx , O3 and VOCs to
seven reactions:

ROC+hν→ RP+ROC (R1)
RP+NO→ NO2 (R2)
NO2+hν→ NO+O3 (R3)
NO+O3→ NO2 (R4)
RP+RP→ RP (R5)
RP+NO2→ SGN (R6)
RP+NO2→ SNGN (R7)
2NO+O2→ 2NO2, (R8)

where ROC, RP, SGN and SNGN represent reactive organic
compounds, radical pool, stable gaseous nitrogen product
and stable non-gaseous nitrogen product, respectively. Re-
action (R8) has been added to the scheme in ADMS-Urban,
but its impact is only significant with sustained high levels
of NO concentrations (e.g. 1000 µg m−3 for several hours)
due to a small rate constant (Cambridge Environmental Re-
search Consults Limited, 2017). It is evident that only Re-
actions (R3) and (R4) are conservative chemical reactions,
while the rest represent approximations of multiple reactions
lumped together. For example, Reaction (R1) represents all
reactions that produce radicals via the photo-oxidation of
VOCs. Thus, the rate coefficients of these generic reactions
have been determined empirically by fitting the simulation
outputs to smog chamber data (Azzi et al., 1992). The rate
constant of the explicit reaction, Reaction (R3), can be cal-
culated from solar radiation, which is often estimated by
ADMS-Urban based on the input meteorological data, when
direct measurements are unavailable (as is the case in this
study). By appealing to NOx–O3 photostationary state, the
model also derives a NO2 photolysis rate from the back-
ground concentrations of NO, NO2 and O3 and takes the
lower value between the two (Cambridge Environmental Re-
search Consults Limited, 2017).

Background pollutant concentrations are thus required as
an input, not only to account for pollution sources not in-
cluded in the input emissions (e.g. transported from outside
the extent of the emissions inventory), but also to constrain
the reaction coefficients for reactive species. As mentioned in
Sect. 2.1, continuous measurements of NO2 and O3 are avail-
able from the long-term monitoring network. In each hour,
we input the inverse-distance-weighted mean of the concen-
trations at two of the clean or regional background sites (a
total of six; see Fig. 1) located to each side of the incom-
ing wind direction in that hour as the background in the ad-
justed PEE simulations. This was different from the initial
PEE simulations (see Sect. S1) which used a baseline con-
centration, defined as the 10th percentile of the concentra-
tions from all sites in a moving 3 h window. The method of
using a network baseline to represent the non-local pollution
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signal has previously been applied to CO, which is inert in
ADMS-Urban (Yuan et al., 2021) and NOx and O3 at a small
spatial scale (Popoola et al., 2018). At larger scales, however,
though it has been established that concentrations of total ox-
idants (Ox =O3+NO2) consist of a local component that
correlates with NOx emissions and a NOx-independent re-
gional component (Clapp and Jenkin, 2001; Han et al., 2011),
the partition of Ox between NO2 and O3 may be highly vari-
able in time and space due to their rapid interconversion and
reactions with other species. Using values measured at two
neighbouring sites away from major sources ensured a more
realistic partition of Ox in the adjusted PEE simulations. The
sensitivity of the simulation output to different definitions of
NO2 and O3 background concentrations is further investi-
gated in Sect. 4.

For NO and TVOC for which long-term measurements
were unavailable, we used upwind concentrations from the
Copernicus Atmosphere Monitoring Service (CAMS) re-
analysis dataset (Inness et al., 2019). At each time step (ev-
ery 3 h), we calculated the inverse-distance-weighted mean
of the values from the two grid cells in the lowest vertical
layer located directly outside of the modelling domain and to
each side of the incoming wind. The time series obtained was
then linearly interpolated to hourly resolution, as required
by ADMS-Urban. As TVOC is not a standard output vari-
able in the dataset, a sum of the eight available VOC species
was used to approximate TVOC. To validate this approach,
we compared the sum of mixing ratios of 29 VOC species
measured at the Institute of Atmospheric Physics, Chinese
Academy of Sciences during the APHH-Beijing winter cam-
paign with the approximate TVOC mixing ratios from the
corresponding grid cell in the reanalysis product during the
same period. Apart from a few peak events not seen in the
latter, the two time series show a good level of agreement,
both in terms of the trend and the magnitude (Fig. 3a). The
upwind NO mixing ratios extracted from the CAMS reanal-
ysis dataset were compared to NO baseline mixing ratios ex-
tracted from the SNAQ measurements. Figure 3b shows a
substantial positive bias in the NO extracted from the reanal-
ysis dataset, the cause of which remains unknown. To prevent
this bias from being propagated into the modelled concentra-
tions, a bias correction was applied using empirical quantile
mapping. This method equates the (empirically estimated)
cumulative distribution functions (i.e. quantile functions) of
the modelled and observed time series for regularly spaced
quantiles (Boé et al., 2007; Cannon et al., 2015). During the
campaign period, this significantly reduced the bias, while
the correlation was only slightly decreased. However, larger
uncertainties would have been introduced when the transfer
function was extrapolated to the entire time series of 2016,
which were unavoidable and difficult to quantify due to a lack
of long-term measurements. Yet these were likely smaller
than the uncertainties associated with using the uncorrected,
positively biased values obtained from the CAMS reanalysis
product.

Figure 3. (a) Mixing ratios of TVOC at the Institute of Atmo-
spheric Physics (IAP), Chinese Academy of Sciences, during the
APHH-Beijing winter campaign from the Copernicus Atmosphere
Monitoring Service (CAMS) reanalysis dataset, compared to obser-
vations. TVOC from the reanalysis product was approximated by
the sum of eight available VOC species. The observed TVOC was
calculated as the sum of 29 VOC species measured. (b) Original
and bias-corrected upwind mixing ratios of NO from the reanaly-
sis dataset (the latter were input as background pollution levels in
the PEE simulations), compared to baseline (10th percentile) mix-
ing ratios from the SNAQ measurements. For each reanalysis time
series, the data and the normalised mean bias (NMB) and Pearson’s
correlation coefficient (r) are shown in the same colour.

The input meteorology data and background pollutant con-
centrations described above provided the same lateral bound-
ary conditions for the 140 adjusted PEE simulations, among
which only the emissions of NOx (and NO2) varied. An addi-
tional simulation forced with these boundary conditions and
the base emissions was also performed and is hereinafter re-
ferred to as the base run. All 141 simulations were run for
the whole year of 2016 to produce hourly pollutant concen-
trations at each measurement location (see Fig. 1). Output
of these simulations was then compared to measurements to
derive a posteriori emission estimates.

3 Results

We first evaluated the performance of the adjusted PEE sim-
ulations in modelling NO2 concentrations at the long-term
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monitoring sites using mean square error (MSE). It is a com-
pact indicator of model performance whose merit is demon-
strated in the following. The MSE is calculated as

MSE=
1
n

∑n

i=1
(modi − obsi)2, (1)

where obsi is the observed value for a given averaging period
i (e.g. an hour, a day, a month), modi is the corresponding
simulation output and n represents the number of the avail-
able observations.

At each site, MSE is calculated for the hourly NO2 con-
centration output by each adjusted PEE simulation and the
base run. Figure 4a shows a distinct trend of increasing MSEs
with growing annual total NOx emissions, such that at most
sites, the base run with input emissions at the upper end of
the scale (see Fig. 2a) is outperformed by most of the PEE
simulations. Although a single MSE does not differentiate
between over- and underestimation, this clear positive asso-
ciation between MSEs and NOx emissions suggests that NOx
emissions are positively biased, both in the base emissions
and in most members of the PEE. If NOx emissions were
negatively biased in a considerable subset of the ensemble
members, the MSEs would first decrease as emissions in-
creased, until the absolute bias in the emissions reached a
minimum. It is also evident that the base run is generally
associated with larger errors at urban and traffic monitor-
ing sites compared to other sites. Moreover, the increase in
MSEs with increasing emissions is more rapid at these lo-
cations, resulting in a wider range of errors associated with
the ensemble of simulations. This is an indication that the
base emissions are larger in magnitude in the central areas
(where these sites are situated; see Fig. 1) than in the periph-
ery and are overestimated to a larger extent. Though spatially
uniform scaling factors were applied within the study area,
regions with higher base emissions would show larger varia-
tions in the perturbed emissions and thus model errors. This
highlights a potential issue associated with spatially uniform
perturbations to spatially non-uniform emissions.

Due to the important role of O3 in converting NO into
NO2, the adjusted PEE simulations’ performance in mod-
elling the O3 concentrations was also evaluated. In other
words, this was to ensure that the underlying chemical mech-
anisms were correctly modelled and that simulations with
lower NOx emissions showed better agreement with NO2
observations for the right reasons. We calculated the MSEs
in maximum daily 8 h mean (MDA8) O3 concentrations1.
Among the numerous O3 metric available, the MDA8 O3 is
widely used for model–observation comparison due to its rel-
evance in regulation and health impact assessments (Lefohn

1The adjusted PEE simulations’ performance in modelling the
hourly O3 concentrations was also evaluated. The median MSEs
in hourly O3 concentrations of all simulations are dominated by
the mMSE, and their association with the input NOx emissions is
substantially weaker than the association between median MSEs in
MDA8 O3 concentrations and NOx emissions.

et al., 2018). Figure 4b shows that as with NO2, the base
run is also generally associated with higher MSEs than many
PEE simulations. At more sites, however, the positive associ-
ation between model error and NOx emissions seen in Fig. 4a
breaks down (e.g. at DSH and MTG) or even becomes re-
versed (e.g. at HR and LLH). This underscores the complex
effects of non-linear chemistry and suggests that the MSEs
in MDA8 O3 are less strongly associated with the input NOx
emissions, the reason for which can be revealed by a break-
down of the MSE.

The MSE can be mathematically decomposed into the sum
of three terms (Solazzo and Galmarini, 2016):

MSE=
[(

mod− obs
)2]
+

[
(σmod− rσobs)2

]
+

[
σ 2

obs×
(

1− r2
)]
, (2)

where σmod and σobs represent the standard deviation of the
modelled and observed values, respectively, and r is the Pear-
son’s correlation coefficient between model outputs and ob-
servations. The first term in Eq. (2) represents the bias com-
ponent of model error, and it is largely introduced by ex-
ternal forcings, for example, input emissions and boundary
conditions. The second term is the variance error which is
associated with the processes resolved in a model. A trade-
off between bias and variance, in other words, accuracy and
precision, is often inevitable in complex models (Sun and
Archibald, 2021). The last term, by definition, represents
the proportion of the observed variance unexplained by the
model. It summarises all non-systematic errors, including the
noise and inherent variability (e.g. due to turbulence clo-
sure) in the observations as well as errors arising from the
linearisation of non-linear processes and is referred to as
the minimum achievable MSE (mMSE). The MSE is thus
a well-rounded metric suitable for operational model evalu-
ation, and its decomposition provides indications of possible
sources of model error (Solazzo and Galmarini, 2016).

The values of MSEs shown in Fig. 4 were decomposed ac-
cording to Eq. (2), and the term with the largest contribution
to the MSE associated with each simulation at each site is
shown in Fig. 5. There are striking differences in the attribu-
tion of error for hourly NO2 and MDA8 O3. Variance errors
have the largest share in the MSEs in hourly NO2 concentra-
tions associated with most of the adjusted PEE simulations at
over half of the reference sites. At another 1/4 of the sites, all
of which are urban or traffic monitoring sites, bias accounts
for most of the errors in the bulk of the simulations. This is
another indication of a higher degree of overestimation in the
central areas in the base emissions and subsequently in many
members of the adjusted PEE. For most sites (regardless of
the site type), simulations using the lowest annual total NOx
emissions are associated with MSEs that are mostly made up
by the mMSE.

At the urban and traffic monitoring sites where the MSEs
in hourly NO2 associated with the ensemble simulations are
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Figure 4. Mean square errors (MSEs) in (a) hourly NO2 concentrations and (b) daily maximum 8 h mean (MDA8) O3 concentrations
associated with the adjusted perturbed emissions ensemble (PEE) simulations, arranged in ascending order of the input annual total NOx
emissions (from left to right) and the base run (marked by black frames) at each long-term monitoring site. In each panel, the MSEs are
grouped into quartiles and colour-coded accordingly. The monitoring sites are arranged and colour-coded according to the site type: urban
site (magenta), traffic monitoring site (purple), suburban site (orange), clean site (light green) and regional background site (green).

mainly made up of the bias error, the bias also happens to
be the largest term in most MSEs in MDA8 O3 (Fig. 5b). At
most other sites (including all suburban, clean and regional
background sites), however, the MSEs in MDA8 O3 are dom-
inated by the mMSE, irrespective of the input NOx emis-
sions. This explains the weaker association between the total
MSEs in MDA8 O3 and the emissions revealed in Fig. 4b, as
the mMSE is much less dependent on model inputs. A further
breakdown of the mMSEs (Fig. S4) reveals that variances

in the observations of MDA8 O3 are substantially higher
than those in the observed hourly NO2 concentrations. De-
spite considerably better correlation between model outputs
and the observations, these large variances in the observa-
tions result in mMSEs in MDA8 O3 concentrations that are
only moderately smaller than those associated with hourly
NO2 concentrations. Meanwhile, the MSEs in O3 are con-
siderably lower than those in NO2; the largest share of the
mMSEs in the former is thus explained. Because of this de-
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Figure 5. Error component with the highest contribution to the mean square errors (MSEs) in (a) hourly NO2 concentrations and (b) daily
maximum 8 h mean (MDA8) O3 concentrations associated with the adjusted perturbed emissions ensemble (PEE) simulations, arranged in
ascending order of the input annual total NOx emissions (from left to right) and the base run (marked by black frames) at each long-term
monitoring site. The monitoring sites are arranged and colour-coded according to the site type: urban site (magenta), traffic monitoring site
(purple), suburban site (orange), clean site (light green) and regional background site (green).

pendence on the observations and the weaker connection to
external drivers, the mMSE is often considered the least con-
cerning component of model error (Solazzo and Galmarini,
2016).

As the distributions of the 33 MSEs (i.e. one for each long-
term monitoring site) associated with individual PEE simu-
lations are mostly non-Gaussian, we used the median MSE
to represent a simulation’s average performance for a cer-
tain pollutant across all sites within the modelling domain. A

breakdown of the median MSEs (Fig. 6) is consistent with
the findings described above: with more accurate (lower)
input NOx emissions, a simulation’s average performance
for hourly NO2 can be improved substantially to a point
that the remaining model error consists mostly of the non-
systematic mMSE. The average performance for MDA8 O3
is less strongly associated with NOx emissions, as it is dom-
inated by the mMSE in the majority of the PEE simulations.
These associations between median MSEs and input emis-
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Figure 6. Decomposed median mean square errors (MSEs) in (a) hourly NO2 concentrations and (b) daily maximum 8 h mean (MDA8)
O3 concentrations associated with the adjusted perturbed emissions ensemble (PEE) simulations, arranged in ascending order of the input
annual total NOx emissions (from left to right) and the base run (marked by black frames).

sions are also tested using simple linear regression (Fig. S5).
Though both regression models are statistically significant (p
value< 0.001), more variability in the modelled hourly NO2
is explained, compared to that in the modelled MDA8 O3.
The scatter of the points around the regression line reveals the
variations in model performance with varying mix of source
sectors, given similar strengths of total emissions (note that
these are represented on an ordinal scale in Figs. 4–6). This
also demonstrates the importance of using network observa-
tions as constraints. With spatially uniform perturbations, it
is likely that several different combinations of emission pa-
rameter values result in similar concentrations at a particu-
lar location. The risk of constraining the parameter values to
just one of the possible combinations is reduced, when ob-
servations that sample a wide range of local environments
are used.

On account of the analysis above, we only used obser-
vations of NO2 to constrain NOx emissions, which is also
in line with numerous top-down emission optimisation stud-
ies using satellite observations of column NO2 (Lamsal et
al., 2011; Martin et al., 2003; Napelenok et al., 2008; Qu
et al., 2017). Figure 7 shows the average performance for
hourly NO2 of individual PEE simulations against the value
set for each emission parameter in Table 1. Figure 7f re-
veals a strong positive correlation between the median MSE
in hourly NO2 of a simulation and the input transport sec-
tor NOx emissions. Simulations with a median MSE within

the first quartile are forced with transport emissions 6 %–
65 % of those in the base emissions. This range continues
to reduce (from both ends) with improving simulation per-
formance, such that when the median MSE falls below the
10th percentile, the corresponding traffic emissions are only
7 %–43 % of those in the base emissions. The range deter-
mined by the top-performing 5 % of the simulations (i.e. with
a median MSE within the fifth percentile) remains the same,
while it can be further constrained one-sidedly to 7 %–18 %
if only the top 1 % were considered. However, as the top
1 % of a 140-member ensemble contains (maximally) two
simulations, the difference in whose average performance is
marginal (≤ 1.5 %), this range was considered not robust.

In addition to the total magnitude, the night-time fraction
of the transport sector NOx emissions could also be con-
strained (Fig. 7g). Instead of hourly NO2, performance of
the adjusted PEE simulations was evaluated against the ob-
served annual mean diurnal variations of NO2 at each long-
term monitoring site. The median of all 33 MSEs in the diur-
nal profiles at individual sites modelled by a simulation was
also used to represent its average performance in modelling
the different diurnal profiles observed within the study area
(see Fig. S3). Though not as evident as the case of total trans-
port emissions, the range of the night-time fraction also be-
comes narrower with improving model skill. Amongst simu-
lations with a median MSE in diurnal NO2 profiles within the
15th percentile, 11 %–29 % of the transport emissions occur
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Figure 7. Average performance of the adjusted perturbed emissions ensemble (PEE) simulations and the base run (marked with black
strokes) as a function of emission parameter values. The scales on the x axes correspond to the uncertainty ranges in Table 1, “Adjusted PEE”
column. The top-performing 25 %, 20 %, 15 %, 10 %, 5 % and 1 % of the simulations are coloured in a darkening green shade, as measured
by their median mean square errors (MSEs) in hourly NO2 concentrations at the long-term monitoring sites across the modelling domain
(see Fig. 6) in all panels except in panel (g), where median mean square errors in the annual mean diurnal variations of NO2 concentrations
are used (note the different scale on the y axis).

at night (in contrast to the 9 % in the base emissions). In the
top 5 % of the simulations, this fraction varies between 15 %
and 25 %.

Emission parameters for other source sectors could not be
constrained with strong confidence (Fig. 7a–e), as the ranges
of parameter values only start to noticeably differ from the
full uncertainty range when the median MSE in hourly NO2
falls within the 10th percentile or even below. The residential
sector is the smallest source sector of NOx in the base emis-

sions (see Fig. 2a). A source apportionment of the base run
reveals that its contribution to the annual mean NOx concen-
trations at individual long-term monitoring sites varies be-
tween 3 % and 8 % (Fig. S6). It can thus be expected that
even a 150 % increase, i.e. its upper bound of uncertainty (see
Table 1, “Adjusted PEE” column), is not sufficient to cause
substantial changes in the simulation performance for NOx ,
based on which the emissions can be constrained.
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Interestingly, Fig. S6 also reveals that at most sites, the
contribution of NOx base emissions from the power sector
to the modelled annual mean NO2 concentrations is even
smaller than that from the residential sector, though the
emissions are over 2 times higher (see Fig. 2a). This is at-
tributable to the nature of the power sector, which is charac-
terised by a few large point sources emitting at elevated lev-
els. These sources undergo greater dispersion before reach-
ing the surface-based monitoring sites (compared to ground-
level emissions); thus their impact at most sites is small. As
an example, the annual mean NOx concentration simulated at
the site NZG is very similar to that modelled at the site GC,
yet less than 3 % of this concentration stems from NOx emis-
sions from the power sector, as opposed to the 11 % share at
GC (Fig. S6). This can be explained by Fig. S7 in which
the concentration resulted from power emissions is further
apportioned to each grid cell. It is evident that the concen-
tration at GC is predominantly contributed by the grid cell
directly to its west. In fact, this grid cell contains the highest
power emissions of NOx within the study area. In compar-
ison, the site NZG is located at some distance from other
grid cells with relatively large power sources. The contribu-
tions of these grid cells to the NOx concentrations at NZG
are smaller. The differences are about 1 order of magnitude,
as the contributions are log-transformed in the figure.

The fact that emissions released at higher levels are not
well sampled by the existing surface-based monitoring sites
also applies for those of NOx from industrial sources (emit-
ted at up to 152 m). In addition, emissions from both source
sectors were separated into two parameters and perturbed si-
multaneously (i.e. in an uncorrelated matter) for varying ver-
tical distributions. The uncertainty range of the sum of the
two parameters, i.e. the total power or industrial emissions,
was thus smaller than the individual uncertainty ranges and
may not be sufficiently large to capture the actual emissions.

The short-term, independent SNAQ measurements of NO2
were also used to constrain the emission parameters follow-
ing the same approach (Fig. S8). Similarly, adjusted PEE
simulations showing better performance for hourly NO2 con-
centrations and mean diurnal variations of NO2 concentra-
tions (over the measurement period) at SNAQ sites are as-
sociated with lower transport sector total emissions, but a
higher percentage of these emissions occur at night. In the
top-performing 5 % of the simulations, total traffic emissions
are 7 %–43 % of those in the base emissions, while the night-
time fraction varies between 15 % and 26 %. The fact that
the uncertainty ranges constrained by the short-term SNAQ
measurements are consistent with those using long-term ref-
erence measurement demonstrates the robustness of both this
approach and the findings. This also supports the use of low-
cost sensors for this particular application, as they are more
affordable for deployment in a dense network.

4 Discussion

According to the base emissions, total NOx emissions from
the transport sector were 2.1× 105 Mg within the study area
which extends over most of Beijing and parts of Hebei
Province in 2013, 9 % of which occurred during 00:00–
05:00 LT. Based on the top 5 % of the adjusted PEE simu-
lations for modelling NO2 hourly concentrations and diurnal
profiles, we found that transport NOx emissions were likely
to have decreased to 1.5–9× 104 Mg (i.e. a 57 %–93 % re-
duction) in 2016, and the night-time fraction was between
15 % and 25 %.

An exact comparison of these results with findings of pre-
vious studies is not possible, as the emissions were investi-
gated over different spatial and/or temporal scales. However,
it is possible to compare the relative changes in emissions.
Biggart et al. (2020) found that total NOx emissions rates
from the same a priori emissions inventory (and all source
sectors) were 1.8 times higher than those from an optimised
emissions inventory (with which ADMS-Urban simulated
NOx and NO2 concentrations that were in much better agree-
ment with the corresponding observations), though their in-
vestigation was focused on a small domain in urban Beijing
and the duration of the APHH-Beijing winter campaign only.
They also found that the modelled mean diurnal variations in
NO2 concentrations at most sites could be substantially im-
proved when the night-time fraction of NOx emissions was
increased by 25 % and 50 %. Nonetheless, as mentioned in
Sect. 2.2, this was defined as NOx emitted between 23:00
and 06:00 LT from all source sectors.

Squires et al. (2020) compared NOx emission rates in the
same a priori emissions with flux measurements made from a
tower in central Beijing (where SNAQ39 was also deployed;
see Fig. 1) during the APHH-Beijing winter campaign. The
study area was also smaller than that in this work, as the flux
footprint (i.e. the upwind source area of the measured fluxes)
was on average within 2 km (maximal 7 km) of the tower.
Compared to the measured fluxes, the emissions rates were
found to be overestimated by a mean factor of 9.9. They fur-
ther considered emissions only from the transport and resi-
dential sectors (as no industrial or power sources were identi-
fied within the average footprint) and reduced these by 30 %,
yet these were still on average 3.3 times higher than the
fluxes. They also found much smoother diurnal variations in
the NOx fluxes compared to those in the emission rates, indi-
cating that the night-time fraction was underestimated in the
latter.

In the standard MEIC v1.3 (from which the a pri-
ori emissions were downscaled and re-gridded), annual
NOx emissions from the transport sector were estimated to
be 1.05× 105 Mg in Beijing and 6.59× 105 Mg in Hebei
Province in 2013. In 2016, these figures decreased to
8.87× 104 and 5.68× 105 Mg, respectively, corresponding
to reductions by 15.5 % and 13.8 %, which are substantially
lower than the reductions reported in this work. A slightly
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larger reduction of 20 % (from 1.44× 105 Mg in 2013 to
1.15× 105 Mg in 2016) was estimated for vehicle (includ-
ing on- and off-road vehicles) sources of NOx in Beijing by
Cheng et al. (2019), who used a bottom-up emissions inven-
tory for Beijing which was compiled from the county level
and associated with finer spatial resolutions than MEIC es-
tablished from the province level. They also concluded that
vehicle emission control measures contributed the most to
the total reductions in NOx emissions over this period. Ac-
cording to the China Vehicle Environmental Management
Annual Reports, NOx emissions from on-road vehicles were
7× 104 Mg in Beijing and 5.2× 105 Mg in Hebei Province in
2013. These fell by 14 % and 10 %, respectively, to 6× 104

and 4.7× 105 Mg in 2016, despite an increase in vehicle
ownership (Ministry of Environmental Protection of the Peo-
ple’s Republic of China, 2014, 2017).

The downward trends in traffic sources of NOx between
2013 and 2016 found by this study, and the studies and re-
ports mentioned above contrast with the results in Xue et
al. (2020). Based on yet another bottom-up emissions inven-
tory for Beijing, they showed that mobile (i.e. on-road and
off-road vehicles) sources of NOx increased from 9.6× 104

to 1.1× 105 Mg over the same period. Though they found
a 20 % reduction in the total anthropogenic NOx emissions
from 2013 to 2016, this was primarily attributed to optimised
energy structure in the industry, power and residential sec-
tors. In this study, we found that amongst the top-performing
5 % of the adjusted PEE simulations, the reduction in total
NOx emissions from the base emissions varies between 59 %
and 74 % (due to reductions from transport sources only, with
other sources fixed). These conflicting findings again high-
light the presence of inherent uncertainties in emissions in-
ventories, the impact of which on the results of this work is
discussed in the following, along with the impact of other
sources of uncertainty.

Two types of uncertainties may be associated with the base
emissions. Inherent uncertainties due to underlying emission
factors and activity rates were estimated to be ±31 % for
NOx emissions in MEIC (Cheng et al., 2019), which are
smaller than the uncertainty ranges in Table 1, suggesting
that the trends in (real-world) emissions from 2013 to 2016
represent a larger source of uncertainty when using the 2013
base emissions for 2016 simulations. Additional uncertain-
ties may have been introduced when the standard MEIC v1.3
was downscaled and re-gridded to the a priori emissions in-
ventory used in this work. As an example, Zheng et al. (2017)
compared MEIC with another emissions inventory with a
much larger share of point sources (which were allocated di-
rectly to grid cells) and different sets of spatial proxies to
allocate non-point sources. They found that NOx emission
fluxes from the most populated grid cells in Hebei Province
were overestimated by 46 %–140 % in MEIC, mainly driven
by spatial proxies that over-allocated industrial emissions to
urban areas. Such uncertainties may have contributed to the
spatial inhomogeneities of the biases in the base emissions

revealed in Fig. 4 and, to a certain extent, propagated into
the derived emission estimates, as spatially uniform pertur-
bations were applied when constructing the adjusted PEE.
Hence, biases in the spatial distribution of emissions may
also be present in the a posteriori estimates, despite improve-
ment in terms of the total magnitude. In comparison, the
propagation of inherent uncertainties in the base emissions
is of less concern. Though most emission parameters were
defined relative to the corresponding values in the base emis-
sions for an efficient perturbation, their uncertainty ranges
were ultimately constrained solely by the observations.

Uncertainties in the observational constraints are also
twofold. While those due to measurement errors are most
likely small, as demonstrated by the consistency in the results
derived using two independent sets of observations, the un-
derrepresentation of the existing observations of power and
industrial sources prohibited an update of emission strengths
from these sources.

Another source of uncertainty is the input lateral boundary
conditions which include meteorology and background pol-
lution levels. The impacts of uncertainties in the input mete-
orological observations (i.e. due to measurement errors) are
minimal, as reported in Yuan et al. (2021) using simulations
forced with perturbed meteorological data. The effect of un-
certainties associated with different background concentra-
tions of NOx and O3 on the constrained NOx emissions is
discussed next in the context of uncertainties in the underly-
ing chemical mechanisms in ADMS-Urban.

The chemical partition of NOx emissions into NO2 con-
centrations by the model represents a potentially important
source of uncertainty. Many studies that infer NOx emissions
from satellite observations of the tropospheric NO2 column
assumed an accurate representation of NOx chemistry in the
CTM used. However, Valin et al. (2011) demonstrated the
presence of biases in the modelled NO2 column that are de-
pendent on the horizontal resolution of the model, which has
implications on the inference of NOx emissions when match-
ing the modelled column to satellite observations. These bi-
ases result from an inaccurate representation of NO2 lifetime
(and thus concentration) at coarse resolution, which is deter-
mined primarily by OH concentration in daytime, which, in
turn, has a non-linear dependence on NOx concentration.

While NO2 rapidly interconverts with NO in the presence
of sunlight via NO2 photolysis and reactions of NO with O3
and peroxy radicals, it is also oxidised by hydroxyl radicals
(OH) to nitric acid (HNO3), which can then be removed from
the atmosphere via wet/dry deposition. At night, NO oxida-
tion continues, but it cannot be converted from NO2 as no
photolysis takes place. With very low concentrations of OH,
NO2 is mainly oxidised by O3 to form the nitrate radical
(NO3), which further reacts with NO2 and reaches an equi-
librium with dinitrogen pentoxide (N2O5). NO2 also hydrol-
yses on aerosol surfaces to form nitrous acid (HONO). NO3,
N2O5 and HONO are described as night-time reservoirs of
NOx , as they can regenerate NO or NO2 after sunrise (Se-
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infeld and Pandis, 2016). These reservoir species are absent
in the semi-empirical chemical mechanism in ADMS-Urban
described in Sect. 2.3.

The SNAQ measurements which included NO allowed for
an evaluation of the NOx photolytic chemistry in ADMS-
Urban. Han et al. (2011) demonstrated the presence of a
strong linear relationship between NOx and NO during night-
time and between NOx and NO2 during the day in observa-
tions from Tianjin, another megacity not far from Beijing.
Following this approach, simple linear regression models
were fitted to the SNAQ-measured hourly averaged mixing
ratios of NO and NO2, as a function of the corresponding
mixing ratios of NOx . In addition, a linear function was fit-
ted between log-transformed mixing ratios of O3 and (non-
logarithmic) mixing ratios of NOx due to a negative correla-
tion between the two (Fig. S9a). Additional linear functions
were also fitted to daytime or night-time data only. Data from
the individual SNAQ sites were not differentiated because of
the short duration of operation at each site. Consistent with
findings by Han et al. (2011), a good linear correlation can be
found between the daytime mixing ratios of NO2 and NOx ,
while there is a strong correlation between night-time mix-
ing ratios of NO and NOx . The lowest coefficients of deter-
mination are calculated for O3 as a function of NOx , which
is consistent with the finding of Figs. 4 and 5 that O3 con-
centrations are less strongly dependent on NOx emissions
(Fig. S9b).

We then fitted linear models to the corresponding output
(i.e. for the same locations and time frame) from the top-
performing 5 % of the adjusted PEE simulations (see Sect. 3).
These are compared with models fitted to the SNAQ mea-
surements with respect to the slope, as it indicates the num-
ber of changes in NO, NO2 and (log-transformed) O3 as
NOx increases/decreases, which is directly related to the in-
put NOx emissions. As can been seen from Fig. 8a, the mod-
elled slopes of the linear models between NO2 and NOx
are higher, whereas modelled slopes for NO as a function
of NOx are lower compared to those observed, irrespec-
tive of the time of day. The discrepancies between modelled
and observed slopes for O3 as a function of NOx are rela-
tively small. This suggests that with similar concentrations
of NOx as observed, the top-performing adjusted PEE simu-
lations tend to overestimate NO2 while underestimating NO.
In other words, lower NOx emissions may be needed for
the model to simulate NO2 concentrations that are consis-
tent with the observations. This suggests that the constrained
emission estimates of NOx are indeed sensitive to the NOx
photolytic chemistry in ADMS-Urban and, in this case, may
be low-biased.

There are several possible explanations for the model’s
tendency to partition more (less) NOx into NO2 (NO). As de-
scribed in Sect. 2.3, the reaction with O3 (Reaction R4) and
reactions with the HO2 or RO2 (Reaction R2) are the two
pathways of NO oxidation to form NO2 in ADMS-Urban.
Organic radicals are produced via Reaction (R1) in which

ROC is defined as the proportion of TVOC that is reactive
and calculated by multiplying the TVOC concentrations with
a reactivity coefficient. In ADMS-Urban version 4.2 (used in
this study), a coefficient of 0.1 is adopted. It is set to 0.05
in the most up-to-date version 5 (Cambridge Environmen-
tal Research Consults Limited, 2017, 2020). As a secondary
pollutant, modelled O3 concentrations depend on the input
background levels, for which there is no widely accepted def-
inition. To investigate the sensitivity of the model output to
these two NO oxidation pathways, a series of sensitivity sim-
ulations were performed. All simulations were input with the
same NOx (and VOC) emissions as R97, the adjusted PEE
simulation with the best performance in simulating hourly
NO2 concentrations at the long-term monitoring sites. Again,
simple linear regression models were fitted between hourly
mixing ratios of NO, NO2, (log-transformed) O3 and NOx
output by these simulations.

Figure 8b shows that different definitions of background
NO2 and/or O3 (see Table S3) indeed have an impact on the
modelled NO-to-NO2 conversion. For example, in the sensi-
tivity simulation S5 input with the lowest background levels
of NO2 and O3, the modelled slopes for NO2 as a function of
NOx are considerably lower than the corresponding slopes
modelled by R97 and thus closer to the observed slopes.
Also, the slopes between NO and NOx associated with out-
puts from S5 are higher than those found in outputs from R97
and agree better with the observed slopes. However, it is im-
portant to underscore that this does not suggest that the 10th
percentile concentration is most representative of the back-
ground concentrations of NO2 and O3. It simply highlights
the impact of the input background concentrations of reactive
pollutants on the model outputs of relevant species (and thus
on the emission estimates inferred on the basis of these model
outputs), which can be comparable to the impact of varying
the input NOx emissions (amongst the top-performing 5 % of
the adjusted PEE simulations) shown in Fig. 8a. This calls for
further research into appropriate definitions for background
levels of NOx and O3 within a vast and heterogeneous urban
area like the modelling domain in this study. Also, it is worth
noting that the modelled chemistry is also influenced by the
input background levels of NO. However, the specific sensi-
tivities were not investigated, as the upwind concentrations
extracted from the CAMS reanalysis dataset are the only set
of NO observations available long-term.

The effect of organic radicals on the partition of NOx be-
tween NO2 and NO is shown in Fig. 8c by varying the con-
centrations of ROC. As explained above, ROC concentra-
tions are controlled by both the TVOC concentrations (that
result from the input emissions and background levels of
VOC) and a reactivity coefficient which was set to 0.1 in R97
(as with other adjusted PEE simulations). With fixed TVOC
concentrations, using a coefficient of 0.2 doubles the ROC
available to produce HO2 and RO2, leading to an even more
pronounced overestimation of NO2, accompanied by an un-
derestimation of NO. In contrast, halving the ROC concen-
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Figure 8. Slopes of linear regression models fitted between the modelled hourly mixing ratios of NO, NO2, log-transformed O3 and those
of NOx at all SNAQ sites by (a) the top-performing 5 % of the adjusted perturbed emissions ensemble simulations (PEE) and the base run,
(b) the background concentration sensitivity simulations and the best PEE simulation R97, (c) the ROC concentration sensitivity simulations
and the best PEE simulation R97, compared to the corresponding slopes fitted to SNAQ measurements. The slopes for log-transformed
O3 as a function of NOx are exponentiated. Details of the background concentration sensitivity simulations are provided in Table S3.
The simulations Si and Sii represent a doubling and halving of the ROC concentrations (by modifying the reactivity coefficient) in R97,
respectively. In all panels, daytime is defined as complete hours between sunrise and sunset in Beijing during November–December 2016,
namely 08:00–15:00 LT.

trations by using a coefficient of 0.05 partitions less of the
NOx emitted into NO2. This highlights that the emissions
and background concentrations of VOC (which are not eval-
uated in this study due to a lack of observations) also have an
impact on the modelled NOx photolytic chemistry and thus
the a posteriori emission estimates of NOx . It is also worth
noting that biogenic VOCs are likely underestimated in the
current simulations, as these are only represented by one of
the eight species (i.e. isoprene) output by the CAMS reanal-
ysis product used to approximate the background levels of
TVOC and are not represented at all in the base emissions
(which include anthropogenic sources only). Despite having
low concentrations in the study area (compared to anthro-

pogenic VOCs) (Mo et al., 2018), they are associated with
high radical production and thus O3 creation potentials. Un-
like background concentrations of NOx and O3, however, the
effect of VOCs on the modelled NOx–O3 chemistry is re-
stricted to daylight hours, as they only produce radicals in
the presence of solar radiation in the model.

Another factor that affects the modelled NOx photolytic
chemistry is the f -NO2 in the input emissions (see Sect. 3.1).
Although not investigated with sensitivity experiments, it can
be expected that a higher f -NO2 would result in higher NO2
concentrations and lower NO concentrations simulated by
the model, thus further increasing the discrepancies between
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the modelled and observed slopes of linear functions, whilst
a lower f -NO2 would have the opposite effect.

5 Conclusions

We developed a novel approach to update a priori emission
estimates using ground-based network measurements as con-
straints and an ensemble of forward simulations which are
input with a PEE. Using this approach, we were able to up-
date the transport sector NOx emissions in Beijing from a
2013 emissions inventory for the year 2016. The updated
emissions are substantially lower with a higher proportion
occurring at night-time and are broadly consistent with find-
ings of several previous studies. It would be possible to also
update emissions from other (non-negligible) source sectors,
provided that appropriate measurements were available.

As with existing emission optimisation techniques, this ap-
proach is sensitive to the chemical mechanisms in the under-
lying model, the uncertainties of which can be propagated
into uncertainties in the emission estimates. Nonetheless, this
approach has several unique advantages. Compared to in-
verse modelling techniques, the construction of a PEE and
the forward simulations is rapidly executable. Even when the
Gaussian dispersion model used in this study is replaced with
a CTM for more explicit representations of chemistry, the
efficiency can be maintained via parallel computing. Also,
surface-based measurements of ambient concentrations are
used as constraints, which are readily available and closer
to the sources of emissions than the satellite-based measure-
ments. This proximity to emission sources may be partic-
ularly important for capturing the high temporal and spa-
tial variability of highly reactive species. For example, Qu
et al. (2021) found that in comparison to surface concentra-
tions, the NO2 column showed a muted response to the step
decrease in NOx emissions in the United States during the
COVID-19 crisis. Most importantly, this approach allows for
an update of emissions by source sector, which is more rele-
vant for policy interventions than total emissions, as they di-
rectly reflect the (in)effectiveness of the corresponding pollu-
tion control measures. Hence, we believe that this approach,
particularly combined with low-cost sensors, has great po-
tential in providing timely updates of emissions in regions
undergoing rapid changes, where emissions inventories may
be biased or outdated as soon as they have been compiled,
and computing facilities may be limited.

Code and data availability. Codes used to generate the per-
turbed emissions ensemble using the R language are available
at https://github.com/yuanle731/PEE (last access: 28 June 2022;
https://doi.org/10.5281/zenodo.6778166, Yuan, 2022). The Multi-
resolution Emission Inventory for China (MEIC) is available upon
request at http://www.meicmodel.org (last access: 28 June 2022).
Long-term air quality monitoring data from Beijing are archived
at https://quotsoft.net/air/, and the 2016 data used in this work are

available at https://doi.org/10.17863/CAM.85111 (Beijing Munic-
ipal Ecological and Environmental Monitoring Center and Wang,
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