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Abstract. In recent years, the Indian capital city of Delhi has been impacted by very high levels of air pollution,
especially during winter. Comprehensive knowledge of the composition and sources of the organic aerosol (OA),
which constitutes a substantial fraction of total particulate mass (PM) in Delhi, is central to formulating effective
public health policies. Previous source apportionment studies in Delhi identified key sources of primary OA
(POA) and showed that secondary OA (SOA) played a major role but were unable to resolve specific SOA
sources. We address the latter through the first field deployment of an extractive electrospray ionization time-
of-flight mass spectrometer (EESI-TOF) in Delhi, together with a high-resolution aerosol mass spectrometer
(AMS). Measurements were conducted during the winter of 2018/19, and positive matrix factorization (PMF)
was used separately on AMS and EESI-TOF datasets to apportion the sources of OA. AMS PMF analysis yielded
three primary and two secondary factors which were attributed to hydrocarbon-like OA (HOA), biomass burning
OA (BBOA-1 and BBOA-2), more oxidized oxygenated OA (MO-OOA), and less oxidized oxygenated OA (LO-
OOA). On average, 40 % of the total OA mass was apportioned to the secondary factors. The SOA contribution to
total OA mass varied greatly between the daytime (76.8 %, 10:00–16:00 local time (LT)) and nighttime (31.0 %,
21:00–04:00 LT). The higher chemical resolution of EESI-TOF data allowed identification of individual SOA
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sources. The EESI-TOF PMF analysis in total yielded six factors, two of which were primary factors (primary
biomass burning and cooking-related OA). The remaining four factors were predominantly of secondary origin:
aromatic SOA, biogenic SOA, aged biomass burning SOA, and mixed urban SOA. Due to the uncertainties in
the EESI-TOF ion sensitivities, mass concentrations of EESI-TOF SOA-dominated factors were related to the
total AMS SOA (i.e. MO-OOA+ LO-OOA) by multiple linear regression (MLR). Aromatic SOA was the major
SOA component during the daytime, with a 55.2 % contribution to total SOA mass (42.4 % contribution to total
OA). Its contribution to total SOA, however, decreased to 25.4 % (7.9 % of total OA) during the nighttime. This
factor was attributed to the oxidation of light aromatic compounds emitted mostly from traffic. Biogenic SOA
accounted for 18.4 % of total SOA mass (14.2 % of total OA) during the daytime and 36.1 % of total SOA mass
(11.2 % of total OA) during the nighttime. Aged biomass burning and mixed urban SOA accounted for 15.2 %
and 11.0 % of total SOA mass (11.7 % and 8.5 % of total OA mass), respectively, during the daytime and 15.4 %
and 22.9 % of total SOA mass (4.8 % and 7.1 % of total OA mass), respectively, during the nighttime. A simple
dilution–partitioning model was applied on all EESI-TOF factors to estimate the fraction of observed daytime
concentrations resulting from local photochemical production (SOA) or emissions (POA). Aromatic SOA, aged
biomass burning, and mixed urban SOA were all found to be dominated by local photochemical production,
likely from the oxidation of locally emitted volatile organic compounds (VOCs). In contrast, biogenic SOA was
related to the oxidation of diffuse regional emissions of isoprene and monoterpenes. The findings of this study
show that in Delhi, the nighttime high concentrations are caused by POA emissions led by traffic and biomass
burning and the daytime OA is dominated by SOA, with aromatic SOA accounting for the largest fraction.
Because aromatic SOA is possibly more toxic than biogenic SOA and primary OA, its dominance during the
daytime suggests an increased OA toxicity and health-related consequences for the general public.

1 Introduction

Atmospheric aerosols are suspensions of tiny solid or liquid
particles in the air, ranging from a few nanometres (nm) to
tens of micrometres (µm) in size. Aerosols can affect climate
directly by scattering (including reflection) and absorbing
solar radiation, thereby altering the radiative balance of the
earth–atmosphere system, and indirectly by acting as cloud
condensation nuclei (CCN), thereby affecting the number
and lifetime of clouds (Forster et al., 2007). Aerosol particu-
late matter with an aerodynamic diameter less than or equal
to 2.5 µm (PM2.5) can easily be deposited deep into human
lungs and induce oxidative stress and inflammation, leading
to various cardiovascular and respiratory diseases (Pope et
al., 2009; Salvi, 2007; Shiraiwa et al., 2017). Aerosols can
be composed of various species such as mineral dust and sol-
uble inorganic species such as nitrate, sulfate, ammonium,
and chloride, as well as organic and elemental carbon. It is
estimated that organic aerosols (OAs) can account for 20 %
to 90 % of the total fine particulate mass (Jimenez et al.,
2009). OA is classified as either primary OA (POA), which
is directly emitted into the atmosphere, or secondary OA
(SOA), which is produced in the atmosphere by the oxida-
tion of volatile organic compounds (VOCs) emitted from an-
thropogenic or natural processes, producing lower-volatility
products which form new particles or condense onto the pre-
existing aerosols. In many areas, SOA accounts for a substan-
tial portion of total OA mass (Jimenez et al., 2009). How-
ever, despite SOA being an important fraction of total OA
and its toxicity (Daellenbach et al., 2020), our understanding

of sources and formation processes of SOA in the atmosphere
remains incomplete (Hallquist et al., 2009; Shrivastava et al.,
2017). This limits our ability to accurately constrain SOA
contributions in global climate models and regional air qual-
ity models and impedes efforts to understand SOA health ef-
fects.

Delhi, the capital city of India, is a growing megapo-
lis with a population of about 17 million and a popula-
tion density of 11 320 persons km−2 as per the most re-
cent census, conducted in 2011 (Planning Department; Gov-
ernment of NCT of Delhi, 2021). It experiences high lev-
els of air pollution and is amongst the most polluted cities
in the world, with an annual mean PM2.5 concentration of
∼ 140 µg m−3 (World Health Organization, 2018), which is
much higher than the Indian National Ambient Air Qual-
ity Standard (NAAQS) of 40 µg m−3 for annual PM2.5 con-
centration (Central Pollution Control Board, 2009). Dur-
ing the post-monsoon season, severe air pollution events
are frequent, with PM2.5 levels often reaching as high as
1000 µg m−3 (Sembhi et al., 2020). Several recent stud-
ies have investigated the composition and sources of non-
refractory (NR) OA in Delhi using highly time-resolved on-
line measurements by an aerosol mass spectrometer (AMS)
or an aerosol chemical speciation monitor (ACSM) (Bhan-
dari et al., 2020; Gani et al., 2019; Lalchandani et al., 2021;
Tobler et al., 2020). These studies were able to quantitatively
resolve the most dominant POA sources, i.e. traffic-related,
hydrocarbon-like organic aerosol (HOA) and biomass burn-
ing organic aerosol (BBOA) (Bhandari et al., 2020; Lalchan-
dani et al., 2021; Tobler et al., 2020). However, they were
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not able to assign specific sources to the oxygenated or-
ganic aerosol (OOA), due to the use of thermal volatiliza-
tion (∼ 600 ◦C) in combination with harsh electron impact
ionization (EI, ∼ 70 eV) for ion generation in the AMS and
ACSM, which results in substantial fragmentation of ana-
lyte molecules and loss of molecular information. Generally,
while AMS and ACSM datasets provide quantitative esti-
mates of individual POA factors and total SOA contribution,
they are able to describe SOA only in terms of bulk descrip-
tors such as the level of oxygenation (i.e. bulk O : C ratio).

To overcome these limitations on fragmentation and ther-
mal decomposition, several offline continuous and semi-
continuous instruments have been developed. The offline
techniques provide a high degree of chemically specific in-
formation with the possibility of molecular identification
as well. They, however, have low time resolution (typically
hours to ∼ 1 d) and include possible artefacts from reactions
or partitioning on the surface (Pospisilova et al., 2020; Zhao
et al., 2018). Among the continuous and semi-continuous
techniques, for example, the chemical analysis of aerosol on-
line particle inlet coupled to a proton transfer reaction time-
of-flight mass spectrometer (CHARON-PTR-MS) employs
an aerodynamic particle lens for sampling and a thermal des-
orption unit for volatilization of aerosol constituents, which
are then ionized using a proton transfer reaction (PTR) ion-
ization scheme and analysed by a mass spectrometer. Al-
though a proton transfer reaction mass spectrometer (PTR-
MS) has a softer ionization scheme than EI, the energy re-
mains high enough to yield substantial fragmentation of or-
ganic analytes (Eichler et al., 2015; Müller et al., 2017). The
Filter Inlet for Gases and AEROsols (FIGAERO) coupled
to a high-resolution time-of-flight chemical ionization mass
spectrometer (HR-TOF-CIMS) is a semi-continuous system
where aerosol particles are first collected onto a polytetraflu-
oroethylene filter. The particle-laden filter is then analysed
periodically by passing heated ultra-high-purity nitrogen gas
through the filter. The resulting vapours are ionized by chem-
ical ionization mass spectrometry, e.g. with iodide adducts
(Lopez-Hilfiker et al., 2014). Although FIGAERO uses a soft
ionization technique, some compounds are still affected by
thermal decomposition (Stark et al., 2017) and reactions of
analytes on the filter (Kristensen et al., 2016). Moreover, it
has a lower time resolution (>30 min) compared to online
techniques (≤ 1 min).

Finally, a novel extractive electrospray ionization (EESI)
interface was coupled to a portable high-resolution time-of-
flight mass spectrometer (EESI-TOF) (Lopez-Hilfiker et al.,
2019). The EESI-TOF enables highly time-resolved mea-
surements of a wide range of atmospherically relevant oxy-
genated compounds, including sugars, alcohols, acids, and
organonitrates (Lopez-Hilfiker et al., 2019; Stefenelli et al.,
2019) with detection limits on the order of 1–10 ng m−3.
The EESI-TOF detection limits are sufficient to measure
these compounds with a 5 s time resolution under typi-
cal ambient conditions with negligible thermal decompo-

sition, ionization-induced fragmentation, or matrix effects.
The EESI-TOF provides the near-molecular-level informa-
tion (i.e. molecular formula) with a lack of direct struc-
tural information. This is a clear limitation of 1-D mass
spectrometric techniques such as the EESI-TOF, AMS, and
CHARON-PTR, as opposed to the chromatographic separa-
tion and tandem MS approaches possible in the offline anal-
ysis. In addition to that, different molecules exhibit different
relative sensitivities in systems like the EESI-TOF (Lopez-
Hilfiker et al., 2019; Wang et al., 2021). Recent field studies
in Europe and China have demonstrated the advantage of the
chemical resolution of the EESI-TOF for source apportion-
ment of ambient OA (Qi et al., 2019; Stefenelli et al., 2019;
Tong et al., 2021).

Here, we deployed an AMS and an EESI-TOF for 2 weeks
in Delhi and report comprehensive source apportionment re-
sults from the AMS and EESI-TOF datasets with a time reso-
lution of ∼ 10 min. We utilized the quantitative power of the
AMS and the higher chemical resolution of the EESI-TOF
to derive quantitative estimates of individual sources of SOA
and report the results from the first-ever deployment of the
EESI-TOF in Delhi. Having a quantitative estimate of indi-
vidual SOA contributing factors is a valuable advancement
in understanding and predicting the SOA health effects and
its formation mechanisms and devising effective mitigation
policies.

2 Methodology

2.1 Campaign overview and sampling site

To understand and analyse the chemical composition and
sources of various components of submicron PM in Delhi,
we conducted a wintertime campaign in South Delhi at
the Indian Institute of Technology Delhi (IITD) campus
(28.54◦ N, 77.19◦ E) from 31 December 2018 to 14 January
2019. A suite of particle- and gas-phase instrumentation was
deployed which included an extractive electrospray ioniza-
tion time-of-flight mass spectrometer (EESI-TOF) for con-
ducting time-resolved measurements of the organic aerosol
molecular ions; a high-resolution aerosol mass spectrome-
ter (HR-AMS) for measuring non-refractory PM1 (NR-PM1)
composition; a scanning mobility particle sizer (SMPS), con-
sisting of a model 3080 differential mobility analyser (DMA)
and model 3022 condensation particle counter (CPC) (TSI,
Inc., Shoreview, MN, USA) to measure the particle size dis-
tribution from 15.7 to 850.5 nm; an Aethalometer (model
AE33, Magee Scientific, Ljubljana, Slovenia) to measure the
equivalent black carbon (eBC) concentration; and an Xact
625i Ambient Metals Monitor (Cooper Environmental Ser-
vices LLC, Tigard, OR, USA) to measure the mass of 35
different elements in PM10 and PM2.5 separately (Rai et al.,
2020).

All instruments were housed in a temperature-controlled
laboratory (22 ◦C) on the top floor of a four-storey building
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(∼ 12 m high) housing other laboratories and faculty offices.
Aerosol sampling was performed through stainless-steel tub-
ing (6 mm i.d., 8 mm o.d.) of ∼ 3 m length. A PM2.5 cy-
clone (BGI, Mesa Labs, Inc.) was installed at the inlet of
the sampling line to remove larger particles. Here, we have
used the co-located measurements by the HR-AMS and the
EESI-TOF with the supporting data from other instruments
as required. More details on the operation of the EESI-TOF
and the HR-AMS are given in the following sections.

The sampling site, i.e. IITD’s location, is representative of
the Delhi urban area. The nearest source of local emissions is
an arterial road located∼ 150 m away from the building, and
there are also emissions from residential use of solid fuels
for cooking and heating and biomass burning in the nearby
areas. A detailed description of this site’s location as well as
its demographic and geographic details is provided elsewhere
(Lalchandani et al., 2021; Rai et al., 2020; Singh et al., 2021;
Wang et al., 2020).

2.2 Instrumentation

2.2.1 Extractive electrospray ionization time-of-flight
mass spectrometer (EESI-TOF)

The use of the EESI-TOF allows continuous and highly
time-resolved measurements of organic aerosol composi-
tion on a near-molecular level (i.e. chemical formulae of
molecular ions) with negligible thermal decomposition or
ionization-induced fragmentation. A detailed description of
the EESI-TOF and its operating principles has been pro-
vided elsewhere (Lopez-Hilfiker et al., 2019). Briefly, the
sampled aerosols first pass through a multi-channel charcoal
denuder to strip gaseous components. Breakthrough of gas-
phase species can cause high background signals, as previ-
ously observed in Beijing (Tong et al., 2021). In that study, a
small denuder (diameter of 4 mm and length of 30 to 40 mm)
was used, whereas in the present study we used a larger de-
nuder (i.e. with 69 channels, outer diameter 8.5 mm, length
60 mm). The denuder was exchanged every 48 h and regener-
ated by baking at ∼ 200 ◦C for 12 h. The denuder was posi-
tioned ∼ 20 cm upstream of the electrospray and mass spec-
trometer inlet to avoid decreased transmission of larger par-
ticles (Tong et al., 2021). After passing through the denuder,
the sampled particles intersect with a plume of electrospray
(ES) droplets generated by a commercial electrospray probe
and delivered through a fused silica capillary with precut
tips with an inner diameter of 50 µm (BGB Analytik AG).
The ES solution used in this study consisted of a 1 : 1 wa-
ter / acetonitrile (v/v) mixture doped with 100 ppm NaI. The
ES solution was charged by applying a high potential dif-
ference (∼ 2.5–2.7 kV) at the ES capillary tip. The flow of
ES solution through the silica capillary is controlled by a
high-accuracy microfluidic flow controller (Fluigent GmbH).
Upon intersection with ES droplets, the soluble fraction of
analyte aerosol is extracted into the droplets. The analyte-

laden droplets then pass through a heated stainless-steel cap-
illary (∼ 250 ◦C), wherein the electrospray solvent evapo-
rates, and analyte ions are generated. Due to the short res-
idence time (∼ 1 ms) in the capillary, heat transfer to the par-
ticles is limited, and negligible thermal decomposition is ob-
served. Finally, the ions are analysed by a high-resolution
long-time-of-flight mass spectrometer (LTOF-MS, Tofwerk
AG, Switzerland) configured for positive ion detection. In
the configuration of the mass spectrometer and ionization
scheme used in this study, one can detect a wide range of
molecules present in the organic aerosols, including sugars,
alcohols, acids, and organonitrates. The detected molecular
classes include nearly all the compounds present in the sec-
ondary organic aerosol (SOA), with notable exceptions of
organosulfates, which are typically detected as negative ions,
and non-oxygenated species such as alkanes and alkenes.
The mass resolution (M/1M) achieved by the mass anal-
yser in this study was ∼ 8000. This resolution is enough to
separate isobars (compounds with same nominal mass) and
determine the molecular formula. Due to the lack of direct
structural information, the molecular assignments given here
are, however, tentative and may include contributions from
multiple isomers. The ions were observed predominantly as
adducts with Na+, i.e. [M]Na+, but for simplicity are de-
noted herein using the neutral formula (M). For example, an
ion observed as [C6H10O5]Na+ is reported as C6H10O5.

The EESI-TOF sampled continuously at a flow rate
of ∼ 1 L min−1, alternating between direct ambient sam-
pling (5 min) and sampling through a particle filter (3 min)
for measurement of the instrument background. This
measurement–filter cycle is shorter than those used in pre-
vious ambient measurements to avoid clogging of the EESI
capillary and to increase the spray stability. The EESI-TOF
data analysis was performed using Tofware version 2.5.7
(Tofwerk AG, Switzerland). The original data were acquired
at a time resolution of 1 Hz, and high-resolution (HR) peak
fitting was applied to data averaged to 10 s for the mass-to-
charge ratio (m/z) range 145–350. In total, 1030 ion formu-
lae were fitted. The ambient aerosol composition (Mdiff) was
calculated by subtracting background spectra obtained dur-
ing particle filter sampling (Mfilter) from the mass spectra
obtained during direct ambient sampling (Mtotal). The back-
ground spectra (Mfilter) were calculated by interpolating the
average between adjacent background spectra (i.e. particle
filter measurements before and after an ambient sampling
period). This methodology is similar to the one reported in
previous EESI-TOF studies (Qi et al., 2019; Stefenelli et al.,
2019; Tong et al., 2021). After obtaining the ambient aerosol
composition, the ambient aerosol spectra (Mdiff) were aver-
aged to 10 min for further processing. The error matrix (σdiff)
corresponding to Mdiff values was calculated from Poisson
ion counting statistics (Allan et al., 2003) from ambient sam-
pling σtotal(i,j ) and filter sampling periods σfilter(i,j ), added
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in quadrature as follows:

σdiff (i,j )=
√
σ 2

total (i,j )+ σ 2
filter (i,j ). (1)

As a final step, data were filtered to remove ions whose total
signal and/or variability was either dominated by the back-
ground or too noisy for meaningful interpretation. Ions that
met both of the following criteria were accepted for further
analysis:

1. The ratio of signal to uncertainty, i.e. Mdiff/σdiff, was
considered, where σdiff represents the precision-based
uncertainties as calculated by using Eq. (1). Ions with
a median Mdiff/σdiff<0.2 were removed from further
analysis (Paatero and Hopke, 2003).

2. The ratio of signal to background, i.e. Mdiff/Mfilter,
was considered. This identifies ions whose time se-
ries is dominated by instabilities in the spray and/or
background drifts due to adsorption/desorption of semi-
volatile compounds. Ions with a median ratio of
Mdiff/Mfilter<0.1 were removed.

In the end, 641 ions between m/z ranges of 150–350 were
retained for further analysis.

2.2.2 High-resolution time-of-flight aerosol mass
spectrometer (HR-AMS)

The HR-AMS (Aerodyne Research Inc., Billerica, MA,
USA) was equipped with a PM1 aerodynamic lens and mea-
sured the composition of NR-PM1. A detailed description is
given elsewhere (DeCarlo et al., 2006; Canagaratna et al.,
2007). Briefly, ambient air is sampled continuously through
a critical orifice into a PM1 aerodynamic lens, which focuses
the particles into a narrow beam and accelerates them to a ve-
locity that is inversely related to their vacuum aerodynamic
diameter (Williams et al., 2013). The particles then impact a
resistively heated surface (∼600 ◦C) and flash vaporize. The
resulting gas is ionized by electron impact ionization (EI,
70 eV) and detected by a time-of-flight mass spectrometer.
The detected ion rate measured at a specific mass-to-charge
ratio (m/z) is then converted to mass concentration in µg m−3

(Jimenez et al., 2003).
In this study, two ionization efficiency (IE) calibrations of

the instrument were performed (one before the commence-
ment of the campaign and the other at the end) using 300 nm
NH4NO3 particles. More details on the instrument operation
during this campaign have been reported elsewhere (Singh et
al., 2021, 2019). The instrument was operated in V mode
at a time resolution of 2 min. Every 30 s, it switched be-
tween mass spectra (MS) and particle time-of-flight (PToF)
mode, completing two cycles within each integration pe-
riod. The mass spectra of an ensemble of particles are mea-
sured in MS mode, whereas in the PToF mode, the parti-
cle beam is modulated by a chopper spinning at 130 Hz,

resulting in the size-resolved mass spectra. Unit mass res-
olution (UMR) data were analysed using the SQUIRREL
data analysis toolkit (version 1.59) programmed in the Igor
Pro 6.37 software environment (WaveMetrics, Inc., Portland,
OR, USA). High-resolution peak fitting analysis was con-
ducted using PIKA (version 1.19) (DeCarlo et al., 2006)
for m/z 12 to 120. The collection efficiency was estimated
using the composition-dependent algorithm of Middlebrook
et al. (2012) implemented in SQUIRREL. The Pieber correc-
tion was applied according to the method recommended by
Pieber et al. (2016).

2.3 Source apportionment

2.3.1 Positive matrix factorization

Source apportionment was performed separately on the AMS
OA and EESI-TOF datasets using the positive matrix factor-
ization (PMF) algorithm (Paatero and Tapper, 1994) imple-
mented within the multilinear engine (ME-2; Paatero, 1999).
In this study, the Source Finder Professional (SoFi Pro 6.8,
Datalystica Ltd.) interface was used for model configuration
and post-analysis (Canonaco et al., 2013). PMF is a bilin-
ear model that represents the sample matrix X with dimen-
sions of m× n, representing m measurements of n variables
as a product of two matrices G (dimensions of m×p) and F
(dimensions of p× n). The number of columns in the mod-
elled matrix G and rows in the modelled matrix F are equal
to the number of factors p, i.e. individual sources chosen to
describe the dataset. The PMF model operates under non-
negativity constraints; i.e. negative values are not permitted
in G or F. The PMF model is expressed as

X=G×F+E. (2)

Here G represents the time-dependent factor concentrations
(i.e. time series) and F represents the chemical composition
(i.e. mass spectrum) of the resolved factors. Model residuals
are contained in E.

The PMF model solves Eq. (2) using a least-squares al-
gorithm that iteratively minimizes the objective function Q,
defined as

Q=
∑n

i=1

∑m

j=1

(
eij

σij

)2

. (3)

In Eq. (3), eij represents elements of the residual matrix and
σij represents the measurement uncertainties corresponding
to the input point xij , where i and j are the indices repre-
senting measurement time and variable (or integer m/z), re-
spectively. The theoretical value of Q, denoted Qexp, can be
estimated as

Qexp =mn−p (m+ n) . (4)

PMF is subject to rotational ambiguity, meaning that differ-
ent combinations of G and F matrices exist that can yield
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the same or similar Q values. Some of these combinations
may represent environmentally unreasonable representations
of the dataset. To direct the model towards interpretable rota-
tions, a priori information can be introduced by constraining
selected factor time series or mass spectra using an a-value
approach (Canonaco et al., 2013; Crippa et al., 2014). In this
method, one or more factor profiles and/or time series are
constrained to resemble reference profiles and/or time series,
with the scalar a (0≤ a ≤ 1) determining the tightness of
constraint. As an example, if constraints are applied to mass
spectra, the a value determines the extent to which a factor
mass spectrum in the final solution (fj,solution) is allowed to
deviate from the anchor mass spectrum (fj ) provided to the
model as the initial starting point.

fj,solution = fj ± a · fj (5)

As an example, if an a value of 0.1 is used, all the variables in
the resulting mass spectrum can vary between ± 10 % of the
input constraining the mass spectrum. Note that post-PMF
normalization of factor profiles may cause the final values to
slightly exceed the limits defined by Eq. (5).

2.3.2 Source apportionment of AMS dataset

The AMS OA matrix XAMS consisted of organic ion time
series derived from high-resolution (HR) peak fitting for
m/z 12 to 120 and the integrated signal across integer m/z
(unit mass resolution or UMR) for m/z 121 to 300. A total
of 507 variables were used in the sample matrix XAMS, 332
of which had chemical formulae assigned to them through
HR fitting. The remaining 175 variables were UMR species.
For the UMR data, we excluded m/z 149 due to interfer-
ence from phthalic acid emitted by the servo housing, as
well as m/z 183, 184, and 186 due to the interference from
the tungsten filaments. Uncertainties were calculated accord-
ing to the method by Allan et al. (2003), which accounts for
counting statistics of the individual ions as well as the un-
certainty in the detector response to individual ions. Vari-
ables with a signal-to-noise ratio (SNR) <0.2 were down-
weighted by a factor of 10, whereas those with an SNR <2
were downweighted by a factor of 2 (Paatero and Hopke,
2003). Further, ions calculated from the CO+2 signal (i.e. O+,
OH+, H2O+, and CO+) were removed from XAMS prior to
PMF analysis to avoid overweighting CO+2 intensity (Ul-
brich et al., 2009) and were recalculated from CO+2 during
post-analysis. Note that this remove-and-reinsert strategy is
preferable to downweighting of CO+2 -dependent ions as it
avoids the potential for small biases induced by the combi-
nation of AMS minimum errors and dynamic downweighting
in “robust mode” operation of the PMF.

As a first step, we ran the PMF in unconstrained mode
with the number of factors ranging from 3 to 8. Each solu-
tion was inspected based on its Q/Qexp value and physical
interpretation of individual factors. Large decreases in the
Q/Qexp values were observed when the number of factors

increased from 3 to 5, while small incremental changes were
observed when the number of factors increased beyond 5.
Further, solutions with more than 5 factors yielded only ad-
ditional biomass-burning-related factors, the differences be-
tween which could not be physically interpreted. Hence we
chose a 5-factor solution as the best representation of the
data. The unconstrained PMF resulted in an HOA factor with
a high degree of oxygenation, i.e. O : C ratio∼ 0.15, which
is a factor of ∼ 3 higher than the HOA factor obtained at the
same site in a recent study (Lalchandani et al., 2021). To ob-
tain a cleaner HOA profile, we took the HOA factor profile
from an unconstrained 8-factor solution and used it in SoFi
to constrain the HOA factor in the final 5-factor solution. We
explored the PMF solutions with higher numbers of factors,
but the O : C ratio of the HOA profile did not show a signifi-
cant decrease for solutions with more than 8 factors.

The factors obtained from the AMS source apportionment
were identified based on their correlations with external mea-
surements, mass spectral features, diurnal trends, and rela-
tionship to anthropogenic activities as well as meteorologi-
cal and environmental conditions (e.g. temperature, expected
trends in human activities). The interpretation of the final 5-
factor solution is discussed in Sect. 3.1.

2.3.3 Source apportionment of EESI-TOF dataset

A total of 641 ion formulae from m/z 140–350 were used in
the final PMF input matrix XEESI of the EESI-TOF data. The
initial PMF model was run without constraints for 6 to 15 fac-
tors, and each solution was checked for the interpretability of
the results. The 6-factor solution yielded a factor identified as
primary biomass burning (characterized by ∼ 90 % of factor
profile signal from C6H10O5, which is likely dominated by
levoglucosan, a biomass burning tracer), and 5 other factors
related to primary cooking emissions, aged biomass burn-
ing, and 3 SOA factors (described in Sect. 3.2). Although
the main spectral and temporal features of these factors were
not consistent with primary biomass burning, they nonethe-
less contained significant signals from C6H10O5 (compris-
ing 10 %–15 % of the factor profiles), consistent with math-
ematical mixing of biomass burning into these factors. In-
creasing the number of factors from 6 to 10 decreased the
contribution of C6H10O5 in the aged biomass burning factor
to ∼ 12 %, consistent with similar factors observed in previ-
ous studies (Qi et al., 2019; Tong et al., 2021). For the non-
biomass-burning factors, the contribution of C6H10O5 to the
factor profiles decreased to <2.5 %, while key spectral and
temporal features were retained. As the number of factors in-
creased, the newly added factor profiles all had high (>20 %)
contributions from C6H10O5, which is characteristic of pri-
mary biomass burning. However, these new factors could not
be physically interpreted and were therefore considered to
result from mathematical splitting. Increasing the number of
factors to 11–15 yielded only further splitting of the primary
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biomass burning profiles and no longer affected the C6H10O5
contributions to the non-primary biomass burning factors.

This preliminary analysis suggested that the variability in
the dataset is optimally represented by 6 factors. However,
because the unconstrained 6-factor solution did not provide
unmixed factors (as described above), we constructed an un-
mixed 6-factor solution by constraining profiles for primary
cooking, aged biomass burning, and the 3 SOA factors. The
reference profiles used in SoFi for these 5 factors were taken
from the unconstrained 10-factor solution. The remaining
five profiles (from the unconstrained 10-factor solution) were
combined on a mass-weighted basis to form a single primary
biomass burning profile. This 6-factor solution is referred to
as the “base case” hereafter.

The statistical stability of and uncertainties in the base case
were accessed by a combined bootstrap analysis–randomized
a-value selection (i.e. sensitivity test of the tightness of con-
straint). Bootstrapping was implemented by random resam-
pling of the rows of the original data matrix and correspond-
ing entries of the error matrix, such that in each bootstrap
iteration some rows were sampled multiple times while oth-
ers were not sampled at all, thus creating new matrices in
each iteration of the bootstrap analysis that were of the same
dimensions as the original input matrices (Davison and Hink-
ley, 1997; Paatero et al., 2014). Simultaneously the a values
of the 5 constrained factors (primary cooking-related, aged
biomass burning, and 3 unique SOA factors) were randomly
selected from within predefined limits chosen to maximize
exploration of the solution space while maintaining compu-
tational efficiency. The bootstrap–a-value analysis was con-
ducted in two stages: (1) an exploratory analysis on a small
number of runs that was used to determine the a-value limits
and (2) the final analysis on 1000 bootstrap runs with a-value
randomization occurring within these limits.

The a-value limits for the combined bootstrap–a-value
randomization analysis were selected after an exploratory
analysis of 250 bootstrap runs in which the a values of every
constrained factor were allowed to vary over the full range
(0 to 1), with a step size of 0.1. The 250 individual solutions
were analysed and classified as “good” or “mixed” follow-
ing the method of Stefenelli et al. (2019), which consists of
the following steps: (1) calculation of the Spearman correla-
tion coefficients between the time series of each factor from
the base case and a bootstrap solution, yielding a correla-
tion matrix for each bootstrap run with the correlation values
between bootstrap factors and corresponding base case fac-
tors on the matrix diagonal; (2) requirement that the correla-
tion coefficient on the matrix diagonal was higher than those
on the intersecting row and column by a statistically signifi-
cant margin (based on a preselected significance level p from
a t test). Solutions satisfying this requirement were classi-
fied as good solutions, whereas those failing this test were
classified as mixed solutions. From visual analysis of ∼ 50
randomly selected solutions, we selected p = 0.3 as the ap-
propriate confidence level. We then assessed the acceptance

probability as a function of a value, selecting the a-value up-
per boundary to be the value above which 75 % of solutions
were classified as mixed. The ranges of a values selected for
cooking-related OA and 4 SOA factors are given in Supple-
mentary Table S1.

The a-value limits obtained above were utilized in a final
combined bootstrap–a-value randomization analysis, con-
sisting of 1000 runs. Solutions resulting from this 1000-run
bootstrap were separated into good and mixed solutions us-
ing the same acceptance/rejection criteria as used in the ex-
ploratory bootstrap. The final bootstrap analysis resulted in
835 good solutions out of 1000 that were kept for further
analysis. The solution presented in Sect. 3 is the average of
these 835 solutions.

2.4 Estimation of the fraction attributable to local
production or emissions during daytime

In order to isolate the effects of boundary layer dynamics and
gas–particle partitioning from those of photochemical pro-
duction, we modelled the average concentration of all EESI-
TOF factors during the daytime (averaged between 10:00 to
16:00 local time (LT)) (denoted Cmodel) based on the average
concentration of the previous night (averaged between 21:00
and 04:00 LT), assuming that all changes were driven by par-
titioning and/or boundary layer expansion. The dilution and
partitioning effects on the SOA factors were calculated by
attributing each factor to a distinct organic species with bulk
properties as given in the Supplementary Table S2. The rel-
ative difference between measured (Cmeasured) and modelled
average daytime concentrations (Cmodel) is attributed to local
photochemical production for SOA factors and local emis-
sions for POA factors. This analysis was applied to each fac-
tor on a day-by-day basis.

The modelled daytime concentration of a particular factor
on a day i, Cmodel,i , was calculated by combining the effects
of both dilution and partitioning on the average nighttime
concentration, Cnighttime,i−1, of that factor observed during
the previous night (i.e. day i− 1):

Cmodel,i = Cnighttime,i−1×Df,i ×Pf,i , (6)

where Df is the dilution factor, i.e. the fractional change in
nighttime concentrations due to dilution, and Pf is the parti-
tioning factor, i.e. the fractional change in the nighttime con-
centrations due to gas–particle partitioning.

The dilution factor for each day was calculated using the
ratios of planetary boundary layer heights (PBLHs) during
the nighttime and daytime. PBLH data were obtained from
the Real-time Environmental Applications and Display sYs-
tem (READY; Rolph et al., 2017) website. The PBLH data
were available at a 3 h resolution; hence single values of
PBLH obtained at 00:00 during the nighttime and 12:00 dur-
ing the daytime were used for each day.

Df,i = PBLHnight,i/PBLHday,i
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The partitioning coefficient ξp for each factor p was calcu-
lated using basic partitioning theory:

ξp =

(
1+

c∗

COA

)−1

, (7)

where COA is the mass concentration of organic aerosols
(measured OA mass by AMS in this study) and c∗ is the ef-
fective saturation vapour concentration of each factor. The
activity coefficient was assumed to be 1 (Donahue et al.,
2006). The saturation vapour concentration at room tempera-
ture, c∗ (298 K), was estimated using the molecular corridor
approach (Li et al., 2016), based on the framework developed
originally for the two-dimensional volatility basis set (Don-
ahue et al., 2011):

log10c
∗(298 K)=

(
n0

C− nc

)
bc−nObO−2

nCnO

nc+ nO
bCO , (8)

where n0
c is the reference carbon number; nC and nO are the

number of carbon and oxygen atoms, respectively, which are
given in supplementary Table S2; bC and bO are the cor-
responding parameterization values for each class of com-
pounds (i.e. CH and CHO); and bCO is the coefficient of
carbon–oxygen non-ideality, ncnO/(nc+ nO), hereafter re-
ferred to as NICO. The n0

C, bC, bO, and bCO values used were
25, 0.475, 0.2, and 0.9, respectively (Mohr et al., 2019; Tröstl
et al., 2016; Pankow and Asher 2008). The temperature-
dependent effective saturation concentration c∗ (T ) was cal-
culated using the Clausius–Clapeyron equation (Li et al.,
2016; Donahue et al., 2006). ξp was calculated for each fac-
tor on an hourly basis and was later averaged to obtain single
daytime and nighttime values for each day. The partitioning
factor Pf was calculated by using Eq. (9):

Pf,i = ξday,i/ξnighttime, i . (9)

Based on modelled daytime concentration (Cmodel) and ob-
served daytime concentration (Cmeasured), the fraction of day-
time concentrations attributed to local photochemical pro-
duction for SOA factors or to direct emissions for POA fac-
tors was calculated using the following equation:

fraction attributable to local production or emissions=

(Cmeasured−Cmodel)/Cmeasured . (10)

3 Results and discussions

3.1 AMS source apportionment results

From the AMS source apportionment, we identified three
primary factors, namely hydrocarbon-like OA (HOA) and
biomass burning OA (BBOA-1 and BBOA-2), and two sec-
ondary factors, denoted more oxidized oxygenated OA (MO-
OOA) and less oxidized oxygenated OA (LO-OOA). Fig-
ure 1 shows the factor mass spectra (Fig. 1a), time series

(Fig. 1b), and diurnal trends (Fig. 1c) of all factors. The rela-
tive contributions of these factors to total OA mass on a 24 h
basis, during the daytime and during the nighttime, are shown
by means of pie charts in Fig. 1d.

The HOA mass spectrum contains prominent contribu-
tions from CxH+y fragments (e.g. C3H+5 , C3H+7 , C4H+7 ,
C3H+9 ). This is consistent with saturated and unsaturated hy-
drocarbons, which are major constituents of fossil fuels. Sim-
ilar factors have been observed in many previous studies and
are typically associated with traffic emissions (Lanz et al.,
2007; Zhang et al., 2011). The diurnal pattern (Fig. 1c) shows
a small peak during the morning rush hour (07:00 LT) and a
larger one during the evening rush hour (18:00–22:00 LT).
The morning peak is partially obscured by the decreasing
concentrations due to dilution caused by a rising boundary
layer. As a result, the HOA factor reaches its minimum dur-
ing midday hours (12:00–16:00 LT). Such strong boundary
layer cycling is a known characteristic of Delhi and affects
nearly all primary species (Gani et al., 2019; Lalchandani et
al., 2021; Tobler et al., 2020). The low temperatures during
the evening hours reduce the boundary layer height, result-
ing in an accumulation of species. The HOA time series is
well correlated with NOx , further supporting the assignment
of this factor to traffic-related sources, as shown in Fig. 1b.

The mass spectra of both BBOA-1 and BBOA-
2 have strong signals from C2H4O+2 (m/z 60) and
C3H5O+2 (m/z 73) fragments, which are characteristic frag-
ments of anhydrosugars like levoglucosan (Aiken et al.,
2009), a product of cellulose pyrolysis (Hoffmann et al.,
2010; Simoneit et al., 1999). The high abundances of these
fragments in BBOA mass spectra have been reported in ear-
lier studies (Crippa et al., 2013; Zhang et al., 2011). BBOA-
1 has about 1.5 % and 0.8 % of its total signal attributed
to C2H4O+2 and C3H5O+2 , respectively, compared to 3.9 %
and 1.7 %, respectively, for BBOA-2. All other factors have
lower contributions from these fragments; HOA, MO-OOA,
and LO-OOA have 0.3 %, 0.2 %, and 0.8 % of their total sig-
nal, respectively, attributed to C2H4O+2 , and 0.2 %, 0.1 %
and 0.4 % of their total signal, respectively, attributed to
C3H5O+2 . BBOA-1 and BBOA-2 explain 21.6 % and 36.8 %
of the temporal variability in C2H4O+2 , while LO-OOA, MO-
OOA, and HOA explain 20.3 %, 11.6 %, and 3.1 %, respec-
tively, of its temporal variability. Similarly, for C3H5O+2 ,
BBOA-1 and BBOA-2 explain 20.9 % and 31.6 % of its tem-
poral variability, respectively, while LO-OOA, MO-OOA,
and HOA explain 20.2 %, 17.8 %, and 4.3 % of its tempo-
ral variability, respectively. The rest is unexplained variabil-
ity. The BBOA factors also have higher contributions (rela-
tive to other factors) from high m/z species, e.g. 116, 118,
202, which were previously associated with polycyclic aro-
matic hydrocarbons (PAHs) (Bruns et al., 2015; Dzepina et
al., 2007).

The bulk O : C, H : C, and N : C ratios of BBOA-1 are
0.37, 1.8, and 0.05, respectively, compared to 0.47, 1.84,
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Figure 1. (a) Mass spectra from AMS PMF factors. The mass spectra are divided into two regions, i.e. one from m/z 12 to 120 (individual
ions from HR peak fitting) and one from 121 to 300 (integer m/z integration). The mass spectra are coloured according to different families
as mentioned in the legend. (b) Factor time series from AMS PMF results, together with selected reference species. (c) Diurnal trends with
interquartile ranges (shaded areas) of the AMS factors. These are drawn at an hourly time resolution. (d) Pie charts showing fractional
contributions of AMS factors as the 24 h average, as well as for daytime (10:00–16:00 LT) and nighttime (21:00–04:00 LT).
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and 0.019 for BBOA-2. The N : C value is almost 2.5 times
higher for BBOA-1 compared to BBOA-2. A nitrogen-rich
solid-fuel combustion factor was identified in a previous
study at the same site and was attributed to biomass com-
bustion with possible mixing of coal and other solid fuels
(Lalchandani et al., 2021). Both BBOA-1 and BBOA-2 show
similar diurnal trends with an evening time increase, indi-
cating increased emissions as well as a reduction in bound-
ary layer height due to decreasing temperature (Gani et al.,
2019; Lalchandani et al., 2021), and very low values during
daytime hours. A steep decline during midday hours of both
BBOA-1 and BBOA-2 is attributed to less intense source
contributions and an increase in boundary layer height as
well as the increased volatilization of semi-volatile compo-
nents. A contrasting feature in diurnal trends of BBOA-1 and
BBOA-2, however, is the extent to which both these factors
increase in the evening hours as compared to their average
daytime values. While BBOA-1 increases by a factor of∼ 2–
3 during the evening hours, BBOA-2 increases by a factor of
∼ 10 during the same time. The differences in bulk elemental
ratios and diurnal patterns of the BBOA factors support their
treatment as separate factors.

The primary biomass burning and aged biomass burning
factors from the EESI-TOF (see Sect. 3.2) also show a sim-
ilar trend, with the diurnal pattern of the primary biomass
burning factor from the EESI-TOF showing an increase of
a factor of ∼ 50 during the evening rush hours, whereas the
oxidized biomass burning factor only exhibits a ∼ 2–3-fold
increase during the same time (Fig. S1 in the Supplement).

From the two retrieved SOA factors, MO-OOA is more
oxygenated with a bulk O : C ratio of 0.99, which is the
highest among all the factors (>2 times higher than that of
LO-OOA and BBOAs and ∼ 12 times higher than HOA).
The mass spectrum of MO-OOA contains large contribu-
tions from CO+2 (m/z= 44), consistent with OOA factors
described in other studies (Ng et al., 2010). The CO+2 frag-
ment usually arises from carboxylic acid groups in diacids
or multifunctional acidic compounds (Duplissy et al., 2011).
The high degree of oxygenation suggests its secondary ori-
gin (Jimenez et al., 2009; Zhang et al., 2011). Despite the
aforementioned boundary layer effects, the diurnal trend of
MO-OOA shows an increase during the day, implying forma-
tion occurs as a result of daytime photochemical reactions,
although the sources or precursors cannot be inferred from
the AMS factor spectrum. Overall, MO-OOA correlates well
with SO2−

4 measured by the AMS.
LO-OOA contains a lower contribution from CO+2 (though

still higher than any of the POA factors) and higher con-
tributions from less oxygenated species. The bulk O : C ra-
tio of this factor is 0.46. Due to the lower oxygenation and
presumably higher volatility of LO-OOA, its partitioning be-
haviour between the gas and particle phase is more sensitive
to the ambient temperature and the total OA concentration
than MO-OOA. As a result, LO-OOA exhibits increased con-
centrations at night (lower temperature, higher total OA).

The PMF analyses on the AMS dataset as discussed
above show the relative importance of primary and secondary
sources (Fig. 1d) with traffic and primary biomass burning
as major contributors to the primary organic aerosol. How-
ever, while the AMS can quantify total SOA and delineate
it by the extent of oxygenation and/or volatility, it does not
provide source-specific information. In the next section, we
report the source apportionment results from EESI-TOF data
and investigate the individual sources that could contribute to
the SOA factors.

3.2 EESI source apportionment results

The EESI-TOF source apportionment results yielded six fac-
tors. Of these, biomass burning and cooking-related OA were
attributed to primary aerosol. The remaining four factors
were attributed to secondary sources and denoted aromatic
SOA, biogenic SOA, aged biomass burning, and mixed urban
SOA. These EESI-TOF factors can be qualitatively related to
the AMS, with EESI-TOF primary biomass burning corre-
sponding to AMS BBOA and the four EESI-TOF secondary
factors providing a more source-specific representation of
AMS OOA (i.e. MO-OOA + LO-OOA). Note that cooking-
related OA was retrieved only by the EESI-TOF and not the
AMS (see discussion below), while as expected the EESI-
TOF did not retrieve HOA due to its insensitivity to alkanes
and alkenes (see Sect. 2.2.1). Related AMS and EESI-TOF
factors are compared below as appropriate.

3.2.1 Primary factors

Primary biomass burning

The mass spectrum of primary biomass burning is dominated
by C6H10O5, likely associated with anhydrosugars such as
levoglucosan, mannosan, and galactosan. C6H10O5 consti-
tutes 81.1 % of the total mass spectral signal in this factor
(Fig. 2a). The second-highest contribution to the mass spec-
trum comes from the ion C8H12O6 (2.1 % of the total signal),
which could possibly be a derivative of syringol, a promi-
nent compound found in wood-burning smoke (Yee et al.,
2013). These features are qualitatively similar to primary
biomass burning mass spectra observed by EESI-TOFs in
previous studies (Qi et al., 2019; Stefenelli et al., 2019; Tong
et al., 2021). The next three highest contributing ions with
0.47 %, 0.44 %, and 0.33 % of total signal are C11H14O4,
C6H12O5, and C6H10O4, respectively. C11H14O4 could be
tentatively assigned to syringyl ethanone, whereas C6H10O4
may be associated with methylglutaric acid. Both of these
compounds have previously been found in biomass burning
smoke (Bertrand et al., 2018; Qi et al., 2019).

The time series of the primary biomass burning factor ob-
served by the EESI-TOF (Fig. 2b) correlates strongly with
the summed time series of the two BBOA factors from AMS
(r = 0.85). The diurnal trend of this factor shows a distinct
peak during the evening rush hours between 18:00–22:00 LT
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Figure 2. (a) Factor mass spectra of EESI-TOF PMF analysis. The green-to-blue colour gradient represents CxHyOz compounds classified
by their H : C ratio as mentioned in the legend, while red denotes CxHyOzN1−2 compounds. (b) Factor time series, together with selected
external species for comparison. (c) Diurnal variations in the EESI-TOF factors with an hourly resolution. Shaded areas show interquartile
ranges.

and thereafter a steady decline throughout the night with
an early morning rise starting between 05:00–06:00 LT and
peaking at 08:00 LT before decreasing to low values dur-
ing midday hours (12:00–16:00 LT) (Fig. 2c). The diurnal
trend is also qualitatively similar to the AMS HOA and
BBOA factors, in that the time of early morning rise coin-
cides with an increase in anthropogenic activities. Another

observation is that during the daytime (12:00–16:00 LT) the
primary biomass burning declines to less than 4 % of its av-
erage concentrations from the previous night. Three effects
might drive these very low daytime concentrations of pri-
mary biomass burning: first, the decline in source intensi-
ties; second, the strong dilution effects from boundary layer
expansion; and third, increased evaporation of semi-volatile
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constituents due to higher temperature and the aforemen-
tioned dilution. The primary biomass burning factor con-
stitutes on average around 70 % of the total EESI-TOF OA
signal, whereas the AMS BBOA factors contribute on aver-
age 44.7 % to the total organic mass measured by the AMS.
This is due to the higher sensitivity of the EESI-TOF to-
wards levoglucosan as compared to most other classes of
compounds, as consistently observed in laboratory and field
studies (Lopez-Hilfiker et al., 2019; Stefenelli et al., 2019;
Tong et al., 2021). (Note that the EESI-TOF insensitivity
to HOA cannot explain this discrepancy, as AMS BBOA
contributes only 50.9 % of the non-HOA organic mass, i.e.
BBOA/(OA−HOA).)

Cooking-related OA

A notable feature in the mass spectrum of this factor is that
∼ 9.2 % of the total signal in this factor comes from ions
with H : C ratios >1.7 and O : C <0.25. The contribution
of such ions to biogenic SOA is 5.0 %, with all other fac-
tors falling below 2.1 %. The carbon number distribution of
these ions is shifted towards higher carbon numbers, consis-
tent with saturated and non-saturated fatty acids (see Fig. 3).
Such molecules are prominent constituents of cooking oils
(Orsavova et al., 2015). The high relative contributions from
such species are consistent with previous cooking-related
factors resolved in EESI-TOF studies (Tong et al., 2021; Qi
et al., 2019).

The time series of cooking-related OA explains a large
fraction of the signal from ions consistent with fatty acids,
e.g. 32.1 %, 38.8 %, 34.6 %, and 33.9 % of C16H32O2,
C16H30O2, C18H34O2, and C18H36O2, respectively. The
other five factors combined explain only 15 %–20 % of the
variation in these fatty-acid-like compounds, while the rest
remains unexplained; ∼ 5 %–10 % is explained by residuals
and ∼ 90 %–95 % by noise. Figure S3 shows the fractional
contribution of all EESI-TOF factors to the diurnal trends of
two selected fatty-acid-like compounds, tentatively attributed
to oleic acid (C18H34O2) and stearic acid (C18H36O2). As
one can clearly see, the cooking-related OA factor is the
dominant contributor to these species, regardless of time of
day or ion concentration. This observation of the high contri-
bution of cooking-related factor to observed diurnal patterns
of fatty-acid-like compounds is also consistent with previ-
ously defined cooking-related OA factors from the EESI-
TOF (Tong et al., 2021; Qi et al., 2019).

The diurnal trend of cooking-related OA shows qualita-
tively similar features to primary biomass burning, in that
it decreases during daytime hours and peaks during the late
evening (Fig. 2c). Cooking-related OA increases by a fac-
tor of ∼ 6 from 16:00–19:00 LT, remaining roughly stable
till 00:00 LT, followed by a decline till 06:00 LT, and then
remaining approximately stable until 10:00 LT. During the
day, a small peak is observed during lunchtime (13:00–
15:00 LT), which may indicate active sources in the vicin-

ity of the measurement site. The average day-to-night ratio
is approximately a factor of 10 higher than that of primary
biomass burning, which further supports the possibility of
active sources during the day.

We note that no cooking-related factor was identified in the
AMS PMF results. The unconstrained PMF analysis yielded
an HOA factor with high levels of oxygenated fragments, es-
pecially the oxygenated fragments at m/z 55 and 57, which
might indicate mixing of cooking-related factor into HOA.
However, it is also possible that these oxygenated fragments
were contributed by some other sources (e.g. BBOA or LO-
OOA); hence a definite conclusion on the mixing of the
cooking-related factor into unconstrained HOA could not be
drawn. Neither constraining a COA profile from the literature
in the AMS PMF nor increasing the number of factors up
to 15 yielded cooking-related factors. Possible reasons for
this may be the similarity of the cooking-related OA spec-
trum with the HOA and BBOA spectra in the AMS, high rel-
ative concentrations of the other primary factors, and strong
effects of boundary layer dynamics on the diurnal patterns of
all factors (leading to collinearity among unrelated factors),
all of which combine to make it difficult to separate a rela-
tively minor cooking-related factor without the specific tracer
ions provided by the EESI-TOF.

3.2.2 Secondary factors

Aromatic SOA

The mass spectrum of this factor has ∼ 63.0 % of its
total signal contributed by compounds with six to nine
carbons (C6−C9). A large fraction of this comes from
molecules with an H : C ratio <1.5 (27.9 % of the total sig-
nal from C6−9HyOz ions and 7.1 % from C6−9HyOzN1−2
ions) (Fig. 3). As a comparison, biogenic SOA, aged biomass
burning, and mixed urban SOA have an 11.7 %, 27.2 %, and
18.3 % contribution from C6−9HyOz ions and 4.0 %, 2.9 %,
and 3.7 % contribution from C6−9HyOzN1−2 ions with H : C
ratios <1.5, respectively. The low H : C ratios are associ-
ated with aromatic systems, as the precursor gases are highly
unsaturated and contain fewer hydrogen atoms than more
saturated straight-chain or ring-containing compounds. In a
recent study on the source apportionment of VOCs at the
same site, it was found that aromatic C6−9Hy VOCs con-
stitute 45.4 % of total VOC loading and are emitted into the
atmosphere predominantly from anthropogenic activities, of
which traffic constituted the highest fraction during the day-
time (Wang et al., 2020). Oxidation of these aromatic VOCs
is most likely the dominant process leading to the formation
of this factor.

In order to substantiate the claim that the major ions con-
tributing to the ambient aromatic SOA factor are indeed
formed by oxidation of aromatic VOCs, we conducted a
chamber experiment in the Paul Scherrer Institute (PSI) smog
chamber using a mixture of aromatic compounds consist-
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Figure 3. Carbon number distribution plots of EESI-TOF factors. Each carbon number contribution is stacked by contributions from CHON
species (red) and CHO species segregated by their H : C ratio categories. The green-to-blue colour gradient represents CxHyOz com-
pounds classified by H : C ratios of H : C< 1.1, 1.1<H : C< 1.3, 1.3<H : C< 1.5, 1.5<H : C< 1.7, and H : C> 1.7, and red denotes
CxHyOzN1−2.

ing of benzene, toluene, ethylbenzene, and trimethylbenzene
(Kumar et al., 2022). These compounds are well-established
constituents of vehicular emissions (Cao et al., 2016; Yao
et al., 2015) especially for gasoline vehicles during the cold
start phase (Platt et al., 2017). OH radicals were produced
in the chamber and reacted with the VOCs, resulting in the
formation of SOA, whose chemical composition was subse-

quently compared with the aromatic SOA and other SOA fac-
tors obtained in this study.

Figure S2 shows the mass spectrum of the ambient aro-
matic SOA factor colour-coded by ions that were found
in chamber SOA formed from oxidation of aromatics. Ap-
proximately 32.0 % of the EESI-TOF signal contained in
the aromatic SOA factor overlapped with ions identified in
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the chamber experiment. This signal fraction is considerably
higher than for other SOA factors, i.e. biogenic SOA, aged
biomass burning, and mixed SOA had signal contributions
from chamber SOA ions of 16.0 %, 26.0 %, and 20.0 %, re-
spectively.

Despite the strong dilution of the boundary layer during
the day, there is little variation in the aromatic SOA con-
centration during the day. This points to a strong local day-
time source, such that the production of aromatic SOA is fast
enough to offset the strong dilution effects of the expanding
boundary layer as discussed further in Sect. 3.5.

Biogenic SOA

The mass spectrum of biogenic SOA is shown in Fig. 2a.
It contains high contributions from ions such as C9H16O5,
C8H14O6, and C9H14O4, which have been previously iden-
tified in EESI-TOF factors representing biogenic oxidation
products (Qi et al., 2020; Stefenelli et al., 2019). Compounds
with H : C >1.5 constitute nearly 50 % of the signal of this
factor, with 2.9 %, 5.0 %, 6.8 %, and 2 % of signal result-
ing from C7H10−14O4−8, C8H12−16O4−8, C9H14−18O4−8,
and C10H16Oz, respectively. These compounds have been
previously attributed to monoterpene oxidation products in
Zurich, Switzerland (Stefenelli et al., 2019). There are, how-
ever, some notable differences from the Zurich study. Specif-
ically, the present study shows a much smaller contribution
from the C10H16Ozcompounds (6.2 % in Zurich vs. 2 % in
this study), while CxHyOzN1 compounds comprise 26.7%
of the factor profile (vs. ∼ 13% in Zurich). These differ-
ences might arise because of two different reasons. One is
the probable contribution of not only monoterpene oxidation
products (which dominate in Zurich) but also isoprene oxi-
dation products, e.g. C5H10Ox and C5H9NOx (Chen et al.,
2020), to the biogenic factor retrieved in this study. This is
because of Delhi’s location near the tropics, which results in
a large contribution of isoprene to the total biogenic VOCs.
Model estimates predict isoprene emission fluxes to be a fac-
tor of ∼ 20 higher than α-pinene in tropical regions of In-
dia, whereas in Europe the emission fluxes of isoprene and
monoterpenes are similar (Guenther et al., 2012; Sindelarova
et al., 2014). Zurich and Delhi also differ in terms of atmo-
spheric conditions, in particular the much higher NOx levels
in Delhi as compared to Zurich, consistent with the higher
CxHyOzN1 fraction. Biogenic VOCs such as monoterpenes
and isoprene are susceptible to oxidation by NO3 radicals,
which can result in large amounts of biogenic SOA produc-
tion. In Delhi, however, due to large concentrations of NO
(∼ 200–300 ppbv) during the nighttime, the production of
NO3 radicals is suppressed and the diurnal cycle of NO3 is
actually inverted with the majority of available NO3 radicals
actually present during the daytime (Haslett et al., 2022).

The diurnal trend of this factor resembles that of the EESI-
PMF primary factors in that the concentration is highest
overnight and a strong decrease is seen during daytime hours.

A possible explanation of this behaviour could be more re-
gional sources of the biogenic VOCs scattered over a large
area. This means that the biogenic SOA factor most likely
has only a small daytime source in the vicinity of the site.

Aged biomass burning

The fractional contribution of levoglucosan (C6H10O5) to
the aged biomass burning factor mass spectrum is ∼ 10 %,
which is a factor of 8 lower than for the primary biomass
burning factor. The lower levoglucosan content in the aged
biomass burning mass spectrum as compared to the primary
biomass burning mass spectrum is consistent with observa-
tions of similar factors in Zurich during winter (Qi et al.,
2019). Additionally, chamber studies have shown that the
levoglucosan concentration decreases in aged biomass burn-
ing particles (Bertrand et al., 2018), while the concentrations
of secondary species increase, consistent with observations
in this study.

The mass spectrum of this factor also has ∼ 2 % contribu-
tions each from two key ions, C6H8O6 and C7H8O7. These
are most likely oxidation products of phenols and methoxy-
phenols, which are abundant secondary compounds formed
during the ageing of biomass burning emissions (Yee et al.,
2013) and are important precursors of biomass burning SOA.
The aged biomass burning factor contains dominant signals
from various other small molecules with H : C ratios less than
1.3, which is consistent with the oxidation of small aromatic
compounds emitted during biomass burning such as pheno-
lic compounds. These compounds were observed to be ma-
jor contributors of gas-phase solid-fuel combustion factors in
a recent VOC source apportionment study conducted at the
same site (Wang et al., 2020).

The diurnal trend of aged biomass burning is similar to
the one of primary factors, characterized by increased con-
centrations during evening hours and a decline during day-
time hours. The amplitude of the evening time peak however
differs between aged biomass burning and primary biomass
burning (Fig. S1). While the primary biomass burning in-
creases by a factor of ∼ 50–60 between 17:00–22:00 LT, the
increase in oxidized biomass burning is within a factor of∼ 5
during the same time. Between 22:00–07:00 LT, the concen-
tration of this factor steadily decays by a factor of 2.5. A dis-
tinct peak is also observed between 07:00–09:00 LT, which
coincides with an increase in solar radiation, indicating that
ageing of emissions takes place during early morning hours.
Note that it is likely that a majority of local emissions are not
oxidized during nighttime in Delhi due to very high levels
of NO (∼ 200–300 ppb), which may scavenge both O3 and
NO3 radicals during nighttime and inhibit nocturnal degra-
dation of VOCs (Haslett et al., 2022).

The diurnal pattern of the LO-OOA factor from AMS cor-
relates well with the aged biomass burning factor from the
EESI-TOF and suggests that oxidation of biomass burning
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emissions may be the dominant contributor to the LO-OOA
factor observed in the AMS.

Mixed urban SOA

The remaining factor is most likely a mixed SOA fac-
tor, which has influences from both anthropogenic and bio-
genic sources. The highest-intensity ions in this factor are
C5H10O4, C9H14O5, C6H10O5, C9H16O5, C9H18O5, and
C6H12O4. C5H10O4 is probably a product of isoprene oxi-
dation, whereas the dominance of C9 compounds suggests
contributions from oxidation products of C9 species. The C9
species have varied sources in urban areas which include
evaporative losses of fuels (e.g. gasoline), solvent use, and
unburnt exhaust emissions (Mehra et al., 2020; Zhang et al.,
2013), and hence this factor is likely influenced by different
sources linked to the Delhi urban area. This factor also has
∼ 2.5 % of mass spectral signal contributed by levoglucosan
(C6H10O5). Either this could be due to non-perfect unmixing
by PMF, or it could indicate the contributions from biomass
burning with other above-mentioned sources in this factor.
This factor is therefore named mixed urban SOA.

The diurnal pattern of this factor shows roughly stable con-
centrations from 00:00–06:00 LT, which is similar to the aro-
matic SOA factor. All other factors show a decrease during
these hours. It increases by a factor of ∼ 3 between 11:00–
14:00 LT and then steadily decays before being enhanced
again by a factor of ∼ 15 between 18:00–21:00 LT. The day-
time increase suggests photochemical production of this fac-
tor. The diurnal trend of this factor is stable during late night
hours and does not show a marked early morning rush hour
peak, indicating little or no influence of morning rush hour
emissions.

3.3 Estimation of mass contributions of EESI SOA
factors

The EESI-TOF sensitivity towards individual compounds
has been shown to vary by up to 1–2 orders of magnitude. Al-
though EESI-TOF factor sensitivities likely vary by signifi-
cantly less due to averaging effects, these variations nonethe-
less make it challenging to ascertain relative contributions
of EESI-TOF factors on a mass concentration basis. To esti-
mate the EESI-TOF sensitivities (in cps µg−1 m3, where cps
denotes counts per second) to different EESI SOA factors
and thus obtain a mass-based source apportionment of the
resolved SOA factors, a multiple linear regression (MLR)
analysis was performed to explain the AMS SOA (i.e. MO-
OOA+ LO-OOA) time series as a function of the four EESI-
TOF SOA factors. Eq. (11) was solved for α1, α2, α3, and α4
where the reciprocal of the coefficients αi represents the sen-

sitivity of the EESI-TOF to each factor in cps µg−1 m3.

AMS SOA= α1× (aromatic SOA)+α2× (biogenic SOA)

+α3× (aged biomass burning)
+α4× (mixed urban SOA)+ ∈

(11)

To solve Eq. (11), a weighted least-squares approach was
used where the uncertainty-weighted residuals (denoted ∈)
were minimized for each point in time. The α coefficients
for all EESI-TOF SOA factors were constrained such that the
obtained sensitivities of these factors were between 0.1 and
1 times that of levoglucosan (∼ 55 cps µg−1 m3), consistent
with previous observations of bulk EESI-TOF sensitivities to
SOA from different precursors (Lopez-Hilfiker et al., 2019).
In addition to the MLR, the EESI sensitivities towards indi-
vidual oxidation products were estimated using a gradient-
boosting regression–prediction (GBRP) model (Wang et al.,
2021) based on their elemental formulae (i.e. CxHyOz). The
EESI-TOF sensitivity to different SOA factors was derived
by calculating the signal-weighted average based on the fac-
tor profile of these individual ion sensitivities. The GBRP
model results were used in relative terms, where the response
factors obtained for each EESI-TOF factor using the GBRP
model were normalized relative to that of primary biomass
burning. The EESI-TOF response factor for biomass burning
was calculated by taking the ratio of the summed EESI signal
in primary biomass burning to the summed AMS BBOA fac-
tors. This was then used to scale the sensitivities of the SOA
factors obtained using the GBRP model.

The MLR analysis was first applied to the entire time se-
ries, which resulted in a correlation coefficient (r) value of
0.6 between modelled SOA (α1× aromatic SOA + α2× bio-
genic SOA + α3× aged biomass burning + α4× mixed ur-
ban SOA) and measured SOA (sum of MO-OOA and LO-
OOA from AMS). There were, however, two issues with
this analysis. One was that it showed systematic positive
and negative biases in certain parts of the time series, and
the second was that the fitted MLR coefficients for biogenic
SOA, aged biomass burning, and mixed urban SOA were
near zero, which, based on previous studies, implied a non-
physical result (Lopez-Hilfiker et al., 2019). The possible
reason for these mentioned issues might be the presence of a
unique event from 18:00 LT on 3 January 2019 to 12:00 LT
on 4 January 2019 when high signals of aromatic SOA with
low signals of biomass burning and other primary and sec-
ondary species were observed, driving the coefficients of all
other SOA factors except aromatic SOA to be near zero.
Based on the issues mentioned above, the time series was
divided into two parts: part 1 from 31 December 2018–3 Jan-
uary 2019 (till 18:00 LT) and part 2 from 4 January 2019
(from 12:00 LT)–13 January 2019. The data from 16:00 LT
on 3 January 2019 to 12:00 LT on 4 January 2019 were omit-
ted.
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The sensitivities were then obtained by MLR analyses of
different parts of the dataset: (1) the sensitivity was estimated
by performing MLR on the entire EESI-TOF factor time se-
ries; (2) the sensitivity was estimated by performing MLR
on only part 1 of the time series; (3) the sensitivity was esti-
mated by performing MLR on only part 2 of the time series;
(4) the EESI-TOF sensitivity was assumed to be uniform for
all factors, where the bulk EESI sensitivity was calculated
as the slope of the total EESI-TOF signal vs. the total AMS
organic mass. In addition, the EESI-TOF sensitivity towards
individual oxidation products was estimated using a gradient-
boosting regression–prediction (GBRP) model (Wang et al.,
2021) based on their elemental formulae (i.e. CxHyO+z ) as
described above.

The sensitivities obtained using MLR analysis and pre-
dicted by the GBRP model were used to calculate mod-
elled SOA, and results were evaluated based on three pa-
rameters (Fig. S4): (1) the Pearson correlation coefficient
r between the modelled and measured SOA; (2) the mean
of the fractional residuals, i.e. measured SOA−modelled
SOA /measured SOA; and (3) the mean of the scaled resid-
uals, i.e. measured SOA−modelled SOA / uncertainty in
measured SOA.

The fractional and scaled residuals were closest to zero
and hence had the least bias when modelled SOA was calcu-
lated by using α coefficients obtained by MLR analysis on
part 2 of the time series (Fig. S4). Hence the α coefficients
obtained using MLR analysis on part 2 of the time series
were applied to the entire time-series factors to calculate a
mass-based estimation of the SOA factors. The coefficients
obtained were 0.15, 0.11, 0.10, and 0.12 for aromatic SOA,
biogenic SOA, aged biomass burning, and mixed urban SOA,
respectively. These coefficients correspond to sensitivities of
6.6, 9.1, 10.0, and 8.3 cps µg−1 m3, respectively. As a com-
parison, the sensitivities predicted by Wang et al. (2021) were
6.1, 8.1, 8.6, and 11.1 cps µg−1 m3 for aromatic SOA, bio-
genic SOA, aged biomass burning, and mixed urban SOA,
respectively, and lay between ± 35 % of those obtained from
MLR analysis, providing evidence of robustness of this MLR
analysis. Figure S5 shows the time series of measured and
modelled SOA obtained using the coefficients derived from
the five different strategies discussed above.

3.4 Source apportionment of total OA

Here, we combine MLR-corrected EESI-TOF concentrations
for aromatic SOA, biogenic SOA, aged biomass burning, and
mixed urban SOA (the sum of which by definition approxi-
mates the total AMS-derived SOA) with the AMS source ap-
portionment results for POA factors (i.e. HOA and BBOA) to
provide an overall description of the OA sources influencing
Delhi. The 24 h average, daytime average (10:00–16:00 LT),
and nighttime average (22:00–04:00 LT) factor contributions
to total OA mass are shown in Fig. 4. While SOA contributes
only 40.0 % of total OA on a daily average basis, there is

a stark difference between day and night. SOA constitutes
76.8 % of total OA during the daytime (10:00 to 16:00 LT).
The aromatic SOA is the largest contributor to daytime SOA
and contributes 55.2 % of SOA during the daytime (42.4 %
of total OA), followed by biogenic SOA, which contributes
18.4 % to daytime SOA (14.2 % to total OA). The contribu-
tions of aged biomass burning and mixed urban SOA to to-
tal SOA during daytime are 11.7 % and 8.5 %, respectively
(15.2 % and 11.0 % to total OA). During the nighttime (21:00
to 04:00 LT), SOA constitutes 31.0 % of total OA mass, with
biogenic SOA contributing 36.1 % of SOA (11.2 % of total
OA) followed by a 25.4 % contribution by aromatic SOA
(7.9 % to total OA). Aged biomass burning and mixed urban
SOA contribute 15.4 % and 22.9 % to total nighttime SOA,
respectively (4.8 % and 7.1 % contribution to total OA, re-
spectively). During the nighttime, the high OA concentra-
tions are driven by high primary emissions into a shallow
boundary layer; during the daytime, the OA is dominated by
secondary aerosol, including local oxidation in the elevated
boundary layer.

The differing relative contributions of primary vs. sec-
ondary OA as a function of the time of day have implica-
tions for public health policy. Specifically, although POA
dominates the overall OA concentration, the SOA factors are
most prevalent during times when people are most likely
to be outdoors and thus exposed to OA (i.e. daylight). It
has been recently shown that oxygenated OA contributes a
substantially higher fraction of particle-bound reactive oxy-
gen species (ROS) (Zhou et al., 2019) as compared to pri-
mary OA. More specifically, anthropogenic SOA has been
shown to be more relevant in terms of oxidative poten-
tial (OP) than biogenic SOA and POA (Daellenbach et al.,
2020). In a recent study at the same site in Delhi, the ra-
tio of hourly averaged ambient DTT (dithiothreitol) activity
in PM2.5 to the NR-PM1 mass concentration (i.e. the intrin-
sic oxidative potential (OPin)) was found to be highest dur-
ing the afternoon period (Puthussery et al., 2020). This coin-
cides with the increased contributions from photochemically
formed secondary organic aerosol (SOA) as observed in this
study. Furthermore, the ratio of anthropogenic to biogenic
SOA in Delhi especially during the daytime is high and the
SOA fraction is dominated by aromatic SOA. This suggests
that the daytime increase in OPin observed by Puthussery et
al. (2020) is most likely driven by large contributions from
aromatic SOA, which is similar to observations across Eu-
rope by Daellenbach et al. (2020). The aromatic SOA is most
likely formed from the oxidation of light aromatics emitted
by traffic. Reducing traffic emissions, e.g. by cleaning ex-
haust emissions with catalytic converters, can reduce emis-
sion factors of aromatic compounds and may lead to a de-
crease in total SOA concentration and the oxidative potential
of OA.
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Figure 4. Overall OA source apportionment results, combining AMS PMF with MLR-corrected EESI-TOF SOA source apportionment
results. EESI-TOF cooking-related OA is excluded. EESI-TOF primary biomass burning is assumed to be equivalent to the sum of the AMS
BBOA factors, and therefore only the AMS factors are shown. EESI-TOF SOA concentrations are calculated using the MLR-derived factor-
dependent sensitivities. Panel (a) shows the overall source apportionment, while panels (b) and (c) show the daytime and nighttime results,
respectively.

3.5 Fraction of EESI-TOF factors attributable to local
production or emissions during daytime

As discussed previously, the temporal trends of the different
factors are likely driven by photochemical production (SOA),
emissions (POA), boundary layer dynamics, and gas–particle
partitioning. Figure 5 shows the estimated fraction of day-
time concentrations attributable to photochemical production
for the EESI-TOF SOA factors or direct emissions for EESI-
TOF POA factors. AMS-derived PMF factors were not in-
cluded in this analysis due to the lack of reliable methods
to compute saturation vapour concentrations of these fac-
tors. The SOA factors (aromatic SOA, aged biomass burn-
ing, and mixed urban SOA) have a high mean fraction of
daytime photochemical production values of 0.88, 0.82, and
0.83, respectively. This is significantly higher than the day-
time photochemical fraction of 0.55 for biogenic SOA (t test,
p<0.05). This daytime production suggests that local photo-
chemistry is an important driver for daytime air quality in
Delhi and thus relevant to human exposure and health out-
comes. As shown in a VOC source apportionment study at
the same site (Wang et al., 2020), the largest contributor of
primary VOCs during the daytime at this site is a traffic-
related factor. This is consistent with high concentrations of
light aromatics, which are in turn consistent with the elevated

concentration and strong local production term of the EESI-
TOF aromatic SOA factor.

The smaller daytime production fraction retrieved for bio-
genic SOA is consistent with its description as a regionally
influenced factor. This is consistent with a projected source
distribution that is diffused over a wide area rather than lim-
ited to Delhi.

For the primary factors, a relatively small fraction, i.e.
0.53, of primary biomass burning could be attributed to day-
time emissions, whereas a relatively high daytime emission
fraction, i.e. 0.83, was observed for cooking-related OA, con-
sistent with expectations as primary biomass burning most
likely corresponds to nighttime heating activities, while the
cooking-related emissions emerge from active sources dur-
ing specific mealtimes.

4 Conclusions

Wintertime particulate air pollution in Delhi, India, is a crit-
ical public health issue that affects millions of people. Pre-
vious studies have identified key POA sources contributing
to this pollution and suggested an important role of total
SOA. Here we investigate the sources contributing to SOA
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Figure 5. Box-and-whisker plots showing the fraction of daytime
local production (SOA) or emissions (POA) for EESI-TOF factors.
The values averaged over all days for all factors are depicted by
numbers adjacent to each box. For the ease of viewing, background
shading denotes SOA (pink) and POA (blue) factors.

via source apportionment of the first EESI-TOF deployment
in India, in conjunction with AMS source apportionment.

The AMS source apportionment yielded POA factors re-
lated to traffic, primary biomass burning (two factors), and
SOA (two factors), which in total comprised 60 % and 40 %
of the OA mass, respectively. The source apportionment of
the EESI-TOF dataset yielded six factors. Two primary fac-
tors were identified as primary biomass burning and cooking-
related OA, while the remaining four factors were attributed
to secondary sources: aromatic SOA, produced from the ox-
idation of light aromatics emitted by traffic; biogenic SOA,
influenced by isoprene and monoterpene oxidation products
and of regional influence; aged biomass burning; and mixed
urban SOA, containing oxidation products consistent with a
mix of sources and processes typical of the Delhi area. Mul-
tiple linear regression (MLR) analysis allowed us to calcu-
late response factors for the EESI-TOF SOA factors and en-
abled apportioning the contribution of each EESI-TOF SOA
factor to total SOA mass. During the daytime, SOA domi-
nated, comprising 76.8 % of the total OA mass with 42.4 %
contribution from aromatic SOA. The nighttime concentra-
tions were dominated by POA, making up 69.0 % of total OA
mass. Large variations in the relative contribution of SOA vs.
POA to total OA were observed between the day and night,
with anthropogenic SOA sources being major contributors to
daytime SOA, explaining the previously observed daytime
increase in OP of PM at the same site (Puthussery et al.,
2020).

A simple partition-and-dilution modelling analysis was
used to estimate the fraction of daytime concentrations that

could be attributed to photochemical production for the SOA
factors and emissions for the POA factors. Aromatic SOA
was found to have the highest photochemical production
among all SOA factors, consistent with the high abundance
of aromatic VOCs at the site as was previously seen (Wang
et al., 2020). Biogenic SOA had significantly lower day-
time photochemical production than other SOA factors, in-
dicating its regional nature and that its temporal behaviour
is controlled by dilution and partitioning and to a lesser ex-
tent by photochemical production. This study reveals that the
HOA and BBOA are the main POA sources in Delhi and that
aromatic SOA, biogenic SOA, aged biomass burning, and
mixed urban SOA constitute total SOA. The daytime OA
mass is dominated by SOA, which is mainly composed of
aromatic SOA, whereas the nighttime OA is dominated by
POA sources of which biomass burning is the dominant one.
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