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Abstract. Tropospheric ozone (O3) is one of the most important air pollutants in China and is projected to con-
tinue to increase in the near future. O3 and vegetation closely interact with each other and such interactions may
not only affect plant physiology (e.g., stomatal conductance and photosynthesis) but also influence the overlying
meteorology and air quality through modifying leaf stomatal behaviors. Previous studies have highlighted China
as a hotspot in terms of O3 pollution and O3 damage to vegetation. Yet, few studies have investigated the effects
of O3–vegetation interactions on meteorology and air quality in China, especially in the light of recent severe O3
pollution. In this study, a two-way coupled land–atmosphere model was applied to simulate O3 damage to vege-
tation and the subsequent effects on meteorology and air quality in China. Our results reveal that O3 causes up to
16 % enhancement in stomatal resistance, whereby large increases are found in the Henan, Hebei, and Shandong
provinces. O3 damage causes more than 0.6 µmol CO2 m−2 s−1 reductions in photosynthesis rate and at least 0.4
and 0.8 g C m−2 d−1 decreases in leaf area index (LAI) and gross primary production (GPP), respectively, and
hotspot areas appear in the northeastern and southern China. The associated reduction in transpiration causes
a 5–30 W m−2 decrease (increase) in latent heat (sensible heat) flux, which induces a 3 % reduction in surface
relative humidity, 0.2–0.8 K increase in surface air temperature, and 40–120 m increase in boundary-layer height
in China. We also found that the meteorological changes further induce a 2–6 ppb increase in O3 concentration in
northern and south-central China mainly due to enhanced isoprene emission following increased air temperature,
demonstrating that O3–vegetation interactions can lead to strong positive feedback that can amplify O3 pollution
in China. Our findings emphasize the importance of considering the effects of O3 damage and O3–vegetation
interactions in air quality simulations, with ramifications for both air quality and forest management.
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1 Introduction

Tropospheric ozone (O3) is a secondary air pollutant, which
is mainly formed from the photochemical oxidation of car-
bon monoxide (CO), methane (CH4), and non-methane
volatile organic compounds (VOCs) by hydroxyl radicals
(OH) in the presence of nitrogen oxides (NOx=NO+NO2).
O3 is known as the third most important greenhouse gas, with
an estimated radiative forcing of 0.41 W m−2 for the period
of 1750–2010 (IPCC, 2013; Stevenson et al., 2013). As an air
pollutant, O3 is also shown to be harmful to not only human
health but also vegetation and crop health (Anenberg et al.,
2010; Cohen et al., 2017). Various field experiments and nu-
merical modeling studies have already demonstrated that O3
can not only reduce gross primary production (GPP) of natu-
ral vegetation as well as crop yields (Ainsworth et al., 2012;
Lombardozzi et al., 2012; Tai e al., 2014; Feng et al., 2015;
Yue et al., 2017; Li et al., 2018) but also decrease transpi-
ration (Arnold et al., 2018), decrease runoff (Li et al., 2016)
on larger scales, and therefore affect the global carbon and
water cycle (Lombardozzi et al., 2015).

Vegetation can in turn modulate O3 concentration through
influencing the sources and sinks of O3. Dry deposition of
O3 onto vegetation is a major sink for O3, mainly via stom-
atal uptake. Stomata are the pores on plant leaves; they con-
trol water exiting and carbon entering the leaf interior and
hence influence the water and carbon exchange between the
land and atmosphere. When vegetation is exposed to en-
hanced O3 levels, cellular and tissue damage can result in
a decrease in photosynthesis rate, thus altering CO2 assim-
ilation. Stomata conductance may decrease subsequently in
response to O3 exposure, thus reducing the dry-depositional
sink of O3 (Sadiq et al., 2017; Zhou et al., 2018), but some
studies also suggest that O3 exposure can cause stomata to
respond more sluggishly to changing environmental condi-
tions, such as drought, with complex overall effects on stom-
atal behaviors and dry deposition (e.g., Huntingford et al.,
2018). Moreover, recent studies showed reduced dry deposi-
tion velocities of O3 by drought-stressed vegetation, which
affects surface O3 trends and extremes (Huang et al., 2016;
Lin et al., 2019, 2020). Vegetation also affects the sources of
O3; the most abundant biogenic VOC (BVOC) species emit-
ted by vegetation is isoprene (C5H8), which is a major pre-
cursor for O3 formation in polluted, high-NOx environments,
but removes O3 by ozonolysis or by sequestering NOx in
more pristine, low-NOx regions (Hollaway et al., 2017). Iso-
prene production is known to be highly coupled with photo-
synthesis and by extension to stomatal conductance (Arneth
et al., 2007). Moreover, transpiration, which is modulated by
stomatal behaviors, significantly regulates surface meteorol-
ogy including water vapor content and air temperature, which
further influence the production and loss of O3. Therefore,
through influencing plant ecophysiology (e.g., photosynthe-
sis and stomata behaviors), O3–vegetation interactions can
modulate boundary-layer meteorology and climate, and may

further affect O3 air quality via a series of feedback mech-
anisms. It is therefore essential to fully understand the O3–
vegetation interactions and the following climatic and bio-
spheric impacts especially in areas with high O3 concentra-
tions and vegetation density.

In many land surface and biospheric models, such as
Noah-Multi Parameterization (Noah-MP) or Community
Land Model (CLM), the Farquhar–Ball–Berry model (FBB,
Farquhar et al., 1980; Ball et al., 1987) is commonly used
to simulate stomatal conductance and photosynthetic rate.
In the FBB model, the calculation of stomata conductance
is based on the calculation of photosynthesis, which makes
them tightly coupled with each other. Therefore, in sev-
eral land surface models that consider O3 damage effect
on vegetation, the photosynthetic rate is modified first and
the stomatal conductance is modified subsequently, which
means stomata conductance and photosynthesis will change
collinearly under chronic O3 exposure (Sitch et al., 2007; Yue
and Unger, 2014). However, field experiments have shown
that, under chronic O3 exposure, stomata conductance de-
creases with a smaller magnitude than photosynthetic rate
does, which makes the simulations of stomata conductance
and photosynthetic rate as well as the following water and
carbon cycles in the above models less accurate (Lombar-
dozzi et al., 2012). Modifying stomata conductance and
photosynthesis separately in land surface models is there-
fore more reasonable. Lombardozzi et al. (2012) modified
the stomata conductance and photosynthetic rate separately
based on the cumulative uptake of O3 into leaves and has
shown a better representation of plant responses to O3 ex-
posure. Efforts have been made to investigate the effects
of O3 exposure on land biosphere based on the above O3
damage schemes. For example, based on an offline process-
based vegetation model, Yue and Unger (2014) found that O3
damage decrease GPP by 4 %–8 % on average in the east-
ern US and leads to significant decreases of 11 %–17 % in
east coast hotspots. Using the offline CLM model, Lombar-
dozzi et al. (2015) estimated that the present O3 exposure
reduces GPP and transpiration globally by 8 %–12 % and
2.0 %–2.4 %, respectively.

Several modeling studies conducted so far have demon-
strated the importance of considering the interactions and
feedbacks between atmosphere and biosphere. By dynami-
cally coupling O3 and leaf area index (LAI) but without con-
sidering the meteorological feedbacks of O3–vegetation in-
teractions to O3, Zhou et al. (2018) found that O3-induced
damage on LAI can lead to changes in O3 concentrations
by −1.8 to +3 ppb in boreal summer. By considering the
interactions between atmospheric chemistry with biosphere
in a two-way coupling model, Lei et al. (2020) quanti-
fied the damaging effects of O3 on vegetation and found a
global reduction of annual GPP by 1.5 %–3.6 %, with re-
gional extremes of 10.9 %–14.1 % in the eastern US and east-
ern China. Based on the Community Earth System Model
(CESM) model with fully interactive atmospheric chem-
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istry, biogeochemical, and biogeophysical cycles, Sadiq et
al. (2017) estimated that surface O3 is 4–6 ppb higher in Eu-
rope, North America, and China in simulations with O3–
vegetation coupling comparing the surface O3 concentra-
tions without O3–vegetation coupling. Based on the modi-
fied Weather Research and Forecasting model with chem-
istry (WRF-Chem), Li et al. (2016, 2018) investigated the
effect of O3 exposure on hydroclimate and crop productivity
in the US and highlighted O3 damage effects on meteoro-
logical fields and surface energy balance as well as the crop
yields, but the feedbacks of changing meteorology onto sur-
face O3 were not investigated. Arnold et al. (2018) examined
the global climate response to O3 exposure and found O3
damage on vegetation can induce widespread surface warm-
ing and changes in clouds, which could be critical on regional
scales. Although the interactions between O3 and vegeta-
tion are critical to our environment, adequate representation
of O3–vegetation interactions is still missing in most atmo-
spheric models used for climate and atmospheric chemistry
simulations, at least in part due to incomplete coupling ca-
pacities with land surface or biospheric model components
at high resolutions and in part due to limited observations to
optimize O3 damage schemes for wider regional applicabil-
ity.

With the rapid urbanization and industrialization in the re-
cent decades, China has experienced increasingly severe O3
pollution, which is expected to continue to worsen in the near
future. O3 concentration in China has been observed to ex-
ceed ambient air quality standard by 100 %–200 % (Wang et
al., 2017), with the maximum 8 h mean concentration of O3
(MDA8 O3) increasing by 4.6 % per year from 2015 to 2017
(Silver et al., 2018). Lu et al. (2019) showed that urban sur-
face O3 in China during 2013–2017 was significantly higher
than that in other regions around the world, and thus vegeta-
tion exposure to O3 is also higher in China. Li et al. (2019)
also revealed the increasing trend of O3 in megacity clusters
of China during 2013–2017, which is closely related to mete-
orology, anthropogenic emissions, and PM2.5 concentrations.
Global-scale studies have highlighted China as a hotspot of
O3 pollution and damage to vegetation compared with other
regions (Sadiq et al., 2017; Arnold et al., 2018; Lei et al.,
2020). However, a comprehensive study of how O3 affects
meteorology and air quality through O3–vegetation interac-
tions in China at high spatial resolutions, especially under
severe O3 pollution, is still limited but highly needed. More-
over, there have been limited studies focusing on the feed-
backs of O3–vegetation coupling on O3 concentration itself,
especially in China, which is one of the main scopes of our
study.

This study, therefore, first adopted and implemented a
semi-mechanistic O3 damage scheme in a widely used re-
gional atmosphere–land modeling framework and hence
used it to simulate and assess the impacts of O3–vegetation
interactions on boundary-layer meteorology and air quality
in China at a high spatial resolution. Specifically, O3-induced

damage to vegetation, changes in meteorology in China due
to O3–vegetation coupling, and the subsequent feedback ef-
fects onto O3 concentration itself are examined, which is cru-
cial to fully understand the O3–vegetation interactions and
the following impacts on climate, biosphere, and air quality
in areas with both high O3 concentrations and high vegeta-
tion coverage.

2 Methods

2.1 WRF-Chem model setup

The WRF model is a state-of-the-art mesoscale nonhydro-
static meteorological model. An atmospheric chemistry mod-
ule that includes various gas-phase chemistry and aerosol
mechanisms has been implemented into and fully coupled
with WRF to create the WRF-Chem model (Grell et al.,
2005; Fast et al., 2006). In WRF-Chem, both the air qual-
ity and meteorological components use the same transport
scheme, model grid, subgrid-scale transport physics, and
time step. WRF-Chem has been widely used in previous
air quality studies (e.g., Li et al., 2016, 2018; Liu et al.,
2018, 2020). In this study, we applied our revised WRF-
Chem model based on version 3.8.1 to simulate meteoro-
logical fields and O3 concentration over China. Simulations
are conducted from 24 May to 1 September every year from
2014 to 2017 and the days in May were discarded as spin-up.
For the land surface component within WRF, we used Noah-
MP, which will be described in the next subsection.

The model domain was configured at a horizontal resolu-
tion of 27 km on the Lambert conformal projection, centered
at 37◦ N, 108.1◦ E, and covering all of China. The model
has 26 vertical layers, with the lowest layer at 0.17 km and
the highest layer at 17.67 km. The meteorological initial and
boundary conditions are provided by the 6-hourly Final Op-
erational Global Analysis (FNL) dataset at a horizontal res-
olution of 1◦× 1◦. The chemical initial and boundary condi-
tions were generated from the Model for Ozone and Related
Chemical Tracer version 4 (MOZART-4), which is available
at a horizontal resolution of 1.9◦×2.5◦ with 56 vertical layers
(Emmons et al., 2010).

Anthropogenic emissions were from the Multi-resolution
Emission Inventory for China (MEIC) compiled at a spa-
tial resolution of 27 km and a 1-hourly temporal resolution
suitable for our research domain. Biogenic emissions were
calculated online by the Model of Emissions of Gases and
Aerosol from Nature (MEGAN) (Guenther et al., 2006).
Biomass burning emissions were extracted from the Fire In-
ventory from NCAR (FINN) version 1.5 datasets (Wiedin-
myer et al., 2011). Dust emissions were generated online
by the Goddard Global Ozone Chemistry Aerosol Radiation
and Transport model (GOCART; Ginoux et al., 2001). Gas-
phase chemistry was simulated with second generation Re-
gional Acid Deposition Model (RADM2; Stockwell et al.,
1990) mechanism, and the Modal Aerosol Dynamics Model
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for Europe (MADE; Ackermann et al., 1998), which is cou-
pled with the Secondary Organic Aerosol Model (SORGAM;
Schell et al., 2001) for aerosol treatment. Detailed physics
schemes used in the simulations are shown in Table S1 in the
Supplement.

2.2 Description of the Noah-MP model

Noah-MP is a land surface model that uses multiple options
for key land–atmosphere interaction processes (Niu et al.,
2011). Noah-MP contains a separate vegetation canopy de-
fined by a canopy top and bottom, crown radius, and leaves
with prescribed dimensions, orientation, density, and radio-
metric properties. The canopy employs a two-stream radia-
tion transfer approach along with shading effects necessary
to achieve proper surface energy and water transfer processes
(Dickinson, 1983). Noah-MP is capable of distinguishing
between C3 and C4 photosynthesis pathways and defines
vegetation-specific parameters for plant photosynthesis and
respiration.

Noah-MP is available for prognostic vegetation growth
that combines a Ball–Berry photosynthesis-based stomatal
resistance (Farquhar et al., 1980; Ball et al., 1987) that allo-
cates carbon to various parts of vegetation (leaf, stem, wood,
and root) and soil carbon pools (fast and slow). GPP, LAI,
and canopy height are then predicted downstream from pho-
tosynthesis. Noah-MP also considers the photosynthesis of
sunlit and shaded leaves separately, whereby sunlit leaves are
more limited by CO2 concentration while shaded leaves are
more constrained by insolation, which may thus have differ-
ent responses to O3 damage. The dynamic LAI and canopy
height calculation will further affect surface energy fluxes,
which will then affect the boundary-layer meteorology when
coupling with the atmosphere model in WRF-Chem. The
land use types and the vegetation parameters are based on
the US Geological Survey (USGS) embedded in Noah-MP.
Figure 1 shows the spatial distribution of vegetation frac-
tion of dominant vegetation types in China. The distributions
of main vegetation groups (broadleaf, needleleaf, crop, and
grass) that have different sensitivities to O3 damage follow-
ing Lombardozzi et al. (2015) are shown in Fig. 1.

In this study, the O3 concentration simulated by the chem-
ical module of the WRF-Chem model was also dynamically
passed onto the Noah-MP land surface model at every time
step to modify the photosynthesis and stomatal conductance
due to O3 damage. The land surface variables simulated by
Noah-MP were also dynamically passed back onto the at-
mospheric components, thus allowing immediate, two-way
feedback effects onto meteorological fields, O3, and other at-
mospheric chemical constituents. In this way, land surface
processes, atmospheric dynamics, and atmospheric chem-
istry in the WRF-Chem model were fully coupled.

2.3 O3 damage parameterization

In Noah-MP, the Farquhar model (Farquhar et al., 1980) was
used to calculate photosynthetic rate, whereas Ball–Berry
model was used to calculate stomatal conductance (Ball et
al., 1987). The photosynthesis rate, A (µmol CO2 m−2 s−1),
is calculated separately for sunlit and shaded leaves and is
limited by either one of three limiting factors and can be cal-
culated as

A=min
(
Wc,Wj ,We

)
Igs, (1)

where Wc is the RuBisCO-limited photosynthesis rate, Wj is
the light-limited photosynthesis rate, and We is the export-
limited photosynthesis rate. Igs is the growing season index
with values ranging from 0 to 1. Stomatal conductance (gs) is
computed based on the photosynthesis rate from the Farquhar
model as

gs =
1
rs
=m

A

cs

es

ei
Patm+ b, (2)

where gs is the leaf stomatal conductance (µmol m−2 s−1); rs
is the leaf stomatal resistance (s m2 µmol−1); m is an empir-
ical parameter that relates stomatal conductance and photo-
synthesis with values ranging from 5 to 9; A is the photo-
synthesis rate as described above; cs is the CO2 partial pres-
sure at the leaf surface (Pa); es is the vapor pressure at the
leaf surface (Pa); ei is the saturation vapor pressure inside
the leaf (Pa); Patm is the atmospheric pressure (Pa); and b is
the minimum stomatal conductance.

As mentioned above, following Lombardozzi et al. (2015),
an O3 damage scheme was implemented in Noah-MP em-
bedded in WRF-Chem model version 3.8.1. The photosyn-
thesis rate and stomatal conductance are modified indepen-
dently using two sets of O3 impact factors, FpO3 and FcO3 ,
respectively, which are then multiplied to the initial A and gs
calculated by the Farquhar–Ball–Berry model, respectively.
Lombardozzi et al. (2012) found that independently modi-
fying stomatal conductance and photosynthesis can improve
the model prediction of plant response to O3 damage. The
two damage factors are calculated based on the cumulative
uptake of O3 (CUO), which integrates the O3 flux inside
leaves through the stomata throughout the growing season.
The CUO (mmol m−2) is calculated as

CUO= 10−6
∑ [O3]

kO3rs+ ra+ rb
1t, (3)

where [O3] is the surface O3 concentration (nmol m−3);
kO3 = 1.61 is the ratio of leaf resistance to O3 to leaf re-
sistance to water (Uddling et al., 2012); rs is the stom-
atal resistance, ra is the aerodynamic resistance and rb is
the boundary-layer resistance (s m−1); 1t is the model time
step (s). CUO is only accumulated when LAI is larger
than 0.4 and O3 flux is larger than a threshold value of
0.8 nmol O3 m−2 s−1 to consider the detoxification effect of
plants to O3 damage.
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Figure 1. The vegetation fraction of (a) broadleaf, (b) needleleaf, (c) cropland, (d) grass, (e) others, and (f) dominant vegetation types.

The two damage factors have linear relationships with
CUO and can be calculated as follows:

FpO3 = ap ×CUO+ bp (4)
FcO3 = ac×CUO+ bc, (5)

where FpO3 is the O3 damage factor for photosynthesis and
FcO3 is the O3 damage factor for stomatal conductance; ap,
bp, ac, and bc are empirical slopes and intercepts of three
different plant groups (broadleaf trees, needleleaf trees, and
grasses or crops) from Lombardozzi et al. (2015). The val-
ues of these slopes and intercepts are shown in Table 1. The
original photosynthesis and stomatal conductance are then
multiplied by the two damage factors, respectively, to get the
modified photosynthesis and stomatal conductance under O3
exposure.

2.4 Model experiments and evaluation

Two sets of experiments were conducted in this study.
We performed a control simulation (simu_withoutO3) with-
out O3 damage on vegetation and a production simulation
(simu_withO3) with O3 damage on vegetation. Detailed in-
formation of the experiments is shown in Table 2. In the
simu_withO3 experiment, the O3 concentration simulated by
the chemical module of the model is dynamically passed onto
the land surface model at every time step to modify the pho-
tosynthesis and stomatal conductance. The differences be-
tween the two sets of experiments including vegetation phys-
iology, meteorological fields, and O3 concentration can thus

be attributed to O3–vegetation interactions. In this work, each
simulation was conducted from 24 May to 1 September ev-
ery year from 2014 to 2017 and the days in May was dis-
carded as spin-up. For each simulation in the 4 years, an-
thropogenic emissions were kept at 2014 levels, while mete-
orological fields were changing every year. The 4-year June–
July–August (JJA) averaged results were analyzed and com-
pared. JJA was selected because of the most severe O3 pollu-
tion in this season and because it is within the active growing
season of the plants.

The simulated meteorological variables and air pollutant
concentrations were evaluated using available in situ obser-
vations in China. The daily meteorological observations in-
cluding temperature at 2 m (T2 m), relative humidity at 2 m
(RH2 m), and wind speed at 10 m (WS10 m) above displace-
ment height were from the National Meteorological Infor-
mation Center. There are 698 stations in the study domain.
The air pollutant observations were provided by the China
National Environmental Monitoring Center (CNEMC) net-
work, which offers hourly concentrations of particulate mat-
ter with an aerodynamic diameter of less than 2.5 µm (PM2.5)
and 10 µm (PM10), carbon monoxide (CO), O3, sulfur diox-
ide (SO2), and nitrogen dioxide (NO2). The locations of
meteorological stations and the sites of CNEMC network
are shown in Fig. 2. The statistical parameters including
mean values (mean) of observations and simulated variables,
their standard deviations (SDs), indices of agreement (IOAs),
mean biases (MBs), and correlation coefficients (CORRs)
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Table 1. Slopes (per mmol m−2) and intercepts (unitless) used for O3 damage factors in Eqs. (4) and (5), following Lombardozzi et al. (2015).

Photosynthesis Conductance

Slope (ap) Intercept (bp) Slope (ac) Intercept (bc)

Broadleaf 0.0000 0.8752 0.0000 0.9125
Needleleaf 0.0000 0.8390 0.0048 0.7823
Grasses and crops −0.0009 0.8021 0.0000 0.7511

Table 2. Description of the two sets of model experiments. ICs are initial conditions; BCs are boundary conditions.

Experiment name Year Anthropogenic Meteorological ICs
emission and BCs

simu_withoutO3 2014–2017 JJA Year 2014 FNL
simu_withO3 2014–2017 JJA Year 2014 FNL

Figure 2. Site locations of air quality monitoring sites (blue dots)
and the meteorological monitoring sites (pink dots), and terrain
height (m) shown by the color contours.

were computed to evaluate the model performance in this
study.

3 Results

3.1 Model evaluation

Table 3 shows the city-averaged evaluation results of me-
teorological variables from the modified model. The infor-
mation of the major cities used for evaluation is shown in
Table S4. From Table 3, we can find that T2 m is underes-
timated with MB values ranging from −1.00 ◦C in 2017 to
−0.70 ◦C in 2014. The IOA and CORR are generally higher
than 0.8, indicating that the model could reasonably simu-
late the variations of T2 m. Unlike temperature, relative hu-
midity is overestimated by the model simulations with MB

values ranging from 4.38 in the year 2014 to 7.33 in the year
2016, but the CORR values with observations are still high
(CORR > 0.7). Wind speed is also overestimated by more
than 0.38 m s−1, which might be caused by the underesti-
mation of terrain height as reported in other WRF model-
ing studies (Brunner et al., 2015; Liu et al., 2020). The de-
tailed evaluation results for each city and for seven major ge-
ographic regions of China are shown in Tables S5–S10. The
classification of the geographic regions is shown in Fig. S2.
As shown in these tables, the model can reasonably capture
the spatial distribution of these meteorological variables. For
example, the larger values of T2 m and RH2 m in cities from
southern China compared with the cities in northern China
(Table 4) can be reasonably simulated. We also found that
the model simulations have better performance in northeast-
ern China, central China, and southern China in terms of IOA
and CORR as shown in these tables (Table 4).

Table 5 shows the city-averaged evaluation results of six
air pollutants simulated from the modified model. The infor-
mation of the major cities used for air pollutant evaluation
is shown in Table S11. Form Table 5, positive MB values
for O3, PM2.5, SO2, and NO2, and negative MB values for
CO are found. The overestimation of O3 by WRF-Chem was
also reported by Hu et al. (2016) and Gao et al. (2020). For
PM10, both positive and negative MB values are found for
different years. The results indicate general overestimation
by the model of most air pollutants except for CO. The un-
derestimation of CO can be explained by either O3 chem-
istry, which points to the problem related to low titration, or
in the underestimation of dry deposition by the model, which
is also affected by the modification of the model. The IOA
of air pollutant concentration ranges from 0.36 (SO2) to 0.63
(O3). The correlation coefficient of air pollutants ranges from
0.14 (PM10) to 0.66 (O3). Detailed evaluation results for each
city and major geographic regions of China are shown in Ta-
bles S9–S14 and Table 6. In terms of the evaluation for O3,
the model has better performance in northeastern China, east-
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Table 3. Evaluation results for the temperature at 2 m (T2 m), relative humidity at 2 m (RH2 m), and wind speed at 10 m (WS10 m) for different
years in China. Mean_obs (Mean_simu) is the mean value of observation (model simulation); SD_obs (SD_simu) is the standard deviation
of the observation (model simulation); IOA is the index of agreement; CORR is the correlation coefficient; MB is the mean bias.

Year Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB

T2 m 2014 25.41 2.61 24.71 2.27 0.86 0.87 −0.70
(◦C) 2015 25.41 2.56 24.67 2.24 0.86 0.89 −0.74

2016 26.35 2.82 25.44 2.61 0.85 0.85 −0.91
2017 26.29 3.17 25.28 3.16 0.81 0.78 −1.00

RH2 m 2014 74.77 10.22 79.14 8.96 0.67 0.71 4.38
(%) 2015 73.34 10.75 80.50 8.73 0.68 0.75 7.16

2016 74.14 10.81 81.47 10.10 0.70 0.73 7.33
2017 73.24 11.65 79.89 9.62 0.68 0.69 6.63

WS10 m 2014 1.84 0.66 2.22 1.16 0.54 0.40 0.38
(m s−1) 2015 2.00 0.74 2.48 1.35 0.55 0.44 0.48

2016 1.99 0.70 2.47 1.32 0.54 0.45 0.48
2017 2.02 0.72 2.51 1.42 0.53 0.45 0.50

Table 4. Evaluation results of temperature at 2 m (T2 m), relative humidity at 2 m (RH2 m), and wind speed at 10 m (WS10 m) in seven major
geographic regions from the implemented model. NEC is northeast China, NC is north China, CC is central China, EC is east China, SC
is south China, SWC indicates southwest China, and NWC is northwest China. Mean_obs (Mean_simu) is the mean value of observations
(model simulations); SD_obs (SD_simu) is the standard deviation of the observations (model simulations); IOA is the index of agreement;
CORR is the correlation coefficient; MB is the mean bias.

Region Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB

T2 m NEC 23.01 3.05 22.73 3.01 0.94 0.91 −0.28
(◦C) NC 24.94 2.76 25.84 2.84 0.86 0.88 0.88

CC 27.62 3.05 26.87 2.75 0.92 0.88 −0.75
EC 27.33 2.99 26.46 2.58 0.90 0.89 −0.87
SC 28.60 1.49 28.61 1.30 0.75 0.64 0.01
SWC 23.20 2.32 21.61 2.14 0.77 0.80 −1.58
NWC 20.20 2.87 18.55 3.01 0.77 0.89 −1.65

RH2 m NEC 71.70 11.49 71.98 14.00 0.85 0.79 0.93
(%) NC 63.25 13.94 57.01 14.08 0.79 0.75 −6.24

CC 79.23 10.11 88.29 8.61 0.70 0.71 9.06
EC 78.93 9.99 88.80 8.31 0.69 0.79 9.87
SC 81.26 6.54 88.41 5.66 0.62 0.60 7.14
SWC 78.92 9.11 93.34 5.13 0.52 0.64 13.40
NWC 57.93 13.34 58.48 14.10 0.75 0.76 0.55

WS10 m NEC 2.22 0.93 3.08 1.80 0.62 0.62 0.86
(m s−1) NC 2.06 0.72 2.45 1.29 0.57 0.48 0.38

CC 2.06 0.81 2.38 1.41 0.61 0.51 0.33
EC 2.18 0.76 2.85 1.54 0.59 0.55 0.67
SC 2.02 0.76 2.81 1.51 0.52 0.43 0.80
SWC 2.16 0.76 2.54 1.40 0.57 0.51 0.37
NWC 1.46 0.50 2.91 1.38 0.30 0.23 1.45

ern and southern China, which may suffer the most severe O3
damage. Our results are generally consistent with the evalu-
ation results of the Community Multiscale Air Quality Mod-
eling (CMAQ) simulation over China by Liu et al. (2020).
MBs of SO2, NO2, and CO are consistent in both magni-
tude and sign with Liu et al. (2020), while the MBs of PM
and O3 are larger than Liu et al. (2020). Correlation coeffi-
cients of air pollutants are also of similar magnitude with Liu
et al. (2020), showing that our model results can well cap-
ture the temporal variations of air pollutants. We also com-

pared the evaluation results between the original model and
the modified model, as shown in Tables S2 and S3 in the Sup-
plement and Tables 3 and 5 here. We found no obvious dif-
ferences in the evaluation results between the original model
results and the revised model results. It should be noted that
this study might not be able to and was not meant to improve
model accuracy, but our modified model is able to capture
O3–vegetation interactions without worsening model perfor-
mance. Overall, there are systematic biases in simulated vari-
ables especially the air pollutant concentrations, but the spa-
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tial distributions of both meteorological variables and air pol-
lutant concentrations are reasonably simulated by the model,
lending trust to the use of the model for sensitivity studies
to examine the effects of O3–vegetation interactions on the
atmospheric environment.

3.2 Responses of vegetation to O3 damage

O3 can adversely affect photosynthesis rate and stomatal con-
ductance and therefore interfere with vegetation growth, pro-
ductivity, and transpiration. To understand the O3-induced
damage on vegetation physiology, the spatial distribution,
and changes in stomatal resistance (RS), photosynthesis rate
(PSN), LAI, GPP, and transpiration rate (TR) during 2014–
2017 summer (June–July–August) were analyzed.

Figure 3a and d display the spatial distribution of sun-
lit stomatal resistance (RSSUN) and shaded stomatal resis-
tance (RSSHA) from the simu_withoutO3 experiment, re-
spectively. The absolute and relative changes in RSSUN
(RSSHA) between simu_withO3 and simu_withoutO3 exper-
iments are shown in the middle and the right panel of Fig. 3,
separately. In general, simulated stomatal resistance in east-
ern China is larger than that in western China. Both RSSUN
and the RSSHA are enhanced in response to O3 damage to
vegetation. The maximum increases in RSSUN and RSSHA
can be up to 1.0×103 s m−1, which is equivalent to a∼ 16 %
increase compared to the simu_withoutO3 simulation. Com-
paring the changes in RSSUN vs. RSSHA, the changes in
RSSHA are larger than that in RSSUN, reflecting the larger
sensitivity of shaded leaves to O3 damage (Kinose et al.,
2017). Northern China experiences larger changes in stom-
atal resistance generally, especially in the Henan, Hebei, and
Shandong provinces, where the changes in stomatal resis-
tance are twice as large as the changes in stomatal resistance
over other regions.

The spatial distribution of 2014–2017 JJA mean PSN,
LAI, and GPP from the simu_withoutO3 simulations and
their changes induced by O3 damage are presented in Fig. 4.
From Fig. 4a, we find that the PSN values are generally
higher in eastern China compared with western China with
the largest values of up to ∼ 7 µmol CO−1

2 m−2 s−1. Similar
spatial distribution and hotspot areas can also be observed for
LAI (Fig. 4d) and GPP (Fig. 4g), with LAI and GPP values
in hotspot areas up to 3.6 and 10 g C m−2 d−1, respectively.
We also find that the Henan, Hebei, Shanxi, and Shandong
provinces have smaller values of PSN, LAI, and GPP when
compared with other provinces in eastern China.

With O3 damage, PSN decreases in general, with absolute
changes in PSN ranging from 0.6 to 3.6 µmol CO−1

2 m−2 s−1

(Fig. 4b), representing 20 %–40 % reductions in PSN. For
northeastern and southern China, where the original PSN val-
ues are large, ∼ 20 % reductions in PSN are found (Fig. 4c).
In western China where the dominant vegetation type is
grassland and the original PSN values are small, more than
40 % of PSN is reduced due to O3 damage (Fig. 4c). In re-

sponse to the PSN reductions, LAI and GPP also decrease.
More than 0.4 reductions in LAI are found in central and
northern China (Fig. 4e), corresponding to more than 20 %
reductions in LAI; in other regions, 5 %–15 % reductions
in LAI are observed. More than 0.8 g C m−2 d−1 reductions
in GPP are found generally in China. Similar to Fig. 3c,
we find that GPP decreases by ∼ 20% in northeastern and
southern China and decreases by more than 40 % in other
regions (Fig. 4i). Based on offline models without consider-
ing atmosphere–biosphere coupling, O3 damage was found
to decrease GPP at most by 11 %–17 % in the east coast
hotspots of the US (Yue and Unger, 2014). Using the of-
fline CLM model, Lombardozzi et al. (2015) estimated that
the present O3 exposure reduces GPP globally by 8 %–12 %.
Based on the Regional Climate-Chemistry Model version 4
(RegCM-CHEM4) model coupled with Yale Interactive ter-
restrial Biosphere (YIBs) model, Xie et al. (2019) revealed
that O3 damage induces a significant reduction (12.1±4.4%)
in the GPP, up to 35 % in summer over China (Table S15).
Comparing our results with previous studies, our results are
broadly consistent with Xie et al. (2019), but the magnitude
is larger than the studies conducted by Yue and Unger (2014)
and Lombardozzi et al. (2015). Differences or uncertainties
may arise from the different model settings. It appears that
offline models as used by Yue and Unger (2014) and Lombar-
dozzi et al. (2015) generally found smaller damage than stud-
ies with two-way coupling between the atmosphere and bio-
sphere as used by Xie et al. (2019) and our work; this could
be due to the existence of positive biosphere–atmosphere
feedbacks that potentially worsen O3 damage, as will be dis-
cussed in subsequent sections. Different O3 damage schemes
employed in the models may also be a source of differences,
although we note that both this work and Lombardozzi et
al. (2015) used the same scheme, so the differences appear to
arise more likely from the effect of coupling and other model
settings than from the schemes alone.

The spatial distributions of dominant vegetation types in
China are shown in Fig. 1, where we can see that the crop-
lands dominant in eastern China and especially in southern
China suffer the greatest GPP reductions, indicating that crop
yields in China would also be heavily affected by O3 damage.

Figure 5 depicts the spatial distribution of transpiration
rate (TR) of vegetation and the changes in transpiration rate
induced by O3 damage. TR values are higher in eastern
China, where there is larger vegetation coverage (Fig. 5a).
As shown in Fig. 5b, TR deceases by 0.2–1.0 mm d−1 gener-
ally in eastern China with large reductions in northern China,
especially in the Henan, Shandong, Anhui, and Jiangsu
provinces. In terms of relative changes, TR decreases by
∼ 12% in northeastern and southern China, while more than
24 % reductions are found in other regions. Transpiration is
affected by the changes in both RS and LAI. With O3 dam-
age, both the increases in RS (Fig. 3c and f) and decreases
in LAI (Fig. 4f) cause TR to decrease, as shown in Fig. 5b
and c. Comparing the changes in RS (Fig. 3c and f), LAI
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Table 5. Evaluation results for the air pollutants in China. Mean_obs (Mean_simu) is the mean value of observation (model simulation);
SD_obs (SD_simu) is the standard deviation of the observation (model simulation); IOA is the index of agreement; CORR is the correlation
coefficient; MB is the mean bias.

Year Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB

O3 2014 29.79 9.95 51.49 18.60 0.48 0.57 22.13
(ppb) 2015 32.04 10.16 48.98 18.27 0.54 0.55 16.95

2016 33.28 10.59 48.47 18.18 0.56 0.58 15.14
2017 35.74 11.71 49.50 19.61 0.63 0.66 13.82

PM2.5 2014 46.30 21.52 63.28 27.15 0.52 0.33 18.61
(µg m−3) 2015 38.52 17.30 55.56 24.85 0.55 0.42 16.66

2016 31.86 13.96 56.70 25.69 0.47 0.40 24.54
2017 28.82 12.23 56.34 25.70 0.40 0.30 27.65

PM10 2014 80.79 31.62 71.74 28.65 0.47 0.22 −7.51
(µg m−3) 2015 72.03 29.74 63.83 26.29 0.50 0.26 −8.93

2016 59.68 22.21 65.01 27.29 0.49 0.24 4.65
2017 57.83 22.18 64.78 27.25 0.41 0.14 6.95

SO2 2014 6.11 2.36 8.41 3.22 0.48 0.41 2.36
(ppb) 2015 4.78 1.89 8.39 3.26 0.44 0.45 3.64

2016 4.17 1.57 8.08 3.16 0.41 0.36 3.92
2017 3.83 1.33 8.58 3.52 0.36 0.42 4.78

NO2 2014 17.20 4.51 17.23 4.63 0.41 0.26 0.06
(ppb) 2015 16.01 4.47 17.37 4.98 0.43 0.31 1.43

2016 15.29 4.29 17.35 5.11 0.43 0.31 2.06
2017 15.83 4.37 17.84 5.12 0.43 0.32 2.02

CO 2014 0.76 0.19 0.44 0.11 0.48 0.42 −0.32
(ppm) 2015 0.67 0.15 0.45 0.11 0.49 0.42 −0.22

2016 0.65 0.14 0.45 0.11 0.50 0.45 −0.20
2017 0.64 0.12 0.46 0.11 0.47 0.38 −0.18

(Fig. 4f) and TR (Fig. 5c), we can find that the distribution of
changes in TR is more consistent with that of RS, reflecting
the dominance of RS in controlling TR.

3.3 Changes in meteorology due to O3–vegetation
coupling

Through interacting with vegetation, O3 has the potential to
further affect the meteorological environment in China via
modifying, e.g., surface heat fluxes, temperature, humidity,
and boundary-layer height. The distribution of meteorologi-
cal variables from simulations with and without O3 damage
is thus compared and analyzed in this section.

Figure 6 shows the spatial distribution of latent heat (LH)
flux and sensible heat (SH) flux, and the changes in LH
and SH due to O3–vegetation coupling. With O3 included
in the model simulations, the LH flux decreases by more
than 4 W m−2 (Fig. 6b) on average following the decreases
in transpiration rate. Hotspot areas are found in the Henan,
Shandong, Anhui, and Jiangsu provinces, where reductions
in LH can be up to 30 W m−2. Meanwhile, 5–30 W m−2 in-
creases in SH flux are observed in central and northern China
(Fig. 6d). With O3–vegetation coupling, more than 20 % re-
ductions in LH flux are found in central and northern China
(Fig. 6c), 20 % increments in SH flux are found in similar

regions (Fig. 6f), indicating that O3 damage shifts the energy
balance toward more net radiation being dissipated by SH
flux than LH flux, with ramifications for surface temperature.

Figure 7 shows the distribution and the changes in sur-
face relative humidity, temperature and planetary boundary-
layer height (PBLH) in response to O3 damage. Reductions
in transpiration rate can directly cause reductions in relative
humidity. As shown in Fig. 7b, relative humidity has at least
3 % absolute reductions. Values of relative humidity decrease
more in northern China than in southern China. Similar to the
changes in TR (Fig. 5b), larger reductions in relative humid-
ity (3 %–9 %) are found over the Henan, Hebei, Shandong,
and Anhui provinces. The decreases in LH flux and increases
in SH flux following the changes in transpiration rate drive
the increases in temperature and contribute to PBLH growth.
As presented in Fig. 7e and h, the distribution and hotspot
areas of the changes in temperature and PBLH are similar
to those in relative humidity. Generally, northern China has
larger increases of temperature and PBLH compared with
other regions. Generally, temperature increases by 0.2–0.8 K
and PBLH increases by 40–120 m for northern China. The
hotspot areas experience at least 0.6 K increases in tempera-
ture and 80 m increases in PBLH.

As shown in Table S15, our results are comparable
with results from a regional simulation conducted by Li et
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Table 6. Evaluation results of air pollutants in seven major geographic regions simulated by the implemented model. NEC is northeast
China, NC is north China, CC is central China, EC is east China, SC is south China, SWC indicates southwest China, and NWC is northwest
China. Mean_obs (Mean_simu) is the mean value of observations (model simulations); SD_obs (SD_simu) is the standard deviation of the
observations (model simulations); IOA is the index of agreement; CORR is the correlation coefficient; MB is the mean bias.

Region Mean_obs SD_obs Mean_simu SD_simu IOA CORR MB

O3 NEC 32.49 10.54 44.54 15.70 0.64 0.64 11.47
(ppb) NC 38.56 10.81 70.59 25.11 0.40 0.55 32.02

CC 31.68 11.20 57.13 18.17 0.47 0.60 26.82
EC 29.67 10.82 40.53 18.99 0.60 0.61 11.21
SC 19.90 8.40 34.21 14.68 0.53 0.64 14.90
SWC 24.27 9.12 42.07 13.19 0.47 0.50 18.80
NWC 26.63 8.12 51.65 13.70 0.34 0.42 25.58

PM2.5 NEC 42.66 25.15 43.33 19.28 0.57 0.39 −0.83
(µg m−3) NC 61.60 28.28 66.83 27.81 0.68 0.52 7.03

CC 52.11 30.55 94.27 39.40 0.35 0.11 45.50
EC 52.87 25.71 87.37 38.97 0.50 0.39 36.63
SC 22.58 10.16 28.62 15.17 0.67 0.57 6.92
SWC 32.82 12.22 76.69 33.49 0.27 0.08 47.55
NWC 45.27 14.54 42.80 14.07 0.39 0.03 −1.45

PM10 NEC 79.68 36.48 48.99 20.64 0.49 0.32 −32.25
(µg m−3) NC 111.17 39.69 74.29 29.33 0.54 0.38 −35.90

CC 84.80 41.01 107.65 41.51 0.37 0.05 26.30
EC 78.16 35.64 99.51 40.90 0.54 0.34 23.64
SC 43.64 15.72 34.11 16.14 0.58 0.47 −8.54
SWC 58.84 20.15 87.07 35.49 0.31 −0.07 32.17
NWC 88.54 28.17 47.77 14.72 0.35 −0.13 −39.68

SO2 NEC 4.91 1.95 5.10 2.55 0.60 0.42 0.27
(ppb) NC 8.69 3.52 8.12 3.20 0.54 0.40 −0.57

CC 7.34 2.09 14.56 5.45 0.36 0.47 7.23
EC 5.39 2.24 7.86 3.19 0.57 0.53 2.40
SC 3.50 0.89 4.15 1.52 0.42 0.50 0.71
SWC 4.74 1.93 15.71 5.12 0.31 0.13 11.42
NWC 6.65 2.90 4.31 1.50 0.46 0.34 −2.28

NO2 NEC 19.51 4.84 14.07 5.27 0.41 0.11 −5.66
(ppb) NC 19.57 5.13 14.05 4.14 0.48 0.27 −5.61

CC 16.75 4.32 19.70 5.57 0.38 0.32 2.83
EC 16.24 4.78 28.83 6.88 0.40 0.39 12.65
SC 13.23 3.48 14.02 3.96 0.38 0.29 1.01
SWC 17.30 3.70 20.02 4.58 0.34 0.12 3.11
NWC 16.93 4.77 8.92 2.11 0.41 0.19 −7.98

CO NEC 0.64 0.17 0.38 0.12 0.48 0.61 −0.27
(ppm) NC 0.90 0.25 0.47 0.13 0.47 0.41 −0.42

CC 0.81 0.17 0.58 0.14 0.49 0.45 −0.22
EC 0.66 0.16 0.56 0.14 0.63 0.54 −0.09
SC 0.66 0.11 0.32 0.08 0.36 0.41 −0.34
SWC 0.69 0.14 0.49 0.11 0.49 0.29 −0.19
NWC 0.89 0.25 0.25 0.04 0.35 0.18 −0.63

al. (2016), which showed that O3 damage decreases LH flux
by 10–27 W m−2 and O3 damage increases temperature by
0.6–2.0 ◦C in the US. However, in their study, Li et al. (2016)
assumed that O3 damage to plants happens when O3 con-
centration is over a threshold of 20 ppb to imitate a weaker
detoxifying effect of plants, instead of the 40 ppb threshold
that was commonly used in previous studies. Considering the
severe O3 air pollution in China, we resorted to use the more
universal O3 threshold used by previous studies (Lombar-

dozzi et al., 2015; Sadiq et al., 2017; Zhou et al., 2018) to
represent a more conventional detoxifying effect, instead of
lowering the threshold value that would cause much larger
changes in the surface fluxes and meteorological fields. Us-
ing a two-way coupling model and the same O3 damage
scheme, Arnold et al. (2018) revealed that O3 causes less than
8 W m−2 changes in surface heat fluxes regionally, which is
smaller than the changes of surface heat fluxes in our study.
One possible reason is that the simulated changes in O3 and
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Figure 3. Spatial distribution of mean stomatal resistance in JJA of 2014–2017 for (a) sunlit leaves (RSSUN) and (d) shaded leaves
(RSSHA) from the simu_withoutO3 experiment. Absolute changes in (b) RSSUN and (e) RSSHA caused by O3 damage. Relative changes in
(c) RSSUN and (f) RSSHA caused by O3 damage. Absolute changes are the RSSUN (RSSHA) from simu_withO3 minus RSSUN (RSSHA)
from simu_withoutO3. Relative changes are calculated by absolute changes over the RSSUN (RSSHA) from simu_withoutO3.

aerosol in Arnold et al. (2018) did not feed back onto radia-
tion and climate simulation or affect LAI.

3.4 O3–vegetation feedbacks on O3 concentrations

O3-induced changes in vegetation, surface fluxes, and the
overlying meteorology can also constitute important feed-
back effects onto O3 concentration itself. Figure 8 shows the
spatial distribution of surface O3 concentration. The change
in surface O3 concentration during daytime is also shown
in Fig. S2. As shown in Fig. 8a (Fig. S2), surface O3 con-
centration is higher in central and northern China during
summer. In terms of the feedbacks on O3 concentration,
we found generally enhancements in O3 concentration when
O3–vegetation interactions are accounted for, thus represent-
ing a positive feedback that worsens O3 air quality (Fig. 8b).
O3 concentration increases the most (by up to 6 %) in the
Hebei, Shanxi, and Henan provinces, with the maximum in-
crement of 6 ppb. The enhancement in surface O3 concentra-
tion from our study is at a similar magnitude to that from the
study conducted by Sadiq et al. (2017), in which both biogeo-
chemical and meteorological feedbacks from O3–vegetation
interactions to O3 are considered. Without considering the
meteorological feedbacks following the changes in transpi-
ration to O3 concentrations, smaller feedbacks on surface O3
concentrations are found by the following studies. For in-

stance, by incorporating O3–LAI coupling in chemical trans-
port model, Zhou et al. (2018) found an O3 feedback of
−1.8 to +3 ppb globally. Another similar work conducted
by Gong et al. (2020) showed that O3-induced inhibition in
stomatal conductance increases surface O3 by 2.1 ppb in east-
ern China, while considering the addition effects of O3 on
isoprene emission slightly reduces surface O3 concentrations
by influencing the precursors. Soil moisture deficit, which
has been shown to reduce stomatal uptake, if considered, will
also contribute to the enhancement in O3 concentration (Ryd-
saa et al., 2016). Together with previous findings, it is in-
creasingly clear that meteorological feedback could be an im-
portant pathway whereby O3–vegetation interactions can fur-
ther worsen O3 air quality, almost doubling the effect of bio-
geochemical feedback alone (i.e., via changes in O3-relevant
chemical fluxes alone). It should be cautiously noted that in
terms of magnitude alone the model biases in O3 are com-
parable and sometimes larger than the up to 6 ppb systematic
enhancement caused by O3 damage, which represents be one
major source of uncertainties in our study.

Reduced dry deposition due to stomatal closure and re-
duced LAI, as well as increased isoprene emission, are all
found to be the drivers for the overall positive O3 feedback.
Reductions in dry deposition velocity, following closely the
corresponding reductions in transpiration rate as both pro-
cesses are modulated by stomatal regulation, contribute in
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Figure 4. Spatial distribution of 2014–2017 JJA mean (a) photosynthesis rate (PSN), (d) leaf area index (LAI), and (g) gross primary
productivity (GPP) from the simu_withoutO3 experiment; absolute changes in (b) PSN, (e) LAI, and (h) GPP caused by O3 damage; and
relative changes in (c) PSN, (f) LAI, and (i) GPP caused by O3 damage. Absolute changes are the results from simu_withO3 minus results
from simu_withoutO3. Relative changes are calculated from the absolute changes over the results from simu_withoutO3.

Figure 5. Spatial distribution of 2014–2017 JJA mean (a) transpiration rate (TR), and (b) absolute changes and (c) relative changes in TR
caused by O3 damage.
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Figure 6. Spatial distribution of mean (a) latent heat flux (LH) and (d) sensitive heat flux (SH) from the simu_withoutO3 experiment;
absolute changes in (b) LH flux and (e) SH flux in JJA of 2014–2017 caused by O3 damage; and relative changes in (c) LH flux and (f) SH
flux caused by O3 damage. Absolute changes are the LH (SH) flux from simu_withO3 minus LH (SH) flux simu_withoutO3. Relative
changes are calculated by absolute changes over LH (SH) flux from simu_withoutO3.

part to the O3 enhancement. Figure 9 shows the spatial distri-
bution of isoprene emission and its changes due to O3 dam-
age. We observe general increases in isoprene emission in
eastern China, mainly due to increased surface temperature
(Fig. 7e and f) that is more than enough to offset reduced
isoprene caused by reduced LAI (Fig. 4e and f). All in all,
O3 damage on vegetation can further enhance O3 levels via
an overall positive effect, due to not only the associated re-
ductions in dry deposition velocity, but also the reductions in
transpiration, LH flux, and the resulting rise in surface tem-
perature.

4 Conclusions

Tropospheric O3 is one of the most concerning air pollu-
tants due to its global warming effects and its ability to af-
fect human health, vegetation, and crops. O3 and vegetation
closely interact with each other and such interactions may
not only affect plant physiology (e.g., stomatal conductance
and photosynthesis) but also influence the overlying meteo-
rology and air quality through modifying leaf stomatal be-
havior, plant structure (e.g., LAI), and subsequently land–
atmosphere fluxes. According to previous field experiments
and modeling works, China has been recognized as one of the
hotspot areas suffering from severe O3 pollution and the re-

sulting damage on vegetation and crops, but the feedback ef-
fects onto air quality and climate have not been fully charac-
terized. Previous studies mainly focused on the global scale
with coarse spatial resolutions, which did not fully capture
the spatial distribution of O3 damage on vegetation in China.
Based on the results from global studies pointing out that
China is a hotspot in terms of O3 pollution and O3 damage
on vegetation, our model simulations performed at high spa-
tial resolutions were capable of investigating O3 damage ef-
fects on regional and provincial scales in China. In this study,
we examined the effects of O3–vegetation interactions on
O3 air quality and meteorology in China during 2014–2017
based on the two-way coupled WRF-Chem model simula-
tions whereby O3, meteorology, and vegetation physiology
and structure can co-evolve with each other in real time.

We found that in China stomatal resistance is enhanced
by up to 16 %, which is the direct response to O3 damage.
Northern China, especially the Henan, Hebei, and Shandong
provinces, is identified as a hotspot area. For photosynthe-
sis, more than 20 % reductions are observed in China. Large
reductions (> 2.4 µmol CO2 m−2 s−1) are found in northeast-
ern and southern China. Following reduced photosynthesis,
LAI shows relatively small reductions (5 %–15 %), while
GPP shows more than 20 % reductions (1.6 g C m−2 d−1).
Changes in transpiration rate are due to both changes in stom-
atal resistance and changes in LAI. With the increases in
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Figure 7. Spatial distribution of mean (a) 2 m relative humidity, (d) 2 m temperature, and (g) planetary boundary-layer height (PBLH) in
JJA of 2014–2017 from the simu_withoutO3 experiment; absolute changes in (b) RH2 m, (e) T2 m, and (h) PBLH caused by O3 damage;
and relative changes in (c) RH2 m, (f) T2 m, and (i) PBLH caused by O3 damage. Absolute changes are the results from simu_withO3 minus
results from simu_withoutO3. Relative changes are calculated by absolute changes over the results from simu_withoutO3.

Figure 8. Same as Fig. 5 but for surface O3 concentration.
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Figure 9. Same as Fig. 5 but for isoprene emission.

stomatal resistance and decreases in LAI, transpiration de-
ceases from 0.2 to 1.0 mm d−1 in eastern China with the
largest reductions occur in northern China. We also found
that the distribution of changes in transpiration is consistent
more with the distribution of stomatal resistance than with
those of LAI, indicating the dominance of the former in con-
tributing to the overall transpiration rate.

With O3 damage, the LH fluxes decrease by more than
4 W m−2 on average, with hotspot areas appearing in the
Shandong, Anhui, and Jiangsu provinces, in which the de-
creases can be up to 30 W m−2 following mostly the de-
creases in transpiration rate. SH fluxes increase in similar
areas at comparable magnitudes (10–25 W m−2). The de-
creases in LH and the increases in SH cause the increases
in temperature and PBLH. We found that northern China has
larger decreases in relative humidity, temperature, and PBLH
compared with other regions. Generally, relative humidity
shows at least 4 % relative reductions, temperature increases
by 0.2–0.8 K, and PBLH increases by 40–120 m for north-
ern China. This indicates that O3–vegetation interactions will
cause a shift in the energy balance toward a state where avail-
able net radiation is dissipated more by SH flux than LH flux,
with ramifications for surface temperature. This represents an
additional pathway whereby anthropogenic O3 pollution can
worsen warming, in addition to O3 being a greenhouse gas
itself and O3-induced plant damage diminishing the global
net carbon sink (e.g., Sitch et al., 2007; Lombardozzi et al.,
2015).

O3 induces changes in vegetation, surface fluxes, and me-
teorology, and in turn affects its own concentration. In this
study, we found that reduced dry deposition in China is
mainly due to enhanced stomatal conductance, while en-
hanced isoprene emission is mainly due to enhanced surface
temperature and the corresponding increase in O3 concen-
tration. O3 concentration increases the most (up to 6 %) in
the Hebei, Shanxi, and Henan provinces, with the maximum
value of 6 ppb. Our results demonstrate that O3–vegetation
interactions can lead to strong positive feedback that can am-
plify O3 pollution in China, in agreement with the sugges-
tions by previous studies focusing on a global scale (Sadiq et

al., 2017; Zhou et al., 2018; Gong et al., 2020). We also found
that fully considering the positive O3–vegetation feedbacks,
especially when meteorological changes are also accounted
for, generates greater damage on vegetation productivity than
found by studies that only considered “offline” O3 damage
on plants without feedbacks (Yue and Unger, 2014; Lombar-
dozzi et al., 2015).

In this study, the summertime simulation period of JJA was
selected due to the high O3 pollution in this season and the
overlapping-with-vegetation growing season to capture the
severe O3 damage on vegetation. Nevertheless, uncertainty
may still arise from that our simulation period may not cover
the growing season of all vegetation types and may not cover
all periods that O3 damage happens, which may represent
an underestimation of the full scale of O3 damage. Future
work should be conducted for longer time periods and for all
seasons, which will help us better understand O3–vegetation
interactions in China. Uncertainty may also arise from the
O3 scheme employed in this study in terms of the CUO cal-
culation and the consideration of O3 detoxification mecha-
nism of different vegetation types. The calculation of CUO
heavily relies on the O3 threshold. Considering the sensitivi-
ties of different vegetation types to O3 damage, CUO thresh-
old should be varied with different vegetation types. How-
ever, a constant O3 threshold was employed in our study for
the whole simulation domain and for all vegetation types,
which may either underestimate or overestimate the actual
O3 damage. Moreover, following the work of Lombardozzi
et al. (2015), we classified all the vegetation types into only
three groups, which may be too coarse to investigate O3 dam-
age effects on regional or local scales. For example, Zhou et
al. (2018) pointed out that Lombardozzi et al. (2015) treated
tropical and temperate plants equivalently, which might lead
to possible biases. More studies should be conducted to de-
rive more appropriate O3 thresholds for CUO calculation and
make them available for regional scales or for different veg-
etation types. Another source of uncertainty may arise from
the lack of representation of the direct effect of O3 on iso-
prene emission. As pointed out by Gong et al. (2020), includ-
ing the effect of O3 damage on isoprene emission may reduce
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O3 concentration by influencing precursors, but increase O3
concentration at the same time through weakening the short-
wave radiative forcing of secondary organic aerosols, which
would help constitute a more complete feedback mechanism
between O3 and vegetation. Moreover, uncertainties may
also come from that the effect of soil moisture deficit was
not considered in this study, which may underestimate the re-
duction in dry deposition sink of O3. It should also be noted
that keeping the anthropogenic emission inventory fixed in
2014 levels may be another limitation because of the nonlin-
ear chemistry involving biogenic and anthropogenic precur-
sors. Despite these uncertainties and limitations, our study
provides detailed and comprehensive results whereby O3–
vegetation impacts will adversely affect plant growth and
crop production, contribute to global warming, worsen the
severe O3 air pollution in China via feedbacks, and identifies
the hotspot areas in the country. Our findings clearly pinpoint
the need to consider the O3 damage effects in both air quality
studies and climate change studies.
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