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Abstract. To better understand the role of atmospheric dynamics in modulating surface concentrations of fine
particulate matter (PM2.5), we relate the anticyclonic wave activity (AWA) metric and PM2.5 data from the In-
teragency Monitoring of Protected Visual Environment (IMPROVE) data for the period of 1988–2014 over the
US. The observational results are compared with hindcast simulations over the past 2 decades using the National
Center for Atmospheric Research–Community Earth System Model (NCAR CESM). We find that PM2.5 is pos-
itively correlated (up to R = 0.65) with AWA changes close to the observing sites using regression analysis.
The composite AWA for high-aerosol days (all daily PM2.5 above the 90th percentile) shows a similarly strong
correlation between PM2.5 and AWA. The most prominent correlation occurs in the Midwestern US. Further-
more, the higher quantiles of PM2.5 levels are more sensitive to the changes in AWA. For example, we find that
the averaged sensitivity of the 90th-percentile PM2.5 to changes in AWA is approximately 3 times as strong as
the sensitivity of 10th-percentile PM2.5 at one site (Arendtsville, Pennsylvania; 39.92◦ N, 77.31◦W). The higher
values of the 90th percentile compared to the 50th percentile in quantile regression slopes are most prominent
over the northeastern US. In addition, future changes in US PM2.5 based only on changes in climate are esti-
mated to increase PM2.5 concentrations due to increased AWA in summer over areas where PM2.5 variations
are dominated by meteorological changes, especially over the western US. Changes between current and fu-
ture climates in AWA can explain up to 75 % of PM2.5 variability using a linear regression model. Our analysis
indicates that higher PM2.5 concentrations occur when a positive AWA anomaly is prominent, which could be
critical for understanding how pollutants respond to changing atmospheric circulation as well as for developing
robust pollution projections.

1 Introduction

Particulate matter less than 2.5 µm in diameter (PM2.5) poses
a considerable air quality concern due to its impacts on hu-
man health (Liu et al., 2020). PM2.5 has been linked to the in-
creased possibility of mortality (Krewski et al., 2009). Con-
tinuing exposure to PM2.5 can exacerbate existing cardio-

vascular and respiratory problems and cause lung damage
(Bernard et al., 2001). It can also alter the body’s defense
system against foreign materials and even lead to premature
death (Kappos et al., 2004). Furthermore, PM2.5 could con-
tribute to the degradation of visibility (Hand et al., 2011;
Ashley et al., 2015) and the alteration of the hydrological
cycle through changing rainfall formation mechanisms in
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clouds (Rosenfeld et al., 2008). Once deposited onto snow
PM2.5 can cause an increase in the melting of snow and ice
(Painter et al., 2007) or modify land or ocean biogeochem-
istry (Mahowald et al., 2011). It also influences Earth’s en-
ergy balance directly by scattering solar incoming radiation
back into space (Charlson et al., 1992) or indirectly by al-
tering cloud albedo and lifetime (Albrecht, 1989; Arimoto,
2001). Aerosols can also alter the large-scale atmospheric
circulation and lead to historical changes to wintertime mid-
latitude winter extremes over northern Eurasia (Wang et al.,
2020). Thus, understanding and predicting potential changes
in PM2.5 is crucial to both human health concerns and current
environmental issues.

Climate change and meteorological factors may have sub-
stantial impacts on surface concentrations of PM2.5. A num-
ber of studies have demonstrated the influences of weather
and climate change on PM2.5 variability (Brasseur et al.,
2006; Liao et al., 2006; Dawson et al., 2007; Jacob and
Winner, 2009; Thishan Dharshana et al., 2010; Tai et al.,
2012; Liu et al., 2017; Chen et al., 2018; Wang et al., 2019;
Wang and Zhang, 2020), showing connections between spe-
cific meteorological conditions and PM2.5 concentration re-
sponses. Daily variation in temperature, rainfall, moisture,
and circulation can explain up to 50 % of the variability in
PM2.5 (Tai et al., 2010). Meanwhile, Aw and Kleeman (2003)
calculated a reduction in PM2.5 concentrations caused by ris-
ing temperature over southern California in a modeling study.
Furthermore, Tai et al. (2012) identified a cyclone passage
with the associated cold front as a mechanism for temper-
ature being strongly correlated with interannual variability
of PM2.5 in the Midwestern US. Similarly, increased atmo-
spheric stagnation may also have the potential to aggravate
PM2.5 air quality in the future climate (Liao et al., 2006;
Leibensperger et al., 2008). Mickley et al. (2004) also pro-
posed an increased severity of summertime PM episodes
due to a warmer future climate in the northeastern and Mid-
western US. In addition, a significantly negative correlation
caused by the longer lifespan of gas-phase-produced sulfate
was found between aerosol sulfate and cloud cover compared
to aqueous-phase-produced sulfate (Koch et al., 2003). These
studies suggest that changes in meteorology linked to climate
modification may cause variations in PM2.5 levels and expo-
sure risks. However, questions remain regarding whether and
how PM2.5 concentrations directly related to atmospheric
general circulation. Understanding the relationship between
meteorology and PM2.5 levels will be critical to the under-
standing of pollutant response to a changing circulation due
to climate change as well as the development of robust pol-
lution projections.

Many studies have focused on relating wave activity with
extreme weather and climate events. Weather extremes are
strongly influenced by the natural variability of the atmo-
sphere at synoptic, intra-seasonal and interannual timescales.
For example, persistent high-pressure blocking systems can
cause extreme cold winter temperatures in Europe (Wool-

ings et al., 2008) or summer heat waves (Coumou et al.,
2015). Midlatitude weather extremes can be influenced by
the major modes of climate variability such as Arctic Oscil-
lation (Michel and Rivière, 2011) or El Niño–Southern Os-
cillation (ENSO) (Ryoo et al., 2013). Furthermore, blocking
anticyclones can decay by releasing accumulated wave ac-
tivity as a stationary Rossby wave train (Takaya and Naka-
mura, 2001). Meanwhile, blocking highs are connected with
high-amplitude, quasi-stationary anticyclonic anomalies that
result in protracted and unusual weather events (Nakamura et
al., 1997). In addition, temperature extremes are more likely
to connect with wave events through the large-amplitude
troughs and ridges (Pfahl and Wernli, 2012; Chen et al.,
2015; Martineau et al., 2017). Shen and Mickley (2017) iden-
tify the association between warm tropical Atlantic sea sur-
face temperatures and enhanced subsidence, reduced precip-
itation and increased temperatures through stationary wave
propagation in the eastern US. However, no previous studies
have investigated how wave activity can lead to changes in
PM2.5 concentrations, although studies have shown a robust
correlation between surface ozone concentration and a mea-
sure of wave activity over the US using a linear regression
model (Sun et al., 2019).

Here we propose the use of anticyclonic wave activity
(AWA), the anticyclonic part of local finite-amplitude wave
activity (LWA) with quantile regressions, to be an effec-
tive method for diagnosing the tendency and sensitivities in
the transport of PM2.5 concentrations, using a similar ap-
proach to a previous study focused on ozone (Sun et al.,
2019). LWA assesses longitude-by-longitude anomalies of
the finite-amplitude Rossby wave activity deviating from
the circle of equivalent latitude using the meridional dis-
placement of potential vorticity (PV) (Huang and Nakamura,
2016). As an example, the prominent Northern Hemisphere
blocking episode that occurred in late October 2012 was well
explained using LWA (Huang and Nakamura, 2016). Fur-
thermore, recent modeling studies have illuminated the value
of quantile regression in examining the influences of global
changes on local air quality. For example, Porter et al. (2015)
employ quantile regression to diagnose the meteorological
sensitivities of higher ozone and PM2.5 levels by using ob-
served and reanalysis meteorological data in the US over the
past decade.

While meteorology sets the stage for the occurrence of
dangerous pollutant levels in the present and future climates,
the connection between the meteorological events and ex-
treme pollution events is still not sufficiently understood
(Dawson et al., 2014). In the present study, we apply a uni-
variate linear regression model to analyze the daily PM2.5–
AWA relationship from observations and simulations in the
US, using a similar methodology as that used to examine
LWA and ozone relationships (Sun et al., 2019). We also use
quantile regression to calculate PM2.5 sensitivities to AWA
across quantiles from 10 % to 90 %. In addition, the coeffi-
cients of the slope for the linear regression model between
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PM2.5 and AWA in the current climate are evaluated to see
how much they can be used to predict future PM2.5 changes.
Such an exploration of PM2.5 from atmospheric motion can
provide new insights into understanding the mechanism of
PM2.5 changes as well as the sensitivity of higher PM2.5 con-
centrations to climate change.

2 Methodology

In order to quantify the relationship between AWA and sur-
face PM2.5 concentrations during the summer months, five
different combinations of datasets, one observational one and
four model outputs, are used in this study. Each of the five
cases uses surface PM2.5 concentrations and geopotential
heights (for calculating a modified AWA, as explained be-
low). Each modeling dataset uses 20 years for the analysis,
while the observations are analyzed for the years between
1988 and 2014. Both PM2.5 and AWA time series are de-
trended and deseasonalized by eliminating the 21 d smoothed
seasonal cycle from the original data. We use the resulting
stationary residuals to focus on the synoptic-scale variabil-
ity, minimizing aliasing from regular seasonal variations or
long-term tendencies. This study is a followup study to Sun
et al. (2019), using the same approach used there to analyze
ozone, and here we focus on analyzing PM2.5. The details of
the methods are discussed in more detail in that paper and
summarized here.

2.1 Observational data

We use PM2.5 measurements from the Interagency Moni-
toring of Protected Visual Environment (IMPROVE) moni-
toring sites, which are located in National Parks and Class
I Wilderness areas across the US (http://vista.cira.colostate.
edu/improve/, last access: 1 September 2021). PM2.5 con-
centrations are reported every 3 d as mass per air volume
at local temperature and pressure. Hand et al. (2011, 2012)
have described the details regarding IMPROVE site loca-
tions, sampling, analysis approach and detailed information
of network operations. All stations with at least 1000 valid
PM2.5 values between 1988 and 2014 are collected in this
study, totaling 150 stations for summer (June, July, August;
JJA hereafter). For the PM2.5 observations (called Obs case),
the full names, states, latitudes and longitudes as well as
short names are listed in Table S1 in the Supplement, and
locations are shown in Fig. 1. We chose three representa-
tive stations in different parts of the country to investigate
the relation between AWA and PM2.5 in detail. The IM-
PROVE station names are AREN1 (Arendtsville, Pennsyl-
vania; 39.92◦ N, 77.31◦W; in the northeast), SIPS1 (Sipsey
Wilderness, Alabama; 34.34◦ N, 87.34◦W; in the southeast)
and LAVO1 (Lassen Volcanic National Park, California;
40.54◦ N, 121.58◦W; in the west), which are shown with the
red dots in Fig. 1. They match the sites PSU106 (40.72◦ N,
77.93◦W; in the northeast), SND152 (34.29◦ N, 85.97◦W;

in the southeast) and LAV410 (40.54◦ N, 121.58◦W; in the
west), respectively, which have differing impacts of mete-
orological persistence on the distribution and extremes of
ozone in Sun et al. (2017) to allow a comparison between
the ozone and PM2.5 response to AWA. Long-range transport
from Asia and meteorology are dominant drivers of pollu-
tants at LAVO1, where anthropogenic influence is at a min-
imum as it is a clean-air site in California (VanCuren and
Gustin, 2015).

In order to compare these in situ observations to the
large-scale meteorology, the 500 hPa geopotential height (m)
from the European Reanalysis Interim version is used (ERA-
Interim) for the time period of January 1991 to December
2010 (Dee et al., 2011). The ERA-Interim is a global reanaly-
sis of recorded meteorological data over the past 3.5 decades
and was undertaken by the European Centre for Medium-
Range Weather Forecasts. This gridded dataset is created at
approximately 0.7◦ spatial resolution with 37 vertical levels.

2.2 Model output

We compare the IMPROVE data with output from the Com-
munity Earth System Model (CESM) as simulated for the
Chemistry-Climate Model Initiative (CCMI) (Eyring et al.,
2013). As a state-of-the-art Earth system modeling frame-
work coordinated by the National Center for Atmospheric
Research (NCAR), the CESM employed here is configured
to fully couple the Community Atmosphere Model version 4
(CAM4) (Neale et al., 2010), the Community Land model
version 4.0 (CLM4.0) (Oleson et al., 2010), the Parallel
Ocean Program version 2 (POP2) (Smith et al., 2010) and the
Los Alamos sea ice model (CICE version 4) (Hunke and Lip-
scomb, 2008). All simulations are performed under current
land cover conditions. The top of the simulated atmosphere
reaches 40 km with a horizontal resolution of 2.5◦ longitude
by 1.9◦ latitude. The model has been widely used for model-
ing the Earth’s past, present and future climate states (Neale
et al., 2010; Hurrell et al., 2013).

To simulate the atmospheric chemistry, we include the
CAM4-Chem module, which has been widely studied with
regard to its representation of atmospheric chemistry in the
atmosphere (Aghedo et al., 2011; Lamarque et al., 2011a,
b, 2012; Lamarque and Solomon, 2010). CAM4-Chem em-
ploys the Bulk Aerosol Model (BAM) with externally mixed
aerosols considering black carbon, organic carbon, sulfate,
sea spray and desert dust, which simulates coarse-mode
aerosols in four bins for the latter two. Details of this imple-
mentation are discussed in Lamarque et al. (2012). CAM4
uses the Zhang–McFarlane deep-convection scheme (Zhang
and McFarlaneb, 1995), the Hack shallow-cumulus scheme
(Hack et al., 2006), Holtslag and Boville’s (1993) planetary
boundary layer process, and the parameterization of cloud
microphysics and macrophysics by Rasch and Kristjáns-
son (1998) and Zhang et al. (2003). Additionally, the con-
vective momentum transport is utilized to parameterize deep
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Figure 1. Geographical location of IMPROVE sites for PM2.5. Red dots are three representative sites.

convection (Richter and Rasch, 2008). These two major revi-
sions caused improvements in such aspects as the Madden–
Julian oscillation and ENSO (Neale et al., 2008). The im-
proved trend and magnitude of surface PM2.5 using this free-
running model have been evaluated elsewhere (Tilmes et al.,
2016).

The chemical emissions and forcing details for each of
the model simulations are listed in Table 1. The simulation
using specified dynamics (REFC1SD) for current levels of
PM2.5 from 1991 to 2010 is driven by analyzed meteorolog-
ical data from Modern-Era Retrospective Analysis for Re-
search and Applications (MERRA) (see Tilmes et al., 2016).
This simulation follows the conventions of the CCMI (Eyring
et al., 2013). For the AWA analysis for this case, we use
the 500 hPa geopotential height from MERRA, which should
be very similar to that from ERA-Interim, since they use
largely the same observations. To compare the relationship
between AWA and PM2.5 concentrations in online simula-
tions, three simulations forced by trace gas projections and
an interactively coupled ocean are employed. The GCM2000
and GCM2100 simulations are 25-year runs branched from
the CCMI reference simulations in the year 2000 and the year
2100, respectively. Simulations over the first 5 years are dis-
carded as spin-up, and results from the latter 20 years are
discussed here (2006–2025 for GCM2000 and 2106–2125
for GCM2100). Note that while the CO2 concentrations in
the GCM2000 and GCM2100 simulations are kept at the
year 2000 and 2100 level, respectively, the concentrations of
all other greenhouse gases including methane remain con-
stant at the year 2000. In particular, the emissions and pre-
scribed chemical species for longer-lived substances follow

the protocol defined by CCMI hindcast simulations for the
year 2000 (Eyring et al., 2013), which are repeated for all the
simulated model years. Another future run (REFC2) is forced
by future climate combined with future emissions following
the REFC2 CCMI modeling protocol. In this run, greenhouse
gas forcing and emissions follow the RCP6 scenario. The re-
lationship between ozone and AWA has been examined in
the GCM2000, GCM2100 and REFC2 simulations in Sun et
al. (2019). Characteristics of the REFC1SD simulation are
given in Phalitnonkiat et al. (2018). Note that our REFC2
set-up covers volcanic eruptions in the past, but possible vol-
canic eruptions in the future are not included (Eyring et al.,
2013).

2.3 AWA calculation

To calculate AWA, we adopt the procedures in Chen et
al. (2015) and Huang and Nakamura (2016). A dynami-
cal quantity, q (here we use Z500, geopotential height at
500 hPa), approximately decreases with latitude in the North-
ern Hemisphere. For a given value of q =Q, we introduce an
equivalent latitude φe(Q) as

φe(Q)= arcsin
[

1−
S(Q)
2πa2

]
. (1)

Here, S(Q) is the area bounded by theQ contour towards the
North Pole and a denotes Earth’s radius. Defining an eddy
term as q̂ ≡ q −Q and separating the southward and north-
ward displacements in the Q contour, we calculate the cy-
clonic (southern), anticyclonic (northern) and total LWA at
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Table 1. The model case names used in this study. Designated model descriptions for the four attribution cases. Online means that the model
calculates the meteorology prognostically online. Case names are based on names described previously (Eyring et al., 2013; Sun et al., 2019).

Simulation Model case GHG1 SST2 and
Emissions

Meteorological
(years) name forcing sea ice driver

REFC1SD (1991–2010)
f.e11.TSREFC1SD.f19.

CMIP53 HadISST24
Anthropogenic and biomass

MERRA7f19.ccmi23.001 burning emission: MACCity5

Biogenic emissions: MEGAN26

GCM2000 (2006–2025)

b.e11.TSREFC2.femis

CO2 = 369 ppm Online8

Anthropogenic and biomass

Online2000.y2000.f19.f19. burning from AR59

ccmi23.001 Biogenic emissions: monthly
values from MEGAN2 for 2000

GCM2100 (2106–2125)
b.e11.TSREFC2.femis

CO2 = 669 ppm Online8 Same as GCM2000 Online82000.y2100.f19.f19.
ccmi23.001

REFC2 (2080–2099)
b.e11.TSREFC2.f19.g1

A1B scenario Online A1B scenario Online
6.ccmi23.001.cam.h7

1 Greenhouse gas. 2 Sea surface temperature. 3 Coupled Model Intercomparison Project. 4 Hadley Centre Sea Ice and Sea Surface Temperature dataset (Titchner and Rayner, 2014).
5 Granier et al. (2011). 6 Guenther et al. (2012). 7 Modern-Era Retrospective Analysis for Research and Applications (Rienecker et al., 2011). 8 Tilmes et al. (2016). 9 Assessment report
5 (Eyring et al., 2013).

the longitude λ and latitude φe by

AC(λ,φe)=
a

cosφe

∫
q̂≤0,φ≤φe(Q),λ=const

q̂ cosφdφ, (2)

AA(λ,φe)=
a

cosφe

∫
q̂≥0,φ≥φe(Q),λ=const

q̂ cosφdφ, (3)

AT(λ,φe)= AC−AA. (4)

Studies on finite-amplitude wave activity (FAWA) have iden-
tified the link between the pattern of atmospheric circulation
and large-scale wave dynamics (Nakamura and Solomon,
2011; Methven, 2013; Chen and Plumb, 2014; Lu et al.,
2015). LWA adds the longitude dimension to the zonally av-
erage quantity FAWA and is calculated from the meridional
displacement of quasi-geostrophic PV from zonal symmetry
(Nakamura and Zhu, 2010). LWA helps differentiate longitu-
dinally isolated events and describe extreme weather events
at the local scales (Huang and Nakamura, 2016; Chen et al.,
2015). Chen et al. (2015) used local finite-amplitude wave
activity based on the 500 hPa geopotential height for charac-
terizing midlatitude weather events. The total wave activity is
composed of the cyclonic wave activity residing to the south
of the equivalent latitude and the anticyclonic wave activity
to the north (see Fig. 1 in Sun et al., 2019). In this study, we
focus on AWA to characterize its connection with changes in
PM2.5 concentrations. Over the US in summer LWA is dom-
inated by its anticyclonic component (Sun et al., 2019). Sun
et al. (2019) also used AWA to characterize ozone variability.

2.4 Quantile regression

Quantile regression is used to estimate the slopes for several
conditional quantile functions (Koenker and Bassett, 1978).

It characterizes the connection between a range of predictor
variables and specified percentiles (or quantiles) of the re-
sponse variable. For example, Porter et al. (2015) analyzed
the sensitivities of ozone and PM2.5 concentrations for re-
sponse quantiles ranging from 2 % to 98 %. The parameters
of quantile regression models evaluate the change in a spe-
cific quantile of the response variable caused by a one-unit
change in the predictor variable. This permits us to mea-
sure how some percentiles of the PM2.5 may be more influ-
enced by AWA than others, and this is indicated by changes
in the regression coefficient. In order to illustrate the sensi-
tivity of the PM2.5 concentration at different quantiles, we
apply linear quantile regression for percentiles from the 10th
to the 90th one at the AREN1 site. And then we compare the
90th-percentile quantile regression coefficient with the 50th-
percentile quantile regression coefficient at each station.

2.5 The univariate linear regression model

To help explore and measure the likely relationship between
AWA and PM2.5 levels, we use the univariate linear regres-
sion model, similar to a previous study focused on ozone
(Sun et al., 2019). Here the slope of PM2.5 with respect to
wave activity

(
Si0,j0 (i,j )

)
on the daily timescale is used

to show the linear association between changes (in time)
of the normalized PM2.5 at a point (i0,j0) and the normal-
ized wave activity at another point. We use the projection
of PM2.5 onto AWA to reveal how closely the AWA anomaly
field resembles the spatial pattern that enhances PM2.5 on the
daily timescale during the summer. The projection of AWA(
pi0,j0

)
at all points in the domain onto Si0,j0 is defined ac-
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cording to the following equation:

pi0,j0 = AWA · Si0,j0 =
∑
j

∑
i

AWA(i,j )× Si0,j0 (i,j ). (5)

The similarity between the AWA spatial pattern and the
PM2.5–AWA regression coefficients’ spatial structure is es-
timated by the projection value. The interannual change in
PM2.5 due to changes in AWA is predicted based on a linear
regression model as in the following equation (see Sun et al.,
2019, for more discussion):

PM2.5 = βp+α. (6)

The change in PM2.5 (denoted by 1PM2.5) in the future due
to the change in AWA is calculated using the following equa-
tion, which is the climatological difference in a future climate
and the present climate

(
AWAf−AWAp

)
; project it onto S,

and multiply it by the slope β:

1PM2.5 = β
[(

AWAf−AWAp
)
· S
]
. (7)

Here, S is calculated from the values for the present climate.
The projected value can measure the similarity between the
AWA change and the PM2.5’s trend with AWA by compress-
ing the information of the AWA field into a single variable.
This variable incorporates the non-local effect of AWA on
PM2.5’s variability.

2.6 The composite methodology

We use a composite methodology which is based around the
most polluted (> 90th percentile) daily PM2.5 and the cor-
responding anomalies at every station. Composite 500 hPa
geopotential height and AWA for daily values of PM2.5 larger
than the 90th percentile are produced by separately averag-
ing all daily anomaly values of the corresponding 500 hPa
geopotential height and AWA. The composite methodology
can average out much of the variability. Composite Madden–
Julian Oscillation cycles of precipitation and ozone for each
phase are examined by averaging together all daily anomaly
values for the given quantity separately (Sun et al., 2014). In
addition, the meteorological conditions conductive to a high-
ozone event are investigated by compositing about the first
day of each high-ozone event in the northeastern region (Sun
et al., 2017).

3 Results and discussion

The monthly mean PM2.5 surface concentrations with stan-
dard deviations for different scenarios at three representative
sites are shown in Fig. 2. PM2.5 concentrations are largest
during summer at the three sites. The climatological aver-
age for PM2.5 is greater at the eastern than at the western
sites. A statistically significant correlation (r > 0.80, p <
0.01; Fig. 2) for current PM2.5 is found between observa-
tions and simulations of monthly mean climatological aver-
ages (REFC1SD and GCM2000) at three representative sites.

The highest correlation coefficients between model and ob-
servations (0.93) are seen at SIPS1, perhaps due to the large
seasonal variation in PM2.5 concentrations (Fig. 2b). The fu-
ture PM2.5 concentrations are increased in GCM2100 under
current emissions compared with current climate PM2.5 sim-
ulations. There is a strong decease in climatological mean for
future PM2.5 at AREN1 under future emissions and meteo-
rology (REFC2), while the climatological average for future
PM2.5 has no significant change under future emissions at
SIPS1 and LAVO1. Such differences in the monthly mean
averages for PM2.5 suggest that emission changes are more
important than climate changes at AREN1, but it is not clear
which is more important at SIPS1 or LAVO1.

Focusing on the spatial distribution, the highest PM2.5
concentrations over the 20-year average in summer occur in
the south–central US (Fig. 3a; green lines; GCM2000 case).
The 20-year averaged AWA on summer days exhibits a max-
imum over the southwestern US (Fig. 3a; shaded). The dif-
ference between two current climate simulations (REFC1SD
minus GCM2000) for summertime AWA is shown in Fig. 3b.
The reduced AWA in the reanalysis forced simulation is
found across most of the US, with the largest reduction in
the southwestern US as previously shown (Sun et al., 2019).
In contrast, the AWA in summer is higher over the northeast-
ern US in the forced simulations. The corresponding changes
in summertime PM2.5 concentration caused by a combina-
tion of different emissions and possibly changes in AWA
are similar to changes in AWA, although the reduction is
largely over the south–central US. The difference between
two future scenarios (GCM2100; REFC2) and the current cli-
mate scenario (GCM2000) has a similar pattern (illustrated
in Fig. 3c and d), which shows a large increase in AWA in
the southwestern US, but there is a difference in the ampli-
tude of these changes (contrast Fig. 3c with Fig. 3d) (Sun
et al., 2019). There is an increase in PM2.5 concentration
for the future scenario with current emissions (GCM2100),
while there is a decrease in PM2.5 concentrations when fu-
ture emissions are used (REFC2), showing the importance of
future potential decreases in emissions.

3.1 Relationship between PM2.5 concentrations and
AWA at specific stations

For the three observation sites highlighted here (AREN1,
SIPS1 and LAVO1), the PM2.5 concentrations are positively
correlated with AWA in the areas close to the sites where
presumably at least some of emissions of PM2.5 are lo-
cated (Fig. 4). The relationships between daily PM2.5 con-
centrations and AWA using CESM simulations presented
here offer a test of the consistency between observational
and model relationships in characterizing the response of
PM2.5 to AWA. The highest regression coefficient occurs in
the observational (Obs) and the reanalysis-driven simulated
cases (REFC1SD), as opposed to the case-coupled meteorol-
ogy (GCM2000) (Fig. 4a, b and c and Fig. 4d, e and f in
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Figure 2. Climatological monthly mean average with standard deviation for PM2.5 used in this study at three sites (AREN1 a, SIPS1 b and
LAVO1 c) for five scenarios used in this study. Red (r) represents the correlation coefficient between observation (Obs) and simulation for
current from the REFC1SD simulation. Blue r represents the correlation coefficient between observation (Obs) and simulation for current
from GCM2000 simulation. The p values are included.

Figure 3. Wave activity (AWA: shaded using the legend in 108 m2) and PM2.5 concentrations (green contour lines in µg m−3) for (a) the
current climate (GCM2000, 2006–2025 summer days’ average); (b) reanalysis-driven case (REFC1SD, 1991–2010 summer days’ average)
minus the current climate online case (GCM2000, 2006–2025 summer days’ average); (c) future climate with current emission (GCM2100,
2106–2125 summer days’ average) minus the current climate (GCM2000, 2006–2025 summer days’ average); (d) future climate with future
emission (REFC2, 2080–2099 summer days’ average) minus current climate (GCM2000, 2006–2025 summer days’ average). Three black
dots are representative stations (AREN1, SIPS1 and LAVO1).

contrast to Fig. 4g, h and i). The highest spatial regression
coefficients for sites AREN1 and SIPSl are located south-
ward of the sites, while they are located to the northwest at
LAVO1. Overall the model simulates similar spatial patterns
to the observations for the case of the reanalysis-driven simu-

lations (REFC1SD) but does less well for the coupled model
simulations (GCM2000). Of course, model predictions are
not perfect and include uncertain emissions and boundary
conditions as well as errors in model physical and chemical
processes, which may be driving these inconsistencies be-
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tween modeled and observed relationships. In addition, Sun
et al. (2019) show considerable variation in the AWA pat-
tern between different ensemble simulations, suggesting that
even on the timescale of 20 years there is considerable inter-
nal variability between model ensemble members.

To obtain a more in-depth understanding of the physical
mechanisms behind the relationship between PM2.5 concen-
tration and AWA, we consider the composite AWA for high-
PM2.5 days at AREN1, SIPSl and LAVO1 (Fig. 5). The pat-
tern for the composite AWA corresponding to daily PM2.5
above the 90th quantile is most similar to regression coeffi-
cients between daily AWA and PM2.5 by comparing different
quantiles (Fig. S1 in the Supplement). The composite AWA
calculated by averaging together all AWA corresponding to
daily PM2.5 above the 90th quantile shows a similar strong
connection between PM2.5 and AWA as that seen for the av-
erage (Fig. 4 vs. Fig. 5). The composite AWAs are extremely
pronounced over the areas where PM2.5 data originate. The
geopotential composites for the highest pollution days gen-
erally showed spatial distributions which are similar to the
regression coefficient distributions (Fig. 5 vs. Fig. 4) at the
three representative sites. The areas with the largest values
of the composite AWA are located southward of the AREN1
and SIPSl sites. But at LAV01 the maximum is located to the
northwest for the observational and reanalysis-driven cases
(Obs and REFC1SD) and eastward for the coupled model
case (GCM2000). Overall, the composite AWA for PM2.5
also shows that the daily PM2.5 above its 90th quantile con-
nects strongly with AWA during summer. Note that there is a
spatial displacement between the maximum of geopotential
height and the maximum of AWA, since wave activity funda-
mentally measures the waviness of atmospheric general cir-
culation rather than the magnitude.

3.2 Relationship of AWA and PM2.5 regionally

Next we consider how the local relationship between PM2.5
and AWA changes in space. To simplify the visualization of
the spatial variability in the local relationship, we use the
result from the previous section that the maximum regres-
sion coefficients between PM2.5 and AWA are usually close
to the site where PM2.5 is measured (Fig. 5). The highest
composite AWA anywhere in the domain and the highest re-
gression coefficient with AWA are shown at each grid point
in Fig. 6. If we look at the relationship between the PM2.5
concentration and the wave activity at each location, it can be
seen that PM2.5 concentrations are positively correlated with
AWA throughout the US but with varying strengths (Fig. 6).
A roughly similar spatial distribution is obtained with ei-
ther the composite AWA for high PM2.5 (Fig. 6a, c, e, g
and i) or the regression coefficients between the PM2.5 and
AWA (Fig. 6b, d, f, h and j) for the different observational
or model combinations, showing the consistency of the ap-
proaches. The pattern of the distribution is consistent for ob-
servational (Fig. 6a and b) and simulated (Fig. 6c and d) data

when forced with reanalysis winds, with the largest values
in the upper Midwest into the mid-Atlantic states. The cli-
mate model simulations tend to have a stronger correlation
in the western/mountain regions, than seen in the reanaly-
sis winds (Fig. 6c vs. Fig. 6e), and there are some hints of
this in the observations in Arizona, for example (Fig. 6a).
The correlations and composites tend to become stronger in
the western/mountain regions in the future model simulations
(Fig. 6g and i vs. Fig. 6e).

The consistency in the composite AWA under high-PM2.5
conditions and the correlations suggests that either of these
metrics can be useful tools to identify PM2.5 and AWA re-
lationships. The anticyclonic condition is usually character-
ized by, low-level divergence, subsiding air, light wind, no
rainfall and high surface pressure. Taken together, the results
above demonstrate the positive connection of PM2.5 concen-
trations with anticyclonic conditions everywhere across the
US, which is likely accounted for by arid weather and sink-
ing inversions. This is consistent with the PM2.5 sensitivity
study of Tai et al. (2010). They illustrated strong linkage be-
tween high PM2.5 concentrations, high 850 hPa geopotential
height and stagnation, which is characterized by an anticy-
clonic condition. The significant association of PM2.5 with
stagnation is also demonstrated by Cheng et al. (2007) in
their examination of four Canadian cities. Furthermore, sim-
ilar results were reported that greatly strengthening ozone is
associated with increased stagnation (Wu et al., 2008; Sun et
al., 2014).

The composite AWA is for PM2.5 that is larger than
the 90th quantile, while the regression coefficient is for all
PM2.5. The composite AWA and regression coefficient have
similar spatial distributions suggesting the positive connec-
tion between daily PM2.5 and AWA is mainly produced by
high PM2.5 concentration above its 90th quantile. Overall,
the relationship between the behavior of AWA and extreme
PM2.5 concentration is generally consistent with the existing
meteorological studies (Woolings et al., 2008; Coumou et al.,
2015; Michel and Rivière, 2011; Ryoo et al., 2013).

3.3 The sensitivity of quantiles in PM2.5 concentrations
to AWA

To examine the sensitivity of different levels of PM2.5 con-
centrations to AWA, we fit the linear regression and quan-
tile regression for AWA and daily PM2.5 for summers be-
tween 1988 to 2014 from IMPROVE monitoring sites for
different percentiles (10th to 90th percentiles) using an “im-
pact region” of AWA at the AREN1 site. Here the averaged
AWA over the impact region is defined as an elliptic area
bounded by the maximum and minimum longitude and lati-
tude of the maximum composite AWA for PM2.5 larger than
the 90th percentile minus the 0.05 contour line (blue elliptic
circle in Fig. 5a). One can clearly see that the higher per-
centiles of PM2.5 are more sensitive to the change in the av-
eraged AWA over the impact region; e.g., the 90th percentile

Atmos. Chem. Phys., 22, 7575–7592, 2022 https://doi.org/10.5194/acp-22-7575-2022



Y. Wang et al.: The relationship between PM2.5 and anticyclonic wave activity... 7583

Figure 4. Composite 500 hPa geopotential height anomaly (contours; positive values are represented by green lines and negative values by
magenta lines) and regression coefficients (shaded) between daily AWA and PM2.5 at sites (denoted by the black dots) (a, d, g) AREN1, (b,
e, h) SIPS1 and (c, f, i) LAVO1 in the study domain for daily JJA time series of current climates. The top row shows results using IMPROVE
PM2.5 and reanalysis AWA, the middle row uses the reanalysis-driven simulated PM2.5 (REFC1SD) and reanalysis AWA, and the bottom
row uses current-climate-simulated PM2.5 and AWA (GCM2000). Stippling indicates the regions that are statistically significant at the 5 %
confidence level. Unit: 10−8 µg m−3 m2 for regression coefficients.

of PM2.5 is approximately 3 times more sensitive to the aver-
aged AWA over the impact region when compared with the
10th percentile of PM2.5 (Fig. 7a). The correlation coefficient
of 0.36 between JJA deseasonalized PM2.5 and the impact
region’s average AWA implies that the vast majority of all
variability is being driven by factors other than AWA at the
AREN1 site. It must be noted that this lack of overall corre-
lation implies other drivers of PM2.5 variability at sites like
this.

In order to examine whether the finding that a high quan-
tile of PM2.5 is more sensitive to the AWA than the low
quantile of PM2.5 applies to the other sites, we calculate
the difference of the 90th-percentile quantile regression co-
efficient (slope) from the 50th-percentile quantile regres-
sion coefficient at the 5 % significance level across all sites
(90th-percentile quantile regression coefficient (slope) mi-
nus the 50th-percentile quantile regression coefficient, shown
in Fig. 7b). Out of the 150 sites, 145 sites show that 90th-
percentile PM2.5 increases more than the 50th percentile of
PM2.5 with the enhancement of the AWA. In the northeast re-
gion (north and east of New York state with New York state
included), this relationship is the most pronounced. This dif-
ference in response between the highest and median PM2.5
values indicates the different sensitivities within various per-

centiles of the PM2.5 levels. These results are to some extent
consistent with those from Porter et al. (2015), which ad-
dressed the greater sensitivities to mean daily temperature at
the highest concentration percentiles in predicting summer-
time PM2.5, but with PM2.5 sensitivities to temperature peaks
entirely in the east due to the regionality of PM2.5 speciation.

3.4 Projected PM2.5 concentrations due to changes in
future AWA

The strong association between PM2.5 concentrations and
AWA in the current climate prompts us to investigate the
extent to which we can utilize a linear regression model to
predict changes in PM2.5 concentrations from AWA change
in a future climate. Employing daily present-day summer-
time concentrations of PM2.5 and AWA for the current cli-
mate from the coupled model simulation (GCM2000, 2006–
2025) and Eqs. (5)–(6), we derive how much of PM2.5’s in-
terannual variance can be explained by the projection of JJA
AWA anomalies onto the daily PM2.5–AWA regression coef-
ficient pattern. The coefficient of determination (R2) of the
linear regression model using simulated PM2.5 and AWA for
the present climate varies from 0 to 0.75 depending on the
grid box (Fig. 8). This means that the projected value (using
only AWA changes) captures up to 75 % of the interannual
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Figure 5. Composite 500 hPa geopotential height anomaly (contours; positive values are represented by green lines and negative values
by magenta lines) and (shaded) corresponding AWA for PM2.5 larger than the 90th quantile at sites (denoted by the black dots) (a, d, g)
AREN1, (b, e, h) SIPS1 and (c, f, i) LAVO1. The top row shows results using IMPROVE PM2.5 and reanalysis AWA, the middle row uses the
reanalysis-driven simulated PM2.5 (REFC1SD) and reanalysis AWA, and the bottom row uses current-climate-simulated PM2.5 and AWA
(GCM2000). Stippling indicates the regions that are statistically significant at the 5 % confidence level. Unit: meters for 500 hPa geopotential
height and 108 m2 for AWA. The blue outlined area in (a) is the impact region, which is defined as the region of the maximum regression
coefficient minus 0.05.

variability in PM2.5 over the Great Plains and the west. Wise
and Comrie (2005) similarly determined R2 values of 0.1–
0.5 for associations of PM with atmospheric variables across
sites in the southwest, and here we see a comparable relation-
ships across the southwest, although these studies use differ-
ent methodologies as well as considering different time peri-
ods. Because of the high correlation coefficients (75 %) this
suggests that the regression results reveal the broad popula-
tion instead of a small number of influential outliers (Cook,
1979). The R2 measures the part of variance of PM2.5 that
can be explained by the linear regression model (Kutner et
al., 2004).

Next we explore how much of the future change in PM2.5
concentrations can be predicted just on the basis of changes
in AWA. Using PM2.5–AWA relationships determined from
current coupled model output (GCM2000), future PM2.5
changes can be estimated by using the linear relationship fit-
ted with the current data and projected change in AWA in
the future (as shown in Eqs. 5–7). Here we assume that the
linear relationship between the predictors and PM2.5 does

not change very much in the future compared to the present
to extrapolate the current linear relationship between PM2.5
and AWA to the future. Future climate change is simulated to
cause an increase in PM2.5 concentrations over most of the
US if there are no changes in emissions (GCM2100; Fig. 9a).
Using the CAM4-Chem fitted slope pattern and regression
coefficient, enhanced PM2.5 is found over most of the west-
ern US and a small area in the northeast (Fig. 9b). The pre-
diction suggests that the significant increase in future PM2.5
resulted from AWA changes arising over the western US,
which are up to 0.92 µg m−3. The Great Plains, the south–
central part, the Midwest and the southwest show a small
decrease in PM2.5 in the future, where a negative value of the
projection value occurs when projecting the positive anomaly
onto it. The projection of PM2.5 change in most parts of the
south is less reliable because of the low R2 in this region in
the interannual variability metrics (Fig. 8).

In order to investigate how much change in PM2.5 can be
caused by the change in AWA, the fraction of predicted JJA
PM2.5 change in total JJA PM2.5 change from the simula-
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Figure 6. The maximum of the composite AWA distribution for PM2.5 larger than the 90th quantile (shaded) (a, c, e, g, i) and the centers
of the spatial regression coefficient distribution between PM2.5 and AWA (b, d, f, h, j): observations (Obs, first row), current climate from
the reanalysis-driven simulation (REFC1SD, second row), current climate from the coupled model simulation (GCM2000, third row), future
climate with current emission (GCM2100, fourth row) and future climate with future emission (REFC2, bottom row). At each grid point,
the highest composite AWAs anywhere in the domain based on the PM2.5 larger than the 90th quantile and the highest regression coefficient
between AWA and PM2.5 are shown. In (a) and (b), the thee representative sites are denoted by the black dots. In (a) and (b) the different
shapes (circles or triangles) indicate whether the number of values for every grid that are statistically significant (at the 5 % confidence level)
is more than 30 % or not. The different colors indicate different highest composite AWA and regression coefficients as indicated in the legend.
In (c) through (j) the number of values for every grid that are statistically significant at the 5 % confidence level is shown (in black contours).

https://doi.org/10.5194/acp-22-7575-2022 Atmos. Chem. Phys., 22, 7575–7592, 2022



7586 Y. Wang et al.: The relationship between PM2.5 and anticyclonic wave activity...

Figure 7. (a) Scatterplot for site AREN1 JJA deseasonalized PM2.5 and the impact region’s average AWA with linear and quantile regression
results. (b) The subtraction of the 50th-percentile quantile regression slope from the 90th-percentile quantile regression slope between PM2.5
and the impact region’s average AWA across all 150 sites in the US (at the 5 % significance level).

Figure 8. PM2.5’s interannual variance explained (R2) by the linear
regression model using the AWA projection value as the explana-
tory variable with modeled results. Stippling indicates where R2 is
significant (at the 5 % significance level) in model grids.

tion is calculated in Fig. 10. Overall, the maximum values are
found in the western US. We infer that AWA can be generally
utilized in PM2.5 predictions during the summer in the US,
especially over the western US. The impact of AWA change
alone on summer PM2.5 concentrations is likely to be quite
significant (above 50 %) in the western US, suggesting that
AWA is a suitable tool for air quality predictions for most re-
gions where meteorology dominates. These results are some-
what consistent with Tagaris et al. (2007), who showed that
the Midwest was modeled to have larger daily average PM2.5
levels in the future, but our signal is in the west. In addition,
studies suggest increases in PM2.5 over polluted regions in
the future climate caused by intensified stagnation (Liao et
al., 2006; Jacob and Winner, 2009), which is consistent with
the anticyclonic condition seen with AWA in this study.

Future changes in 500 hPa JJA geopotential height
anomaly between the future simulation (GCM2100) relative
to the current simulation (GCM2000) (shown in Fig. S2)
can account for the PM2.5 variability resulting from changes
in AWA. The 500 hPa geopotential height increases every-
where by approximately 25–55 m over the entire US. This
strengthened geopotential height can be explained by mid-
latitude to high-latitude warming in the future climate. The
increased geopotential height at higher latitudes is consistent
with other model projections (Vavrus et al., 2017). The in-
crease in 500 hPa height, which shows a distinct anticyclonic
pattern centering over the western US and the adjacent ocean,
is consistent with changes in a suite of atmospheric variables
related to changes in PM2.5 concentrations (Dawson et al.,
2007; Tai et al., 2010; Porter et al., 2015).

Increased AWA over most parts of US in the future climate
are projected to increase PM2.5 levels over western regions
where meteorology dominates fluctuations in PM2.5. This is
consistent with some studies reporting increased PM2.5 con-
centrations due to more common and extended stagnation
periods across northern midlatitudes in the future climate
if anthropogenic emissions remain constant (Mickley et al.,
2004; Liao et al., 2006; Leibensperger et al., 2008; Jacob and
Winner, 2009). Similarly in simulations, a mean increase of
0.24 µg m−3 in summer average PM2.5 levels with the largest
growth of 0.93 µg m−3 in the Midwest has been shown (Tai et
al., 2010). An increase in PM2.5 despite globally increasing
precipitation is also obtained by using coupled chemistry–
climate models, revealing a decreased precipitation on a large
scale across polluted regions and seasons (Fang et al., 2011;
Kloster et al., 2010). In contrast, Avise et al. (2009) found
that changes in meteorology tend to reduce summertime
PM2.5 concentrations (approximately−1 µg m−3) in most re-
gions with the maximum reductions over the southeastern
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Figure 9. (a) Simulated change in JJA PM2.5 between simulated future climate (future climate with current emission, GCM2100, 2106–
2125 mean) and current climate (current climate from the coupled model simulation, GCM2000, 2006–2025 mean). (b) Predicted JJA PM2.5
change using the linear regression model fitted with simulated current PM2.5 (GCM2000, 2006–2025 mean). Stippling indicates where R2

is significant (at the 5 % significance level) at model grids. Unit: µg m−3 for PM2.5.

Figure 10. The fraction of predicted JJA PM2.5 change using sim-
ulated data fitted (current climate from the coupled model simu-
lation, GCM2000, 2006–2025 mean; Fig. 9b divided by Fig. 9a)
model accounts for the total JJA PM2.5 change from simulations.
The fraction that is less than zero is regarded as zero. Stippling indi-
cates where R2 is significant (at the 5 % significance level) at model
grids.

US caused by intensified wet deposition. Furthermore, some
models suggest there could be a regional increase in sum-
mertime PM2.5 over the eastern US due to lower precipita-
tion (Racherla and Adams, 2006), while Tagaris et al. (2007)
found that climate change, alone, with no emissions increase
or controls affects the US PM2.5 concentrations slightly. The
discrepancy between studies mentioned above and the re-
sults given here is most likely attributable to differences in
model formulation. Although earlier studies predict impor-
tant changes in PM2.5 levels in a warming climate through-
out the US, there is no consistency across studies (Jacob and
Winner, 2009). The unpredictable sensitivity of PM2.5 levels
to climate change could be explained by the complication of
the reliance of different PM2.5 elements on climatic variables
and the uncertainties in regional boundary layer ventilation

and precipitation as well as the diversity of PM2.5 compo-
nents (Racherla and Adams, 2006; Pye et al., 2009).

It should be noted that the change in surface PM2.5 pre-
dicted by the future change in AWA using the univariate lin-
ear regression models is different from the simulated future
change in PM2.5 from the constant-emissions run, which sim-
ulate the most significant change in the eastern US (Fig. 9a),
consistent with the other model projections (Tai et al., 2012).
This discrepancy mostly results from the distribution of pro-
jected AWA change (Fig. 3). Figure 9b only includes the
change caused by the change in AWA. These studies did not
account for the change in PM2.5 separately due to stagnation,
temperature or other meteorological conditions, which could
also play a significant part in the PM2.5 changes. In addition,
the predicting capability of the linear models is limited, and
the model only looks at linear relationships between PM2.5
levels and AWA. Also, it only looks at the mean of PM2.5
levels.

PM2.5 generally consists of multiple different aerosols
each with different sources and variability; for example, the
most important in the US are sulfate, organic matter, elemen-
tal carbon, nitrate, ammonium and desert dust. The differ-
ent PM2.5 components respond to meteorological variables
differently. The sulfate fraction of PM2.5 is predicted to be
higher due to faster SO2 oxidation under a warmer climate,
while the nitrate and organic fraction is predicted to be lower
due to volatility (Dawson et al., 2007; Kleeman, 2008; Tai et
al., 2010). Increased temperatures can lead to higher biogenic
emissions of PM2.5 precursors including agricultural ammo-
nia, soil NOx and volatile organic compounds (Pinder et al.,
2004; Bertram et al., 2005; Guenther et al., 2006; Riddick
et al., 2016). Aqueous-phase sulfate and ammonium nitrate
production increase with higher relative humidity (Liao et
al., 2006; Dawson et al., 2007). Wildfires are an important
source of black and organic carbon and they can increase
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or decrease depending on the local changes in climate and
land use (Park et al., 2007; Spracklen et al., 2009; Kloster
et al., 2012). Future exploration of the different components
of aerosols and how each responds to climate could provide
more information about the effect on each type, but for these
simulations, only PM2.5 was output and thus is not available
for this study.

4 Conclusions

We employed a univariate linear regression model to deter-
mine the correlation of PM2.5 levels and AWA on synoptic
scales over the US. This analysis demonstrates that PM2.5
is positively linked to the local anticyclonic finite-amplitude
wave activity over the past 2 decades during JJA, and the high
PM2.5 concentrations are more sensitive to the AWA than
those low ones. The relationship between AWA and PM2.5 in
model-simulated and observational data agrees in its general
pattern and amplitude. These results provide insights into the
drivers behind high-PM2.5 pollution episodes in the observed
record, emphasizing the significance of atmospheric circula-
tion to the pollutant accumulation.

We found that AWA is positively correlated with PM2.5 at
every available station in the summer using regression anal-
ysis in this study. The most prominent relationship between
PM2.5 and AWA occurs in the Midwestern US for the cur-
rent climate, while it moves westward in the future climates.
The composite AWA for PM2.5 larger than its 90th percentile
can also demonstrate the positive relationship between PM2.5
and AWA. Climate change in the future is likely to cause a
response in regional PM2.5. The sensitivities of PM2.5 lev-
els to changes in AWA are, generally, more robust for higher
percentiles through quantile regression, which is most promi-
nent in the northeastern US. It means that changes to AWA
are likely to influence the extent of PM2.5 extremes more
strongly than they influence moderate PM2.5 levels. This
study presents new perspectives to explore both the observed
and simulated PM2.5 responses to climate change. Further-
more, the contrast of observed sensitivities to those simulated
by CESM could determine essential model biases relating to
the prediction of future PM2.5, potentially offering percep-
tions into the fundamental mechanistic reasons behind those
biases.

The coefficient of determination of the linear regression
model using simulated PM2.5 and AWA for the present cli-
mate is up to 75 % over the Great Plains and the west, which
shows that the daily variation in AWA can project up to 75 %
of interannual PM2.5 variability across the US. These ef-
fects suggest that AWA could have significant impacts on the
PM2.5 levels. Significant regional variation is found in these
results, indicating that while the positive association between
PM2.5 and AWA is generally consistent, the extent to which
AWA influences PM2.5 is local.
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