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Abstract. Ozone (O3) dry deposition is a major O3 sink. As a follow-up study of Huang et al. (2021), we
quantify the impact of satellite soil moisture (SM) on model representations of this process when different dry-
deposition parameterizations are implemented, based on which the implications for interpreting O3 air pollution
levels and assessing the O3 impacts on human and ecosystem health are provided. The SM data from NASA’s
Soil Moisture Active Passive mission are assimilated into the Noah-Multiparameterization (Noah-MP) land sur-
face model within the NASA Land Information System framework, semicoupled with Weather Research and
Forecasting model with online Chemistry (WRF-Chem) regional-scale simulations covering the southeastern
US. Major changes in the modeling system used include enabling the dynamic vegetation option, adding the
irrigation process, and updating the scheme for the surface exchange coefficient. Two dry-deposition schemes
are implemented, i.e., the Wesely scheme and a “dynamic” scheme, in the latter of which dry-deposition param-
eterization is coupled with photosynthesis and vegetation dynamics. It is demonstrated that, when the dynamic
scheme is applied, the simulated O3 dry-deposition velocities vd and their stomatal and cuticular portions, as
well as the total O3 fluxes Ft, are larger overall; vd and Ft are 2–3 times more sensitive to the SM changes
due to the data assimilation (DA). Further, through case studies at two forested sites with different soil types
and hydrological regimes, we highlight that, applying the Community Land Model type of SM factor controlling
stomatal resistance (i.e., β factor) scheme in replacement of the Noah-type β factor scheme reduced the vd sensi-
tivity to SM changes by∼ 75 % at one site, while it doubled this sensitivity at the other site. Referring to multiple
evaluation datasets, which may be associated with variable extents of uncertainty, the model performance of veg-
etation, surface fluxes, weather, and surface O3 concentrations shows mixed responses to the DA, some of which
display land cover dependency. Finally, using model-derived concentration- and flux-based policy-relevant O3
metrics as well as their matching exposure–response functions, the relative biomass/crop yield losses for several
types of vegetation/crops are estimated to be within a wide range of 1 %–17 %. Their sensitivities to the model’s
dry-deposition scheme and the implementation of SM DA are discussed.
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1 Introduction

Ground-level ozone (O3) is a regulated secondary air pol-
lutant harmful to human and ecosystem health (Fleming et
al., 2018; Mills et al., 2018a, b). It is closely connected with
O3 at higher altitudes where O3 plays a more important role
in the Earth’s climate system by trapping infrared radiation
and absorbing ultraviolet radiation (e.g., Lacis et al., 1990).
To better protect human health and public welfare, in 2015,
the US primary and secondary National Ambient Air Qual-
ity Standards were lowered from 75 to 70 ppbv, in the format
of daily maximum 8 h average (MDA8). Several other O3-
exposure-based metrics have also been applied and/or pro-
posed to assess O3 impacts on vegetation, such as the ac-
cumulated O3 exposure over given thresholds (e.g., SUM40,
SUM60, and AOT40), the averaged O3 exposure during day-
light hours (e.g., M7 and M12), and the sigmoidal-weighted
W126 cumulative exposure (e.g., Fredericksen et al., 1996;
van Dingenen et al., 2009; Hemispheric Transport of Air
Pollution, 2010, and references therein; Avnery et al., 2011;
Hollaway et al., 2012; Huang et al., 2013; Lapina et al.,
2014; Mills et al., 2007, 2018a, b). To help comply with the
tighter air quality standards, an improved understanding of
the individual processes affecting the (near-)surface O3 con-
centrations and exceedances is demanded. Many O3-related
processes are highly sensitive to environmental and/or bio-
physical conditions (e.g., Steinkamp and Lawrence, 2011;
Strode et al., 2015; Jiang et al., 2018; Huang et al., 2021,
and references therein). These O3-related processes include
dry deposition of O3 and its precursors, which is a major sink
for near-surface O3 and depends on dry-deposition velocities
(vd) and the deposited chemicals’ concentrations (Baublitz
et al., 2020; Huang et al., 2021). As recognized in numerous
studies, accurately estimating dry-deposition fluxes is criti-
cal to understanding O3 budgets and exceedances in the past,
present, and future (e.g., Stevenson et al., 2006; Griffiths et
al., 2021); moreover, it could contribute to a more reasonable
assessment of the O3 impacts on vegetation (e.g., Mills et al.,
2011; Lombardozzi et al., 2015; Mills et al., 2018a; Ducker et
al., 2018; Ronan et al., 2020; Fu et al., 2022), which is also
relevant to the budgets of other greenhouse gases, weather,
and climate.

Ozone uptake by plants is generally higher in warm/grow-
ing seasons and during the daytime when O3 concentrations
and vd values peak. As introduced in Huang et al. (2021)
and references therein, over the land, surface resistance rc,
which is composed of stomatal–mesophyll (rs–rm), cuticu-
lar (rlu), in-canopy, and ground resistance terms, often exerts
the strongest effects on the magnitude and variability of vd.
vd also includes the aerodynamic resistance (ra) and quasi-
laminar sublayer resistance (rb) terms.

Soil moisture (SM) and its variability impact vd in the fol-
lowing ways: (1) SM can play a key role in controlling the

opening and closing of plants’ stomata as well as the mes-
ophyll functioning (Egea et al., 2011; Baillie and Fleming,
2019), and thus it can directly affect the rs and rm terms of
vd. (2) SM is closely linked with vegetation attributes, such
as the growing-season above-ground biomass, which is often
expressed as leaf area index (LAI) or vegetation optical depth
(VOD) and controls the stomatal and cuticular uptake of O3-
related species. (3) SM as well as vegetation conditions can
affect multiple vd terms through its interactions with other
environmental conditions (e.g., temperatures, radiation, pre-
cipitation, and humidity fields) that modulate these vd terms,
and such effects are generally stronger over transitional cli-
mate zones located between dry and wet climates. The SM
impacts on vd and atmospheric states through the above-
mentioned pathways are likely to continue to grow in fu-
ture. This is because, according to Intergovernmental Panel
on Climate Change (2021), the occurrence and severity of
droughts, some of which are characterized by surface and/or
column-averaged SM deficits, are projected to increase over
many US regions under warmer future environments. Bet-
ter understanding the potentially enhanced SM dependency
of dry deposition and weather conditions under the changing
climate is important because O3 stress, together with heat,
water, and other stresses, can pose more complex threats to
plant health than single stress alone (Otu-Larbi et al., 2020).

Single-point models and three-dimensional chemical
transport models have long been used to estimate vd values
and their responses to climate change. In the widely used,
empirical Wesely scheme (Wesely, 1989), vd is sensitive to
only a few meteorological variables, with SM and plants’
physiological effects ignored. In previous studies, Wesely-
scheme-based vd fluxes as well as their various terms from
different global, regional, and point-scale modeling systems
were intercompared and/or evaluated with vd and rs observa-
tions from sparsely distributed sites (e.g., Val Martin et al.,
2014; Hardacre et al., 2015; Clifton et al., 2017; Silva and
Heald, 2018; Wu et al., 2018; Lin et al., 2019) in terms of
their magnitude and variability. Studies such as Hardacre et
al. (2015) show that, even when similar (Wesely and Wesely-
like) vd schemes were applied, various models behaved dif-
ferently in calculating vd, reflecting the impacts of land use
and land cover (LULC) and meteorological fields which de-
pend on the individual models’ configurations (e.g., scales,
inputs). In almost all above-cited studies, large model–model
and model–observation discrepancies (i.e., by a factor of 2 or
more) have been found in places, suggesting the strong need
of diagnosing and addressing issues in the models’ configu-
rations and dry-deposition parameterizations.

Revised or alternative dry-deposition schemes have been
applied in an increasing number of global- and regional-
scale modeling studies. In some of these works, stomatal
conductance is calculated based on one-big-leaf multiplica-
tive algorithms that are more complicated than the Wesely
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(1989) approach, in the way that the empirical maximum
stomatal conductance is adjusted by more factors, includ-
ing water availability and vegetation attributes (e.g., Anav
et al., 2018; Falk and Søvde Haslerud, 2019; Emmerichs et
al., 2021). In others, vd calculations are coupled with photo-
synthesis and vegetation phenology (e.g., Val Martin et al.,
2014; Wu et al., 2018; Lin et al., 2019; Wong et al., 2019;
Clifton et al., 2020), which in this paper are frequently re-
ferred to as “dynamic” schemes. Such types of modifica-
tions have been the recommended directions for improving
the estimates of vd as well as the vd and O3 responses to
climate change, in that they have been demonstrated to be
capable of enhancing the dynamics and reducing the sys-
tematic biases of the modeled vd. However, results based on
such updated vd schemes are still associated with variable ex-
tents of uncertainty due to limitations in model parameteriza-
tions (related to structures, empirical parameters, and stress
functions) and/or configurations. In some existing works that
applied the dynamic schemes, such uncertainty was quan-
tified and addressed by simply scaling the fluxes resulting
from the dynamic schemes towards flux measurements avail-
able at very limited locations during non-recent time periods
(e.g., Val Martin et al., 2014). These types of modified dry-
deposition schemes still require further investigations and
optimizations, which can be approached by (1) quantifying
the sensitivities of process-based model variables to SM and
other environmental and/or biophysical variables for various
LULC and soil types; (2) improving model representations of
processes central to SM states and land–atmosphere interac-
tions, such as including irrigation and other human activities,
tuning physics schemes (e.g., those related to the surface ex-
change coefficient, CH) in land surface models (LSMs), and
using available observations to constrain (some of) the key
land variables in models; and (3) including a wide range of
observations and/or observation-derived carbon, water, and
energy fluxes as well as vegetation states in model evaluation
for broad geographical regions. Furthermore, it is important
to explicitly connect the progress in dry-deposition modeling
with the impact assessments of O3 and other air pollutants on
ecosystem health, productivity, and diversity.

A regional-scale land modeling and SM data assimila-
tion (DA) framework coupled with weather and atmospheric
chemistry modeling by the Weather Research and Forecast-
ing model with online Chemistry (WRF-Chem) is imple-
mented in this work. Using this tool, we quantify and discuss
the responses of vd and its key components as well as O3 con-
centrations and plant uptake to SM changes due to the DA,
for different soil texture, LULC, and crop types. The central
parts of this work rely on the Noah-Multiparameterization
(Noah-MP; Niu et al., 2011) LSM with dynamic vegeta-
tion that enables the implementation of a modified dynamic
dry-deposition scheme. This implemented dynamic scheme
couples the rs calculation with photosynthesis for sunlit and
shaded leaves and the rlu calculation with vegetation phe-
nology. With this modified scheme, both the indirect (i.e.,

via changing weather and vegetation fields) and direct ef-
fects of SM on dry deposition are considered in this mod-
eling system. Results based on this modified scheme and
the WRF-Chem default Wesely scheme are compared and
evaluated with independent datasets. As an extended work
of Huang et al. (2021), here we continue to focus on the
southeastern US during summer 2016 for which period prior
Noah- and Wesely-based model calculations were conducted
and aircraft observations are available. This paper intro-
duces the applied two dry-deposition schemes in Sect. 2.
It then presents SM and vegetation states (Sect. 3.1), sur-
face fluxes, and weather fields (Sect. 3.2) from this Noah-
MP-based modeling system, in comparison with those from
Huang et al. (2021). Discussions on O3 concentrations and
fluxes based on all related WRF-Chem simulations are also
connected with the assessment of O3 impacts on societies,
ecosystem health, and crop yield (Sect. 3.3). Summary and
suggestions on future directions are provided in Sect. 4.

2 Methods

2.1 Modeling and DA experiment design

The modeling tools and DA experiment design of this study
were largely consistent with the Huang et al. (2021) study:
we conducted model simulations over the southeastern US in
a semicoupled Land Information System (LIS)–WRF-Chem
system without and with the assimilation of the enhanced
SM retrievals from NASA’s Soil Moisture Active Passive
(SMAP; Entekhabi et al., 2010) mission. Two dry-deposition
schemes (details in Sect. 2.3) were applied in cases with-
out and with the SM DA. The 12 km/63 vertical layer Lam-
bert conformal grid, atmospheric/land initialization, and SM
DA methods were adapted from our previous study based
on the Noah LSM. Major model input datasets and physics
and chemistry schemes were kept similar to before except a
few aspects relevant to the upgrade of LSM from Noah to
Noah-MP (version 3.6) and the implementation of an irriga-
tion scheme to be introduced in Sect. 2.2.

As in Huang et al. (2021), the LULC and soil texture
type inputs of our coupled modeling system were based on
the International Geosphere-Biosphere Programme-modified
Moderate Resolution Imaging Spectroradiometer dataset
(Table S1) and the State Soil Geographic dataset, respec-
tively. Crop type data from Monfreda et al. (2008) were used
in the irrigation scheme and the assessment of the O3 impacts
on vegetation (Fig. 1b), which are roughly consistent with the
2016 records from the US Department of Agriculture Na-
tional Agricultural Statistics Service for several major crops
such as maize, soybean, and wheat (https://nassgeodata.gmu.
edu/CropScape, last access: 8 November 2021). In Sect. 3 of
this paper, model results are summarized and/or discussed by
groups of grid-dominant LULC and soil type that are shown
in Fig. 1a and d. The original 20 LULC types were grouped
into urban and non-urban areas and for vegetation-dominant
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Figure 1. (a) Grid-dominant land use/land cover types grouped from the original 20-category model input (Fig. 1c in Huang et al., 2021)
based on the method in Table S1, (b) grid-dominant crop type over cropland-dominant regions, (c) gridded population density in 2015, and
(d) highlighted grid-dominant soil types of sand/loamy sand, loam, and clay which are most relevant to discussions in this paper. The original
soil type input from the State Soil Geographic database is shown in Fig. S1 in Huang et al. (2021). Locations of the two CASTNET sites for
the case studies are denoted in green.

areas, into forests, croplands, and shrub/grasslands, follow-
ing the criteria introduced in Table S1. The grid-dominant
LULC groups for vegetated regions used in our analysis
are vastly similar to independently developed data products,
e.g., a dataset derived from the European Space Agency–
Climate Change Initiative Land Cover project (https://gwis.
jrc.ec.europa.eu/apps/country.profile/overview/USA, last ac-
cess: 8 November 2021) and the 2016 National Land Cover
Database (Wickham et al., 2021). Urban-dominant grid cells
are well aligned with dense population areas (Fig. 1c) based
on the Gridded Population of the World version 4.11 (NASA
Socioeconomic Data and Applications Center, 2018). Grid-
scale discrepancies exist between the LULC input used and
independent LULC products, which, however, are not an-
ticipated to considerably impact the results averaged by
LULC groups. Three groups of soil are highlighted, namely
sand/loamy sand, loam, and clay. The original sand and
loamy sand categories are combined because of their high
sand fractions (http://www.soilinfo.psu.edu/index.cgi?soil_
data&conus&data_cov&fract&methods, last access: 10 De-
cember 2021).

2.2 Physics and configurations of the Noah-MP LSM

The Noah-MP LSM includes a number of improvements
from Noah, and one of the enhanced features in Noah-MP
is that it contains a separate canopy layer that explicitly com-
putes photosynthetically active radiation, canopy tempera-
ture, and related energy, water, and carbon fluxes so that it fa-
cilities a dynamic vegetation model. A modified two-stream
radiation transfer scheme was used to compute fractions of
sunlit and shaded leaves and their absorbed solar radiation.

The Ball–Berry type of rs scheme (e.g., Ball et al., 1987) was
applied as required by the dynamic vegetation option. When
this option is used, the green vegetation fraction (GVF) does
not come from an input dataset as in Huang et al. (2021) but
is related to the LAI based on Eq. (1):

GVF= 1− e−0.52LAI. (1)

Niyogi and Raman (1997) concluded that Ball–Berry, along
with two other physiological schemes, performed better on rs
than the multiplicative Jarvis type, which has been frequently
used with the prescribed vegetation option. Specifically, it
helps better capture the variance in rs and is more responsive
to environmental changes. As described in Appendix B of
Niu et al. (2011), this scheme relates stomatal resistance rs,i
of sunlit and shaded leaves i to the photosynthesis rates (Ai)
per unit LAI of sunlit and shaded leaves i separately:

1
rs,i
=m

Ai

Cair

eair

esat(TV)
Pair+ gmin, (2)

where Cair is CO2 concentration at the leaf surface. For
our study period, this was set at 400 ppmv according to
the median value of Atmospheric Carbon and Transport
(ACT)-America B-200 aircraft near-surface (i.e., > 900 hPa)
CO2 observations, which is close to the global monthly-
mean CO2 concentrations in August 2016 (https://gml.
noaa.gov/webdata/ccgg/trends/co2/co2_mm_gl.txt, last ac-
cess: 8 November 2021); TV, Pair, eair, and esat(TV) are
canopy temperature, surface air pressure, vapor pressure at
the leaf surface, and saturation vapor pressure inside leaf, re-
spectively; gmin and m are land-cover-dependent empirical
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parameters. Ai is determined by Eqs. (3)–(6):

Ai = Igsmin(AC,AL,i,AS) (3)

AC =
(ci − ccp)Vmax

ci +Kc(1+ oi
Ko

)
(4)

AL,i =

(
ci − ccp

)
4.6αPARi

ci + 2ccp
(5)

AS = 0.5Vmax, (6)

where Igs is a TV-dependent growing season index, and
AC, AL,i , and AS are carboxylase-limited, light-limited, and
export-limited photosynthesis rates per unit LAI, respec-
tively; ci and oi are CO2 concentrations inside leaf cavity,
which is about 0.7 times of the atmospheric CO2 concen-
tration and atmospheric O2 concentration, respectively. PAR
represents the photosynthetically active radiation per unit
LAI. ccp is the CO2 compensation point, and it is equal to
0.5Kc

Ko
0.21oi , where Kc and Ko are the Michaelis–Menten

constants for CO2 and O2, respectively, varying with TV; and
α is the quantum efficiency.
Vmax represents the maximum rate of carboxylation, ex-

pressed as

Vmax = Vmax25α
TV−25

10
vmax f (N)f (TV)β, (7)

where Vmax25 is the maximum carboxylation rate at 25 ◦C;
f (TV) is a function that mimics thermal breakdown of
metabolic processes; f (N) is a foliage nitrogen factor; and β
is the SM factor controlling rs, which presents strong depen-
dencies on soil type and hydrological regime. In this study
model results based on the Noah and the Community Land
Model (CLM; versions 4.5 and earlier) types of β schemes
are compared (Table 1), the latter of which is known to often
result in sharper and narrower ranges of variation with SM
than the former does. The Noah and CLM types of β param-
eterizations are based on Eqs. (8) and (9), respectively:

β =

Nroot∑
i=1

1zi

zroot
min(1.0,

θliq,i − θwilt

θref− θwilt
) (8)

β =

Nroot∑
i=1

1zi

zroot
min

(
1.0,

ψwilt−ψi

ψwilt−ψsat

)
, (9)

where

ψi = ψsat

(
θliq,i

θsat

)−b
.

θliq,i , θwilt, θref, and θsat are SM at soil layer i, wilting point,
and reference and saturated SM, respectively. Nroot and zroot
are the numbers of soil layers containing roots and total depth
of the root zone, respectively. ψi , ψwilt, and ψsat are ma-
tric potential at soil layer i, and wilting and saturated ma-
tric potential, respectively, and b is the Clapp–Hornberger

parameter. Major parameters for the calculations of β in both
schemes are soil-type-dependent.

Other Noah-MP configurations which can affect the mod-
eled land state and flux variables include the three-layer
snowpack physics and the CLASS snow surface albedo; the
Jordan scheme for partitioning precipitation into rainfall and
snowfall; the Niu-Yang-2006 frozen soil permeability and
supercooled liquid water option; the SIMple Groundwater
Model runoff scheme; and the Monin–Obukhov CH scheme,
which is based on more general Monin–Obukhov similar-
ity theory and, unlike Noah’s default Chen97 (Chen et al.,
1997) scheme (Niu et al., 2011; and Sect. S1 of Huang et al.,
2021), accounts for the zero-displacement height. Being af-
fected by stability correction and additional effects of plan-
etary boundary layer height on friction velocity, it is likely
that the Monin–Obukhov scheme can result in either weaker
or greater CH (i.e., less or more efficient ventilation of the
land surface) than the Chen97 scheme during the daytime in
summer (Niu et al., 2011; Yang et al., 2011).

The irrigation process was included in all Noah-MP-based
simulations in this study. The benefit of including irrigation
relies on the choice and parameterization of the irrigation
scheme, as well as the LSM’s inputs (Lawston et al., 2015).
The sprinkler scheme was chosen as it was reported as the
prevalent irrigation method in 2015 across the US and many
of the states within our model domain (Dieter et al., 2018). Ir-
rigation was triggered over irrigated land in growing season
within local morning times (06:00–10:00) when root zone
SM drops below 50 % of the soil field capacity. The irrigated
land was determined by the model’s LULC input and irriga-
tion intensity information in Salmon et al. (2015), and the
root zone area was derived from the maximum root depth,
which varies by crop type and GVF.

2.3 Wesely and dynamic O3 dry-deposition schemes

Dry-deposition velocity vd is estimated based on the resis-
tance analogy approach:

vd =
1

ra+ rb+ rc
. (10)

ra and rb are aerodynamic resistance and quasi-laminar sub-
layer resistance, respectively, sensitive to surface properties
such as surface roughness, and follow the Monin–Obukhov
similarity theory. Over the land, surface resistance rc, the ma-
jor component of vd, is classified into stomatal–mesophyll
resistance (rs–rm), cuticular resistance (rlu), in-canopy resis-
tance (rdc and rcl), and ground resistance (rac and rgs):

rc =
1

1
rs+rm

+
1
rlu
+

1
rdc+rcl

+
1

rac+rgs

, (11)

where rdc is resistance for gas-phase transfer affected by
buoyant convection in the canopy when sunlight heats the
(near-)surface, rcl is resistance for leaves, twigs, bark, and
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Table 1. Model cases and their configurations relevant to the discussions of this study.

Case Land surface Stomatal Soil moisture factor Surface exchange Irrigation Dry-deposition Note
name model resistance controlling rs coefficient for heat scheme scheme

scheme (β) (CH) scheme

Noah_D Noah-MP Ball–Berry Noah-type Monin–Obukhov Sprinkler Dynamic
new in this studyCLM_D Noah-MP Ball–Berry CLM (version 4.5)-type Monin–Obukhov Sprinkler Dynamic

Noah_W Noah-MP Ball–Berry Noah-type Monin–Obukhov Sprinkler Wesely

P1_W Noah Jarvis Noah Chen97 not included Wesely from Part 1

others in the lower canopy, rac is resistance for transfer that
depends mostly on canopy structure, and rgs is resistance for
soil, leaf litter, snow, and others at the ground surface.

Two deposition schemes, namely the Wesely and a dy-
namic scheme, were applied in this study, in which rs and
rlu are treated differently. In the Wesely scheme, rs and rlu
are calculated based on Eqs. (12) and (13):

rs =



ri

{
1+

[
200
G+0.1

]2
}{

400
Ts(40−Ts)

}
DH2O
Dx

,

0 ◦C≤ Ts ≤ 40 ◦C

∼ 9999,
assuming mass transfer through stomata stops,
Ts > 40 ◦C or< 0 ◦C

(12)

rlu =
rlu,min

10−5H + f0
+ 1000e−Ts−4,

for dry surfaces according to humidity and precipitation fields, (13)

where the LULC- and season-dependent constants ri and
rlu,min represent the minimum stomatal and cuticular re-
sistances, respectively, which are subject to uncertainty; G
and Ts are radiation and surface temperature, respectively,
whose definitions are different than those of PAR and TV
in Eqs. (2)–(7); DH2O and Dx are molecular diffusivities for
water vapor and trace gas x (e.g., O3), respectively;H , which
is sensitive to surface temperature, represents the Henry’s
law constant for the focused trace gas; and f0 is a reactivity
factor for oxidation. The Wesely-scheme-related results that
are new from this study and those from Huang et al. (2021)
are compared (Table 1).

As expressed in Eq. (14), in the dynamic scheme, rs used
in dry-deposition modeling was taken from what’s calculated
from Noah-MP’s dynamic vegetation model and thus con-
siders the physiological process of leaf responses to photo-
synthesis rate, humidity, and CO2 concentrations. The direct
effects of SM, as reflected in the β formula, as well as other
environmental variables, are included in this method, and this
work quantifies the impact of the β factor configurations in
Noah-MP (Table 1) on the dynamic-scheme-related results.

rs =

(
rs, sunlitLsunlit+ rs, shadedLshaded

LAI

)
DH2O

Dx
, (14)

where rs, sunlit and rs, shaded are computed based on Eqs. (2)–
(7), and Lsunlit and Lshaded are proportional to the sunlit and

shaded fractions of canopy, respectively, calculated based on
the modified two-stream radiation transfer scheme.

In the dynamic scheme, rlu for dry surfaces is modified
from the Wesely formula by considering its LAI dependency:

rlu =
rlu,min

LAI× (10−5H + f0)
+ 1000e−Ts−4. (15)

In both the Wesely and the dynamic schemes, rdc is sensitive
to surface radiation, and rm is expressed as

rm =
1

H
3000 + 100f0

. (16)

Similar to the rlu calculations in Eqs. (13) and (15), to ap-
proximate an effect that coldness sometimes reduces the up-
take, 1000e−Ts−4 is added to LULC- and season-dependent
constants to derive rgs and rcl. It is worth mentioning that
the direct effects of water stress on mesophyll resistance
have been recognized (e.g., Egea et al., 2011). Yet, in nei-
ther scheme we applied have such effects been incorporated
into the rm formula as part of the vd calculation.

2.4 Model evaluation, analysis, and O3 impact
assessments

For the cases listed in Table 1, we quantify the impacts of SM
DA on the modeled SM, vegetation dynamics, surface fluxes,
and meteorological and surface O3 fields during the 16–
28 August 2016 period. The focused surface fluxes are gross
primary productivity (GPP), which is integrated by LAI from
A in Eqs. (2)–(3), energy fluxes and their partitioning in the
format of evaporative fraction (EF= daily latent heat / (daily
latent heat+ daily sensible heat)), dry-deposition flux and
individual vd terms for O3, particularly the rs- and rlu-
related terms. The SM DA impacts on most of these model
fields are expressed as daily and/or daytime (around 13:00–
24:00 UTC) averaged absolute or relative changes referring
to the results from the no-DA cases. For O3 dry-deposition
fluxes, we also conducted linear regression analyses to deter-
mine the relationships between the relative flux changes and
the relative changes in column-averaged initial SM due to
the DA. Results of O3 dry-deposition fluxes and the regres-
sion analyses (i.e., slopes and their standard errors, correla-
tion coefficient r values, and p values) are summarized by
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grouped LULC types defined in Fig. 1a. Case studies were
also conducted at two low-elevation forested sites where we
investigated in detail the diurnal and daily variability of O3
dry-deposition fluxes from various model cases and an inde-
pendent dataset.

A variety of data products were utilized in this study to
assess the model performance in no-DA and DA cases (Ta-
ble 2). Many of these evaluation datasets have been applied
and introduced in detail in Huang et al. (2021), which are
(1) National Centers for Environmental Prediction Global
Surface Observational Weather Data as well as weather data
collected on board the NASA B-200 aircraft during the ACT-
America campaign; (2) hourly surface O3 measurements at
the US Environmental Protection Agency Clean Air Sta-
tus and Trends Network (CASTNET) and Air Quality Sys-
tem (AQS) sites; and (3) daily, 0.5◦× 0.5◦ FLUXCOM la-
tent and sensible heat fluxes. New evaluation datasets used
in this work include (1) VOD retrievals from the 9 km en-
hanced SMAP product, which indicates the attenuation of
microwave signals by vegetation, proportional to above-
ground canopy biomass, and was used together with a 10 d
average Copernicus Global Land Service GVF product to de-
rive GVF for the focused 13 d period; (2) daily GPP estimates
from the 9 km SMAP level 4 carbon (L4C) product version 6,
developed based on the SMAP L4 surface (0–5 cm) and root
zone (0–100 cm) SM together with satellite LULC and vege-
tation datasets; (3) two independent GPP proxies (Whelan et
al., 2020) of satellite-derived solar-induced chlorophyll fluo-
rescence (SIF) data (Yu et al., 2019) and the Portable Flask
Package (Sweeney et al., 2015) carbonyl sulfide (OCS) mea-
surements collected on board the B-200 and C-130 aircraft
during the ACT-America campaign, with the OCS data be-
ing analyzed together with other airborne trace gas (e.g., ben-
zene) measurements during this campaign to help distinguish
the influences of combustion sources from plant CO2 uptake
on the observed OCS distributions; and (4) vd data from two
selected CASTNET sites, estimated using a multilayer model
(MLM; not supported by CASTNET as of 2017) version 3.0,
which has known limitations and biases against eddy covari-
ance flux measurements as well as vd estimated using other
methods (e.g., Finkelstein et al., 2000; Saylor et al., 2014;
Wu et al., 2018). The known limitations of MLM and how
they may affect our model comparisons with the CASTNET
vd data are discussed. Our O3 dry-deposition results are also
compared with eddy covariance measurements reported in
independent works for similar climate and/or LULC types
during other time periods.

This study also evaluates how the SM DA affected the
assessments of surface O3 impacts on human and ecosys-
tem health. Specifically, (1) MDA8 O3 fields over urban and
nonurban terrestrial regions were investigated linked to their
respective population ranges, and (2) the LULC-specific phy-
totoxic ozone dose above the critical level of y nmol m−2 s−1

(PODy) and the crop-specific AOT40, which are defined in

Eqs. (17) and (18), were evaluated.

PODy (mmolm−2)=
∑[

(Fs− y)×
3600

106

]
, (17)

for hourly daytime stomatal uptake Fs > y nmol m−2 s−1,
and

AOT40(ppmh)=
∑
[(C− 0.04)], (18)

for hourly daytime O3 concentration C > 0.04 ppmv.
According to Convention on Long-Range Transboundary

Air Pollution (CLRTAP, 2017), the stomatal O3 uptake Fs
needed in PODy calculations was derived based on Eq. (19):

Fs = C
(

nmolm−3
)
× gs×

rc

1.3× 150×
√
L
u
+ rc

, (19)

where gs, L, and u are stomatal conductance, leaf width
(0.04 m in this work), and surface wind speed, respectively.

The calculated PODy and AOT40 were used to estimate
the relative biomass loss (RBL) or relative yield loss (RYL)
for several types of vegetation or crops based on dose–
response functions reported in literature (Table 3, CLRTAP,
2017; Mills et al., 2007, 2018b). Our 13 d WRF-Chem model
results were linearly extrapolated to approximately 3 months
to derive the PODy and AOT40 fields. While we assess
the uncertainty due to such linear extrapolations by relating
our 13 d/extrapolated surface O3 and flux results to seasonal
(e.g., averaged for 3 consecutive months) conditions in 2016,
we focus on qualitatively interpreting the results and dis-
cussing their implications. The outcome from this analysis
is also compared with the findings from several independent
O3 impact assessment studies for different time periods.

3 Results and discussions

3.1 Modeled SM and vegetation fields

Figure 2 compares the horizontal and vertical gradients of
the model’s initial SM conditions from the Noah_D and
CLM_D cases defined in Table 1, in which the Noah and
CLM types of β factor schemes were applied. At the surface
layer (0–10 cm belowground), both cases produced SM hor-
izontal gradients that resemble the Noah-based results pre-
sented in Huang et al. (2021). They are moderately corre-
lated with the column-averaged SM fields (r = 0.875 and
0.871, respectively), and the mean differences in column-
averaged and surface SM from the Noah_D and CLM_D
cases are 0.003 and −0.006 m3 m−3, respectively. Kumar et
al. (2009) have found that, compared to other LSMs such as
the Catchment model (based on which the SMAP L4 datasets
are produced), the 4-soil-layer Noah and 10-soil-layer CLM
LSMs display successively weaker surface–subsurface cou-
pling strengths, and the weakest coupling strength of CLM
was primarily attributed to its significantly larger number of
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Table 2. Evaluation datasets relevant to this study, along with their key attributes. References of these products can be found in the “Data
availability” section of this work and Huang et al. (2021).

Measurement platform,
network, or name of
dataset

Measured or derived
variable

Type of dataset Spatial resolution Temporal resolution;
coverage of the dataset
used

Note

SMAP VOD satellite retrieval 9 km twice-daily;
morning time data dur-
ing August 2015–2019

new in this study but
available in the SMAP
enhanced product intro-
duced in Part 1

SMAP L4C GPP observation-derived 9 km daily;
April–September 2016

new in this study

OCO-2 SIF observation-derived 0.05◦× 0.05◦ approximately bi-
weekly; April–
September 2016

NASA B-200 and C-
130 aircraft

OCS flask observation variable variable;
16–28 August 2016

CASTNET O3 dry-deposition ve-
locity vd[ozone]

modeled at the SUM156 and
PED108 sites

hourly;
16–28 August 2016

O3 flux Ft[ozone] modeled multiplied by
observed

European Space
Agency PROBA-V, via
the Copernicus Global
Land Service

GVF satellite retrieval 1 km 10 d average;
August 2015–2019

used as a model input in
Part 1

Land and water surface
reports operationally
collected by the Na-
tional Centers for
Environmental Predic-
tion; and NASA B-200
aircraft

air temperature and hu-
midity

in situ observation variable variable;
16–28 August 2016

also used as evaluation
datasets in Part 1

AQS and CASTNET surface O3 concentra-
tion

in situ observation variable hourly;
April–September 2016

FLUXCOM latent and sensible heat observation-derived 0.5◦× 0.5◦ daily;
April–September 2016

Acronyms: AQS – Air Quality System, CASTNET – Clean Air Status and Trends Network, GPP – gross primary productivity, GVF – green vegetation fraction, L4C – level 4 carbon, OCO-2 – Orbiting Carbon
Observatory-2, OCS – carbonyl sulfide, PROBA-V – Project for On-Board Autonomy – Vegetation, SIF – solar-induced chlorophyll fluorescence, SMAP – Soil Moisture Active Passive, and VOD – vegetation
optical depth.

Figure 2. Period-mean (16–28 August 2016) WRF-Chem (a, b) column-averaged and (c, d) surface-layer soil moisture fields at initial times
and (e–h) their relative changes in percent due to the SMAP DA. Results based on the Noah_D and CLM_D cases are shown in (a), (c), (e),
and (g) and (b), (d), (f), and (h), respectively.
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Table 3. Dose–response functions used to estimate the LULC- and crop-specific relative yield losses (i.e., 1 – relative yield, RY) due to O3
exposure and uptake, along with their references.

LULC type Crop type Dose–response function (references)

Based on phytotoxic ozone
dose above the critical level
y nmol m−2 s−1 (PODy , in
mmol m−2)

Based on AOT40 in ppmh

Deciduous forest / RY=−0.0154 POD1+ 1.012
(CLRTAP, 2017)

/

Grasslands / RY=−0.0074 POD1+ 0.982
(CLRTAP, 2017)

/

Croplands Maize / RY=−0.0036 AOT40+ 1.02
(Mills et al., 2007)

Soybean / RY=−0.0116 AOT40+ 1.02
(Mills et al., 2007)

Wheat RY=−0.0064 POD3+ 0.9756
(Mills et al., 2018b; CLRTAP,
2017)

RY=−0.0161 AOT40+ 0.99
(Mills et al., 2007)
RY=−0.009 AOT40+ 0.969
(Mills et al., 2018b)

soil layers. The slightly weaker surface–subsurface correla-
tions in the CLM_D case than in the Noah_D from this work,
both based on a 4-soil-layer Noah-MP modeling system, in-
dicate the minor role of the LSM physics, in particular the
β factor scheme, in controlling the vertical coupling strength
of SM conditions.

The modeled SM fields from the Noah_D and CLM_D dif-
fer on grid scale, particularly in the subsurface zones (Fig. 2a
and b). For example, in sand-dominant regions that were
experiencing drought conditions during this period (e.g.,
Florida and the Texas–Oklahoma border regions, where sim-
ulated SM is mostly under 0.2 m3 m−3), column-averaged
SM values from the CLM_D case are notably smaller than
those from the Noah_D case. These results contrast with
those reported by Niu et al. (2011), in which cases us-
ing Noah-MP with the CLM-type β factor led to less soil
water consumption and thus smaller SM variability during
drought periods than using it with the Noah-type β fac-
tor. In their cases focusing on loam and clay soil that have
higher wilting points when the CLM-type β factor scheme
was applied, plant transpiration ceased to save soil water
under drought conditions. Our results can be explained by
the steeper CLM-type β–SM curve than the Noah-type β–
SM curve for low SM, sand-dominant areas, as illustrated in
Fig. 3a of Niu et al. (2011). For such conditions, Noah-MP
with the CLM-type β factor produces stronger evapotranspi-
ration (ET) and consumes more soil water, resulting in drier
soil. For wet regions where SM values exceed 0.4 m3 m−3,
such as Louisiana and Arkansas, the CLM- and Noah-type
β values are close to 1.0 and insensitive to soil type and SM
variations; therefore, SM and ET produced from the Noah_D
and CLM_D cases do not diverge. These findings corroborate

the conclusions by Yang et al. (2011) that the degree of the
β impacts on the SM–ET relationship should depend on the
soil type and hydrological regime, and they are important for
understanding the vegetation and surface flux results to be
presented in the later parts of this paper.

Referring to the SMAP SM data, in general, surface SM
produced by the no-DA modeling systems shows wet biases
in non-forested regions and dry biases over the forests for
the study period. These SMAP–model discrepancies were
successfully reduced by the DA for all vegetated LULC
groups (Fig. S1, left), leading to overall slightly drier soil in
DA-enabled simulations. For both the Noah_D and CLM_D
cases, the DA adjusted the modeled SM fields across the en-
tire soil columns, demonstrating that observational informa-
tion at the surface was propagated into deep soil layers. The
SM responses to the DA as a function of soil layer from the
Noah_D and CLM_D cases are roughly similar but different
at small spatial scales, which reflect the controls of the β fac-
tor scheme on the surface–subsurface coupling strengths of
the modeling/DA system used. With the SMAP DA enabled,
the r values between column-averaged and surface SM from
the Noah_D and CLM_D cases increased to 0.902 and 0.897,
respectively.

The satellite-derived GVF fields (methods introduced in
Fig. S2 caption) transition from low to moderate (< 0.6) to
high (> 0.8) values from the western (mostly shrub/grass-
lands) to the central and eastern parts (forests- and croplands-
dominant) of the study region, and such spatial gradients are
highly correlated with the SMAP VOD retrievals (Fig. 3a
and d). The Noah_D and CLM_D cases both reproduced
these spatial patterns moderately well. Major differences be-
tween these cases are found in dry sandy regions, where,

https://doi.org/10.5194/acp-22-7461-2022 Atmos. Chem. Phys., 22, 7461–7487, 2022



7470 M. Huang et al.: Soil moisture, weather, and ozone in the southeastern US – Part 2

Figure 3. Period-mean (16–28 August 2016) green vegetation fraction (GVF) (a) derived from the Copernicus Global Land Service product
and the SMAP morning-time (AM) vegetation optical depth (VOD) using the method described in Fig. S2 and (b, c, e, f) based on WRF-
Chem calculations as well as their responses to the SMAP DA. The GVF results from the Noah_D and CLM_D cases are shown in (b) and
(c) and (e) and (f), respectively. Period-mean SMAP AM VOD is shown in (d). In (a) and (d), grey indicates missing data over terrestrial
regions.

as discussed in previous paragraphs, more soil water was
consumed for ET and plant growth in the CLM_D case
and therefore higher GVF values are given. Overall, the DA
adjustments to the modeled GVF and SM fields are posi-
tively correlated (Fig. S1, right), and the relative changes
in GVF are smaller. While the SM changes in the Noah_D
and CLM_D cases are of close magnitude, GVF responded
more strongly in the CLM_D case except for sandy regions.
Referring to the satellite-derived GVF fields which are also
subject to large uncertainty (as discussed in Fig. S2 caption),
the modeled vegetation fields are more effectively improved
by the DA over sparsely vegetated regions such as the South
Central Plains. The DA also remarkably reduced the model–
satellite mismatches over some of the dense vegetation re-
gions such as southwestern Ohio. The likely degraded model
performance over certain dense vegetation areas can be par-
tially explained by weaknesses related to the SM–vegetation
growth feedbacks (more details in Fig. S1 caption) in the dy-
namic vegetation model parameterizations which need to be
identified and addressed in future work. It is also suggested
that joint assimilation of satellite SM and vegetation phe-
nology products such as the VOD retrievals needs to be at-
tempted, which may maximize the positive DA impacts on
multiple land variables and their atmospheric feedbacks.

3.2 Modeled fluxes and weather conditions

3.2.1 Carbon/energy fluxes and weather conditions

Figure 4 compares the spatial distributions of the period-
mean WRF-Chem carbon and energy fluxes with SMAP
L4C and FLUXCOM products which contain observa-
tion information, and Table 4 summarizes WRF-Chem and

observation-derived flux results by three LULC groups. The
observation-derived products indicate the highest GPP and
EF over croplands. Without the DA, the Noah-MP-related
cases outperformed the Noah-related P1_W case on simu-
lating EF, especially over shrub/grassland and cropland re-
gions. This indicates that, from Noah to Noah-MP, the mul-
tiple updates in LSM physics related to rs, irrigation, and
CH are beneficial. Larger GPP and EF values are found in
CLM_D than in Noah_D; most of these larger values match
better with the SMAP L4C and FLUXCOM data. The DA
led to increased EF over shrub/grasslands in all model cases
as well as over croplands in the Noah_D case, bringing the
model results closer to the FLUXCOM data. The EF val-
ues were unfavorably reduced by the DA in the CLM_D
and P1_W cases over croplands and in all model cases over
forests, reflecting the challenges of satellite SM DA over re-
gions with dense vegetation and/or affected by human activ-
ities, which have also been reported and discussed in previ-
ous studies (e.g., Huang et al., 2021). For the Noah_D and
CLM_D cases, this may also be due to the possibly degraded
vegetation performance discussed in Sect. 3.1. The modeled
GPP in the CLM_D cases was lowered by the DA overall,
which helped reduce the model–SMAP L4C discrepancies
over forests and croplands. In the Noah_D case, GPP was
improved by the DA over forests and (slightly) over shrub/-
grasslands. Based on the evaluation statistics, for this case,
the CLM-type β factor scheme is shown to be slightly su-
perior to the Noah type. Note that the quality of the SMAP
L4C and FLUXCOM products may also be strongly LULC-
dependent; e.g., it has been known that the uncertainty of
SMAP L4C data is generally larger for highly productive
plant functional types (Kimball et al., 2021). Such evalua-
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Table 4. Evaluation of daily-averaged WRF-Chem gross primary productivity and evaporative fraction, referring to the SMAP L4C and
FLUXCOM datasets.

Flux variable LULC type Reference datasets Model case

(observation-derived) Noah_D CLM_D P1_W

No DA DA No DA DA No DA DA

Gross primary productivity (g m−2 d−1) forests 7.39 7.88 7.08 9.06 6.94
/

shrub/grass 5.11 3.28 3.29 4.74 3.89

croplands 8.94 7.64 7.40 9.77 8.13

Evaporative fraction (unitless) forests 0.75 0.65 0.60 0.67 0.60 0.66 0.63
shrub/grass 0.67 0.53 0.58 0.57 0.61 0.48 0.48∗

croplands 0.79 0.67 0.67∗ 0.71 0.68 0.63 0.62

∗ The increases from no-DA cases, which led to improved model performance, are < 0.005.

Figure 4. Period-mean (16–28 August 2016) WRF-Chem calculated (b–e) gross primary productivity (GPP) and (g–j) evaporative fraction
as well as their responses to the SMAP DA. Results based on the Noah_D and CLM_D cases are shown in (b), (d), (g), and (i) and (c), (e),
(h), and (j), respectively. Period-mean SMAP L4C GPP and FLUXCOM evaporative fractions are shown in (a) and (f), respectively, which
are also used to evaluate the model results (Table 4).

tion, therefore, has demonstrated the critical role of LULC
type in understanding the model performance of carbon and
energy fluxes and its responses to satellite SM DA.

Additional datasets were also utilized to help understand
terrestrial carbon uptake, including satellite SIF and ACT-
America aircraft OCS, as well as its vertical gradients
(Fig. S3). Consistent with the SMAP L4C- and WRF-Chem-
based results, the largest SIF values are shown over crop-
lands, especially maize and soybean fields in Illinois and In-
diana, 2–3 times as high as those over shrub/grasslands in
the South Central Plains. All these datasets suggest moder-
ate to high terrestrial carbon uptake around the Lower Mis-
sissippi croplands and the forests and croplands near the
Texas–Oklahoma border, which is supported by the large
OCS drawdowns (i.e., the free tropospheric-near surface gra-

dients far exceeded 60 pptv) along with other trace gas mea-
surements taken on board the B-200 and C-130 aircraft.

In general, the modeled EF fields as well as their direc-
tions of changes due to the DA resemble those of latent heat
flux and relative humidity (RH), which are opposite to those
of sensible heat and surface temperatures (Figs. 5 and S4).
The model reproduced the observed spatiotemporal variabil-
ity of 2 m air temperature (T2) and RH, as well as FLUX-
COM latent and sensible heat fluxes, well overall. The di-
agnostic 2 m weather fields and their responses to the DA
strongly correlate with the model’s surface-level results. The
Noah-MP-related cases reacted more strongly to the DA than
the Noah-related cases, with the responses in the CLM_D
case larger than in the Noah_D case except for dry, sandy re-
gions, which can be attributed to combined effects of the CH
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Figure 5. Period-mean (16–28 August 2016) WRF-Chem calculated daytime (a–c) surface air temperature and (g–i) surface radiation as
well as (d–f, j–l) their responses to the SMAP DA. Results based on the Noah_D, CLM_D, and P1_W cases are shown in (a), (d), (g), and
(j), (b), (e), (h), and (k), and (c), (f), (i), and (l), respectively. Overall, the weather fields from Noah_D and Noah_W (not shown in figures)
cases are nearly the same. Grey lines in (a) indicate the B-200 flight paths over the southeastern US during the 2016 ACT-America campaign.

and stomatal resistance schemes used. It is important to note
that diagnostic temperature and humidity variables are rep-
resented differently in Noah and Noah-MP and thus are not
directly comparable. Specifically, in Noah, T2 is an explicit
function of surface temperature, air density, specific heat of
dry air at constant pressure, and 2 m surface exchange coeffi-
cient for heat, and 2 m specific humidity is a function of sur-
face specific humidity, upward moisture flux at the surface,
air density, and 2 m surface exchange coefficient for mois-
ture, whereas in Noah-MP, they are expressed as functions of
temperatures and water vapor for vegetated land and bare soil
being weighted by their respective fractions. We therefore fo-
cus on quantitatively evaluating and intercomparing prognos-
tic model weather variables (i.e., the model-level air temper-
ature and humidity) against ACT-America aircraft observa-
tions (Fig. 6). For air temperature, at all altitudes and near the
surface (i.e., ≥ 800 hPa), the CLM_D case responded most
strongly to the DA, and the DA-enabled CLM_D case out-
performed the Noah_D and P1_W cases. This performance

is qualitatively consistent with the model’s sensible heat per-
formance referring to the FLUXCOM data. As for humidity,
despite the most significant DA improvements in CLM_D,
the Noah-MP-related cases did not perform as well as the
Noah-related cases, which is also found in the model’s la-
tent heat performance in comparison with the FLUXCOM
data. However, note that the model’s humidity performance
is more strongly related to that of rs and vd in the Noah-MP-
based cases via the direct impacts of humidity on rs calcula-
tions (Eq. 2). The solar radiation fields from all model cases,
which play vital roles in controlling the land–atmosphere ex-
changes of water and trace gases, do not differ remarkably,
and their responses to the DA are negligible (e.g., Fig. 5g–l).
This indicates that the DA impacts on the modeled surface
fluxes resulted primarily from the changes in the modeled
SM, humidity, and canopy and/or surface temperatures, as
well as vegetation fields. In many cases, these primary con-
tributing factors to the DA impacts are interdependent, and
their relative contributions vary by location and time.
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Figure 6. Evaluation of (a) air temperature and (b) water vapor
mixing ratios from several WRF-Chem simulations with the B-
200 aircraft observations during the 2016 ACT-America campaign.
The RMSEs are summarized in barplots based on model compar-
isons against observations at all altitudes and near the surface (i.e.,
≥ 800 hPa). Colored texts above the barplots indicate the SMAP DA
impacts on RMSEs. The B-200 flight paths are indicated in Fig. 5a.

3.2.2 Ozone dry-deposition velocities and fluxes

Figure 7 presents the period-mean, daily-averaged vd and
dry-deposition flux Ft (i.e., vd multiplied by concentration
at the surface level, Wesely, 1989) for O3 from all model
cases, along with their responses to the SMAP DA. The
daytime averages of these fields have similar spatial gradi-
ents but of larger magnitudes (not shown in figures). Table 5
summarizes for three LULC groups the daily- and daytime-
averaged results. The modeled stomatal–mesophyll and cu-
ticular conductances, as well as their diurnal variability, are
indicated in Fig. 8. All model cases produced lower vd and
Ft values over shrub/grasslands than over forests and crop-
lands, qualitatively consistent with results from many exist-
ing model- and measurement-based studies (e.g., Val Martin
et al., 2014; Hardacre et al., 2015; Silva and Heald, 2018;
Lin et al., 2019). The results from Noah_W and P1_W, both
of which are based on the same scheme (Wesely), are gen-
erally similar, with minor differences largely attributed to
different surface temperature fields (Figs. 5 and S4). The
WRF-Chem-modeled vd and Ft fluxes were more strongly
affected by the upgrade from the Wesely to the dynamic
scheme; i.e., with the updated scheme, they show enhanced
magnitudes, stronger spatial variability, and more intensive
responses to the DA, especially over forests and croplands.
These results can be mainly explained by the fact that the
stomatal–mesophyll and cuticular resistances in the dynamic
scheme are sensitive to more environmental and biophys-

ical variables, accounting for both the direct and indirect
(i.e., via influencing the weather fields and plants’ physiol-
ogy) effects of SM on vd. vd from the Noah_D and CLM_D
cases, as well as its major term stomatal–mesophyll conduc-
tance, shows strong correlations with the modeled GPP, la-
tent heat, and EF fields, which have been discussed in earlier
sections. Comparing the cases that implemented the CLM-
and Noah-type β schemes, O3-related fluxes resulting from
the former configuration are of notably larger magnitude,
spatial variability, and absolute changes due to the DA. The
SM impacts on the modeled vd and Ft were further quan-
tified using linear regression analyses between the relative
changes in the modeled O3 fluxes due to the DA versus
those in column-averaged SM initial conditions. All regres-
sion models yielded low p values (i.e., � 0.01), suggesting
good 1vd–1SM and 1Ft–1SM relationships. The regres-
sion slopes, all with standard errors of< 0.01 %, are summa-
rized in barplots (Fig. 9) by three LULC groups for all model
cases in Table 1. For all LULC groups, the slopes based on
the two cases that implemented the dynamic scheme are 2–3
times larger than those from the two cases using the Wesely
scheme, and the slopes differ most strongly among the cases
over forests and croplands. The low r values (< 0.5) associ-
ated with several regression models reflect the stronger non-
linear relationships between the changes in the studied O3
fluxes and SM. These results emphasize the importance of
better understanding and representing in models the SM con-
trol on plants’ stomatal behaviors which regulate the land–
atmosphere exchanges of water, energy, and trace gases. The
earlier evaluation of the period-mean GPP and EF across
the domain has demonstrated some advantages of using the
CLM-type β scheme and that the DA more effectively im-
proved the model performance in sparsely vegetated shrub/-
grassland regions. These conclusions are likely also applica-
ble to the modeled O3 dry-deposition process, particularly its
stomatal–mesophyll pathway.

In all no-DA and DA cases, the diurnal variability of
O3-related surface fluxes shows clear LULC dependency.
Over the shrub/grassland and forests/croplands regions, the
daytime-averaged vd values are 24 %–31 % and 35 %–50 %
higher than the 24 h mean, respectively, while the daytime-
averaged Ft results are 40 %–50 % and 42 %–63 % higher
than the 24 h mean, respectively (Table 5). Such vd diur-
nal cycles are a result of the strongest diurnal variability in
stomatal–mesophyll conductance (i.e., its daytime mean val-
ues are approximately twice as high as the 24 h mean for
all LULC types) being balanced out by weak diurnal vari-
ability associated with other vd terms. As the most diurnally
variable vd component, stomatal–mesophyll conductance, on
average, contributes less substantially to vd for shrub/grass-
land areas (24 h/daytime: up to∼ 30 %/40 %) than for forest-
s/croplands (24 h/daytime: up to ∼ 50 %/66 %), which helps
explain the weaker diurnal variability in the modeled vd over
shrub/grasslands. The stronger diurnal cycles in Ft than in vd
reflect the impacts of higher daytime O3 surface concentra-
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Table 5. The 24 h and daytime mean O3 deposition velocity (vd[ozone]) and flux (Ft[ozone]) for three LULC groups, from various model
cases.

LULC type Noah_D CLM_D Noah_W P1_W

No DA DA No DA DA No DA DA No DA DA

24 h mean vd[ozone] (cm s−1)

Forests 0.64 0.56 0.68 0.51 0.54 0.53 0.49 0.48
Shrub/grass 0.48 0.45 0.53 0.45 0.47 0.48 0.46 0.46
Croplands 0.62 0.54 0.67 0.54 0.58 0.58 0.56 0.56

24 h mean Ft[ozone] (nmol m−2 s−1)

Forests 7.11 6.38 7.47 6.35 6.31 6.24 5.75 5.68
Shrub/grass 4.79 4.48 5.21 4.54 4.76 4.79 4.62 4.63
Croplands 6.90 6.11 7.39 6.06 6.69 6.64 6.44 6.42

Daytime-mean vd[ozone] (cm s−1)

Forests 0.94 0.80 1.02 0.71 0.79 0.77 0.70 0.69
Shrub/grass 0.63 0.56 0.72 0.58 0.61 0.63 0.58 0.58
Croplands 0.88 0.74 0.99 0.73 0.83 0.83 0.80 0.79

Daytime-mean Ft[ozone] (nmol m−2 s−1)

Forests 11.51 10.04 12.25 8.99 10.05 9.93 9.04 8.88
Shrub/grass 6.91 6.32 7.77 6.43 6.83 6.99 6.52 6.49
Croplands 10.99 9.42 12.04 9.31 10.61 10.57 10.17 10.07

Figure 7. Period-mean (16–28 August 2016) WRF-Chem (a–d) O3 dry-deposition velocity and (i–l) O3 dry-deposition flux, as well as (e–h,
m–p) the impacts of SMAP DA on these model fields. Results are shown for (a, e, i, m) Noah_D, (b, f, j, n) CLM_D, (c, g, k, o) Noah_W,
and (d, h, l, p) P1_W cases, averaged throughout the day.
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Figure 8. Period-mean (16–28 August 2016) WRF-Chem (a–h) stomatal–mesophyll and (i–p) cuticular conductances over terrestrial regions
that do not belong to the urban category in Fig. 1a. Results are shown for (a, e, i, m) Noah_D, (b, f, j, n) CLM_D, (c, g, k, o) Noah_W, and
(d, h, l, p) P1_W no-DA cases, averaged (a–d, i–l) throughout the day and (e–h, m–p) during the daytime.

Figure 9. (a) Regression slopes of the relative changes of O3 dry-deposition velocity vd versus the relative changes of column-averaged soil
moisture initial conditions (SM ICs) due to the SMAP DA, summarized by three LULC groups for all model cases listed in Table 1. The
r values of these regression analyses and the standard errors of slopes (%, scaled by 1000) are indicated in (b) and (c), respectively. The
p values for all regression analyses are� 0.01. Regression results for the relative changes of O3 deposition flux versus the relative changes
of SM ICs are similar (not shown in figures).

tions used in the Ft calculations. The DA did not dominantly
intensify or dampen the diurnal cycles of these fluxes for any
given grouped LULC type. Whether the DA improved the
estimated diurnal cycles of fluxes for various LULC types
remains to be evaluated, which can benefit from independent
observation-constrained flux products of broad spatial cover-
age and subdaily variability.

A detailed analysis was then conducted at two forest
CASTNET sites with different soil types and hydrological
regimes. The modeled vd and Ft from various cases are

compared with the operational MLM-based calculations pro-
duced at a Florida site SUM156 and a Virginia site PED108
(Figs. 10a, b, e, f and S5; Table 6), where many, most, or all
MLM assumptions apply. The dominant soil types at these
sites are sand and loam, and the column-averaged SM val-
ues from various model cases are approximately 0.15 and
0.20 m3 m−3, respectively. These various datasets show that
stomatal–mesophyll conductance, vd, and Ft sharply increase
soon after sunrise, reaching their daily maxima in the late
morning or early afternoon. The slight declines in fluxes
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Table 6. Period-mean (16–28 August 2016) soil moisture and surface fluxes at two CASTNET sites shown in Fig. 1d. Standard deviations
calculated based on the hourly O3 dry-deposition velocity vd[ozone] and flux Ft[ozone] results are also included. Daytime is defined as
approximately 08:00–19:00 local standard time.

CASTNET sites (soil type; LULC type; elevation/terrain) SUM156, Florida PED108, Virginia
(sand; forest; 16 m/flat) (loam; forest; 149 m/rolling)

Modeled soil moisture initial condition, column-averaged (m3 m−3) No DA DA No DA DA
Noah_D 0.15 0.12 0.22 0.20
CLM_D 0.16 0.12 0.20 0.18

SMAP L4C daily gross primary productivity (g m−2 d−1) 7.30 8.10
Modeled daily gross primary productivity (g m−2 d−1) No DA DA No DA DA
Noah_D 4.70 3.83 7.42 5.45
CLM_D 5.84 5.88 10.10 4.51

CASTNET (MLM-calculated) daytime vd[ozone] (cm s−1) 0.39± 0.15 0.39± 0.18
Modeled daytime vd[ozone] (cm s−1) No DA DA No DA DA
Noah_D 0.68± 0.13 0.64± 0.11 0.84± 0.23 0.65± 0.14
CLM_D 0.73± 0.13 0.74± 0.14 1.01± 0.29 0.50± 0.09
Noah_W 0.63± 0.11 0.61± 0.10 0.78± 0.22 0.75± 0.22
CASTNET daytime Ft[ozone] (nmol m−2 s−1) 3.81± 2.02 5.02± 2.83
Modeled daytime Ft[ozone] (nmol m−2 s−1) No DA DA No DA DA
Noah_D 7.23± 1.71 6.91± 1.56 12.21± 3.88 9.67± 2.45
CLM_D 7.60± 1.74 7.63± 1.84 14.27± 5.01 7.67± 1.88
Noah_W 6.81± 1.56 6.64± 1.45 11.74± 3.74 11.18± 3.56

around midday based on some simulations can result from
the water and heat stresses which cause stomata closures
(Fig. 10c and d). The water stress starts to get relieved from
the mid-afternoon at the SUM156 site under the influences of
convective precipitation, whereas it persists throughout the
afternoon at the PED108 site (Fig. 10g and h). This helps
shape the slightly different afternoon flux dynamics at these
two locations. Without the DA, at both sites, the highest day-
time fluxes were produced from the CLM_D case, followed
by the Noah_D and Noah_W cases, which are 2–3 times as
high as the MLM-estimated cases. The fluxes from all WRF-
Chem cases during the nighttime are close, up to > 80 %
lower than their daytime maxima, contributed mostly by
ra, rb, and non-stomatal rc pathways as stomatal–mesophyll
conductance is shown to be negligible (Fig. 10c and d). De-
spite the uncertainty possibly introduced by the limitations
of the Monin–Obukhov similarity theory, our nighttime vd
results are close to flux observations at European forest sites
during both dry and wet periods in the past decades (Lin et
al., 2020). They are, however, dramatically higher than the
MLM-based results that are nearly zero. Wu et al. (2018)
compared vd observations with single-point model calcula-
tions based on the operational MLM, Wesely, and Noah-Gas
Exchange Model photosynthesis-based scheme, at a Cana-
dian mixed forest site dominated by sand-like soil. Their
diverse model results are qualitatively consistent with our
findings at the SUM156 and PED108 sites. The remarkably
lower vd values from the operational MLM calculations can
be partially attributed to the MLM’s simplified approaches of

calculating ra and rb using wind speed and direction, as well
as the empirical approach of calculating rs which is subject
to errors in the season- and LULC-dependent ri . The pos-
sible uncertainty in MLM vd can also be explained by the
lack of continuous, accurate model input data. Specifically,
the factual data such as plant and canopy attributes used in
the MLM calculations are outdated, which, according to the
CASTNET database, represent the conditions in the 2000s;
and based on the little day-by-day variability found in the
MLM vd data during the study period which contrasts with
our WRF-Chem results (Fig. S5), it is likely that many but
not all of these are filled historical average vd values due
to the lack of meteorological measurements that are needed
in the MLM calculation. Additionally, based on the surface
heterogeneity within the WRF-Chem grids that these sites
fall in, representation errors are estimated to be pronounced
when comparing the point-scale MLM fluxes with our 12 km
WRF-Chem results.

Within the respective ranges of the modeled SM at these
two sites, β factors based on the CLM-type scheme are both
larger than those based on the Noah-type β scheme (refer-
ring to Niu et al., 2011, Fig. 3), which helps explain the
higher and more variable model fluxes from the CLM_D case
than the Noah_D case without the DA. At SUM156, despite
the strongest SM decrease (∼ 0.04 m3 m−3) by the DA in
case CLM_D, the modeled fluxes responded least strongly
to the DA, in part due to the flattened CLM-type SM–β
curves in contrast to the linear Noah-type SM–β function for
sand within the 0.12–0.16 m3 m−3 SM range. At PED108,
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Figure 10. Period-mean (16–28 August 2016) diurnal cycles of (a, b) O3 dry-deposition velocity vd and (e, f) O3 dry-deposition flux
Ft based on the CASTNET dataset (shown by solid black lines) and their WRF-Chem counterparts (purple, blue, and brown lines) at the
(a, c, e, g) SUM156 and (b, d, f, h) PED108 sites, whose locations are shown in Fig. 1d. Panels (c) and (d) and (g) and (h) indicate the
diurnal variability of WRF-Chem stomatal–mesophyll conductance gsm and column-averaged soil moisture (normalized) at these two sites,
respectively. The grey vertical lines in (g) and (h) denote the initial times of WRF-Chem. WRF-Chem results from the no-DA and DA cases
are indicated by solid and dashed lines, respectively. Additional time series plots indicating the daily variability of these fluxes are shown in
Fig. S5.

the modeled SM values from all model cases were low-
ered by the DA by ∼ 0.02 m3 m−3. The stronger reactions of
fluxes (i.e., vd, Ft, and their stomatal–mesophyll portions) to
the DA from the CLM_D case than those from the Noah_D
case can be partially explained by the steep CLM-type SM–
β curve versus the linear Noah-type SM–β relationship for
loam within the 0.18–0.22 m3 m−3 SM range. Our case stud-
ies at these two sites with the same type of LULC emphasize
the importance of soil type and hydrological regimes for un-
derstanding SM controls on dry deposition, which was often
omitted or discussed little in previous dry-deposition studies.

It is noted that the effectiveness of SM DA in improving the
accuracy of land surface states and fluxes at point scale is de-
pendent on the representativeness of the assimilated satellite
SM data for these sites, which is expected to increase with
the resolutions of the model and the assimilated satellite land
product.
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Figure 11. Period-mean (16–28 August 2016) WRF-Chem (a–d) surface MDA8 O3 fields and (e–h) their responses to the SMAP DA.
Results based on the Noah_D, CLM_D, Noah_W, and P1_W cases are shown in (a) and (e), (b) and (f), (c) and (g), and (d) and (h),
respectively, and the differences between the Noah-MP-related cases and the P1_W case are shown in (i)–(k).

3.3 Policy-relevant O3 metrics and implications for O3
impact assessments

3.3.1 MDA8 and implications for O3 health impacts

Figure 11 illustrates the impacts of the choice of dry-
deposition scheme and SM DA on WRF-Chem-modeled sur-
face MDA8 O3. During the study period, several warmer- and
drier-than-normal Atlantic states experienced high MDA8 at
times (i.e., ≥ 60 ppbv, which can negatively affect lung func-
tion and, at≥ 70 ppbv, cause respiratory symptoms and other
adverse effects; Fleming et al., 2018, and references therein).
Numerous populated urban centers reside in these areas. The
levels of MDA8 are shown to be much lower (i.e.,< 40 ppbv)
over the southern part of the domain, including several ma-
jor urban/suburban regions such as the Texas Triangle, which
was frequently influenced by passing cold fronts and tropical
systems from the Gulf of Mexico.

All model cases reproduced the observed MDA8 spatial
patterns (Fig. 12a) moderately well. Referring to observa-
tions at AQS and CASTNET sites, their domain-wide mean
root-mean-square errors (RMSEs) all fall within 6–8.5 ppbv
(Fig. 12b). We first intercompare the MDA8 levels from all
no-DA cases. Positive and negative differences between the
results from Noah_W and P1_W, both of which implemented
the Wesely scheme, are almost equally distributed across the
domain, with the MDA8 from the former case associated
with negligibly lower RMSEs (i.e., < 0.02 ppbv on average)
referring to AQS and CASTNET observations (Figs. 11k and
12b). The differences between these two cases are largely
due to the impact of the chosen LSM on the model’s meteo-
rological fields, particularly temperatures, which affected the

simulations of various O3-related processes including dry de-
position. As Figs. 11i and j and 12b show, replacing Wesely
with the dynamic dry-deposition scheme considerably low-
ered the calculated MDA8 levels in majority of the model
grids, as well as their associated RMSEs (i.e., by > 0.5 ppbv
on average) relative to surface observations. These reductions
in MDA8 are of comparable magnitude with those due to up-
dating anthropogenic emissions from the National Emission
Inventory 2014 to 2016 beta (Huang et al., 2021). Comparing
the implementations of the CLM- and Noah-type β schemes,
the former led to stronger reductions in the modeled MDA8
fields and their associated uncertainty. These results reflect
the impacts of the faster O3 removal via dry deposition in
the dynamic-scheme-related cases, as well as the different
model meteorology. Our findings are qualitatively consistent
with the conclusions from several global-scale modeling ex-
periments that compared the Wesely and dynamic schemes
(e.g., Val Martin et al., 2014; Lin et al., 2019).

In all model cases, the DA reduced surface and subsur-
face SM in many of the grids, leading to enhanced MDA8
(Fig. 11e–h). The responses of the period-mean MDA8 to
the DA from the Noah_W and P1_W cases are mostly within
±4 ppbv. When the dynamic dry-deposition scheme was ap-
plied, the modeled MDA8 responded several times more
strongly to the DA (i.e., by up to 6 and 8 ppbv in the Noah_D
and CLM_D cases, respectively), especially over nonurban
regions, where surface MDA8 is on average several parts per
billion by volume (ppbv) lower than in urban grids. In ur-
ban grids where population densities are ∼ 25 times higher
than in nonurban grids (Fig. 1c), the DA impacts on MDA8
reach 3–4 ppbv in places, under the controls of the local-to-
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Figure 12. (a) Period-mean (16–28 August 2016) observed surface MDA8 O3 and (c) AOT40 in cropland-dominant model grids derived
from surface observations during 16–28 August 2016. The RMSEs of modeled MDA8 and model-derived AOT40 from various WRF-Chem
cases referring to (a) and (c) are summarized in (b) and (d), respectively.

regional circulation patterns (Fig. 13a and e). As the no-DA
cases are positively biased against surface observations in
many places, corresponding to the DA-induced surface O3
changes, the overall model performance of MDA8 was not
improved, or much degraded, by the DA. Over limited ar-
eas such as the South Central Plains, the modeled MDA8
decreased due to the DA by up to > 2 ppbv, corresponding
to improved performance. The no-DA and DA results based
on different LSMs and dry-deposition schemes confirm that
drier soil conditions exacerbate O3 air pollution, which, to-
gether with heat stress, threatens human health. Such O3–SM
relationships have also been demonstrated by Falk and Søvde
Haslerud (2019) and Anav et al. (2018) using other chemical
transport models and multiplicative dry-deposition schemes.
Our Noah_W- and P1_W-related results indicate the influ-
ences of SM on air quality via its feedbacks to weather; and
results from the Noah_D and CLM_D cases provide valu-
able information regarding both the indirect (i.e., via adjust-
ing vegetation phenology and weather conditions) and direct
SM effects on O3. The complex SM impacts on O3 dry-
deposition as well as surface O3 concentrations based on the
coupled photosynthesis–rs calculations rely heavily on the
application of water stress function (β scheme), soil proper-
ties, and hydrological regime. The WRF-Chem results from
this case indicate that, to more accurately simulate MDA8,
improving land DA must be combined with strong efforts to
identify other sources of uncertainty in O3 modeling (e.g.,
emissions, chemistry, and extra-regional pollution contribu-

tions) and reduce their negative impacts on model perfor-
mance.

3.3.2 Implications for O3 vegetation impact
assessments using concentration- and flux-based
metrics

Both O3 flux- and concentration-based metrics have been ap-
plied to assess O3 impacts on vegetation as well as the asso-
ciated economic loss. Estimating the plants’ stomatal O3 up-
take Fs is the basis for constructing flux-based O3 impact as-
sessments. Figure 14 illustrates the period-mean daytime Fs
fields based on all WRF-Chem no-DA cases as well as their
responses to the SM DA. Box-and-whisker plots in Fig. 13b
and f summarize these results by three LULC groups. The
averaged Fs values for all three LULC groups exceed their
respective critical levels (i.e., 1 nmol m−2 s−1 for forest and
grasslands and 3 nmol m−2 s−1 for crops). As a major con-
tributor to O3 dry-deposition flux during the daytime, Fs
fields appear to be closely correlated in space and time with
the surface humidity and flux fields (e.g., GPP, latent heat,
and EF, as well as vd), which differ distinctly from the surface
O3 concentration fields. For example, Fs hotspots are shown
over some low O3 concentration areas including the humid,
Lower Mississippi River regions, and the lowest Fs values
occur in certain high O3 concentration regions strongly af-
fected by urban pollution (e.g., Georgia) and pollution trans-
port from upwind US states and/or the stratosphere (e.g.,
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Figure 13. Box-and-whisker plots of WRF-Chem (a) MDA8 O3, (b) daytime stomatal O3 uptake Fs[ozone], (c) derived PODy , and (d) de-
rived AOT40, summarized by LULC and crop types from all DA-enabled cases. The impacts of the SMAP DA on these model fields are
shown in (e)–(h). Red filled circles indicate the mean values. The mean relative biomass/crop yield losses estimated based on all DA-enabled
cases, as well as the SMAP DA impacts on these values, are included in (c), (d), (g), and (h) in blue text. The crop yield losses for wheat,
estimated based on the derived AOT40 and two dose–response functions (M07: Mills et al., 2007; M18: Mills et al., 2018b), are included
in (d) and (h).

Figure 14. Period-mean (16–28 August 2016) WRF-Chem (a–d) daytime stomatal O3 uptake Fs[ozone] fields over terrestrial regions that do
not belong to the urban category in Fig. 1a and (e–h) their responses to the SMAP DA. Results based on the (a, e) Noah_D, (b, f) CLM_D,
(c, g) Noah_W, and (d, h) P1_W cases are shown.

western Kansas and Oklahoma, as discussed in Huang et al.,
2021). The changes in Fs and surface O3 concentrations due
to the DA show opposite directions; i.e., drier soil enhances
surface O3 concentrations, whereas it slows down the plants’
stomatal O3 uptake (Figs. 11e–h and 14e–h). This compar-

ison highlights how the choice of O3 metrics can affect the
assessment of O3 vegetation impacts under the changing cli-
mate. As emphasized by Mills et al. (2018b) and Ronan et
al. (2020), flux-based metrics have evident advantages over
concentration-based metrics. To conduct reliable impact as-
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sessments using these flux-based metrics, accurate informa-
tion on stomatal and non-stomatal fluxes as well as the var-
ious environmental and biophysical variables that they are
sensitive to becomes increasingly important.

An assessment of O3 vegetation impacts was conducted
based on the results from various model cases and differ-
ent metrics, namely PODy (where y is the LULC-dependent
critical level) and AOT40. For this demonstration, the 13 d
model results were linearly extrapolated to approximately 3
months. This also assumed similar DA adjustments to SM
dynamics (driven by factors such as clouds/radiation, rain-
fall, and irrigation for cropland-dominant regions) at the sea-
sonal timescale. Based on the seasonal variability of surface
O3 and surface fluxes in the study region in 2016 (Fig. S6),
the linearly scaled PODy and AOT40 values are underesti-
mated overall referring to the 2016 peak AOT40 and surface
fluxes occurring during April–May–June and June–July–
August, respectively. These overall underestimations may be
invalid if the (sub)seasonal variability of surface O3 and sur-
face fluxes of other years was referred to. We therefore fo-
cus on discussing the results qualitatively and highlighting
their implications for O3 impact assessments using long-term
records. Statistics of the derived PODy and AOT40 fields
are summarized by O3-sensitive LULC and crop types in
Fig. 13c, d, g, and h. Figures 15 and 12c and d present the
estimated AOT40 fields and the evaluation of them, as well
as their responses to the SM DA for cropland-dominant grids.
The highs and lows in AOT40-related results are found over
maize- and wheat-dominant fields, respectively. Among the
three focused LULC types, the highest and lowest PODy
values are estimated for forests and grasslands, respectively.
Largely driven by daytime peak O3 concentrations, the spa-
tial variability and biases (referring to AQS and CASTNET
observations) of the model-derived AOT40 fields, as well as
their responses to the DA, match those of the MDA8-based
results (Fig. 11). In contrast, the spatial variability of PODy
and Fs aligns well, and so do their responses to the DA. Both
PODy and AOT40 reacted several times more intensively
in the cases that implemented the dynamic dry-deposition
scheme, especially the CLM_D case.

For selected LULC and crop types, the WRF-Chem-
derived PODy and AOT40 fields were used together
with dose–response functions in literature to evaluate the
RBL/RYL due to O3 exposure and uptake. As reported in
Fig. 13c and g, with the SM DA enabled, the mean RBLs
based on Noah_D- and CLM_D-derived PODy are 0.05–
0.08, 0.01–0.02, and 0.04 for deciduous forest, grasslands,
and wheat, respectively, which are > 33 % lower than the
Noah_W- and P1_W-based RBL estimates. It is shown that,
in response to the DA which lowered SM in many places, the
Noah_W- and P1_W-based RBL estimates did not drop as
strongly as the Noah_D- and CLM_D-based ones and even
increased by 0.01 for grasslands and wheat. For wheat, one of
the most O3-sensitive crops, the estimated RYL values based
on the PODy and AOT40 approaches differ by up to a factor

of 2–3, and the DA had contrasting effects on these estimates
(Fig. 13c, d, g, h). The PODy- and AOT40-based RYL val-
ues differ more significantly when the model-derived PODy
and AOT40 fields came from the Noah_D and CLM_D cases.
Using the model-derived AOT40 and different AOT40 dose–
response functions (Mills et al., 2007, 2018b, Table 3), the
estimated RYLs and their changes due to the DA are non-
negligible (Fig. 13d and h). Our estimated RBL/RYL re-
sults for various LULC and crop types mostly fall within
the ranges reported in previous studies which applied model-
derived O3 metrics and dose–response functions (e.g., Avn-
ery et al., 2011; Mills et al., 2007, 2018b). Our results em-
phasize that the selected O3 impact assessment metrics for
various LULC/crop types and their matching dose–response
functions, as well as the model results used to derive the cho-
sen O3 metrics which are sensitive to dry-deposition schemes
and SM, all introduce uncertainty to the estimated O3 im-
pacts on vegetation. The widely used dose–response func-
tions are considered appropriate for studying North America
and Europe, but they may not be applicable to other regions
(Emberson et al., 2009). Therefore, updating and develop-
ing dose–response relationships for a larger number of veg-
etation types in different regions of the world are needed,
which may require new experiments to be conducted. Yue
and Unger (2014) and Lombardozzi et al. (2015), as well
as follow-on investigations, parameterized the O3 impacts
on several types of vegetation using the relationships be-
tween cumulative O3 uptake and O3 damage factors for pho-
tosynthesis and conductance from empirical and experimen-
tal studies. Based on multidecadal model simulations, they
reported< 20 % changes of biomass, GPP, and energy fluxes
due to O3, which are roughly consistent with our RBL/RYL
results in Fig. 13. Such approaches that dynamically assess
the impacts of O3 along with other factors (e.g., non-O3 pol-
lutants and environmental stresses), as highlighted in Ember-
son et al. (2018), will be considered in future work.

We note that, revising the dry-deposition scheme and con-
straining the modeled SM fields with observations would not
only better be combined with adding O3 impacts on vege-
tation but also multi-stress impacts on biogenic emissions.
Considering O3-induced vegetation injuries would more ev-
idently affect longer-term climate simulations via feedbacks
to biomass, surface fluxes, weather, and weather-driven emis-
sions. As for biogenic emissions, Fig. S7 shows SM anoma-
lies during the study period determined by our Noah-MP
modeling system as well as drought stress activity factor γd
estimated from β of a multiyear, independent CLM (ver-
sion 4.5) simulation by Jiang et al. (2018). Based on this
analysis, we estimate that, depending on soil type, hydro-
logical regime, and β configurations, omitting the direct im-
pacts of water stress on biogenic emissions may have in-
troduced larger uncertainty (i.e., > 30 %) to biogenic emis-
sion and O3 modeling over several states experiencing drier-
than-normal conditions, particularly South Carolina, Geor-
gia, and Alabama. Quantitatively understanding the interplay
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Figure 15. WRF-Chem-based AOT40, derived from the modeled surface O3 fields during 16–28 August 2016, as well as their responses to
the SMAP DA. Panels (a) and (e), (b) and (f), (c) and (g), and (d) and (h) show results derived from the Noah_D, CLM_D, Noah_W, and
P1_W cases, respectively, in cropland-dominant model grids.

between these processes and O3 pollution levels is recom-
mended for more accurate air quality modeling and O3 im-
pact assessments.

4 Summary and suggestions on future directions

This paper described a follow-up study of Huang et
al. (2021). It presented how the choice of O3 dry-deposition
scheme affected our evaluation of SMAP SM DA impacts
on coupled WRF-Chem modeling over the southeastern US
in August 2016. In new Noah-MP LSM-related simulations,
two dry-deposition schemes were implemented, namely the
WRF-Chem default Wesely scheme and a dynamic scheme,
in the latter of which the calculation of vd (particularly its
stomatal and cuticular terms) was modified to be coupled
with photosynthesis and vegetation phenology. We showed
that dry-deposition parameterizations significantly affected
the modeled O3 dry-deposition process, as well as its re-
sponse to the DA. Comparing the no-DA cases, it was found
that, when the dynamic scheme was applied, overall, the
modeled O3 dry-deposition velocities and fluxes were larger
and surface O3 concentrations were lower. The modeled O3
fluxes responded 2–3 times more strongly to the SM changes
due to the DA, which can be mainly explained by the fact that
both the direct and indirect (i.e., via influencing weather and
vegetation fields) effects of SM on O3 dry-deposition mod-
eling are considered in the dynamic scheme. Depending on
soil type and hydrological regime, the selection of SM factor
controlling rs (i.e., β factor, a key variable representing the
direct effects of SM on the modeled surface fluxes) scheme
can strongly affect the quantitative results. The Wesely-
scheme-derived dry-deposition results driven by meteoro-
logical fields from Noah-MP-based and (from Huang et al.,
2021) Noah-LSM-based WRF-Chem simulations displayed
much smaller differences than those due to updating the dry-
deposition parameterizations. While we note that account-
ing for physiological effects in dry-deposition modeling can

be beneficial, the Ball–Berry rs scheme applied in land sur-
face and dry-deposition modeling in this work needs to be
compared with other semi-empirical rs schemes, for a better
understanding of their respective strengths and weaknesses.
Alternative schemes include the Medlyn scheme, which has
been integrated into the CLM version 5. Model intercompar-
ison efforts such as the ongoing Air Quality Model Evalu-
ation International Initiative Phase 4 activity (Galmarini et
al., 2021) can also help determine areas for improvement
in commonly used dry-deposition modeling approaches for
studying 2016 and other years, over North America and other
regions of the world.

By analyzing the model responses to the SM DA from
these various cases, we conclude that, in coupled model-
ing systems that consider the direct and indirect influences
of SM on O3 dry deposition, the accuracy of SM is partic-
ularly critical to dry deposition and O3 modeling, as well
as the scientific analyses and impact assessments based on
model simulations. The usefulness of SM DA for improv-
ing the modeled state and flux variables was evaluated by
multiple observation(-derived) data products. Referring to in
situ measurements, key meteorological variables relevant to
vd calculations such as surface temperature and humidity are
shown to be improved by the DA by up to ∼ 9 %. Referring
to satellite(-derived) datasets which may be associated with
high uncertainty, the model performance of vegetation phe-
nology, GPP, as well as energy fluxes and their partitioning,
showed mixed, LULC-dependent reactions to the DA. Ac-
cording to the evaluation statistics, for this case, the CLM-
type β factor scheme was slightly superior to the Noah-type
one. The modeled carbon and energy fields, as well as their
DA-related changes, correlated strongly with the modeled vd
fields, implying that the DA impacts on the accuracy of vd
were also possibly complicated, which is difficult to verify
due to the lack of high-accuracy, independent vd evaluation
datasets, a point that has also been brought up in previous
dry-deposition modeling works (e.g., Baublitz et al., 2020;
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Clifton et al., 2020). Observation(-derived) vd datasets cov-
ering diverse LULC types nested in broad geographical re-
gions and through more recent periods are in strong need.
In places, the likely ineffectiveness of SM DA on vegetation
and surface fluxes can not only be attributed to the quality
of satellite SM retrievals and the DA approach used as dis-
cussed in previous Noah-LSM-based DA experiments, but
also shortcomings in the Noah-MP LSM and its dynamic
vegetation scheme regarding its surface–subsurface coupling
and representation of SM-vegetation growth feedbacks. Con-
tinued efforts on advancing land measurement/retrieval skills
and identifying and addressing deficits in LSMs, as well as
practicing multivariate land DA, are recommended in future
work.

This study also demonstrated that model-driven assess-
ments of O3 impacts on human health and various types of
vegetation can be significantly affected by the applied O3
dry-deposition scheme, the implementation of land DA, the
chosen O3 metrics, and their matching exposure–response
functions. Various model cases showed that the DA impacts
on MDA8 were more evident in nonurban areas where the
mean MDA8 was∼ 5 ppbv lower and the average population
density is< 1/25 of that in urban areas. Using concentration-
and flux-based metrics AOT40 and PODy , the mean RYLs of
maize, soybean, and wheat fell within ranges of 0.01–0.04,
0.10–0.17, and 0.04–0.14, respectively. The multiple no-DA
and DA cases helped us better understand the indirect and/or
direct effects of SM on O3 dry-deposition process, which
have important implications for O3 impact assessments. It
is also recognized that the DA often exacerbated the positive
surface O3 biases in free-running systems, which has been a
common issue shared by numerous regional and global mod-
els for this study region/season. It is necessary to combine
land DA with efforts to identify, quantify, and reduce other
sources of uncertainty in O3 modeling. These should include
reasonably representing the impacts of O3 along with other
factors on vegetation, the direct impacts of water stress on
biogenic emissions of volatile organic compounds and nitro-
gen species, and the reduction of photolysis reaction rates
and the modification of vertical transport due to the presence
of foliage (Li et al., 2016; Jiang et al., 2018; Makar et al.,
2017).

Code and data availability. Dry-deposition-related updates to
LIS/WRF-Chem since Huang et al. (2021) are undergoing reporting
processes via NASA’s New Technology Reporting System (https:
//invention.nasa.gov, last access: 4 June 2022). Model results as
well as observations and observation-derived evaluation datasets
emphasized in this work but not in Huang et al. (2021) can be found
at the following locations: https://doi.org/10.5281/zenodo.6615022
(Huang, 2022), https://land.copernicus.eu/global/products/fcover
(last access: 10 April 2022; Copernicus Global Land Service, 2020),
https://doi.org/10.5067/L6C9EY1O8VIC (Kimball et al., 2021),
https://doi.org/10.7927/H49C6VHW (NASA Socioeconomic Data
and Applications Center, 2018), https://www-air.larc.nasa.gov/

cgi-bin/ArcView/actamerica.2016 (last access: 8 November 2021;
NASA, 2020), https://java.epa.gov/castnet/clearsession.do (last ac-
cess: 8 November 2021; US Environmental Protection Agency,
2021), and https://doi.org/10.3334/ORNLDAAC/1696 (Yu et al.,
2019).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-22-7461-2022-supplement.
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