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Abstract. We develop a new method to describe the total cloud cover including optically thin clouds in trade
wind cumulus cloud fields. Climate models and large eddy simulations commonly underestimate the cloud cover,
while estimates from observations largely disagree on the cloud cover in the trades. Currently, trade wind clouds
significantly contribute to the uncertainty in climate sensitivity estimates derived from model perturbation stud-
ies. To simulate clouds well, especially how they change in a future climate, we have to know how cloudy it
is.

In this study we develop a method to quantify the cloud cover from a cloud-free perspective. Using well-
known radiative transfer relations we retrieve the cloud-free contribution in high-resolution satellite observations
of trade cumulus cloud fields during EUREC4A. Knowing the cloud-free part, we can investigate the remaining
cloud-related contributions consisting of areas detected by common cloud-masking algorithms and undetected
areas related to optically thin clouds. We find that the cloud-mask cloud cover underestimates the total cloud
cover by 33 %. Aircraft lidar measurements support our findings by showing a high abundance of optically thin
clouds during EUREC4A. Mixing the undetected optically thin clouds into the cloud-free signal can cause an
underestimation of the cloud radiative effect of up to−7.5 %. We further discuss possible artificial correlations in
aerosol–cloud cover interaction studies that might arise from undetected optically thin low clouds. Our analysis
suggests that the known underestimation of trade wind cloud cover and simultaneous overestimation of cloud
brightness in models are even higher than assumed so far.

1 Introduction

Earth’s trade wind regions combine a dry atmosphere and
a high abundance of shallow clouds – whose tops are of-
ten not much higher than the longwave emission height –
to efficiently cool the planet. How much clouds in the trades
cool the climate is quantified by their cloud radiative effect,
which in a first approximation depends on the cloud cover
and the average cloud reflectance. Changes in the cloud ra-
diative effect with warming can amplify or dampen global
warming. Trade cumulus cloud feedback has been shown to
significantly contribute to uncertainties in estimates of the
global climate sensitivity (Bony and Dufresne, 2005; Vial

et al., 2016), part of the well-known difficulty climate models
have in representing clouds and cloud changes with fidelity.

Especially in low-cloud regions such as the trades, cli-
mate models underestimate the cloud cover while overes-
timating its average reflectance, a problem often called the
“too few, too bright” low-cloud problem (Nam et al., 2012;
Klein et al., 2013). Large eddy simulation studies also show
an underestimation of trade wind cumulus cloud cover and a
limited representation of small clouds (Nuijens et al., 2015),
while the scaling behavior of trade cumulus clouds suggests a
high abundance and significant contribution of small clouds
to the total cloud cover (Plank, 1969; Wielicki and Welch,
1986; Cahalan and Joseph, 1989; Benner and Curry, 1998;
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Zhao and Di Girolamo, 2007; Mieslinger et al., 2019). Stud-
ies on the “twilight” zone even suggest that clouds may ex-
tend further into the cloud-free area than assumed so far (Ko-
ren et al., 2008). To simulate the change in clouds with future
temperature or aerosol perturbations, we first need to know
how cloudy it is.

Estimating the cloud cover is a well-known issue in the
sense that it decisively depends on the instrument used and
the purpose of respective datasets. All-sky observations by
trained humans might have been the first systematic cloud
cover measurements. Such measurements are synonymous
with efforts to predict the weather and led to the first Inter-
national Cloud Atlas as early as 1896. However, such obser-
vations are subject to unknown or hard to quantify uncertain-
ties due to the training of the observer, further biases origi-
nating from overlapping cloud layers and undetected upper
clouds, or the higher frequency of fair-weather synoptic re-
ports (Warren et al., 1985). Passive remote sensing opened
the way to more objective quantification of cloud cover from
the ground, from aircraft since the beginning of the 20th cen-
tury, and also from space starting in the 1970s. Active remote
sensing added additional approaches to investigate clouds
from the ground, aircraft, and space. Those various instru-
ments dedicated to observe clouds have in common the de-
pendence of a best estimate of cloud cover on (a) the data
resolution in space and/or time, (b) suitable thresholds de-
fined in the physical quantity closest to the instrument raw
data, and (c) the wavelength used and the resulting sensitiv-
ity of the measurement to clouds (Stubenrauch et al., 2013).
Even for collocated measurements with very high spatial
(tens of meters) and temporal resolution, Fig. 5 in Stevens
et al. (2019) and more recently Konow et al. (2021) nicely
show that the range of cloud cover estimates from active and
passive remote sensing can differ by a factor of 2.

In this study we present a different view on clouds by
quantifying the cloud-free area. The cloud-free signal is well
understood in radiative transfer relations and can be sim-
ulated with well-posed approximations. The main advan-
tage of estimating cloudiness as the complement to cloud-
free areas is that we overcome the problem of diverse and
instrument-specific hard-coded thresholds in cloud-masking
algorithms. We apply the cloud-free approach to high-
resolution satellite imagery from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER)
recorded during the field campaign EUREC4A (Elucidat-
ing the role of clouds-circulation coupling in climate) in
January–February 2020. EUREC4A was dedicated to the in-
vestigation of trade wind cumulus clouds and their interac-
tion with the large-scale environment (Bony et al., 2017;
Stevens et al., 2021). The high resolution of the ASTER
data provides the possibility to include clouds of sizes at the
decameter to hectometer scale and, equally important, in-
creases the probability to observe pixels free of any cloud
structures. With the cloud-free approach we can detect en-
hanced reflectance from anomalously humidified aerosols

and optically thin cloud areas that are undetected by tradi-
tional cloud-masking algorithms. We show the contribution
of optically thin cloud areas to the total cloud area and use
lidar measurements on board the HALO (High Altitude and
Long Range Research Aircraft) research aircraft to support
our findings.

We consider optically thin clouds to be different from hu-
midified aerosols. The marine boundary layer is a humid
layer with the constant presence of humidified sea salt and
ammonium sulfate aerosols. The mixing within the boundary
layer will almost always bring the aerosols into an environ-
ment above 80 % relative humidity such that sea salt and am-
monium sulfate deliquesce, while the humidity is above 60 %
almost everywhere, making it impossible for the aerosols to
effloresce (humidity as shown by the JOANNE dropsonde
dataset; George et al., 2021). Thus, humidified aerosols are
omnipresent and part of the cloud-free signal, and the sig-
nal that we attribute to optically thin clouds within this study
goes beyond the cloud-free signal.

The remainder of this article is organized as follows.
Section 2 describes the high-resolution ASTER satellite
dataset, the WALES (Water Vapor Lidar Experiment in
Space demonstrator) lidar cloud product, and surface wind
speed data based on the fifth-generation European Centre
for Medium-Range Weather Forecasts reanalysis (ERA5). In
Sect. 3 we show the cloud-free model setup and how we iden-
tify optically thin clouds in ASTER observations. Results on
the contribution of optically thin clouds to the total cloud
cover during EUREC4A are shown in Sect. 4, followed by a
discussion of the implications of our results in Sect. 5.

2 Observations

Within this study we exploit the potential of the high-
spatial-resolution passive remote sensing instrument ASTER
(Advanced Spaceborne Thermal Emission and Reflection
Radiometer; Yamaguchi et al., 1998) that recorded im-
ages of cloud fields east of Barbados in support of the
EUREC4A campaign. We extend the information on the typ-
ical cloud fields observed during EUREC4A with airborne
high-spectral-resolution lidar measurements to support our
analysis of clouds from an active sensor with high sensitivity
to small and optically thin clouds.

2.1 The ASTER dataset for EUREC4A

ASTER is mounted aboard Terra, a polar-orbiting satellite in
a descending Sun-synchronous orbit with an Equator cross-
ing time of 10:30 local solar time. Terra crosses the lati-
tude of Barbados and the HALO flight circle area roughly
at 14:25 UTC, while the tracks further east at about 43◦W
are observed by ASTER an hour earlier. Figure 1 shows the
location of measurements taken in the area east of Barbados
from 7 to 18◦ N and from 41 to 62◦W between 11 January
and 19 February 2020. The data from the observed swaths
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Figure 1. ASTER measurement locations during EUREC4A with 419 images (60km× 60km) recorded on 17 d between 11 January and
19 February 2020. WALES lidar measurements are available from HALO’s research flights predominantly on the circular path shown in
green from 13 flight days between 22 January and 15 February 2020.

are segmented in the form of 60× 60 km2 images, each cor-
responding to 9 s of observation time.

ASTER’s visible and near-infrared (VNIR) radiometer
pointing nadir has three bands in the range of 0.53–0.86 µm.
The radiometrically calibrated and geometrically coregis-
tered Level 1B data provide top-of-atmosphere monodirec-
tional radiances at 15 m pixel resolution at the sub-satellite
point. We use the band 3 radiance centered at 0.807 µm in
the present study to define the total cloud cover. One image
of band 3 radiances consists of 4200 pixels along-track and
4980 pixels across-track with, depending on the viewing an-
gle, about 15.4 % swath edge pixels that are neglected within
the further analysis, leaving about 17 684 552 pixels per im-
age.

In our analysis we work with reflectance instead of radi-
ance with the aim to reduce the influence of varying solar
zenith angles θ0 within the overpasses and slightly varying
extraterrestrial solar irradiance E0. The reflectance R is cal-
culated from the radiance L as

R =
πL

cos(θ0)E0
. (1)

We further draw comparisons to the ASTER cloud mask,
which is based on several bands in the VNIR (Werner et al.,
2016). The cloud mask works with thresholding tests and is
representative for traditional passive remote sensing cloud-
masking schemes such as the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) cloud detection scheme. In
more detail, the algorithm uses three tests to distinguish be-
tween bright clouds and the dark ocean from thresholds ap-
plied to radiance values in the VNIR range. An additional
test based on a band in the shortwave infrared (SWIR) is
no longer applicable as the SWIR detector broke in 2007.
Nevertheless, the three thresholding tests allow us to dis-
tinguish between confidently clear, probably clear, probably
cloudy, and confidently cloudy pixels following the method

described in Werner et al. (2016). Within the current study we
combine the flags probably cloudy and confidently cloudy if
we refer to cloudy regions according to the ASTER cloud
mask. We omit a fifth test including ASTER’s thermal band
14 (11.65 µm, 90 m pixel resolution) that is designed to de-
tect cirrus-contaminated areas and Sun glint at the expense of
a lower resolution. The observations during EUREC4A are
luckily recorded at a minimum Sun reflection angle larger
than 23◦, making Sun glint highly unlikely.

Concerning cirrus cases, we decided to stay with the high
resolution, but instead exclude images that have a high likeli-
hood to be contaminated by cirrus clouds. A test based on the
ratio of ASTER’s thermal bands 13 and 14 is implemented
following a publication by Hulley and Hook (2008). Next
to cirrus, the test unfortunately also detects low thin clouds,
the latter being the main actor of the current study, which
we therefore want to keep in the dataset. Most importantly,
we notice that our main results and statements change only
marginally, indicating that cirrus does not have a strong im-
pact on the current study. Nevertheless, we exclude images
that have a chance of more than 10 % coverage by potential
cirrus as defined by Hulley and Hook (2008), which leaves
380 images for our analysis.

2.2 WALES airborne lidar measurements

The WALES lidar instrument (Water Vapor Lidar Experi-
ment in Space demonstrator; Wirth et al., 2009) is part of
the remote sensing package that was on board the HALO re-
search aircraft during EUREC4A (Stevens et al., 2019). The
aircraft flew at about 9 km of altitude throughout of the cam-
paign and thus below the typical altitude of cirrus clouds in
the trades. We therefore do not expect any cirrus contami-
nation in the WALES dataset. The high-spectral-resolution
lidar measurements from the auxiliary channels of the in-
strument at 532 nm are well suited to investigate small and

https://doi.org/10.5194/acp-22-6879-2022 Atmos. Chem. Phys., 22, 6879–6898, 2022



6882 T. Mieslinger et al.: Optically thin clouds in the trades

optically thin clouds due to the high instrument sensitivity
to small particles ranging from aerosols to cloud droplets.
The advantage of WALES compared to spaceborne active
instruments such as the Cloud–Aerosol Lidar with Orthog-
onal Polarization (CALIOP) simply lies in the closer dis-
tance and thus higher sensitivity to low clouds as well as
the much higher horizontal sampling due to the lower air-
craft speed (0.2 versus 7 km s−1). The resulting horizontal
spatial resolution of the WALES cloud product is about 40 m
during EUREC4A, which is slightly larger but commensu-
rate with that of ASTER. CALIOP has been shown to strug-
gle in detecting small clouds with cloud tops below 1 km
(Leahy et al., 2012), while we find 29 % of clouds detected by
WALES during EUREC4A to have cloud tops below 1 km.

Within the present study we use the cloud mask and cloud
optical depth product described in Konow et al. (2021). In
the dataset, a cloud is defined as having a backscatter ra-
tio that exceeds 10. This threshold is lower compared to the
studies by Gutleben et al. (2019) and Jacob et al. (2020)
wherein the value was chosen to make the detection limit
comparable to CALIOP. The lower value used in the present
study nicely separates the highest possible signals originating
from marine aerosol and any cloud-related signal that might
include anomalously humidified aerosols and the smallest
cloud droplets. WALES uses the high-spectral-resolution li-
dar technique (HSRL; Esselborn et al., 2008) to distinguish
molecular from particle backscatter at 532 nm, which allows
for the direct measurement of the (two-way) atmospheric
transmission. The latter is proportional to the range (r) and
atmospheric-density-corrected lidar signal RM(r). To a first
approximation the optical thickness is given by

τ =−
1
2
· ln
(
RM(r)
RM(0)

)
. (2)

The complete algorithm adds several corrections and is de-
scribed in detail in Esselborn et al. (2008).

2.3 Surface wind speed estimates

For the methodology described in Sect. 3 we need surface
wind speed estimates at 10 m of height for a given ASTER
pixel. The fifth-generation European Centre for Medium-
Range Weather Forecasts reanalysis (ERA5) provides hourly
wind speed estimates on a global grid at 10 m of height
(2D surface product), which would fit our needs but showed
a significant underestimation compared to collocated drop-
sonde measurements during EUREC4A (JOANNE drop-
sonde dataset: George et al., 2021). The underestimation is
in agreement with a study by Belmonte Rivas and Stoffelen
(2019), who find a low bias in ERA5 surface winds in the
trades. Nevertheless, wind speed estimates from the ERA5
profile product (hourly, 0.25◦ grid; Hersbach et al., 2020)
agree remarkably well with dropsonde measurements.

Thus, we use ERA5 wind speeds at the lowest-altitude
pressure level of 1000 hPa, which corresponds to about

135 m above sea level on average based on the dropsonde
dataset. We derive a correction that translates from 1000 hPa
to 10 m based on a comparison of ERA5 wind speed at
1000 hPa and the 10 m wind speed from dropsonde measure-
ments (Pearson correlation coefficient 0.88). A least-squares
fit provides us with the coefficients to estimate the 10 m wind
speed by

ws= 0.92 ·wsERA5,1000 hPa+ 0.40. (3)

This wind speed is an average value representative for a
0.25◦ grid cell. We therefore use measurements at the Bar-
bados Cloud Observatory (BCO) to estimate the variance
in wind speed within 0.25◦ compared to the 15 m ASTER
grid. The BCO is located at the easternmost point of the is-
land of Barbados and has been shown to take measurements
representative of an undisturbed marine trade wind bound-
ary layer (Stevens et al., 2016). We use the standard surface
wind speed measurements from a Vaisala WXT-520 to de-
rive an estimate of the surface wind variance within 0.25◦

(27.12 km at 13◦ N), which translates to about an 80 min
sampling period. We add a Gaussian perturbation according
to the estimated wind variance of 1.63 m2 s−2 to the average
wind speed within our further analysis. The campaign aver-
age wind speed corresponding to the ASTER image locations
is 9.02 m s−1.

3 Methodology

The ASTER cloud mask provides us with a good percep-
tion of the certainly clear and certainly cloudy areas, while
we are less confident in between. We approach the interme-
diate range from the cloud-free by simulating the expected
probability distributions of cloud-free reflectance for a given
ASTER image. Knowing the theoretical cloud-free contribu-
tion to an all-sky ASTER image, we can then investigate the
cloud-related contributions that are undetected by the cloud
mask and which we attribute to optically thin clouds. 3D
cloud radiative effects are a potential complicating factor in
broken cloud conditions and we will discuss their influence
in Sect. 4.3 together with results from the WALES lidar.

First, we introduce the methodology with a brief overview
of the cloud-free retrieval setup and the necessary input in-
formation on surface wind speed and aerosol optical depth,
before we show our approach for transferring the cloud-free
information to the all-sky ASTER observations and defining
areas of optically thin clouds.

3.1 A simplified clear-sky model (SCSM)

The cloud-free radiance over ocean in the visible range de-
pends on a narrow set of parameters and can be estimated by
simplified one-dimensional radiative transfer calculations. In
Appendix A we describe the full set of equations and approx-
imations made in calculating the cloud-free signal with our
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Figure 2. Sketch illustrating the cloud-free retrieval workflow. ASTER and ERA5 input data are used to run radiative transfer simulations
with integrated AOD optimization. A Gaussian perturbation is added to the output average pixel reflectance Rmean to account for ocean
surface variability and measurement noise. On the right are the processing steps that lead to the simulated cloud-free reflectance distribution
for a single ASTER image observed on 24 January 2020 at 14:02:02 UTC.

simplified clear-sky model (SCSM). We generally assume a
single-layer atmosphere with constant air density and calcu-
late the extinction of solar radiance from the top of the atmo-
sphere to the ground and back to the sensor in space. How
the light is reflected at the surface in the view direction of the
sensor is characterized by the bidirectional reflection func-
tion, which depends on the surface wind speed and the gen-
erated ocean wave slope distribution. Here, we use the wind
speed estimates described in Sect. 2.3 as input to the Cox and
Munk parameterization to derive an average reflectance for a
given surface condition (Cox and Munk, 1954).

We further need to know the aerosol optical depth (AOD)
to estimate the extinction of direct and diffuse radiation on its
path through the atmospheric column. Although the aerosol
load does not vary much within a 60×60 km2 ASTER image,
the availability of aerosol information from measurements,
even for an image-average AOD, is very limited. Therefore,
we estimate an effective AOD in an optimization approach by
including information from the ASTER dataset. We assume
that the pixels labeled confidently clear in the ASTER cloud
mask are a good first guess for cloud-free and shall serve as
a reference for finding a suitable effective AOD such that the
simulated cloud-free values are in close agreement with the
selected ASTER pixel values.

In Fig. 2 we illustrate the cloud-free retrieval workflow.
In detail, we randomly select 20 000 pixel (0.11 % of valid
image pixels) from those defined confidently clear by the
ASTER cloud mask (see Sect. 2.1) for a given ASTER im-
age. Simulating 20 000 samples ensures a proper represen-
tation of the cloud-free distribution at a manageable com-
putational cost. For those input pixel locations we run the
cloud-free model with the corresponding sensor–Sun ge-
ometries, surface wind speed estimates, and a first guess
on the AOD. We further optimize this image AOD value
iteratively by minimizing the summed squared difference
between simulated and observed reflectances. Here, we
make use of SciPy’s implementation of the limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm (LM-BFGS)
with bounds (SciPy version 1.5.2). The resulting effective
AOD value is representative for the reflectance distribution
of a single ASTER image. From all evaluated ASTER im-
ages we find a campaign average effective AOD of 0.077
(±0.051).

From comparing simulated cloud-free reflectance distri-
butions to selected observed ones for manually checked
and seemingly cloud-free ASTER observations, we find two
things. First, the distributions agree very well in terms of
their expected value. Second, the simulated distributions are
more narrow compared to the observed ones as the Cox
and Munk parameterization returns average pixel reflectance
Rmean. We therefore introduce a variability in brightness in
a post-processing step. We calculate a kernel density esti-
mate with normal kernels characterized by a standard devia-
tion σRmean that is placed on each of the simulated reflectance
values (Rosenblatt, 1956; Parzen, 1962). We derive a suit-
able value for σRmean from comparing simulated cloud-free
reflectance distributions and corresponding ASTER images
that have at minimum 97 % confidently clear pixels in the
ASTER cloud mask. From 22 cases we calculate the aver-
age σRmean = 0.0026 from a least-squares optimization, again
using the LM-BFGS algorithm. We use a constant value
for σRmean for the whole dataset due to the lack of several
cloud-free observations for various sensor–Sun geometries.
However, the ASTER dataset is confined to a narrow set of
sensor–Sun geometries and outside possible Sun glint obser-
vations such that we assume that a constant value is sufficient
for our application.

3.2 Identifying optically thin clouds in all-sky
observations

The output from our SCSM provides us with a distribution of
cloud-free reflectance p(R|FCLEAR,B), which is the prob-
ability distribution of reflectance values R given that they
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originate from cloud-free area with the flag F = FCLEAR and
additional background conditions B. The background con-
ditions include the sensor–Sun geometry, wind speed, and
AOD and are covered by the SCSM by handling each im-
age individually. In the following we evaluate the probabil-
ities on an image basis and therefore omit the implicit con-
dition on B in the notation. Further, we use standard nota-
tion whereby | means “given that” for conditional probabili-
ties and “,” means “and” and symbolizes combined (or joint)
probabilities. For example, the SCSM output is a conditional
probability as the SCSM framework does not include any in-
formation on the general cloud-free fraction within one im-
age.

In the following, we split the observed reflectance distri-
bution of an ASTER image into the categories or flag val-
ues F ∈ {FCLEAR,FOTC,FCLOUD}. The ascending order of
the flag values indicates the associated expected increase
in reflectance. The darkest observed pixels originate form
cloud-free ocean observations. Small cloud fragments and
humidified aerosols slightly enhance the reflectance, though
they are often undetected by the cloud-masking scheme. We
characterize them as optically thin clouds (OTCs). The flag
CLOUD refers to the cloudy pixels detected by the ASTER
cloud-masking scheme (see Sect. 2.1). We know the CLOUD
part of a distribution p(R,FCLOUD) from the observation and
we can infer the CLEAR contribution from the SCSM out-
put. The all-sky reflectance distribution p(R) is built up by
the arithmetic sum of combined probability distributions of
R and the flag values F :

p(R)=
∑
Fn

p(R,Fn)

= p(R,FCLEAR)+p(R,FOTC)+p(R,FCLOUD). (4)

Each combined probability can be represented by the product
of the corresponding conditional probability and the proba-
bility of the flag value, i.e., for cloud-free

p(R,FCLEAR)= p(R|FCLEAR) ·p(FCLEAR). (5)

The probability of cloud-free p(FCLEAR) is the true cloud-
free fraction in an observed image and is challenging to esti-
mate. Note that the true cloud-free fraction is independent of
the ASTER cloud mask. If we knew the cloud-free fraction
p(FCLEAR), Eqs. (5) and (4) together would fully describe
the observed reflectance distribution p(R). In the following
we describe our approach for estimating the unknown cloud-
free fraction.

The first constraint is given by the fact that any probability
must be within the range [0,1], and thus we can formulate
for our case

p(FCLEAR|R
′′)+p(FCLOUD|R

′′)≤ 1 ∀R′′ ∈ R. (6)

We can approach the estimation of the cloud-free fraction
p(FCLEAR) from a conservative side by deriving the maxi-
mum possible p(FCLEAR) such that Eq. (6) still holds. Think-
ing visually, we scale the simulated cloud-free distribution

up until it touches the all-sky distribution p(R). At the re-
flectance R = R′ (of unknown value) where the probability
density functions (PDFs) touch, we are certain that the non-
cloudy classified reflectances are actually due to cloud-free:

∃ R′ such that p(FCLEAR|R
′)= 1−p(FCLOUD|R

′). (7)

We can solve Eqs. (7) and (6) for p(FCLEAR) (for details see
Appendix B). While being mathematically concise, the de-
scribed method faces a problem. It relies on the exact count
of measurements in only a single reflectance bin R′ and is
thus especially susceptible to measurement and model un-
certainties. We tackle this problem by extending and relaxing
the condition stated in Eq. (7). We modify this first condition
from a single value to an extended range of reflectance val-
ues. As Eq. (7) would be overdetermined for more than one
reflectance value in the presence of measurement and model
uncertainties, we demand that the equation approximates the
value 1−p(FCLOUD|R

′) for reflectivity values measured and
known to be caused by cloud-free skies.

In particular, we do this by a weighted linear regression,
minimizing the term∫ ∣∣[p(FCLEAR|R)− (1−p(FCLOUD|R))

]
·w
∣∣2dR (8)

with p(FCLEAR) as the only free variable. The regression
weight w = p(R)p(R|FCLEAR) is chosen to only consider
measured reflectance p(R) that overlaps with the range of
simulated cloud-free reflectance p(R|FCLEAR). The product
of both guarantees close agreement around the peaks of mea-
sured and simulated PDF.

The resulting estimate of p(FCLEAR) is more robust in the
presence of small measurement or model errors, but a di-
rect consequence of this approximate matching is that Eq. (6)
does not necessarily hold for all R′′ anymore. As illustrated
in Fig. 3 using dotted and dashed lines, we correct this by
clipping the resulting probabilities to the allowed range. As
this clipping effectively modifies the simulated reflectance
distribution and is thus potentially dangerous, we need to
ensure that this method indeed only compensates for small
measurement uncertainties (i.e., of the order of a single digi-
tal sensor count). We can do this by comparing the expected
value of the clear-sky reflectance p(R|FCLEAR) before and
after clipping. On average, this difference is 0.15% and even
in the worst (maximum) case, the clipping causes a shift of
0.0018 in reflectance units, which is well below one digi-
tal sensor count of about 0.004 reflectance units. Based on
this analysis, we use the more stable regression and clipping
method instead of a direct application of Eq. (7).

Further, the SCSM does not include cloud shadows on
the ocean surface, which introduce a signal at very low re-
flectances in the observed distribution. Conceptually we add
the low reflectance values originating from such shadowed
areas to the cloud-free reflectance distribution p(R,FCLEAR).

In Fig. 4 we show combined probability distributions per
flag for an ASTER observation on 31 January east of Barba-
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Figure 3. Visualization of the approach for estimating the cloud-
free fraction p(FCLEAR) by optimization. The orange dotted and
dashed lines show the processing steps leading to the filled orange
cloud-free PDF. The blue lines are the respective residuals related
to optically thin clouds and resulting from the all-sky (grey) minus
the CLEAR (orange) and minus the CLOUD PDF (dark blue; not
visible).

Figure 4. Reflectance distribution corresponding to the ASTER
observation shown in the inset recorded on 31 January 2020 at
14:08:05 UTC southeast of the HALO circle area at 11.37◦ N,
53.86◦W. The cloud-free contribution is retrieved with the
method (1) described in Sect. 3.2 and displayed by the orange curve,
while pixel reflectances identified as cloudy from the ASTER cloud-
masking algorithm are shown in dark blue. We attribute the light
blue contribution to the distribution to optically thin clouds.

dos. The inset shows the reflectance image that we translate
into the distribution using the method described above.

3.3 Robustness of optically thin cloud estimation

Our target variables are the fraction and expected reflectance
of optically thin clouds. The retrieval of cloud-free and sub-
sequent optically thin clouds in ASTER images depends on
visible cloud-free areas, which limits the evaluation of the
full ASTER EUREC4A dataset to images with less than
85 % detected cloud cover in the cloud-masking algorithm
(380 images).

Within the retrieval we have two main free parameters
which can introduce uncertainty in our target values: the sur-
face wind speed estimate and the assumed variability σRmean

of simulated average pixel reflectancesRmean. We first have a
look at the added variability. From a comparison of 22 man-
ually checked cloud-free reflectance distributions (> 97 %
confidently clear pixels) to the simulated distributions we de-
rived an average variance of 0.0026 (±0.0007). We apply the
methodology described in this section for the average value,
as well as for a 20 % lower (0.0020) and 20 % higher value
(0.0031). Similarly, we add an artificial bias of ±20 % to
the surface wind speed estimates and investigate the change
in our target values. The average wind speed in our dataset
is 9.02 m s−1 (±2.38 m s−1). The resulting deviations in our
target values, the fraction p(OTC) and expected reflectance
E(R|OTC) of optically thin clouds, that result from a bias in
σRmean and/or the surface wind speed are stated in Table 1.

The fraction of optically thin clouds p(OTC) changes only
slightly with a change in wind speed, showing an overestima-
tion for a negative wind speed bias, meaning that a small part
of the cloud-free distribution is wrongly attributed to opti-
cally thin clouds. For a positive wind speed bias the oppo-
site is the case. The low uncertainties (4.6 % and −4.9 %)
are a result of the retrieval setup including the optimization
of AOD, which can partly compensate for a bias in wind
speed. Changing the variability of simulated average pixel
reflectances σRmean can narrow (negative bias in σRmean ) and
broaden (positive bias in σRmean ) the cloud-free distribution
and thus lead to strong overestimation or underestimation of
p(OTC) as high as 13.1 % and−14.1 % (relative deviations).
Combining the highest retrieval uncertainties from the two
free parameters, the wind speed and the variability σRmean ,
we can get a deviation in the estimated fraction of optically
thin clouds of up to ±0.027 (relative: ±19.7 %).

The expected reflectance of optically thin clouds
E(R|OTC) shows a smaller sensitivity to changes in the
wind conditions and σRmean compared to the fraction of op-
tically thin clouds discussed above. An underestimation in
wind speed leads to a marginal underestimation in the ex-
pected reflectance as lower cloud-free reflectance is wrongly
attributed to optically thin clouds. In the case of an overes-
timation in wind speed, the cloud-free reflectance distribu-
tion extends to higher reflectance values, which are missing
in the estimated E(R|OTC), and thus leads to a high bias
in E(R|OTC). A more narrow (negative bias in σRmean ) or
broader (positive bias in σRmean ) cloud-free distribution can
decrease or increase the expected reflectance of optically thin
clouds up to −4.5 %. However, the combined deviation due
to possible biases in wind speed and σRmean is still within the
range of ± 0.0031 (± 5.5 %), which is smaller than the re-
flectance bin size of the original Level 1B ASTER data (least
significant bit).
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Table 1. Deviations of the fraction1p(OTC) and expected reflectance1E(R|OTC) of optically thin clouds for the two main free parameters
from the clear-sky retrieval, the surface wind speed, and the variability σRmean . The two numbers in each cell state the absolute and relative
difference to the reference case with no wind speed bias and σRmean = 0.0026, respectively.

1p(OTC) 1E(R|OTC)

Wind speed bias −1.8 m s−1 0 m s−1 1.8 m s−1
−1.8 m s−1 0 m s−1 1.8 m s−1

σRmean

0.00204 0.027/19.7 % 0.018/13.1 % 0.010/7.3 % −0.0031/−5.5 % −0.0026/−4.5 % −0.0018/−3.1 %
0.00255 0.006/4.6 % 0.000/0.0 % −0.007/−4.9 % −0.0017/−3.0 % 0.0000/0.0 % −0.0004/−0.6 %
0.00306 −0.014/−10.6 % −0.019/−14.1 % −0.024/−17.5 % −0.0001/−0.2 % 0.0003/0.5 % 0.0007/1.3 %

4 Results

We investigate 380 ASTER images for the signal from opti-
cally thin clouds (OTCs) that are undetected by the ASTER
cloud mask but can be identified with the method described
in Sect. 3. We first visualize pixels in an image that we at-
tribute to the total cloud cover including OTC pixels and
those detected in the ASTER cloud mask. We then define
a close match of OTC reflectances in ASTER images and
the signal of OTC detectable in WALES lidar data. WALES
measurements provide an independent view of the results of
the cloud cover by OTC from a different instrument technol-
ogy and complement our analysis based on ASTER images.
Finally, we show the significant contribution of optically thin
clouds to the total cloud cover.

4.1 Visualizing optically thin clouds in an ASTER image

To visualize the OTC area in an image we can define a thresh-
old in reflectance similar to common cloud-masking algo-
rithms. We construct a total cloud cover mask that includes
pixels with a probability of that pixel reflectance to be cloudy
p(FTOTAL_CLOUD|R = Rpixel)≥ 0.9 with FTOTAL_CLOUD =

FOTC ∨FCLOUD. In the particular ASTER image shown par-
tially in Fig. 5 all reflectance values greater than 0.049 sat-
isfy that condition. The cloud mask derived with the cloud-
masking algorithm by including several ASTER bands is
shown in blue in panel (a), while the total cloud cover mask
is shown by the contours in red in panel (b). The background
reflectance image in panel (b) is adjusted in its reflectance
range with the aim of enhancing the range reflectances re-
lated to OTC.

The figure visualizes how OTC is often classified in pixels
surrounding detected clouds. Detraining clouds and anoma-
lously humidified aerosols likely cause enhanced reflectances
close to thicker clouds. Possible scattering of light at the
sides of thicker clouds might additionally enhance the bright-
ness of their surrounding areas. Such surrounding halos of
optically thin clouds lead to (threshold-dependent) smoother
cloud edges, an interesting result in the context of cloud
boundaries and related fractal dimensions. Also, cloud struc-
tures tend to be more connected in the total cloud cover mask,
leading to larger cloud objects with smooth reflectance tran-

sitions to the cloud-free ocean background. While there are
numerous studies on cloud shapes, we rather focus on a sta-
tistical estimate of area coverage and the contribution of OTC
to the total cloud cover in the remainder of this work.

4.2 The OTC equivalence in lidar data

In Fig. 5 optically thin clouds are barely visible in the re-
flectance field in panel (a), suggesting that those clouds have
a very low cloud optical thickness. Due to nonlinearities in
the physical and radiative properties of small cumulus clouds
and the large influence of 3D radiative effects, plane-parallel
retrievals of microphysical properties do not work reliably
and we cannot derive cloud optical thickness from ASTER
measurements directly (Davies, 1978; Loeb et al., 1997; Vár-
nai and Marshak, 2003; Marshak et al., 2006; Stevens et al.,
2019; Kölling, 2020). However, we use the theoretical rela-
tionships that plane-parallel retrievals are based on to esti-
mate an effective cloud optical thickness that could be de-
tected by ASTER against the ocean surface background fol-
lowing the two-stream approximation by Lacis and Hansen
(1974):

A=

√
3(1− g)τ

2+
√

3(1− g)τ
≈

τ

τ + 7.7
, (9)

with the cloud albedo A, cloud optical thickness τ , and the
asymmetry parameter g = 0.85. In Fig. 6 we show the rela-
tionship stated in Eq. (9) of a plane-parallel cloud (black line)
and add uncertainties from cloud 3D effects and the back-
ground ocean signal.

The average ocean reflectance during EUREC4A was 0.04
including single cases as high as 0.08. Due to additional vari-
ability in the ocean wave reflection we expect clouds with an
albedo below 0.1 and corresponding cloud optical thickness
below 1 to dissolve in the ocean signal. For clouds with cloud
optical thickness larger than 1, 3D effects such as brighten-
ing and shadowing as well as photon loss through the cloud
sides become relevant and can easily cause a factor of 2 error
in the reflectance that spans a distribution around the plane-
parallel estimate and that we indicate by the grey shaded area
in Fig. 6 (Marshak et al., 2006; Stevens et al., 2019). Overall,
we assume that due to natural variability in the background
ocean signal and the cloud signal, clouds with optical thick-
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Figure 5. Visualization of the area corresponding to optically thin clouds. Shown are reflectances at 0.807 µm for a 1.5× 1.5 km2 selection
of an ASTER image recorded on 5 February 2020 at 14:25:15 UTC. (a) The full physical range of reflectance values ranging from 0 to 1 with
overlaid blue contours outlining the ASTER cloud mask. (b) Similar to (a) but with the color scale limited to the 10th and 90th percentile of
reflectances attributed to total cloud cover including optically thin clouds. The red contours correspond to p(FTOTAL_CLOUD|R = Rpixel)≥
0.9.

Figure 6. Plane-parallel relationship between cloud albedo and
cloud optical thickness following Lacis and Hansen (1974). The
ocean reflectance is estimated from the ASTER observations dur-
ing EUREC4A, while the uncertainty due to 3D radiative effects is
a rough estimate from the literature (Marshak et al., 2006; Stevens
et al., 2019).

ness below 1 likely do not stand out from the ocean and the
ASTER cloud mask is presumably insensitive to such opti-
cally thin clouds.

Clouds with an optical thickness below 1 are thin enough
for a lidar beam to penetrate through the cloud and provide a
reliable estimate of the cloud optical thickness. We can there-
fore make use of WALES lidar measurements for supporting
information on the abundance of optically thin clouds.

Figure 7 shows the distribution of cloud optical thickness
measurements from WALES for days with local research
flights. The peak at low cloud optical thickness values corre-
sponds to optically thin clouds that the lidar beam manages
to penetrate. A cloud with optical thickness of about 2.5 re-

Table 2. Cloud cover estimates during EUREC4A from 380
ASTER satellite observations (60× 60 km2) at 15 m resolution on
17 d and from WALES lidar measurements recoded within 13 re-
search flights (days) at about 40 m resolution in January and Febru-
ary 2020.

Optically Detected* Total
thin cloud cloud cloud

cover/% cover/% cover/%

ASTER (mean) 14.1 28.5 42.6
ASTER (median) 13.3 16.7 34.9
WALES (mean) 14.3 19.3 33.7

* “Detected” refers to the ASTER cloud mask and, in the case of WALES
data, to clouds with cloud optical thickness ≥ 1.

duces the lidar signal below the cloud to more than 1/100,
and the method to derive the optical thickness still works.
At night the range of retrieved optical thickness increases to
about 3.5 due to a better signal-to-noise ratio above clouds
without scattered sunlight. In thicker clouds the signal van-
ishes in the system noise. We aggregate all measurements
from optically opaque and thick clouds in one bin as we have
no information on the actual cloud optical thickness.

In WALES measurements we associate optically thin
clouds with an optical thickness below 1. The campaign av-
erage cloud optical thickness of OTC is 0.37, and the median
is 0.31. Optically thin clouds have on average a cloud-top
height at 1.3 km of altitude (median 1.0 km). We further use
the WALES measurements to derive a fractional cloud cover
in time for optically thin clouds and compare the results to
the optically thin cloud cover from ASTER in the following
section.
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Figure 7. Cloud optical thickness distribution from WALES li-
dar measurements for all days with local research flights during
EUREC4A resulting in 92 h of data. Panel (a) shows the frequency
distribution of all days, while panel (b) additionally shows the cu-
mulative distributions for individual days. The days are sorted by
their increasing average cloud optical thickness that we associate
with optically thin clouds (yellow to dark green). The split x axis
visualizes the limited information on thick clouds that are optically
opaque to the lidar.

4.3 The contribution of OTC to the total cloud cover

From analyzing 380 ASTER images during EUREC4A we
find an average total cloud cover of 42.6 %, combined of
28.5 % from detected clouds and 14.1 % from optically thin
clouds (see Table 2). Based on the cloud-free retrieval un-
certainties derived in Sect. 3.3 we estimate the uncertainty in
ASTER optically thin cloud cover to be within the range of
±2.7 %. In Table 2 we state the respective numbers derived
from WALES measurements. We explicitly note that a direct
comparison is not reasonable as the two instruments and ap-
proaches show optically thin cloud areas from two different
perspectives. However, what we can say is that WALES lidar
measurements indicate high fractional coverage by optically
thin clouds, similar to what we find from ASTER images.

In Sect. 4.1 we mentioned the possible influence of scat-
tering at cloud edges, which can illuminate areas surrounding
thicker clouds. Such 3D effects would influence our results
based on ASTER data and lead to an overestimation of OTC-
related cloud cover. As WALES is less affected by the 3D
scattering at cloud edges but shows a higher fraction of op-
tically thin clouds (42.4 %) relative to ASTER (33.1 %), the
ASTER analysis does not seem to be unduly influenced by
3D radiative effects.

Our results based on ASTER and WALES measurements
are lower compared to an analysis of optically thin marine
clouds from CALIOP measurements by Leahy et al. (2012).
The authors find a fraction of optically thin clouds in the
trades to be as high as 84 %. From WALES measurements

Figure 8. Change in optically thin cloud cover with total cloud
cover. The blue markers correspond to values derived from 380
ASTER images (60× 60 m2), with the dark blue line following
along the median values. The green markers correspond to daily
averaged cloud cover estimates from WALES lidar measurements.
The grey diagonal line shows the maximum possible contribution
of optically thin clouds to the total cloud cover.

we derived an OTC fraction of 42.4 % for cloudy profiles
with cloud optical thickness < 1. If we include clouds with
cloud optical thickness up to about 3, as is done in the study
by Leahy et al. (2012), the OTC fraction in WALES data in-
creases to 74 %. Estimates based on CALIOP data are likely
to overestimate the OTC fraction due to the lower sensor res-
olution of 90 m footprints every 335 m. Leahy et al. (2012)
derive a possible overestimation of OTC fraction of up to
25 % in the trades due to partially cloudy CALIOP footprints,
which supports our findings in the current study of a lower
but still significant contribution of optically thin clouds to
the total cloud cover.

We further notice that the area covered by optically thin
clouds increases with detected cloud cover for low total cloud
cover as shown in Fig. 8 and similarly stated in Leahy et al.
(2012). The positive correlation up to 0.4 total cloud cover
might be due to a combination of two features. First, opti-
cally thin cloud areas are often found surrounding detected
clouds (see also Fig. 5). This idea is supported in a study
by Koren et al. (2007), who find enhanced reflectances in
solar irradiance measurements before and after an identi-
fied cloud originating from humidified aerosols and/or un-
resolved cloud fragments.

The second ingredient to the proposed positive correlation
is the cloud field structure. Trade wind cumulus cloud fields
at low cloud cover typically correspond to sugar or gravel
type structures as described by Stevens et al. (2020), con-
sisting of many small clouds with enough space in between
that can be partly filled with undetected optically thin clouds.
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More clouds and a more cloud boundary therefore lead to
more optically thin cloud area up to a point at which this
relationship saturates at about 0.4 total cloud cover. The sat-
uration might be due to larger clouds or cloud structures be-
ing surrounded by pronounced cloud-free regions. A recent
study by Schulz et al. (2021) identifies the so-called flower
and fish cloud patterns of having characteristic cloud-free ar-
eas between clouds. By constraint, the positive correlation
turns negative above 0.7 total cloud cover as the cloud-free,
OTC, and detected cloud cover always add up to 1, and high-
cloud-mask cloud cover situations leave little space for opti-
cally thin clouds.

We conclude that optically thin clouds cover large parts of
the trades, leading to a higher total cloud cover than assumed
so far from passive satellite observations.

4.4 The cloud reflectance–cloud cover relationship in
ASTER observations

Current climate models typically have a narrow range of
cloud optical thickness that might affect model perturbation
experiments due to the nonlinearity of cloud optical thickness
and its albedo. Especially in low-cloud regions such as the
trades, climate models underestimate the cloud cover while
overestimating its average reflectance, a problem often called
the “too few, too bright” low-cloud problem (Nam et al.,
2012; Klein et al., 2013). While observations show a posi-
tive correlation of cloud cover and cloud reflectance, models
show a reverse sign (Konsta et al., 2016).

We investigate the cloud cover–cloud reflectance relation-
ship in Figs. 9 and 10. Figure 9a shows in blue curves
the change in all-sky reflectance distribution with increas-
ing cloud cover as defined by the ASTER cloud mask, while
the red lines similarly show the change with increasing total
cloud cover. We show two representative cloud cover ranges:
a low range from 0.1 to 0.3 and a high range from 0.5 to
0.7. With increasing cloud cover, the reflectance distribu-
tions shift to higher values, meaning that the overall image
is brighter (dashed versus solid lines). As expected, the re-
flectance distributions as defined by our method (red lines,
including optically thin clouds) peak at lower reflectance
values compared to their ASTER cloud-mask counterparts,
meaning that the total cloud cover area is less bright on aver-
age when optically thin clouds are included.

Panel (b) shows an interesting new facet to the difference
in total and cloud-mask cloudy areas. The distributions show
how the total cloud reflectance relative to the total cloud
area in the image depends on cloud cover. The comparison
of low- and high-cloud-cover cases reveals that clouds are
brighter with increasing cloud cover (dashed versus solid
lines), which is in agreement with our perception of larger,
deeper, and brighter clouds being present in high-cloud-cover
situations. The change in cloud brightness with cloud cover
is less pronounced if the total cloud cover is considered (red

Figure 9. Combined probability density functions (PDFs) of (a) all-
sky reflectance from ASTER p(R|CC), binned according to the to-
tal (red) and cloud-mask (blue) cloud cover (CC). We define two
representative cloud cover ranges: low CC (0.1 to 0.3) and high
CC (0.5 to 0.7). Panel (b) shows the conditional probability of to-
tal cloud reflectance p(R|FTOTAL, CC), given that they are within
the range of low or high CC. Compared to (a), the distributions
in panel (b) do not include the cloud-free contributions at low re-
flectance.

lines, including optically thin clouds) compared to the cloud-
mask-only case (blue lines).

We further investigate the expected cloud reflectance in
relation to derived cloud cover values for all 380 ASTER im-
ages in Fig. 10. Both cloud-mask and total cloud cover ex-
hibit positive correlations with respective cloud reflectance
values, in agreement with findings in Konsta et al. (2016).
We derive a campaign average cloud reflectance from to-
tal cloud cover of 0.15, with contributions from the ASTER
cloud-mask clouds (average: 0.21) and optically thin clouds
(average: 0.06), which agrees quite well with an average
trade wind cumulus cloud reflectance of 0.15 derived from
a combination of POLDER (Polarization and Directionality
of the Earth’s Reflectances) and CALIOP measurements in
the study by Konsta et al. (2016). Based on the cloud-free
retrieval uncertainty stated in Sect. 3.3, the uncertainty in ex-
pected reflectance of optically thin clouds is as low as 0.0031
and does not influence our results and conclusions drawn
here.

The positive correlation in Fig. 10 for total cloud cover
agrees well with the corresponding Fig. 6a in Konsta et al.
(2016). As mentioned before, climate models show a reverse
sign of this correlation together with a general underestima-
tion of cloud cover and simultaneous overestimation of cloud
reflectance. Next to the model intrinsic mechanisms leading
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Figure 10. Expected cloud reflectance corresponding to the
ASTER cloud mask (blue) and the derived total cloud cover (red)
from 380 ASTER images. The median cloud reflectances are given
by the lines, and the dataset averages are visualized by the+marker
and the respectively colored tick labels. The frequency distributions
of cloud cover and cloud reflectance are shown on the top and right,
respectively.

to clouds that are too few but too bright, biases might be
partially due to tuning the model based on traditional cloud
masks that overestimate the cloud reflectance, especially in
the frequent low-cloud-cover situations.

5 Discussion

Most passive satellite imagers operate at resolutions of the
order of hectometer to kilometer range and derive cloud
products at 1 km scale or coarser. Undetected optically thin
clouds, as well as small clouds detected at the ASTER 15 m
scale, are unresolved and lead to partially cloudy pixel mea-
surements. Several studies in the past have investigated the
resolution effect in trade cumulus cloud cover estimated from
passive satellite imagers. Zhao and Di Girolamo (2006) find a
threefold to fivefold overestimation of cloud cover in MODIS
and Multi-angle Imaging SpectroRadiometer (MISR) im-
ages, respectively, compared to ASTER observations during
the RICO (Rain in shallow Cumulus over the Ocean) cam-
paign. For the same dataset, a study by Dey et al. (2008) sug-
gests a fourfold overestimation of cloud cover if the ASTER
cloud mask is degraded from 15 m to 1 km while cloud de-
tection thresholds are kept constant. However, degrading the
resolution can also lead to an underestimation of cloud cover
estimates in cloud-masking schemes if the resulting pixel
radiances fall below fixed radiance thresholds. In an early
study by Wielicki and Parker (1992) the authors estimate that
roughly one-third of the cloud cover detected in 30 m Land-
sat images showing cumulus clouds would not be detected
by certain cloud-masking schemes, which is in line with our
study results.

An underestimation of cloud cover due to undetected op-
tically thin clouds and an overestimation due to a reduced
spatial resolution have compensating tendencies. However,
one effect that does not cancel out in typical passive satellite
cloud products is the influence of optically thin clouds in par-
tially cloudy pixels that are classified to be clear. Pure cloud-
free observations are crucial for aerosol retrieval and cloud
radiative effect (CRE) estimates. With decreasing sensor res-
olution the probability for cloud-free observations decreases
as well. We therefore investigate implications that undetected
optically thin clouds can have on CRE estimates, as well as
our inferences of cloud–aerosol interactions in the trades, de-
spite their low cloud albedo.

5.1 Implication for CRE estimates

In temperature perturbation studies, cloud feedback defines
how clouds adjust to a perturbation in surface temperature
and whether this change amplifies or dampens the initial tem-
perature perturbation. As such, it is tied to the cloud radiative
effect (CRE), which is the difference in all-sky and cloud-
free radiative flux at the top of the atmosphere, in the initial
and in the perturbed climate.

CRE= FALL−FCLEAR (10)

In the trades, climate models show a less negative CRE in re-
sponse to warming, indicative of a positive cloud feedback
(Zelinka et al., 2020). Observational constraints based on
satellite data at coarse resolution might be insensitive to sub-
pixel-scale clouds and consequently lack a robust cloud-free
signal. From our analysis we can estimate an upper bound
on the error in CRE that might arise from a cloud-free signal
that is contaminated by undetected optically thin clouds.

If we assume that the pixel reflectances corresponding
to optically thin clouds from the present analysis are fully
mixed into the cloud-free signal, we would overestimate the
cloud-free reflectance and consequently underestimate the
CRE. We derive a relative bias 1CRE per image from the
differences in all-sky LALL, cloud-free LCLEAR, and “con-
taminated” cloud-free LCLEAR+OTC expected radiance val-
ues.

1CRE=
CRECLEAR+OTC−CRECLEAR

CRECLEAR
(11)

=
LALL−LCLEAR+OTC

LALL−LCLEAR
− 1 (12)

Note that we use the simulated cloud-free LCLEAR radiances
as those do not contain the low radiances from cloud shadows
on the ocean surface, which would cause a slight underesti-
mation of the cloud-free radiance.

In principle, a mono-directional radiance L can be con-
verted to a radiative flux F as is done by Clouds and the
Earth’s Radiant Energy System (CERES) radiative flux prod-
ucts with the following equation (Loeb et al., 2003; Su et al.,
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2015):

F =
πL(θs,θv,8)
f (θs,θv,8)

, (13)

with the Sun θs and sensor view θv zenith angles, the az-
imuthal difference 8, and the anisotropic factor f . The
anisotropic factor is challenging to estimate and no suitable
values are available for ASTER observations. However, if we
assume isotropic scattering of cumulus cloud fields (f = 1)
we can translate the CRE bias into an effective radiative flux
at 0.807 µm.

The mean CRE bias from the ASTER dataset amounts to
−7.5 %, which roughly translates to about −2.2 W m−2 (at
0.807 µm). The order of magnitude is significant and high-
lights the importance of an improved representation of opti-
cally thin clouds in future studies.

5.2 Optically thin clouds in the aerosol–cloud interaction
context

First, we would like to revisit and confirm our distinction of
aerosols and optically thin clouds from the Introduction to
this article. We consider humidified aerosols to be part of
the cloud-free signal. As both ASTER and WALES data sug-
gest a total cloud cover well below 100 % (insensitive to the
exact cloud threshold in WALES) we are confident that the
described signal of optically thin clouds can only be due to
anomalously humidified aerosols and cloud droplets. How-
ever, we do see a possibility that fossil clouds, in the form of
lingering pockets of humidified aerosol, might be classified
as optically thin clouds, too. We think the WALES analy-
sis and the magnitude of the observed optical depths (from
WALES) exclude this as a major contributor. Even if this in-
ference was incorrect, we believe it would be more correct
to think of cloud fossils as optically thin (and fading) clouds
than as an aerosol signal, particularly since such signals will
not scale with aerosol amount. We therefore discuss possible
implications of undetected optically thin clouds for aerosol–
cloud interaction studies in the following.

Aerosol–cloud interaction studies represent a topic in it-
self, and we will not go into great detail but rather want to
show where optically thin clouds might need to be consid-
ered in these studies. One largely debated issue is the positive
correlation of AOD and cloud cover as an indirect aerosol
effect. The underlying principle is that hydrophilic aerosols
can serve as cloud condensation nuclei and increase the cloud
droplet number concentration. More aerosols might therefore
reduce the precipitation formation rate and increase the cloud
liquid water content and cloud lifetime (Albrecht, 1989).
Whether this so-called cloud lifetime effect actually leads to
increased cloud cover is largely debated (Loeb and Manalo-
Smith, 2005; Kaufman et al., 2005; Stevens and Feingold,
2009; Gryspeerdt et al., 2016).

Some modeling studies suggest negligible or equally small
enhancing or decreasing influences of aerosols on the cloud

cover (Xue and Feingold, 2006; Quaas et al., 2008; Seifert
et al., 2015), while others suggest a considerable effect
(Quaas et al., 2009). Observational studies, on the other hand,
mostly rely on coarse satellite observations and show defi-
ciencies in the accuracy of aerosol and cloud retrievals as
discussed in Quaas et al. (2020). The positive correlation in
optically thin cloud cover and detected clouds in the current
study suggests that some of the proposed sensitivity of cloud
cover to AOD might reflect a high bias in cloud-free esti-
mates that is interpreted as high AOD. In agreement with
our perception, an observational study by Gryspeerdt et al.
(2016) estimates meteorological covariations to account for
80 % of the often proposed AOD–cloud cover relationship
with the additional note on shallow cumulus regions having
a very weak relationship.

Independent of the cloud lifetime effect, a positive pertur-
bation in aerosols increases the cloud droplet number con-
centration and thus the cloud brightness, which is commonly
referred to as the Twomey effect (Twomey, 1959; Quaas
et al., 2020). Increasing the brightness also increases the
probability of undetected and optically thin clouds identified
in the current study to cross the detection threshold of com-
mon cloud-masking schemes. We therefore speculate that the
Twomey effect indirectly leads to positive AOD–cloud cover
relationships found in previous studies. It might be interest-
ing to investigate the AOD–cloud cover relationship based on
a more comprehensive definition of total cloud cover includ-
ing optically thin clouds.

6 Conclusions

Climate models and large eddy simulations commonly un-
derestimate the cloud cover, while estimates from observa-
tions largely disagree on the cloud cover in the trades. We
use a new method to estimate the total cloud cover from the
cloud-free perspective by simulating the cloud-free contri-
bution to an observed all-sky reflectance distribution with a
simplified radiative transfer model. The present study shows
the high abundance of optically thin clouds in the trade
wind region that are undetected by common cloud-masking
schemes.

We analyzed 380 ASTER satellite images recorded in sup-
port of the EUREC4A field campaign in January and Febru-
ary 2020 and find that about 33 % of the total cloud cover
is due to undetected optically thin clouds. A comparison to
independent WALES lidar measurements supports our find-
ings.

We find that pixels attributed to optically thin clouds are
often found surrounding brighter cloud objects that can be
detected in cloud-masking schemes. Accounting for opti-
cally thin clouds significantly reduces the average cloud re-
flectance (−0.06, i.e., 30 %) as optically thin clouds are
systematically less reflective than clouds detected in cloud-
masking schemes. Our analysis suggests that the known un-
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derestimation of trade wind cloud cover and simultaneous
overestimation of cloud brightness in models are even higher
than assumed so far.

We identify two implications from our study. First, if
mixed into the cloud-free signal, the enhanced radiance from
optically thin cloud areas leads to a high bias in cloud-free
estimates over ocean and hence a low bias of −7.5 % in the
estimated cloud radiative effect of trade wind cumulus cloud
fields.

And second, the positive correlation in optically thin cloud
cover and detected clouds for low cloud cover suggests that
some of the sensitivity of cloud cover to AOD found in
aerosol–cloud interaction studies might reflect a high bias in
cloud-free estimates that is interpreted as high AOD. In ad-
dition, increasing cloud brightness with higher AOD likely
increases the probability of undetected and optically thin
clouds identified in the current study to cross the detection
threshold of common cloud-masking schemes. These effects
could contribute to an unrealistically strong relationship be-
tween satellite-retrieved values of AOD and cloud cover, and
they suggest that not accounting for optically thin clouds
could overstate the strength of aerosol–cloud interactions.

Appendix A: Components and equations to the
simplified clear-sky model (SCSM)

Knowing the extraterrestrial irradianceE0 emitted by the Sun
and entering the atmosphere, the radiative transfer equation
describes the radiance at any location (x, y, z) and for any
direction defined by a zenith angle θ and an azimuthal angle
φ. In a cloud-free atmosphere with small solar and viewing
zenith angles we can use 1D plane-parallel radiative transfer
to estimate the radiance observable at the top of the atmo-
sphere (TOA).

The cloud-free radiance L reaching a sensor in space is a
combination of three main components that we illustrate in
Fig. A1a: (1) the direct sunray reflected at the ocean surface
L↓direct and (2) the hemispheric diffuse radiance reflected at
the surface towards the sensor L↓diffuse. Together they are
combined in the component L↑sfc of light that touched the
surface. On the way from the surface to the sensor L↑sfc ex-
periences attenuation following Lambert–Beer and depend-
ing on the atmospheric optical thickness τ and the cosine
of the sensor or view zenith angle vz. In addition, there is
component (3), the diffuse light from single-scattering events
happening within the atmosphere L↑atm.

L= L↑sfc+L↑atm (A1)

= exp
(
−τ

vz

)[
L↓direct+L↓diffuse

]
+L↑atm (A2)

In the following, we describe the derivation ofL based on the
vector s pointing from an observed location on the ground to
the Sun and the view vector v pointing to the sensor (see

Fig. A1b).

s =

 sx
sy
sz

 , v =

 vx
vy
vz

 (A3)

s and v are unit vectors, meaning that they satisfy the condi-
tion

| s |=| v |= 1. (A4)

Working with vectors instead of the traditional approach with
angles simplifies several of the following calculations next to
a significant enhancement in computational speed. For exam-
ple, the previously mentioned view zenith angle vz is simply
the third component of the view vector v.

A1 Direct radiance and the bidirectional reflection
function (BRDF)

L↓direct is defined by the sensor–Sun geometry with the co-
sine of the Sun zenith angle sz and the corresponding aerosol
extinction along the path from the top of the atmosphere
(TOA) to the surface where the reflection is characterized by
the bidirectional reflection function (BRDF) ρ.

L↓direct = E0 exp
(
−τ

sz

)
ρ (s,v,ws,ni,nt) (A5)

How a sunray is reflected at the ocean surface mostly de-
pends on the surface wind speed “ws” and the generated
wave slopes. The earliest and still widely used surface slope
parameterization goes back to photographic measurements
by Cox and Munk (1954). Their parameterization is embed-
ded in a 1D Gaussian surface slope distribution p, combined
with Fresnel reflection coefficients for unpolarized light r
and a prefactor handling the sensor–Sun geometry with the
Sun s and view v vectors. For the general equation for ρ we
follow Stamnes et al. (2017).

ρ(s,v,ws,ni,nt)=
1

4vzsz(nz)4 ·p(s,v,ws)

· r(s,v,ni,nt) (A6)

In the first factor, nz is the third component of the wave facet
normal n with

n=

 nx
ny
nz

= s+ v

| s+ v |
. (A7)

The second factor in Eq. (A6) gives the probability of a spec-
ular reflection p and the third the intensity of the reflected
light r . In detail, we assume a 1D Gaussian surface slope
probability distribution p with

p(s,v,ws)=
1

πσ (ws)2 exp
(
−

1− n2
z

n2
z · σ (ws)2

)
, (A8)
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Figure A1. Sketches of the simple clear-sky model. (a) The main radiance components and (b) the geometry setup based on the vectors s

pointing into the Sun, v pointing to the sensor, and the wave facet normal n.

and the variance σ 2 of the surface slope distribution. The Cox
and Munk parameterization provides an empirical estimate
for σ 2 depending on the 10 m surface wind speed ws (Cox
and Munk, 1954):

σ (ws)2
= 0.003+ 0.00512 ·ws. (A9)

The intensity of the reflected light r is given by the unpolar-
ized Fresnel reflection coefficient:

r(s,v,ni,nt)=
1
2

[(
µi− nrµt

µi+ nrµt

)2

+

(
µt− nrµi

µt+ nrµi

)2
]
,

(A10)

with nr = nt
ni

, the ratio of the refractive index of the transmit-
ted medium nt = 1.333 (ocean), and the refractive index of
the incoming medium ni = 1 (atmosphere). Further, µi is the
cosine of the incidence angle and is given by the dot product
of the Sun and wave facet normal vector.

µi = s ·n (A11)

µt is the cosine of the transmission angle, which follows di-
rectly from Snell’s law by transformation.

µt =

√
1−

1−µ2
i

n2
r

(A12)

A2 Diffuse downward radiance and hemispheric BRDF

The hemispheric diffuse radiance L↓diffuse includes sunrays
that are scattered within the atmosphere on their way to the
ground and get reflected at the pixel of interest in the direc-
tion of the sensor view. Thus, we integrate the integration
vector x over the hemisphere �.

L↓diffuse =

∫
�

ρ(x,v,ws) ·Lin(τ,x)dx (A13)

Assuming that the incoming diffuse downward radiance
Lin(τ,x) is isotropic, we can pull Lin out of the integral and

derive a hemispheric BRDF by integrating Eq. (A6) over �.
Here, we make use of the Gauss–Legendre quadrature to ap-
proximate the integral based on only a few nodes in the µ
space while keeping high accuracy.

The diffuse downward irradiance, on the other hand, is dif-
ficult to approximate. Thus, we sample from a pre-calculated
lookup table of diffuse downward irradiance for a range of
Sun zenith angles and aerosol optical depths. The lookup ta-
ble was calculated with the full radiative transfer model li-
bRadtran for a sensor at the surface pointing up nadir and
observing at ASTER’s band 3 central wavelength of 807 nm
(Mayer and Kylling, 2005; Emde et al., 2016). The input
file defines a US Standard Atmosphere with default molecu-
lar absorption calculated with the representative wavelength
parameterization REPTRAN (medium) with the absorption
based on the HITRAN 2004 catalog. The aerosol species is
set to be maritime tropical as defined by the OPAC pack-
age, and finally, the radiative transfer equation is solved with
DISORT. We further use the bivariate spline approximation
provided within the Python package SciPy (version 1.5.2) to
interpolate over the output lookup table.

A3 Diffuse upward radiance from single-scattering
events

The atmospheric diffuse scattering L↑atm describes sunrays
that are reflected within the atmosphere in the view direction
of the sensor. We only consider single-scattering events as
the aerosol optical depth over tropical ocean is mostly below
or of the order of 0.1 and the probability of further scatter-
ing events is unlikely. The extinction within an atmospheric
column is generally given by the integral over the extinc-
tion coefficients σext,i in single atmospheric layers depend-
ing on their density (temperature) and particles. We simplify
the problem by integrating over τ instead of the atmospheric
path lengths with dl = dz

cos(θ ) of a respective zenith angle θ .
Correspondingly, we can write the integral over all single-
scattering (aerosol) events along an atmospheric path l from
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the surface to TOA.

L↑atm = E0

TOA∫
sfc

exp

− 1
sz

TOA∫
zscat

σext(z)dz

 (A14)

· exp

− 1
vz

TOA∫
zscat

σext(z)dz

 (A15)

· σscat2HG dzscat (A16)

The extinction is accounted for in the exponential functions
with the scattering event happening at the height zscat. The
product of the scattering coefficient σscat and the scattering
phase function 2HG describes the scattering efficiency.

In our atmospheric column of constant density, σscat is in-
dependent of height and the integral

∫ TOA
sfc σscat l dl simplifies

to
∫ τ

0 dτ ′ with τ being the optical depth of the atmospheric
column. In more detail, we can rewrite the relation and in-
clude the single-scattering albedo ω0,

σscat · dl = ω0σext ·
dz
µv
=
ω0

µv
dτ, (A17)

and further include those in Eq. (A14):

L↑atm =2HG
ω0

µv

τ∫
0

exp
(
−τ ′

µo

)
exp

(
−τ ′

µv

)
dτ ′. (A18)

The Henyey–Greenstein phase function 2HG is an approxi-
mation for the scattering phase function and only depends on
the asymmetry parameter g, which is the mean cosine of the
scattering angle calculated by integrating over the scattering
phase function (Henyey and Greenstein, 1941).

2HG =
1

4π
1− g2

1+ g2− 2g(µscat)3/2 (A19)

For ω0 and g we use constant values taken from the libRad-
tran calculations with the input setup described in Sect. A2.

Appendix B: Derivation of the cloud-free fraction

Based on Eqs. (6) and (7) we could directly solve for the
cloud-free fraction p(FCLEAR).

We start with the cloud-free model output and apply
Bayes’ theorem.

p(FCLEAR|R)=
p(R|FCLEAR)

p(R)
·p(FCLEAR) (B1)

We can add this information to Eq. (7),

1−p(FCLOUD|R
′)=

p(R = R′|FCLEAR)
p(R = R′)

·p(FCLEAR), (B2)

and solve for p(FCLEAR).

p(FCLEAR)=
p(R = R′)

p(R = R′|FCLEAR)
(1−p(FCLOUD|R

′)) (B3)

We further add the information from Eqs. (B1) and (B3) to
our constraint stated in Eq. (6).

1≥p(FCLEAR|R)+p(FCLOUD|R)
(B4)

1≥
p(R|FCLEAR)

p(R)
·

p(R = R′)
p(R = R′|FCLEAR)

· (1−p(FCLOUD|R
′)) (B5)

+p(FCLOUD|R)
(B6)

Rearranging the equation, we get

p(R = R′′)
p(R = R′′|FCLEAR)

(1−p(FCLOUD|R
′′)), (B7)

≥
p(R = R′)

p(R = R′|FCLEAR)
(1−p(FCLOUD|R

′)) ∀R′′ ∈ R,

(B8)

and consequently we can find R′ by searching for the mini-
mum.

R′ = argminR′′
(

p(R = R′′)
p(R = R′′|FCLEAR)

−(1−p(FCLOUD|R
′′))
)

(B9)

Knowing the R′ we could in principle derive the cloud-free
fraction p(FCLEAR) from Eq. (B3). However, Eq. (B9) be-
comes unstable when p(FCLOUD|R

′′) is close to 1, which
corresponds to cloudy parts, while we are interested in the
clear part of the distribution. We therefore apply the modi-
fied method described in Sect. 3.2 in the current study.

Code and data availability. In addition to the publicly available
ASTER L1B data from NASA we provide processed data for
the ASTER images recorded during EUREC4A and displayed in
Fig. 1. NetCDF files containing physical quantities from bands in
the VNIR and thermal range, latitude and longitude information, a
cloud mask, and cloud-top height estimates are available on Zen-
odo (https://doi.org/10.5281/zenodo.6577775; Mieslinger, 2022a).
ASTER image tiles were calculated and are stored on AERIS (https:
//observations.ipsl.fr/aeris/eurec4a/Leaflet/index.html, last access:
25 May 2022), providing a user-friendly browsing experience with
the possibility to zoom in on the rich structures of beautiful trade
cumulus cloud fields. The cloud information from WALES is pub-
lished on AERIS (https://doi.org/10.25326/216; Wirth, 2022) and
further described in Konow et al. (2021).

Code for processing the original ASTER L1B data is avail-
able in the Python package typhon version 0.8.0, subpackage
cloudmask (https://doi.org/10.5281/zenodo.5786028; Lemke et al.,
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2022). The basic code for the cloud-free radiative transfer simula-
tions is available at https://doi.org/10.5281/zenodo.4842675 (Mies-
linger, 2021). The main data resulting from the applied method-
ology and forming the basis for all interpretations are available at
https://doi.org/10.5281/zenodo.5824818 (Mieslinger, 2022b).
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