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Abstract. We use optimal estimation (OE) to quantify methane fluxes based on total column CH4 data from
the Greenhouse Gases Observing Satellite (GOSAT) and the GEOS-Chem global chemistry transport model.
We then project these fluxes to emissions by sector at 1◦ resolution and then to each country using a new
Bayesian algorithm that accounts for prior and posterior uncertainties in the methane emissions. These estimates
are intended as a pilot dataset for the global stock take in support of the Paris Agreement. However, differ-
ences between the emissions reported here and widely used bottom-up inventories should be used as a starting
point for further research because of potential systematic errors of these satellite-based emissions estimates.
We find that agricultural and waste emissions are ∼ 263± 24 Tg CH4 yr−1, anthropogenic fossil emissions are
82± 12 Tg CH4 yr−1, and natural wetland/aquatic emissions are 180± 10 Tg CH4 yr−1. These estimates are con-
sistent with previous inversions based on GOSAT data and the GEOS-Chem model. In addition, anthropogenic
fossil estimates are consistent with those reported to the United Nations Framework Convention on Climate
Change (80.4 Tg CH4 yr−1 for 2019). Alternative priors can be easily tested with our new Bayesian approach
(also known as prior swapping) to determine their impact on posterior emissions estimates. We use this approach
by swapping to priors that include much larger aquatic emissions and fossil emissions (based on isotopic evi-
dence) and find little impact on our posterior fluxes. This indicates that these alternative inventories are inconsis-
tent with our remote sensing estimates and also that the posteriors reported here are due to the observing and flux
inversion system and not uncertainties in the prior inventories. We find that total emissions for approximately 57
countries can be resolved with this observing system based on the degrees-of-freedom for signal metric (DOFS
> 1.0) that can be calculated with our Bayesian flux estimation approach. Below a DOFS of 0.5, estimates for
country total emissions are more weighted to our choice of prior inventories. The top five emitting countries
(Brazil, China, India, Russia, USA) emit about half of the global anthropogenic budget, similar to our choice of
prior emissions but with the posterior emissions shifted towards the agricultural sector and less towards fossil
emissions, consistent with our global posterior results. Our results suggest remote-sensing-based estimates of
methane emissions can be substantially different (although within uncertainty) than bottom-up inventories, iso-
topic evidence, or estimates based on sparse in situ data, indicating a need for further studies reconciling these
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different approaches for quantifying the methane budget. Higher-resolution fluxes calculated from upcoming
satellite or aircraft data such as the Tropospheric Monitoring Instrument (TROPOMI) and those in formulation
such as the Copernicus CO2M, MethaneSat, or Carbon Mapper can be incorporated into our Bayesian estimation
framework for the purpose of reducing uncertainty and improving the spatial resolution and sectoral attribution
of subsequent methane emissions estimates.

1 Introduction

1.1 Background on atmospheric methane

Atmospheric methane (CH4) is the second-most important
anthropogenic greenhouse gas behind carbon dioxide (CO2)
and a contributor to poor surface air quality as it is an ozone
precursor. Atmospheric methane has increased by nearly a
factor of 3 over its pre-industrial values, largely due to an-
thropogenic emissions (e.g., Dlugokencky et al., 2011; Ciais
et al., 2013, and references therein). Over the last 2 decades,
methane has been increasing but for reasons that are still be-
ing assessed, although recent studies provide evidence that
it is due to a combination of fossil and agricultural emis-
sions with some role due to variations in the atmospheric
sink of methane (e.g., Schaefer et al., 2016; Worden et al.,
2017; Turner et al., 2019; Zhang et al., 2021). However, it
is unclear which regions and which sectors are the cause of
changes in atmospheric methane over the last 20 years be-
cause of substantial uncertainties in all components of the
methane budget (Kirschke et al., 2013; Janssens-Maenhout
et al., 2019; Sanuois et al., 2020) from the global (Table 1)
to local scale (Sect. 2). Methane has a relatively short life-
time of approximately 9 years, making it an attractive target
for emissions reduction as a decline in emissions will have a
rapid impact on net radiative forcing and corresponding at-
mospheric heating (e.g., Shindell et al., 2009; Ganesan et al.,
2019; Turner et al., 2019). Hence there is significant interest
in accurately quantifying methane emissions for identifying
those emissions that can be efficiently reduced.

1.2 Global stock take

As part of the effort to reduce methane emissions and corre-
sponding risk related to changes in climate, the Paris Agree-
ment resulted in a framework by which countries provide
an account of their emissions. A global stock take (GST) to
track progress in emission reductions is conducted at 5-year
intervals, beginning in 2023. To support the first GST, parties
to the Paris Agreement are compiling inventories of GHG
emissions and removals to inform their progress. Invento-
ries are generally estimated using bottom-up approaches,
in which emissions estimates are generally based on activ-
ity data and emissions factors. These bottom-up methods
can provide precise and accurate emissions estimates when
the activity data are well quantified and emissions factors
are well understood. However, substantial uncertainties exist

Table 1. Prior emissions and uncertainties are generated from vari-
ous inventories or models (Sect. 2.3). Posterior emissions represent
projection of satellite-based fluxes back to emissions while account-
ing for the prior emissions distribution and covariances (Sect. 2.2).
We conservatively assume uncertainties are 100 % correlated, so
that the total reported prior and posterior uncertainties are the sum
of the individual uncertainties.

Sector Prior Posterior

(Tg CH4 yr−1) (Tg CH4 yr−1)

Wetlands/aquatic 199.8± 52.8 179.8± 10.0
Seeps 32.0± 6.2 22.5± 3.8
Livestock 87.6± 17.2 146.1± 10.3
Rice 36.9± 12.9 67.6± 6.8
Fires 15.1± 2.5 13.3± 2.2
Waste 57.7± 11.9 49.6± 7.1
Oil 41.6± 9.7 28.8± 4.7
Gas 24.5± 4.7 28.0± 3.6
Coal 31.4± 9.8 25.3± 3.9

Total 526± 128 561± 52

for emissions in many parts of the globe where these mea-
surements are not rigorously made or tested across multiple
sites. Even regions and emissions that are thought to be well
measured can have significant differences between indepen-
dent assessments and official reports; for example, Alvarez
et al. (2018) demonstrate that 2015 oil and gas emissions are
underestimated by the United States Environmental Protec-
tion Agency by about 60 %. These differences, if they are
representative of emissions across the globe, indicate a need
for an independent assessment of emissions and their uncer-
tainties to better evaluate whether reported changes in emis-
sions are in fact occurring or whether changes in the nat-
ural carbon cycle through wetlands and the methane sink
are substantively affecting the atmospheric methane burden.
Top-down estimates of methane emissions using atmospheric
measurements provide an independent way of testing these
inventories as observed methane concentrations are com-
pared against expected concentrations that result from re-
ported inventories. The objective of this paper is to demon-
strate the use of satellite observations for testing and updat-
ing emissions by sector for use with the GST. While these
top-down atmospheric methane budgets cannot replace the
detailed activity reports used to generate bottom-up inven-
tories, they can be combined with those bottom-up products
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to produce a more complete and transparent assessment of
progress toward greenhouse gas emission reduction targets.
They can also help determine whether the natural part of the
methane budget is becoming a strong component of atmo-
spheric methane increases. As discussed next, an important
component of this assessment is the evaluation of uncertain-
ties from both bottom-up inventories and in top-down ap-
proaches.

1.3 Overview of bottom-up emissions and uncertainties

Bottom-up uncertainties are calculated for the methane bud-
get by comparison between independent methods or sources,
evaluating multiple estimates from a single source, compar-
ison between models and remote sensing data, and expert
opinion. For example, Saunois et al. (2020) use a range of
results from different studies to quantify uncertainty in the
different sectors of the methane budget. However, these un-
certainties are likely underestimated, as they suggest that to-
tal anthropogenic agricultural emissions, for example, are
known to 10 % or better, whereas comparisons between dif-
ferent global inventories (e.g., Janssens-Maenhout et al.,
2019) suggest a much larger range of estimates for the global
totals (e.g., 129 to 219 Tg CH4 yr−1 for agriculture and 129
to 164 Tg CH4 yr−1 for fossil emissions). Uncertainties in na-
tional or regional total emissions are even more challeng-
ing to estimate, such that expert opinion is used: Janssens-
Maenhout et al. (2019) suggest that Annex 1 (developed)
countries have approximately 15 % uncertainty in reported
fossil emissions, whereas Annex 2 countries have ∼ 30 %
uncertainties, essentially asserting that less informed inven-
tories have double the uncertainty of better informed emis-
sions. Wetland emissions, which comprise ∼ 30 %–45 % of
the methane budget, also show significant differences of up to
40 % across wetland models (e.g., Melton et al., 2013; Poul-
ter et al., 2017; Schwietzke et al., 2016), depending on re-
gion. An example of how these uncertainties are projected
to the total methane budget for each of the main sectors is
presented in Table 1 using the prior emissions and their un-
certainties for the analysis discussed in this paper (Sect. 2.3).

However, recent studies challenge even these estimates
of emission uncertainties; emissions for lakes and rivers
could be as large as or larger than wetlands, with corre-
spondingly larger uncertainties of 50 % or more (Saunois
et al., 2020; Rosentreter et al., 2021). Primarily because of
this extra term from lakes and rivers, the total budget from
bottom-up inventories discussed in Saunois et al. (2020)
ranges from 583 to 861 Tg CH4 yr−1. Contrasting with this
much larger-than-expected biogenic source is isotopic evi-
dence that suggests fossil emissions are also much larger than
expected, 160± 40 Tg CH4 yr−1 (Schwietzke et al., 2016).
These larger-than-expected values from aquatic and fossil
sources are challenging to reconcile with existing bottom-
up estimates and with global estimates from top-down es-
timates, which are primarily constrained by the methane

Figure 1. Schematic describing how observed atmospheric con-
centration data are used with a global chemistry transport model
to quantify methane fluxes.

sink. For example, the methane sink must approximately
balance total methane emissions, leading to total emissions
of 560± 60 Tg CH4 yr−1 (e.g., Prather et al., 2012). Conse-
quently, much larger values in either aquatic emissions or
fossil emissions must be balanced by much lower emissions
in other sectors, indicating that either our knowledge of the
processes controlling different components of the methane
sink is fundamentally wrong or that one or both of these in-
flated emissions are incorrect, that is, well outside calculated
uncertainties.

1.4 Use of remote sensing for quantifying emissions
and uncertainties

Top-down approaches using in situ or remote sensing mea-
surements of atmospheric methane can be used to evaluate
and update bottom-up emissions (or inventories) by first pro-
jecting bottom-up emissions through a chemical transport
model to atmospheric concentrations and then comparing
these modeled concentrations to observations (e.g., Franken-
berg et al., 2005; Bergamaschi et al., 2013; Qu et al., 2021,
and references therein). An inverse method is utilized to up-
date the net flux (or total emissions and surface sinks) within
a chosen grid scale based on the mismatch between mod-
eled and observed concentrations (Fig. 1). When the top-
down quantified flux can be uniquely associated with a single
source, these tests of bottom-up inventories provide informa-
tion about biases in the reported emission (e.g., Duren et al.,
2019; Varon et al., 2019; Pandey et al., 2019), which can
be used to either update the emissions or provide evidence
that additional research is needed to improve the process
knowledge used to construct the emissions. However, top-
down fluxes have other uncertainties that must be accounted
for when comparing to bottom-up inventories; these include
(1) systematic and random uncertainties in the data, (2) sys-
tematic errors in the model that relates observed methane
concentrations to fluxes, and (3) smoothing error related to
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uncertainty in the prior emissions combined with the spatial
resolution of the top-down estimate.

Top-down approaches can typically quantify the precision
of the fluxes as it is directly related to the uncertainties of
the observations and the prior knowledge of the flux distri-
bution. However, the accuracy of the top-down fluxes related
to data and model is more challenging to quantify, and re-
cent results suggest that these errors can be substantive. For
example, Qu et al. (2021) demonstrate that systematic differ-
ences between total column CH4 concentrations from Tropo-
spheric Monitoring Instrument (TROPOMI) and Greenhouse
Gases Observing Satellite (GOSAT) data, likely related to
poorly characterized surface albedo, can lead to substantial
differences when used to constrain top-down fluxes. In ad-
dition, there is almost a 100 % difference between estimated
livestock emissions in Brazil when comparing TROPOMI-
versus GOSAT-based fluxes, which Qu et al. (2021) attribute
to biases in the TROPOMI total column data due to surface
albedo variations over Brazil.

Errors in model transport and chemistry are another signif-
icant uncertainty when inverting concentration data to fluxes.
For example, McNorton et al. (2020) find that model errors
in atmospheric concentrations that result from atmospheric
transport can be as large as or larger than uncertainties in the
data, leading to almost a doubling of the uncertainty in top-
down fluxes. Schuh et al. (2019) demonstrate that transport
errors can result in biases of up to 1.7 Pg of carbon in top-
down CO2 fluxes, about the same as the global net yearly
carbon sink. Jiang et al. (2013) also demonstrate that errors in
convection can affect surface emissions estimates of CO by
up to 40 % in regions of strong convection such as South-East
Asia. Unfortunately, challenges remain in quantifying how
model uncertainties project to flux uncertainty. One approach
is to use an ensemble of models for the inversion in which the
same data and constraints are used for the inverse model; a
challenge here is to ensure that the inversion approach used
with each model is consistent. For example, the Global Car-
bon Project (Saunois et al., 2020) uses an ensemble of model
inversions using different datasets to evaluate flux inversion
errors; however, as shown in Sect. 2.2, this approach does not
attempt to attribute differences in results to either the model,
data, or spatial resolution, and hence it can be challenging to
identify approaches to reducing overall uncertainty. Another
approach is to use different datasets but the same model and
inversion setup to quantify emissions, as different sensitivi-
ties of the model to the different observed concentrations are
affected by model error (Jiang et al., 2017; Yin et al., 2021).
A third approach is to mitigate model and transport error. For
example, Jiang et al. (2015) assimilate observed CO concen-
trations over ocean regions before inverting for continental
source emissions to ensure that model–data mismatch over
the ocean does not affect the emissions estimates. As dis-
cussed in the next section, our flux inversion jointly estimates
OH (the primary methane sink) with methane emissions to
mitigate the impact of OH variability on CH4 emissions es-

timates. A latitudinal correction is also applied to both data
and model to ensure that errors in stratospheric chemistry
and transport have less of an impact on the estimated fluxes.
However, the residual systematic errors from model trans-
port and chemistry are not characterized, although there is
no evidence to suspect significant systematic errors based on
comparing posterior concentrations to independent data, as
discussed in the next section. Nonetheless, as stated in the
abstract, differences between top-down emissions reported
in this paper with those from bottom-up efforts should be
considered a starting point for new investigation as opposed
to confirmation or falsification of the top-down or bottom-up
estimate.

Smoothing error is also a significant but challenging com-
ponent of the emissions error budget to quantify for top-down
estimates. This uncertainty depends on the spatial and tem-
poral resolution of the top-down estimate combined with the
prior uncertainty of the emissions (Rodgers, 2000). The spa-
tial resolution of the estimate in turn depends on the sam-
pling, pixel size, measurement uncertainty, and lifetime of
the gas. As typical top-down estimates do not quantify the
terms needed to quantify smoothing error, smoothing error is
not usually represented in top-down error budgets. However,
this term can be the largest of the error sources, as discussed
further in Sect. 2.1, especially if the a priori uncertainties
for emissions are poorly characterized. Our Bayesian, opti-
mal estimation approach (Rodgers, 2000) described here al-
lows us to quantify smoothing error for the sectoral emissions
presented here (Sect. 2.2 and 2.3). Furthermore, by report-
ing the averaging kernel matrices and fluxes, we can remove
smoothing error in comparisons between top-down fluxes
and bottom-up models (Ma et al., 2021) or greatly reduce
the smoothing error component in comparisons between two
different instruments (e.g., Cusworth et al., 2021b).

Related to the problem of calculating smoothing error is
that many top-down fluxes are projected back to emissions
by assuming that all emissions within a grid can be uniformly
scaled by the ratio of posterior to prior flux (e.g., Maasakkers
et al., 2019, and references therein). This method, while
computationally expedient, diverts from the Bayesian as-
sumptions used with top-down inversions, potentially adding
poorly characterized uncertainty and potentially unphysical
biases (Cusworth et al., 2021b) to the emissions estimates,
because it does not account for the structure of the errors
or their correlations and instead assumes that different types
of emissions within a grid cell (e.g., fires, fossil, livestock,
wetlands) are 100 % correlated. Shen et al. (2021) address
this problem by weighting the posterior emissions estimate
by their prior uncertainty. Our approach used here is derived
in Cusworth et al. (2021b) and summarized in Sect. 2.2 and
addresses this problem by accounting for the structure of the
errors, following a Bayesian methodology from the start of
the problem (calculation of fluxes using observations) to the
end (calculation of emissions from fluxes).
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2 Approach for quantifying “top-down” emissions
using satellite data

Our emissions quantification approach is described in this
section. First optimal estimation is used (Sect. 2.1) to quan-
tify methane fluxes on a 2× 2.5 grid using the GEOS-Chem
global chemistry transport model with GOSAT satellite data
for the year 2019. For our purposes of emissions attribution,
this first inverse step must report the prior as well as pos-
terior flux error covariance (or Hessian) matrices (Zhang et
al., 2021; Qu et al., 2021). The posterior error covariance
(or Hessian) can be computationally challenging to calculate
and so is typically not reported with variational or adjoint-
based top-down estimates, and instead ensemble approaches
are used to approximate flux uncertainties (e.g., Janadarnan
et al., 2020). However, in our approach, this first step uses
analytic Jacobians derived from the GEOS-Chem model that
relate emissions to concentrations and hence has been tradi-
tionally computationally expensive as compared to ensem-
ble or adjoint-based inversion methods but does allow for a
straightforward calculation of the Hessian. The second step
(Sect. 2.2) uses the prior fluxes, the corresponding constraint
and Hessian covariance matrices, and priors and prior covari-
ances for emissions by sector to linearly project the fluxes to
emissions by sector at 1◦ resolution while accounting for the
prior uncertainty distributions, correlations in the posterior
covariance, and varying spatial resolution. This step can use
different prior emissions and prior covariances from that of
the flux inversion as the information from the flux inversion
is preserved (Rodgers and Connor, 2003). Critical to this sec-
ond step is that prior uncertainties and their correlations are
provided for the emissions for the desired sector and spatial
resolution (Sect. 2.3).

2.1 Top-down flux estimates

We estimate top-down fluxes based on the approach and
results described in Maasakkers et al. (2021), Zhang et
al. (2021), and Qu et al. (2021), and the reader is referred
to these papers for a more extensive description of the ap-
proach and validation of these methane fluxes. To summa-
rize, we optimize a state vector that consists of (1) 2019
methane emissions from all sectors on a global 2◦× 2.5◦

grid (4020 elements) and (2) tropospheric OH concentrations
in the Northern Hemisphere and Southern Hemisphere (two
elements). We assume the seasonal variations of methane
emissions to be correct in the prior inventory and apply the
posterior/prior ratio equally to all months in each grid cell.
The optimization of annual hemispheric OH concentrations
avoids propagating biases in the simulated interhemispheric
OH gradient to the solution for methane emissions (Zhang
et al., 2021). We solve this Bayesian problem analytically,
which yields a best posterior estimate for the state vector, the
posterior error covariance matrix, and the averaging kernel
matrix. Unlike in Zhang et al. (2021) and Qu et al. (2021),

wetland fluxes are not treated as separate elements in the state
vector, as we found that introduced uncertainties into the sec-
toral attribution because the wetland flux areas used in Qu et
al. (2021) could overlap the different regions (Table 2) used
in our approach to mitigate computational complexity.

The inverse problem is regularized by prior estimates for
the state vector, which are compiled from multiple bottom-
up studies. The EDGAR v4.3.2 global emission inventory
for 2012 (Janssens-Maenhout et al., 2019) is used as a de-
fault for anthropogenic emissions, superseded in the US
by Maasakkers et al. (2016) and for the fossil fuel ex-
ploitation sector by Scarpelli et al. (2020). Seasonalities of
emissions from manure management and rice cultivation
are specified following Maasakkers et al. (2016) and Zhang
et al. (2016), respectively. Monthly wetland emissions in
2019 are from the WetCHARTS v1.3.1 18-member ensemble
mean (Bloom et al., 2017). Note that, in Zhang et al. (2021)
and Qu et al. (2021), wetland fluxes are not included in the
gridded fluxes but are instead estimated separately so as to
better compare them to bottom-up models (Ma et al., 2021).
In the top-down flux inversion used here, wetland fluxes
are included with the other emissions in each grid, as we
found that partitioning fluxes back to their sectoral contri-
bution (next section) was challenging due to gridding errors
when wetland fluxes are separately considered in the cost
function. Daily global emissions from open fires are taken
from GFEDv4s (van der Werf et al., 2017). Global geolog-
ical emissions for the flux inversion are set to be 2 Tg yr−1

based on Hmiel et al. (2020) with the spatial distribution
from Etiope et al. (2019). Termite emissions are from Fung
et al. (1991). The prior estimates for the hemispheric tropo-
spheric OH concentrations are based on a GEOS-Chem full
chemistry simulation (Wecht et al., 2014).

The GEOS-Chem chemical transport model (CTM)
v12.5.0 (https://doi.org/10.5281/zenodo.3403111; The Inter-
national GEOS-Chem User Community, 2019) is used as the
forward model for the inversion. The simulation is driven
by MERRA-2 meteorological fields (Gelaro et al., 2017)
from the NASA Global Modeling and Assimilation Office
(GMAO) with 2◦× 2.5◦ horizontal resolution and 47 verti-
cal layers (∼ 30 layers in the troposphere). We excluded ob-
servations poleward of 60◦, where low Sun angles and ex-
tensive cloud cover make the retrieval more difficult, and
stratospheric CTM bias can affect the inversion (Turner et
al., 2015).

The posterior estimate as defined by Bayesian inference
assuming Gaussian error statistics is obtained by minimizing
the cost function J (x):

J (x)= (x− xA)TS−1
A (x− xA)

+ γ (y−Kx)TS−1
y (y−Kx) , (1)

where K is the Jacobian matrix describing the sensitivity of
the observations to the state vector as simulated by GEOS-
Chem. The vector xA is the prior flux estimate. SA is the
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a priori covariance matrix for this inversion and is a diag-
onal matrix that is constructed by assuming 50 % prior er-
ror standard deviation for emissions on the 2◦× 2.5◦ grid
and 10 % prior error standard deviation for hemispheric an-
nual mean OH concentrations. Sy is the observational error
covariance matrix. Diagonal elements of Sy are calculated
using the residual error method (Heald et al., 2004) as the
variance of the residual difference between observations and
the GEOS-Chem prior simulation on the 2◦× 2.5◦ grid after
subtracting the mean difference. We use a regularization pa-
rameter γ (Hansen, 1999; Maasakkers et al., 2019; Lu et al.,
2021) to account for the off-diagonal structure missing in Sy .
Based on the corner of the L curve (Hansen, 1999) and the
expected chi-squared distribution of the cost function (Lu et
al., 2021), we choose γ = 0.5 (Qu et al., 2021).

Assuming that the problem for quantifying methane fluxes
from observed concentrations is linear, or only moder-
ately nonlinear, then the fluxes, x̂, can be related to ob-
served methane concentrations using the following equation
(Rodgers, 2000):

x̂ = xA+ ŜKT S−1
y (y−KxA) . (2)

The posterior error covariance matrix Ŝ is given by

Ŝ= (KT S−1
y K+S−1

A )−1. (3)

This top-down flux inversion also provides the spatial resolu-
tion matrix or averaging kernel matrix A, which defines the
sensitivity of the solution to the true state:

A= I− ŜS−1
A . (4)

Summing the diagonal elements of the averaging kernel for
a given region provides the degrees of freedom for signal
(or DOFS), a useful metric for the sensitivity of the observ-
ing system to the underlying fluxes as it describes the sen-
sitivity of the estimated fluxes to the actual distribution of
fluxes (Rodgers, 2000). Figure 2b shows the averaging ker-
nel sensitivities (or diagonal elements of the averaging kernel
matrix) of the inversions. The averaging kernel sensitivities
are highest over major anthropogenic source regions, where
the methane emissions are largest and the observations have
a good ability to determine the posterior solution indepen-
dently of the prior estimate. The inversion has ∼ 402 DOFS
for methane emissions, meaning that it contains 402 inde-
pendent pieces of information on the distribution of methane
emissions. Although our flux inversion is based on the top-
down setup described in Qu et al. (2021), this value is larger
than the DOFS reported in Qu et al. (2021) because that esti-
mate separates wetlands from non-wetlands in the inversion
scheme, whereas the flux estimate used here does not. The
posterior/prior ratios for the 2019 inversion in Fig. 2a show
consistent upward adjustments in the southern–central US,
Venezuela, and the Middle East and downward adjustments
in the western US and North China Plain, consistent with Qu
et al. (2021) and Zhang et al. (2021).

If the matrix SA in Eqs. (1) and (3) represents the actual a
priori uncertainty corresponding to the a priori xA, then the
posterior error covariance describes the total error for the es-
timate (Rodgers, 2000). In practice, the matrix SA represents
a “constraint matrix” that is either a best guess for uncertain-
ties of fluxes (e.g., assumed here to be 50 %) within a grid
and/or is constructed to ensure the inversion converges, typi-
cally because systematic errors in the data and/or the model
or numerical instabilities make it challenging to find a global
minimum in the cost function as shown in Eq. (1) (Bowman
et al., 2006). In the case where SA represents a constraint
matrix, the total posterior error becomes

Stot = (I−A)Strue
A (I−A)T

+ ŜKTS−1
y KŜ, (5)

where Strue
A is the a priori uncertainties for the estimate. In

practice, Strue
A can be challenging to calculate due to lack of

information about the emissions or fluxes and may not even
be invertible because of correlations within the matrix. How-
ever, we use a set of informed inventories and models to gen-
erate a prior covariance for methane emissions as described
in the next section. As discussed in Worden et al. (2004), the
smoothing error in the estimate is the first term on the right-
hand side, and the error due to measurement uncertainty is
the second/middle term. While the variables in Eq. (5) are
representative here of the top-down flux estimate, the formu-
lation can be generalized for any estimate to support inter-
pretation of the results. For example, in a system with perfect
resolution the averaging kernel matrix becomes the identity
matrix and the smoothing error becomes 0, hence the rea-
son that improving the spatial resolution reduces the smooth-
ing error, an important goal which can be realized with the
increased observation density of upcoming satellites such
as CO2M, Methane-Sat, and Carbon Mapper. Equation (5)
also demonstrates that poorly characterized prior uncertain-
ties in one region affect an estimate in another regions be-
cause of cross-terms in the averaging kernel matrix A. This
aspect of top-down inversions must therefore be accounted
for when interpreting the seasonality and magnitude of top-
down fluxes (e.g., Ma et al., 2021).

Systematic errors can be included by adding the following
term: ŜKT

sysS−1
sysKT

sysŜ, where Ksys is the Jacobian that de-
scribes the sensitivity of the modeled concentrations to dif-
ferent parameters in the model that relate emissions to con-
centrations and Ssys is a matrix containing uncertainties for
the model or data parameters. In this paper we do not ex-
plicitly calculate systematic errors for the fluxes. We are cur-
rently studying how to empirically evaluate systematic er-
rors in the flux estimate, following the approach in Jiang
et al. (2015) for use in quantifying uncertainties in methane
fluxes and emissions.

Evaluation of top-down flux estimates

The combination of model (GEOS-Chem) and data
(GOSAT) used to quantify methane fluxes has been evaluated

Atmos. Chem. Phys., 22, 6811–6841, 2022 https://doi.org/10.5194/acp-22-6811-2022



J. R. Worden et al.: The 2019 methane budget and uncertainties 6817

Figure 2. (a) Corrections to prior estimates of methane emissions on the 2◦× 2.5◦ grid and corresponding averaging kernel sensitivities.
(b) The averaging kernel sensitivities are the diagonal elements of the averaging kernel matrix for the inversion. The trace of the averaging
kernel matrix defines the degrees of freedom for signal (DOFS) for the inversion, shown in the inset.

previously by comparing prior and posterior model concen-
trations to independent data. Maasakkers et al. (2019) find
that posterior methane concentrations have correlations (R2)
of 0.76, 0.81, and 0.91 with data from surface sites, aircraft,
and total column data, respectively. These correlations are
essentially the same as those for the GEOS-Chem prior con-
centrations, likely because these measurements are taken in
background regions away from sources. These comparisons
between posterior concentrations with independent datasets
demonstrate that the GEOS-Chem model with GOSAT data
has skill in quantifying atmospheric methane concentrations
and that assimilating GOSAT data into GEOS-Chem for the
purpose of quantifying fluxes is at least as skillful as using
prior information when looking at background regions away
from emissions sources. Changes in fluxes based on GOSAT
data are therefore driven entirely by differences in satellite-
observed concentrations over source regions.

2.2 Projecting fluxes to emissions and their
uncertainties

The derivation that describes how to project top-down fluxes
back to emissions by sector at arbitrary resolution is de-
scribed in Cusworth et al. (2021b) and summarized in this
section.

For policy relevance and CH4 budget quantification, we
wish to optimize emissions (z) using atmospheric observa-
tions; i.e., we want to compute the explicit posterior repre-
sentation without re-simulation of an atmospheric transport
model. The relationship we use between emissions z and
fluxes x is simple aggregation (the total flux within a grid
box is the sum of emissions) and can be represented by ma-
trix M:

x =Mz. (6)

The solution for projecting fluxes back to emissions takes the
form (Cusworth et al., 2021b)

ẑ= zA+ ẐMT Ŝ−1[(
I− ŜS−1

A

)
(xA−MzA)+

(
x̂− xA

)]
, (7)

where ẑ is the posterior emissions vector with error covari-
ance (Ẑ) and I is the identity matrix. The posterior emission
error covariance matrix Ẑ is calculated explicitly given M,
SA, Ŝ, and the prior emissions error covariance matrix ZA:

Ẑ=
(

MT
(

Ŝ−1
− S−1

A

)
M+ Z−1

A

)−1

=

(
MT (KT S−1

y K)M+ Z−1
A

)−1
. (8)

This solution depends on the top-down flux inversion pro-
viding the inversion characterization products (i.e., the flux
prior xA and flux constraint matrix SA and the flux Hes-
sian Ŝ). Note that here we must use the Hessian as described
in Eq. (3), not the total posterior covariance as described
in Eq. (5) (Cusworth et al., 2021b). To quantify the set of
sectoral emissions ẑ, corresponding prior emissions zA and
covariance matrix ZA must be provided on the desired spa-
tial grid; in this study we choose a 1◦ long–lat grid. Note
that the emissions and their prior uncertainties used to gen-
erate prior fluxes for the top-down flux inversion (xA) can
be different from those used to project the top-down fluxes
back to sectoral emissions for linear or moderately nonlin-
ear problems (e.g., Rodgers and Connor, 2003; Bowman et
al., 2006), as the information from the measurement is pre-
served in the KT S−1

y K term which is contained in Ŝ−1
−S−1

A
as shown in Eq. (8). This means that MzA can be differ-
ent from xA and their corresponding covariances, as long as
the inversion problem is linear or only moderately nonlin-
ear (Bowman et al., 2006; Cusworth et al., 2021b). However,
the interpretation of fluxes will be different if these matrices
(SA and ZA) are inconsistent (e.g., Shen et al., 2021), that is,
SA 6=MZAMT.

The uncertainty for any given element of the state vector
z is generally given by the square root of the diagonal ele-
ment of the total error covariance and includes the effects of
the limited spatial resolution of the top-down flux and how
this projects uncertainties from one grid box and sector into
another grid box and sector, as discussed in the previous sec-
tion. For example, the estimate for the emissions for some
emissions sector “i” at some long–lat grid box “j” is given
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by (Rodgers and Connor, 2003; Worden et al., 2004)

ẑij = z
ij
a +Aij,ij

(
zij − z

ij
a

)
+

∑
x,y

Aij,xy
(
zxy− z

xy
a
)
+ δij , (9)

where the italicized variables in Eq. (9) are scalar represen-
tations of the variables in Eqs. (7) and (8), the index “x” rep-
resents all sectors, the index “y” represents all other lat–long
elements, and matrices and vectors are boldfaced. Note that
the paired indices x and y exclude the paired indices i and j .
The variable “zxy” represents the “true” value corresponding
to the estimate “ẑij ”, and the variable δij represents the er-
ror due to random noise (we exclude systematic error here to
simplify the math, but Eq. (9) can be expanded to include this
term). Of course we do not actually know the true value and
its errors, but Eq. (9) allows us to represent them in a manner
than allows us to calculate their statistics. The total error for
ẑij , equivalent to an element of the total error in Eq. (8), is

E
∣∣∣∣ẑij − zxy∣∣∣∣= (1−Aij )Zija (1−Aij )T

+

∑
x,y

Aij,xyZ
xy
a A

T
ij,xy + S

n
ij , (10)

where the E|| || term describes the expectation operator for
calculating the statistics of the quantity of interest (Bowman
et al., 2006). The diagonal elements of the total error covari-
ance therefore include the effect of the limited spatial res-
olution through the second term on the right-hand side of
Eq. (10), which projects prior uncertainties from one region
and sector (x,y) into the region and sector of interest (i,j ).
The last term is the covariance due to measurement noise. As
the spatial resolution increases, the averaging kernel matrix
converges towards the identity matrix; in this limit the first
and second terms on the right-hand side converge to 0 such
that the total error is due to noise (last term in Eq. 10) and any
residual systematic errors (not shown in Eq. 10 but discussed
in the previous section). Improving the spatial resolution of
the methane emissions estimate therefore improves the accu-
racy.

In order to calculate the uncertainty for an aggregation of
the elements of the state vector z (e.g., the coal sector for a
country), instead of an individual element, we must sum the
desired set of elements [zM,n], where the index “M” repre-
sents the sector (e.g. coal), and the index “n” represents all
latitude and longitudes that make up a country. The uncer-
tainty (squared) for this term is then:

σ 2
M,N = hnẐMnhTn , (11)

where hn is a vector that is the same length as [zMn], with
values of one in each element and ẐMn is the square sub-
matrix of the covariance matrix Z corresponding to [zmn]
(e.g. the country and emission sector of interest). The sub-
script is summed over all lat/lons “n” for country “N”.

2.3 Generation of prior emissions, covariances, and
uncertainties

In order to project fluxes from a top-down inversion back to
emissions using the approach described in Sect. 2.2, sectoral
emissions and their covariances, or zA and ZA, at the desired
spatial resolution are required. One challenge with the flux
to emissions projection is that the a priori covariance matrix
ZA must be inverted (Eq. 8), which can be computationally
expensive because this matrix can be quite large because the
number of sectors and spatial resolution of the emissions in-
crease and because correlations within the matrix (next sec-
tion) make it challenging to invert. In order to reduce compu-
tational expense for our chosen spatial resolution of 1◦ reso-
lution (prior to calculating country-wide emissions), we dis-
aggregate global emissions into eight regions (Table 2) cho-
sen by regions with peaks in the inversion sensitivity to the
underlying fluxes as shown by the averaging kernel diago-
nals in Fig. 2. The different categories are shown in Table 2
for each region and by sector along with the provenance (or
paper reference) in the second column. Cross-terms in the
averaging kernel (Eqs. 5, 9, and 10) matrix demonstrate that
the change in emissions in one region affect the estimated
emissions in another. Subdividing the fluxes into these eight
regions therefore introduces an extra error term in the total
error covariance for each region; however, this extra error is
automatically included in the total error covariance for each
region as demonstrated by Eq. (10).

Our prior emission distribution and magnitude represent,
by necessity, a set of ad hoc choices that are informed by
the scientific literature and experience of the co-authors of
this paper in developing top-down flux estimates. For exam-
ple, our chosen resolution for reporting sectoral emissions is
1◦, which represents a compromise between computational
expense while minimizing representation errors when quan-
tifying emissions for each country, which in turn is needed
for these estimates to inform the global stock take. Future re-
search will evaluate whether higher-resolution emissions es-
timates by sector can be quantified given the computational
expense of inverting Eq. (8); our motivation for reporting top-
down estimates at a higher resolution is because many of the
inventories are at these scales (e.g., 0.1◦) and also to bet-
ter utilize high-resolution emissions estimates now available
by aircraft data (e.g., Duren et al., 2019) and from upcoming
satellites such as Carbon Mapper (e.g., Cusworth et al., 2019;
2021a).

We make the following choices for which sectoral emis-
sion type is represented: wastewater is not explicitly esti-
mated, as these emissions are spatially correlated with land-
fill emissions based on inspection of EDGAR inventories
when projected to 1◦ resolution. The waste category should
therefore be interpreted as a combination of landfill and
wastewater. We also did not consider biofuels or termites for
this estimate as they represent a small component of the bud-
get. For these reasons, the biofuel and termite components
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of the methane budget will slightly bias our other sectoral
estimates by 15–30 Tg CH4 yr−1 based on bottom-up esti-
mates reported in Saunois et al. (2020). On the other hand,
emissions for seeps are included, as bottom-up inventories
suggest these could be as large as 30 Tg CH4 yr−1; however,
given the co-location of seep emissions with oil and coal
(Fig. 3), care must be taken in interpreting our results for
seep emissions estimates. Our prior emissions for livestock
are from a NASA Carbon Monitoring System product (Wolf
et al., 2017) and are found from post-processing to be too
low by ∼ 25 % due to not including a scaling factor in the
overall emissions. Nonetheless, we keep the current set of
(low) prior livestock emissions of ∼ 89 Tg CH4 yr−1 as they
demonstrate (along with the analysis in Sect. 3.3, Fig. 6) that
our total results are largely independent of the choice of pri-
ors because of the sensitivity of the fluxes to the underly-
ing emissions as shown in Fig. 2b. A future version of these
estimates will have an updated prior for livestock emissions
and will include termites, wastewater, and biofuels. Although
there can be many emissions within a single grid box, uncer-
tainty can still decrease for each emission type as shown in
Eq. (8), which shows that these correlations are quantified in
the posterior covariance.

Uncertainty reduction of a particular emission therefore
depends on the magnitude of the emission and its uncer-
tainty, its correlations with nearby emissions of the same type
(next section), and the magnitude and uncertainty of emis-
sions within the same grid box.

Prior wetland emissions are based on an ensemble of pro-
cess models from the WETCHARTS system and the Global
Carbon Project (Bloom et al., 2017; Poulter et al., 2017; Ma
et al., 2021) and include the effects of lakes and rivers. A
future version of this system will separately estimate these
other sectors of the methane budget if further analysis using
other satellite data (e.g., TROPOMI) shows that they can be
distinguished from these other sectors.

2.3.1 Covariance generation

Generating representative prior covariances is challenging
as there are few global studies that allow for accurate rep-
resentation of uncertainties for emissions across the globe
and their correlations that are based on data and/or well-
calibrated models. This problem exists not just for methane
emissions, but also for other inverse problems where there
are few data representative of the quantities of interest (e.g.,
with remote sensing; Worden et al., 2004). For this reason we
need to make another set of ad hoc choices that is based on
prior research in order to generate the covariances for each
sector. We therefore use the following approach: first we as-
sume that the total anthropogenic emissions (by sector) in
Annex 1 countries have an uncertainty of 15 %. For exam-
ple, we assume that the total error for the North American
coal sector is ∼ 15 %, and so on for each anthropogenic sec-
tor. Similarly, the total error for Annex 2 regions is 30 %.

These targeted uncertainties are listed underneath the label
for each region in Table 2. These uncertainties are reported
in Janssens-Maenhout et al. (2019) and are based on “expert
opinion”, as quantifying uncertainties over a country or re-
gion using bottom-up approaches can be challenging. Total
regional uncertainty for a specific sector is calculated using
Eq. (11). In order for sectoral emissions at 1◦ resolution to
project to a total regional uncertainty of 15 %, there must be
significant uncertainty of any given emission within that 1◦

grid cell. However, even assuming very large uncertainties
for an emission within a 1◦ grid cell (e.g., 100 %), the re-
gional total uncertainty can be much smaller than 15 % once
projected over a large enough number of grid cells if the
emission errors are assumed to be uncorrelated. To address
this issue, we also add correlations between nearby emis-
sions; we start the diagonal values at 0.7 (squared) of the
prior emissions, or 70 % uncertainty, and with a correlation
of 0.7 between neighboring emissions of the same type that
are within 400 km (or four grid cells). The diagonal values
and correlations are then adjusted until the projected uncer-
tainty reaches 15 % (for Annex 1) or 30 % (Annex 2). Final
values typically range from 0.6 (squared) to 1.0 for the di-
agonal and from 0.7 to 0.9 for the off-diagonal values with
variations in these numbers because of the different spatial
distributions of the emissions. These numbers for the correla-
tion and length scale are based on regional studies for North
America, which also indicate that uncertainties for nearby
emissions should be correlated (e.g., Maasakkers et al., 2016,
2019).

For wetlands, we use a slightly different approach for gen-
erating covariances. Here we calculate the root mean square
(rms) of an ensemble of different wetland process models
(Bloom et al., 2017; Poulter et al., 2017; Ma et al., 2021) for a
given region. We then follow a similar covariance generation
approach as used for the anthropogenic emissions, iterating
with different diagonal and off-diagonal values until the pro-
jected uncertainty for a region is approximately the same as
the corresponding variance of the models.

While generating representative prior covariances is chal-
lenging, Eqs. (7) and (8) from the previous section allow us to
swap in better priors and prior covariances as these become
available. For example, if a researcher finds that the uncer-
tainties expressed in ZA over a given region for a given sec-
tor should be 10 % instead of the value used (approximately
70 %), then it is straightforward to update the covariance ma-
trix to reflect this improved knowledge so that the attribution
to each sector is improved. Of course this improved informa-
tion could also be used to improve the SA constraint matrix
in Eq. (1) to improve convergence of the top-down flux esti-
mate. Furthermore, the updated posterior covariances can be
used for the next flux inversion based on other independent
data, and at some point these covariances, because they are
based on observations, will best reflect our knowledge of the
methane emission. Covariances and prior emissions are all
publicly available, as well as python code that demonstrates

Atmos. Chem. Phys., 22, 6811–6841, 2022 https://doi.org/10.5194/acp-22-6811-2022



J. R. Worden et al.: The 2019 methane budget and uncertainties 6821

how to use these files, so that a researcher can determine how
other priors and changes to their uncertainty structure affect
this top-down result or how to use them for their own top-
down inversions. Links to these data and codes are in the
Data Repository section (Sect. 5).

2.3.2 Uncertainty calculation approach

The uncertainties shown in Tables 1 and 2 are calculated in
the following manner. First the prior uncertainties for each
sector and for each region shown in Table 2 are calculated by
projecting the regional (e.g., North America, South America)
posterior error covariance to a single number corresponding
to the mean emissions for that region using Eq. (11). One ap-
proach is to then assume that these uncertainties are indepen-
dent of each other, in which case they are added in quadrature
to get the total value; this is the smaller uncertainty shown in
the Total column in Table 2. However, another method is to
assume that the uncertainties are 100 % correlated, such that
they should be added linearly; these are the values shown as
the larger value in Table 2. We expect that the actual uncer-
tainty is somewhere between these values. However, to be
conservative, we only report the larger value in Table 1 and
for the remainder of the paper.

The prior uncertainties generated using the method de-
scribed here are consistent with those reported in the lit-
erature even though the methodology differs. For example,
the values shown in the “prior” column of Table 1 are con-
sistent (within reported ranges or uncertainties) with the
equivalent sectors discussed in Saunois et al. (2020) and
with the regional EDGAR v4.3.2 inventories as discussed in
Janssens-Maaenhout et al. (2019). A caveat is that Janssens-
Maaenhout et al. (2019) also report global totals for each
sector, from a range of inventories and models, that are 2–3
times larger for each sector than those shown here. Another
caveat is that Saunois et al. (2020) include a freshwater cat-
egory with a 120± 60 Tg CH4 yr−1 uncertainty, whereas this
category is subsumed into our wetlands/aquatic sector.

Figure 3 shows the (square-root) diagonal of the covari-
ance for each sector; as discussed previously, these are gen-
erally correlated with the magnitude of the emissions but also
the chosen value for the regional total error (Table 2). Most
of the sectors have enhancements and corresponding uncer-
tainties that are spatially distinct. For example, the largest
uncertainties for oil are located in eastern Europe and Rus-
sia, the largest uncertainties for coal are in China, and the
largest uncertainties for gas are in North America and central
Asia. In turn, these fossil emissions are spatially distinct from
wetlands and livestock. However, the largest uncertainties for
rice and waste can spatially overlap those of livestock, espe-
cially in India and Asia, which indicates that remote sensing
will be challenged to distinguish these emissions.

3 Results

In this next section we first present global estimates, followed
by a discussion of the sectoral emissions for the top 10 emit-
ting countries and then emissions for all countries. Finally,
we test whether different assumptions about bottom-up emis-
sions as discussed in the recent literature, i.e., larger wet-
land/aquatic emissions (Rosentreter et al., 2021), and larger
fossil emissions (Schwietzke et al., 2016) affect our conclu-
sions about the top-down results presented here.

3.1 Global methane budget by sector

Emissions by sector and their uncertainty at 1◦ resolution are
shown in Fig. 4, with the top set of panels showing the poste-
rior emissions and the bottom set showing the uncertainties.
As in Fig. 3, the uncertainty at each longitude–latitude grid
element is given by the square root of the diagonal of the to-
tal error covariance. Uncertainty can decrease for emissions
even when there is more than one type of emission in a grid
box. As shown in Eq. (8), this uncertainty reduction depends
on the magnitude of the emission and its uncertainty, its cor-
relations with nearby emissions of the same type (Sect. 2.3),
and the magnitude and uncertainty of emissions within the
same grid box.

Inspection of Fig. 4 (bottom panel) and Fig. 3 shows that
reduction of uncertainty in many parts of the world relates
to the prior, such as the larger wetlands and agricultural re-
gions in India and Asia. The right panel of Table 1 shows
the global total posterior emissions by sector. The increase
in sectoral emissions relative to the prior for the agriculture
sector and reduction in fossil emissions reflect the top-down
flux estimates (Fig. 2), which show a lower posterior flux rel-
ative to the prior in fossil-emitting regions such as Russia and
North America (with the exception of the southern USA) and
increases in regions where livestock and rice emissions are
expected to be the largest source relative to other emissions
such as in India, Brazil, Argentina, and eastern Africa.

3.1.1 Comparisons to previous top-down inversions
using GOSAT and GEOS-Chem

Our results are consistent with previous top-down estimates
based on the satellite GOSAT data. For example, the results
here are based on the inversion framework from Zhang et
al. (2021) and Qu et al. (2021) and are therefore generally
consistent for the larger emissions such as wetlands and live-
stock or the emissions which are spatially distinct from other
sources and therefore easier to resolve with remote sensing
such as oil and coal. However, our estimates for rice, waste,
and seeps are very different, and this is likely because our
choices of priors for these sectors are different and because
Qu et al. (2021) use a uniform scaling approach to project
fluxes to emissions, whereas we account for the prior un-
certainties. Similarly, our results for wetlands, livestock, and
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Figure 3. The square root of the diagonal of the a priori covariance for the eight largest sectors used in our analysis.

Figure 4. Top: posterior methane emissions. Bottom: posterior emissions uncertainty as calculated by the square root of the diagonal of the
posterior covariance matrix.

fossil emissions are consistent with previous GOSAT-based
inversions (e.g., Maasakkers et al., 2019; Zhang et al., 2021),
with the caveat that these estimates are for earlier time pe-
riods and changes in emissions can affect interpretation of
any differences. Ma et al. (2021) use GOSAT-based wetland
estimates to show that wetland emissions for the years 2010–
2018 are likely even lower than our results. As with results
presented here, they take into account the spatial resolution

and prior of the top-down fluxes but use a different approach
to quantify emissions; they select “high”-performing wet-
land models based on comparison of an ensemble of mod-
els with mean wetland emissions and temporal variability.
The total emissions for these highest-performing models,
117–189 Tg CH4 yr−1, are lower but within the uncertainty
of the results here. These differences in results, even when
using similar models and data, highlight the importance of
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the choice of priors as well as the methodology by which
fluxes are projected back to emissions, as estimates for sec-
toral emissions can be very different from one estimate to the
other depending on these choices.

3.1.2 Comparisons to top-down inversions from GCP

Emissions in Table 4 can be compared to top-down in-
versions from the Global Carbon Project (GCP) when ag-
gregated into combined categories (Saunois et al., 2020).
For example, our agriculture and waste emissions are
∼ 263± 24 Tg CH4 yr−1, anthropogenic fossil emissions are
82± 12 Tg CH4 yr−1, and natural wetland/aquatic emissions
are 180± 10 Tg CH4 yr−1. These are within the reported
uncertainties of top-down inversions in GCP, which are
[205–246 Tg CH4 yr−1], [91–121 Tg CH4 yr−1], and [155–
217 Tg CH4 yr−1], respectively, but on the high side for agri-
culture and waste and on the low side for fossil emissions.
These differences between GCP and emissions reported here
likely represent the differences in information content and
sampling from satellite versus ground-based data as most of
the top-down ensembles reported in Saunois et al. (2020) are
based on in situ measurements which are typically in back-
ground regions and which are therefore not as sensitive to
the spatial distribution of emissions as the satellite-based es-
timates (e.g., Fig. 6 from Yin et al., 2021). However, one
set of results included with the top-down GCP results that
is based on GOSAT data (i.e., Tsuruta et al., 2017) is con-
sistent with our results as they report biospheric emissions
of ∼ 172± 29 Tg CH4 yr−1. Note that the other paper cita-
tions in the GCP methane paper that indicate use of GOSAT
data describe the model setup and results for CO emissions
or for regional results, so we cannot explicitly compare them
to their results.

3.1.3 Fossil emissions

Our posterior results for anthropogenic fossil emissions
(82± 12 Tg CH4 yr−1) and natural ones (22.5± 3.8) are
lower than our prior ones and in general do not reflect re-
cent papers that suggest much higher fossil emissions us-
ing measurements of δ13CH4 (e.g., Schwietzke et al., 2016,
indicates 211± 33 Tg CH4 yr−1 for anthropogenic + natu-
ral fossil emission) or measurements over USA basins up-
scaled from aircraft (e.g., Alvarez et al., 2018). However,
as discussed in Turner et al. (2019), care must be taken
in using isotope measurements to infer the partitioning of
methane sources because of large uncertainties in the emis-
sions factors of different sources at different latitudes. Up-
scaling can also have large uncertainties as emissions factors
that relate activity data to emissions can vary significantly
from region to region. Our global posterior fossil emissions
are consistent with more recent reports of fossil emissions,
∼ 84 Tg CH4 yr−1, to the UNFCCC (Scarpelli et al., 2022)

for 2019, suggesting that our lower posterior estimates of fos-
sil emissions are not unreasonable.

Onshore geological seeps represent another largely uncer-
tain source of fossil emissions, with values ranging from
2 to 30 Tg CH4 yr−1. For example, the top-down flux esti-
mate, used as a basis for the sectoral emissions attribution,
assumes a prior of ∼ 2 Tg CH4 yr−1. However, our choice
of prior (part of the zA vector, Eq. 7) is based on Etiope et
al. (2019) with a value of 32.0± 6.2, resulting in a poste-
rior of 22.5± 3.8 Tg CH4 yr−1. This reduction in uncertainty
is substantial, suggesting that remote sensing is providing
good information about this source. A caveat is that seep
emissions tend to overlap those from coal and oil (Fig. 4),
suggesting a potential equifinality between these emissions
estimates. Combining fossil emissions from the seep cate-
gory with anthropogenic fossil emissions increases the over-
all fossil total and would make the total fossil emissions (nat-
ural + anthropogenic) consistent with top-down results from
GC. Based on these results, we suggest this category atten-
tion deserves measurements, especially from the upcoming
high-resolution greenhouse gas measurements such as Car-
bon Mapper.

3.2 Top 10 emitting countries

Figure 5 lists the top 10 emitting countries ranked by to-
tal anthropogenic emissions as calculated using this remote
sensing system. Sectoral attribution is based on the nine cat-
egories in Table A1; here we combine categories so that they
are similar to what is being reported for the CO2-based car-
bon inventories. The different categories are AF, which in-
cludes the sectors for agriculture (livestock and rice) and
fires. This category is similar to the Agriculture, Forestry,
and Land Use categories or “AFOLU” as used in CO2-based
carbon inventories. W is the waste category and FF is the fos-
sil category, which includes extraction, transport, and use of
coal, oil, and natural gas (Scarpelli et al., 2020, 2022). The
Natural category includes wetlands and geological seeps.
The top five emitting countries are essentially the same for
bottom-up and top-down. However, top emitting countries
have the most emissions from the agriculture sector, likely
due to livestock (see Table A1). While top-down and inven-
tory emissions for China, the USA, and Indonesia are con-
sistent, there are major differences between our top-down re-
sults and inventories for the other countries. We next com-
pare these results to those of previous studies; however, as
stated earlier, these results should be treated cautiously and
as a starting point for future research as differences can also
be due to unquantified uncertainties in either the remote sens-
ing data or the transport model used to relate concentrations
to fluxes.

Our results are consistent with those from Maasakkers et
al. (2019), Zhang et al. (2021), and Qu et al. (2021); how-
ever, this is not too surprising as emissions that are reported
here are based on the flux inversion system from these stud-
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Figure 5. Emissions by sector for the top 10 emitters. AF represents agricultural and fires. FF represents fossil fuels or coal, oil, and gas.
Natural represents wetlands, aquatic sources, and geological seeps. Bottom-up (BU) inventory estimates are shown as blue bars, and the
remote sensing/top-down (TD) estimates are shown as pink bars. The uncertainties in both quantities are shown as black lines. Uncertainty
calculations for bottom-up and top-down estimates are discussed in Sect. 2.

ies. A notable difference in methodology is Qu et al. (2021),
who also derive fluxes based on total column data from
TROPOMI. However, Qu et al. (2021) find that country totals
for the top five are essentially the same based on GOSAT and
TROPOMI except for Brazil but attributed large differences
between TROPOMI and GOSAT to systematic errors in the
TROPOMI total column data related to low surface albedo
over Brazil; consequently, the TROPOMI-based estimates in
this region should be treated more cautiously.

Comparisons of these results to other estimates discussed
in the literature can show substantial differences in either
total emissions or attribution or both. For example, Gane-
san et al. (2017), using in situ and satellite atmospheric
methane data, find much lower total Indian emissions of
22± 2.3 Tg CH4 yr−1 for the 2010–2015 time period as com-
pared to 39.5± 5.4 for our study (and the Qu et al., 2021
and Zhang et al., 2021 studies) and 36.5± 5.3 from Janar-
danan et al. (2020). Miller et al. (2019) provide similar total
emissions for China of 61.5± 2.7 Tg CH4 yr−1 but different
partitioning; for example, they find that coal is the largest
source of emissions based on comparison of top-down fluxes
to EDGAR emissions and using a relative weighting attri-
bution flux to emissions attribution approach, whereas we
find that agriculture (primarily rice, Table A1 in Sect. 4) is
the largest sector. A major caveat is that attribution of emis-
sions from total fluxes is challenging for China because many
of the strongest emissions (e.g., coal, livestock, and rice as
shown in Figs. 3 and 4) overlap within the spatial resolution
of the top-down estimate, which is less than 2.5◦ based on
gridding used for the flux inversion and the variable sensitiv-
ity of the averaging kernel. While in principle these uncer-

tainties due to limited spatial resolution are quantified based
on our assumed prior covariance for each sector, it is quite
possible that both our choice of the location of the emissions
and corresponding prior covariance are incorrect due to less
confidence in the emissions characterization in this region
(Janssens-Maenhout et al., 2019). Our results are consistent
(within uncertainties) for recent results by Deng et al. (2022);
total anthropogenic emissions from Table A1 are within un-
certainties of reported bottom-up and top-down total anthro-
pogenic emissions shown in Fig. 4 of Deng et al. (2022),
even if the attribution of emissions may differ. Similarly,
top-down-based country-level anthropogenic emissions from
Stavert et al. (2022) are consistent, when we are able to di-
rectly compare emissions country to emissions country, al-
though many of their emissions only agree at the outer edge
of the reported uncertainties.

We find that Myanmar has anonymously large agricultural
emissions (primarily from livestock, Table A1, Sect. 4) rela-
tive to prior assumptions. Given that the DOFS reported for
Mynamar is 2.7, we expect that the fluxes here are well re-
solved, such that it is possible that poorly characterized prior
emissions drive this difference between prior and posterior.
For example, Janardanan et al. (2020) also report similar
top-down emissions of 6.1± 0.8 Tg using a higher-resolution
satellite-based flux inversion. However, an alternative expla-
nation could be that errors in model transport could project to
larger-than-expected fluxes (Eq. 9) in this region, as Jiang et
al. (2013) find that regions with substantial atmospheric con-
vection can have large biases in top-down surface emissions
estimates.
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Ethiopia also has larger-than-expected agricultural emis-
sions (livestock emissions) as compared to the prior. As with
Mynamar, the prior emissions could be too low. For exam-
ple, the number of cattle and other livestock, between 80
and 90 million in 2015 and growing (Bachewe et al., 2020,
https://www.statista.com/, last access: 21 May 2022), is not
that different in size than US livestock, ∼ 93 million in 2021
(https://www.statista.com/), suggesting that they could also
have comparable livestock emissions. An alternative expla-
nation for this discrepancy is very low prior emissions in
neighboring Sudan despite possible large numbers of cat-
tle in this region as well (https://knoema.com/, last access:
21 May 2022), suggesting that livestock inventories in the
eastern African regions need to be re-examined.

Russian posterior fossil emissions are substantially lower
than those initially reported in Scarpelli et al. (2020), which
are based on reports to the UNFCC in 2017. However, more
recent reporting to the UNFCC also suggests a much smaller
bottom-up fossil estimate of ∼ 7 Tg CH4 yr−1 (Scarpelli et
al., 2022). Table A1 (next section) indicates that remote sens-
ing provides the best information about Russian oil and to
some extent coal emissions as the reduction of uncertainty
is largest for these sectors but has little change for gas emis-
sions. Total emissions for oil and coal are 11.2± 1.9, indicat-
ing that total fossil emissions are likely larger than expected
for the latest reports to the UNFCC but smaller than previ-
ous ones. As discussed previously, these top-down estimates
should be treated cautiously and only as a starting point for
future studies due to the limited sensitivity and potential un-
certainties in both top-down and bottom-up.

3.3 Results for all countries

This section presents the complete table (Table A1, Ap-
pendix A) of emissions by sector and country. As discussed
previously in Sect. 2.1, we project the sectoral emissions in
each 1◦ grid to each country using a country map to quan-
tify the emissions and their uncertainties for each country.
The table is ordered by DOFS, which is a metric of sensi-
tivity for inversion problems. As discussed in Sect. 2.1, the
DOFS is a metric for the sensitivity of the flux estimate. For
example, a DOFS of 1 means that this remote sensing sys-
tem (GOSAT plus GEOS-Chem) can generally resolve the
countries’ total emissions, assuming the sensitivity is evenly
distributed across the country. More DOFS means that more
emissions can be spatially resolved. However, even a DOFS
of 0.5 means that half of the estimate is weighted by the mea-
surement, with the estimate increasingly weighted by the a
priori one as the DOFS approaches 0. For these reasons we
report estimates for all countries, even if the DOFS are effec-
tively 0, as information about the a priori inventories from the
measurement might be useful even if not well informed by
the satellite data. To distinguish these different levels of sen-
sitivity, we color countries with corresponding DOFS greater

than 1.0 as green, between 0.5 and 1.0 as yellow, and below
0.5 as red.

The DOFS are calculated from the averaging kernel matrix
provided by the GEOS-Chem-based inversion (Sect. 2.1). To
calculate the DOFS for a given country, we project the di-
agonal of the averaging kernel (Fig. 2) to 1◦ resolution and
then add up these values based on the 1◦ country map used
in this study. Note that the total DOFS between the reduced
resolution flux inversion and the 1◦ map is preserved. Ta-
ble A1 indicates that the GOSAT-based top-down estimate
can quantify total emissions (i.e., reduce uncertainty) for ap-
proximately 57 countries as the DOFS for the 57th country is
more than 1 and less than 1 for the 58th country. As discussed
previously, as DOFS approaches 0, there is less reduction in
uncertainty using the top-down system discussed here. Fur-
thermore, inspection of Table A1 shows that even countries
where DOFS are between 1 and 2 show little reduction of un-
certainty; this happens because of cross-terms in the sensitiv-
ity project uncertainty from one sector or region into another,
as shown in Eq. (10).

The astute reader will notice negative emissions in some
countries in Table A1. Negative emissions are a possible so-
lution for inverse problems using linear updates, such as used
here, even if they are not physically possible. Typically neg-
ative emissions occur when there are limited constraints on
emissions in one region with large values in the state vector
in a neighboring region; this is also known as “jack-knifing”
in the inverse community. For example, livestock emissions
for Peru are shown to be negative in Table A1, likely because
Peru is near the Amazon basin, which has substantive wet-
land emissions, and the cross-correlations between these re-
gions result in negative values in Peru livestock. In this case
we would assume there is no information from this remote
sensing system on this category and ignore these results.

3.4 What happens to the (top-down) methane budget if
priors for wetland/aquatic and fossil emissions are
substantially increased?

Equations (7) and (8) also allow us to test other prior
emission inventories to determine whether they are consis-
tent with top-down fluxes. This approach is similar to the
“prior swapping” approach described in Rodgers and Con-
nor (2003) but can also include “prior covariance swapping”
as discussed in Cusworth et al. (2021b). This approach in-
volves replacing the zA and ZA shown in Sect. 2.2 with dif-
ferent formulations. In this section we test what happens if
we inflate the prior emissions for the wetland or fossil fuel
categories such that they are consistent with other studies in-
dicating much higher values than expected from top-down
estimates, e.g., Rosentreter et al. (2021) for wetland/aquatic
emissions and Schwietzke et al. (2016) for fossil emissions.
Figure 6 shows the results of these two studies. The bars la-
beled “Ref” indicate the prior used for the results reported in
this paper. The bars labeled “Wet” indicated the increased
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Figure 6. Comparison of total posterior emissions for the reference case (“Ref”, also Table 1 posterior) if prior wetland emissions are inflated
(Exp_Wet) and if prior anthropogenic fossil emissions are inflated (Exp_FF).

wetland study (which also includes increases to lake and
river emissions as the wetland models include these cate-
gories, Bloom et al., 2017), and the bars labeled “FF” indi-
cate the study where anthropogenic fossil fuels are increased
by 50 %. We find that, even with very large prior emissions
for wetland/aquatic sources, the posterior gives an estimate
of 208± 12.8 Tg CH4 yr−1 as compared to 179.8± 10 for
the reference values. This decrease from the inflated prior of
∼ 340 to 208 Tg CH4 yr−1 happens because the global total
is constrained to ∼ 560 Tg CH4 yr−1 through knowledge of
the methane sink and because wetland emissions tend to be
spatially distinct from other sources.

For the same reasons, fossil emissions, especially coal, oil,
and geological seeps, show a substantial decrease in uncer-
tainty. Consequently, the posterior emissions differences be-
tween the reference and inflated fossil studies are consistent
within uncertainty, and generally these emissions are much
less than either the reference or inflated priors. For these
reasons, it is challenging to reconcile these inflated aquatic
emissions or inflated fossil emissions with top-down results.
As noted previously, these comparisons should still be treated
cautiously and as a starting point for further research be-
cause of poorly characterized systematic errors in the chem-
istry transport model used to relate observed concentrations
to fluxes and because sources that are not included in the
prior state vector but co-located with other sectors cannot be
distinguished. For example, if there are significant (unspec-
ified) aquatic emissions that are co-located with livestock
emissions, then the corresponding livestock emissions esti-
mate would be biased high.

4 Summary and future directions

In this paper we demonstrate, using a new Bayesian algo-
rithm, estimates of emissions by sector at 1◦ resolution and
by country by using a combination of prior information of
the emissions, satellite data, and a global chemistry trans-
port model. Uncertainties are provided for representation (or
smoothing) error and data precision but not for systematic
errors in the transport model or data. Using a metric called
the degrees of freedom for signal (DOFS), we show that the
combination of GOSAT-based satellite data with the GEOS-
Chem model and prior uncertainties can estimate total emis-
sions for about 57 of the 242 countries, with only partial
information for the remaining countries. Our results can be
used for comparison to country-level, bottom-up inventories
by sector that might be, for example, provided by the global
stock take. However, any discrepancies between these top-
down and inventory-based estimates should be considered a
starting point for future investigations given the potential for
systematic errors affecting the top-down results such as from
accuracy limitations in the data or in the chemistry trans-
port model used to estimate fluxes from the data (e.g., Buch-
witz et al., 2015; Jiang et al., 2015; McNorton et al., 2020;
Schuh et al., 2019). Alternatively, countries with little capa-
bility for quantifying bottom-up emissions could use these
results, along with other published top-down estimates (e.g.,
Deng et al., 2021; Stavert et al., 2022), for their contribution
to the global stock take.

In the absence of systematic errors, we find robust esti-
mates for livestock, coal, oil, seeps, fires, and wetlands, as
these can (on average) be distinguished from other sources
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using remote sensing given their distinct locations. Our re-
sults are consistent (within uncertainty) with previous top-
down estimates such as the 2017 Global Carbon Project that
are primarily based on in situ data. However, these remote
sensing estimates are on the high side for agricultural and
waste emissions and the low side for fossil and wetland emis-
sions. On the other hand, total fossil emissions reported here
are consistent with recent reports of fossil emissions to the
UNFCCC (Scarpelli et al., 2022).

The new Bayesian algorithm we demonstrate can be used
to test whether different prior emissions are consistent with
our posterior emissions estimates. For example, we find that
inflating the priors for wetland/aquatic fluxes or alternatively
fossil emissions does not fundamentally alter our estimates
for these sectors. Consequently, the remote sensing estimates
reported here show much lower wetland and fossil emis-
sions than these studies based on bottom-up models and iso-
tope data and much larger agricultural and waste emissions.
The largest differences between remote sensing and these
other estimates occur in Brazil and India (primarily related
to livestock), Russia (fossil emissions), and central and east-
ern Africa (livestock). These contrasting differences between
the remote-sensing-based results and bottom-up models sug-
gest that additional research is needed in these geographical
areas to reconcile global methane budget estimates.

Future directions

We are evaluating how to characterize systematic errors re-
lated to the atmospheric chemistry transport model (e.g.,
Schuh et al., 2019) and in the satellite data to our error anal-
ysis, and we expect the next version of these estimates to
contain these uncertainties. We also expect to add isotopic
information through new flux estimates based on the surface
network and the GEOS-Chem model; these independent data
can be used to test the partitioning of biogenic, fossil, and
pyrogenic emissions (e.g., Worden et al., 2017). We are also
examining how to combine high-resolution emissions esti-
mates based on aircraft data and imaging spectrometers such
as GHG-Sat or Carbon Mapper with the top-down fluxes to
improve inventory estimates at finer spatial scales than re-
ported here. Finally, the posterior emissions and covariances
demonstrated in this paper can be used as priors in subse-
quent emissions estimates using data from other measure-
ments such as from the upcoming CO2M, Methane-Sat, and
Carbon Mapper instruments.
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Appendix A: Appendix table of emissions for each
country ordered by DOFS
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Table
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