

Supplement of

Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions

Junjun Deng et al.

Correspondence to: Pingqing Fu (fupingqing@tju.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Figure and Table Captions

Table S1. Concentrations of carbonaceous species and molecular markers in PM2.5 in Tianjin.

Figure S1. Temporal variations in concentrations of (a) WSOC, (b) OC, (c) EC, and (d) SOC in Tianjin.

Figure S2. Temporal variations in concentrations of sugar compounds including (a) levoglucosan, (b) arabitol, (c) trehalose, and (d) glucose in Tianjin.

Figure S3. Temporal variations in concentrations of SOA tracers in Tianjin: (a) isoprene SOA tracers, (b) monoterpene SOA tracers,

(c) sesquiterpene SOA tracers, and (d) 2,3-dihydroxy-4-oxopentanoic acid (DHOPA).

Figure S4. Wavelength dependence of BrC light absorption (Abs) in Tianjin. The shading represents the standard deviations.

Figure S5. Correlations between fluorescent intensities and (a) Abs₃₆₅, (b) EC, (c) SOC, and (d) levoglucosan in Tianjin.

Figure S6. (a–b) temporal variations in fluorescent intensities and (c–d) relative abundances of the PARAFAC-derived fluorescent components for the water-soluble BrC of aerosols in Tianjin.

Figure S7. Correlations of BIX and low molecular weight (LMW) *n*-alkanes with fluorescent intensities of (a–b) C4 and (c–d) C5.

	Winter Summer					
	Day (<i>n</i> =41)	Night (<i>n</i> =43)	Average (n=84)	Day (<i>n</i> =30)	Night (<i>n</i> =30)	Average (n=60)
Carbonaceous species (µg m ⁻³)						
WSOC	$10.1{\pm}7.1$	9.3±4.5	9.7±5.9	2.6±1.0	2.4±1.1	2.5±1.1
OC	23.7±15.7	24.0±11.0	23.9±13.4	4.0±1.3	3.6±1.5	3.8±1.4
EC	2.4±1.6	2.7±1.5	2.6±1.5	0.4 ± 0.1	0.5 ± 0.2	$0.4{\pm}0.1$
SOC	14.6 ± 10.7	13.5±7.9	14.0±9.4	2.4±1.1	1.7 ± 1.1	2.1±1.1
Molecular markers (ng m ⁻³)						
levoglucosan	207±122	296±153	252±145	12.8±7.0	34.4±46.0	23.6±34.4
arabitol	3.9±3.1	4.8±3.2	4.4±3.2	1.8±1.7	1.9±2.0	1.9 ± 1.8
glucose	13.8±5.8	13.6±6.5	13.7±6.1	6.5±2.5	7.0±7.5	6.8±5.6
trehalose	4.7±3.6	4.1±2.5	4.4±3.1	1.8±1.6	1.9±2.0	1.9 ± 1.8
xylose	12.1±7.7	16.3±8.3	14.4 ± 8.2	2.4±1.0	3.2±3.0	2.8±2.3
isoprene SOA tracers	5.4±3.4	5.4±3.0	5.4±3.2	29.6±22.3	25.3±23.6	27.4±22.9
monoterpene SOA	13.2±7.4	14.1±6.2	13.6±6.8	23.4±13.6	22.4±23.7	22.9±19.2
tracers						
sesquiterpene SOA	12.2±10.2	12.6±9.9	12.4±10.0	2.0±1.8	2.2±4.5	2.1±3.4
tracer						
DHOPA ^a	4.4±2.5	4.3±2.2	4.4±2.3	2.1±1.5	1.7±2.7	1.9±2.2
phthalic acids	66.6±39.8	74.1±35.3	70.4±37.5	18.5±9.5	18.5±21.3	18.5±16.4

Table S1. Concentrations of carbonaceous species and molecular markers in PM_{2.5} in Tianjin.

^a DHOPA: 2,3-dihydroxy-4-oxopentanoic acid.

Figure S1. Temporal variations in concentrations of (a) WSOC, (b) OC, (c) EC, and (d) SOC in Tianjin.

Figure S2. Temporal variations in concentrations of sugar compounds including (a) levoglucosan, (b) arabitol, (c) trehalose, and (d) glucose in Tianjin.

Figure S3. Temporal variations in concentrations of SOA tracers in Tianjin: (a) isoprene SOA tracers, (b) monoterpene SOA tracers, (c) sesquiterpene SOA tracers, and (d) 2,3-dihydroxy-4-oxopentanoic acid (DHOPA).

Figure S4. Wavelength dependence of BrC light absorption (Abs) in Tianjin. The shading represents the standard deviations.

Figure S5. Correlations between fluorescent intensities and (a) Abs₃₆₅, (b) EC, (c) SOC, and (d) levoglucosan in Tianjin.

Figure S6. (a–b) temporal variations in fluorescent intensities and (c–d) relative abundances of the PARAFAC-derived fluorescent components for the water-soluble BrC of aerosols in Tianjin.

Figure S7. Correlations of BIX and low molecular weight (LMW) *n*-alkanes with fluorescent intensities of (a–b) C4 and (c–d) C5.