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Abstract. When aerosol particles seed the formation of liquid water droplets in the atmosphere, they are called
cloud condensation nuclei (CCN). Different aerosols will act as CCN under different degrees of water supersat-
uration (relative humidity above 100 %), depending on their size and composition. In this work, we build and
analyze a best-estimate CCN spectrum product, tabulated at ∼ 45 min resolution, generated using high quality
data from seven independent instruments at the U.S. Department of Energy Atmospheric Radiation Measure-
ment (ARM) Southern Great Plains site. The data product spans a large supersaturation range, from 0.0001 % to
∼ 30 %, and time period of 5 years, from 2009–2013, and is available on the ARM data archive. We leverage this
added statistical power to examine relationships that are unclear in smaller datasets. Our analysis is performed in
three main areas. First, probability distributions of many aerosol and CCN metrics are found to exhibit skewed
log-normal distribution shapes. Second, clustering analyses of CCN spectra reveal that the primary drivers of
CCN differences are aerosol number size distributions, rather than hygroscopicity or composition, especially at
supersaturations above 0.2 %, while also allowing for a simplified understanding of seasonal and diurnal vari-
ations in CCN behavior. The predictive ability of using limited hygroscopicity data with accurate number size
distributions to estimate CCN spectra is investigated, and the uncertainties of this approach are estimated. Third,
the dynamics of CCN spectral clusters and concentrations are examined with cross-correlation and autocorrela-
tion analyses. We find that CCN concentrations change rapidly on the timescale of 1–3 h, with some conservation
beyond that which is greatest for the lower supersaturation region of the spectrum.

1 Introduction

The interactions between atmospheric aerosol particles and
ambient water vapor are key drivers of the formation of haze
and clouds. Particles are the nuclei upon which liquid water
first condenses to form haze and cloud droplets, thereby af-
fecting visibility, cloud microphysical properties, and precip-
itation. Water uptake by particles depends upon their size and

chemical composition, as well as on ambient environmental
conditions, and on their rates of change. Particles that are
identified as cloud condensation nuclei (CCN) are typically
those that are predicted to form cloud drops at water supersat-
urations (SSw) of 1 % or lower, which are conditions believed
to be typical of most clouds that are formed in weak to mod-
erate updrafts. Based on average aerosol characteristics, and
typical atmospheric aerosol number size distributions (short-
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ened to size distributions hereafter), the number concentra-
tions of particles active as CCN are thus generally assumed
to correspond to those particles in the 80–300 nm dry diam-
eter size range. Instruments designed to directly measure the
number concentrations of activated particles at fixed SSw are
also typically limited to 2 % SSw as an upper bound on the
measurement range (Uin, 2016).

However, supersaturations and particle sizes outside of
these ranges are also of atmospheric interest. In deep convec-
tion with intense updrafts, and in regions of very low existing
particle or droplet surface area concentrations, SSw can build
rapidly to high levels, as the condensation sink rates are so
low relative to the rate of supersaturation generation (Pinsky
et al., 2012). Those high SSw conditions may be sufficient
to allow particles smaller than 40 nm to serve as cloud con-
densation nuclei. Thus, despite their relatively short lifetimes
in the atmosphere compared with larger accumulation mode
particles, high concentrations of small particles can poten-
tially influence cloud microphysical processes leading to pre-
cipitation formation or evaporation. It is now recognized that
the nucleation of new particles from the gas phase, generat-
ing particles on the order of 10 nm in diameter which sub-
sequently grow, occurs in many regions of the troposphere
and is an important control on global atmospheric aerosol
number concentrations (Hodshire et al., 2016; Bianchi et al.,
2016; Venzac et al., 2008; Pierce et al., 2014; Nieminen et
al., 2018).

At the other end of atmospherically relevant supersatura-
tions, droplet formation may occur at very low SSw, where
CCN concentrations are very difficult to probe. For exam-
ple, the slow cooling rates in radiation fogs allow vapor scav-
enging to effectively compete with the generation of super-
saturation, and thus, maximum SSw conditions reached in
fogs can be below 0.05 % (Gerber, 1991; Low, 1975; Shen
et al., 2018), suggesting that only larger and more hygro-
scopic particles can participate in fog droplet formation. The
cloud physics community has had a long-standing interest in
elucidating the microphysical roles of giant CCN (GCCN),
that is, relatively large particles that activate at very low SSw,
with ∼ 0.01 % or less. Specifically, GCCN are hypothesized
to control the initiation of drizzle and precipitation in shallow
clouds (Cohard et al., 1998; Johnson, 1982; Feingold et al.,
1999; Cheng et al., 2009; Hudson et al., 2011; Posselt and
Lohmann, 2008; Levin and Cotton, 2009; Gantt et al., 2014;
Jung et al., 2015).

Their potentially controlling roles in fog, cloud, and pre-
cipitation formation have motivated interest in direct mea-
surements of the number concentrations of CCN active over
a range of atmospherically relevant SSw, with modern instru-
mentation making long-term, unattended monitoring possi-
ble. Here, we analyze observations of CCN spectra from the
United States Department of Energy’s Atmospheric Radi-
ation Measurement’s (ARM) Southern Great Plains (SGP)
site located in north central Oklahoma for the 5-year pe-
riod from 2009–2013. The CCN measurement instrumenta-

tion deployed at this site is typically limited to stable oper-
ation over the 0.1 % to 1 % SSw range. As described further
below, we extend those observations to a broader supersatu-
ration range of interest using ancillary aerosol observations,
described briefly in Table 1, creating a CCN estimate rel-
evant for clouds ranging from fog through to intense deep
convective updrafts. These observations are especially im-
portant for modeling studies of aerosol impacts on clouds
in this region that use CCN number concentrations as a ba-
sis for determining their aerosol initial conditions (Saleeby et
al., 2016; Marinescu et al., 2017; Glenn et al., 2020). This ex-
tensive CCN dataset is subsequently analyzed using methods
to leverage its range and statistical power to characterize and
understand the statistical distributions, seasonal and diurnal
variations, and dynamics of CCN spectra at this site.

2 Methods

This work builds upon prior work reported in Marinescu et
al. (2019). In that study, for the same 2009–2013 time pe-
riod studied herein, aerosol data from three instruments de-
ployed at the SGP site were averaged over∼ 45 min intervals
and merged into dry aerosol size distributions, n(Dp), span-
ning a 7 nm< particle dry diameter, Dp< 14 µm. We build
upon that work by combining those merged size distributions
with information on aerosol hygroscopicity, κ (Petters and
Kreidenweis, 2007), taken over the same ∼ 45 min intervals.
The κ values were obtained via measurements of diameter
growth factors (GFs) at 90 % relative humidity measured by a
humidified tandem differential mobility analyzer (HTDMA;
Collins, 2010b; Mahish and Collins, 2017). The procedure
for integrating these data into a CCN spectrum is described
more fully in Appendix A but is reviewed briefly here. All
base instrument measurements used in the data construction
are shown in Table 1, along with a brief description of their
associated measurement and the aerosol size range probed.

The critical saturation ratio, Sc, at which a particle with
dry particle diameterDp can be activated into a cloud drop is
determined by finding the maximum of the following equa-
tion (Petters and Kreidenweis, 2007):

S (D)=
D3
−D3

p

D3−D3
p(1− κ)

exp
(
A

D

)
(1)

A=
4σs/aMw

RT ρw
, (2)

where D is the droplet diameter, ρw is the density of wa-
ter, Mw is the molecular weight of water, σs/a is the surface
tension of the solution/air interface, R is the universal gas
constant, and T is temperature. Saturation ratio, S, and water
supersaturation percent, SSw are related by the following:

SSw = (S− 1) · 100. (3)
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Table 1. Base measurements used in the dataset construction.

Instrument Measurement Measurement size range (µm)

SMPS
(scanning mobility particle sizer)

Aerosol size distribution 0.012–0.750
(mobility diameter)

APS
(aerodynamic particle sizer)

Aerosol size distribution 0.5–20∗

(aerodynamic diameter)

CPC
(condensation particle counter)

Total aerosol number > 0.007∗

HTDMA
(humidified tandem differential
mobility analyzer)

Aerosol growth factor/hygroscopicity 0.012–0.750
(mobility diameter)

CCNC
(cloud condensation nuclei counter)

CCN spectrum Dependent on operating SSw

ACSM
(aerosol chemical speciation monitor)

Aerosol mass composition 0.040–1
(vacuum aerodynamic diameter)

Nephelometer Aerosol light scattering

∗ The upper size cut will depend on instrument inlet losses.

The functional relationship between Dp, κ , and Sc can be
more readily illustrated by the approximate relationship that
is valid for κ > 0.2 (Petters and Kreidenweis, 2007), where
SSw,c is the critical water supersaturation percent, as follows:

SSw,c

100
∼=

{
4A3

27D3
pκ

}1/2

. (4)

From Eq. (4) it can be seen that information on the aerosol
size distribution, n(Dp), and the variation of κ with dry di-
ameter, can be used to compute the critical SSw correspond-
ing to each selected dry size used in Eq. (4). It should be
noted that the approximation in Eq. (4) is only used for
demonstration here, with the full methods described in Ap-
pendix A. In practice, the size distribution is discretized to
obtain the total number concentrations in each selected dry
diameter bin, i.e., 222 logarithmically spaced bins in this
work, and a constant κ is assumed across each selected bin.
To produce the size-dependent κ distribution, measurements
of aerosol hygroscopic growth were made for seven differ-
ent sizes (Fig. A2), which were subsequently processed to
obtain a single weighted κ value for each size. In this study,
these κ values are then interpolated linearly between mea-
sured values, with invariant κ beyond the largest and small-
est sizes (below ∼ 10 nm and above ∼ 600 nm). The cumu-
lative spectrum of CCN concentration, CCN(SSw), can then
be constructed, which defines the total number of particles
that can be activated at a particular SSw. Figure 1a shows an
example of the measured n(Dp) and κ (Dp), and the resulting
CCN spectrum is shown in Fig. 1b.

Available data from the measurement suite include direct,
concurrent, and co-located observations of cumulative CCN

number concentrations at selected supersaturations, which
were used to check the accuracy of the initial CCN spec-
tra, reconstructed from size distributions and hygroscopic-
ity measurements discussed above that are between 0.1 %
and 1 % supersaturation, and adjusted as needed. There were
two additional instruments that provided separate, indepen-
dent, and continuous observations and that were used to con-
strain the reconstructed spectra, namely a nephelometer that
measured total particle scattering coefficients and an aerosol
chemical speciation monitor (ACSM) that measured nonre-
fractory, speciated submicron mass concentrations. Both of
these observations emphasize the larger particle sizes (gen-
erally > 300 nm) and thus served as constraints on the par-
ticles contributing strongly at the lowest supersaturations,
for which no direct observations exist. At the other end of
the size distribution, the smallest particles are expected to
require the highest supersaturations for activation, but nei-
ther the size distribution nor κ are well constrained obser-
vationally. Reasonable assumptions are applied to extrapo-
late the CCN spectrum beyond SSw =1 %, which is the ap-
proximate upper limit of the CCN counter. In total, data from
five instruments are merged and then constrained with obser-
vations from two additional instruments to produce a best-
estimate CCN spectrum for each ∼ 45 min interval, as de-
scribed more fully in Appendix A. Resulting size distribu-
tions range from 0.0068 to 13.8 µm (bin centers), with cor-
responding CCN spectra generated for SSw from 0.0001 %
to ∼ 30 % SSw (100.0001 to 130 % RH). The SSw range is
chosen to span the entire range of particle activations. The
largest and most hygroscopic measured particles activate at
0.0001 % SSw, while the smallest and least hygroscopic at
∼ 30 % SSw. As noted in the data availability statement be-
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Figure 1. Example data products from 30 January 2012 at 5:20 UTC, with the size (left; black solid line), κ (left; orange dashed line), and
CCN (right) distributions shown. Measured κ points are shown with markers, with linearly interpolated values as dashed lines.

low, the final merged data are available in the Department of
Energy’s (DOE) ARM archive. This dataset is subsequently
analyzed using several different methods. The results of these
analyses are discussed in Sect. 3 below, while the details of
analytical methods are found in Appendix B, for the skewed
log-normal fitting procedures, Appendix C, for the clustering
analysis, and Appendix D, for the non-periodic autocorrela-
tion and fits.

3 Results and discussion

3.1 Distribution characteristics

While we expect the final merged data over the entire range
to be useful, all observations are not equally reliable for sev-
eral reasons. In the size distributions, the lowest size bins are
generated using a fitting procedure previously described by
Marinescu et al. (2019). This fitting procedure is constrained
by instrument data and produces good agreement with di-
rect observations of the number concentrations of particles
in the ultrafine mode (Marinescu et al., 2019), but the shape
of the aerosol spectrum at the smallest particle sizes, espe-
cially below 12 nm, is more uncertain than at larger parti-
cle sizes. κ values are assumed to be invariant outside of
the measured range (below ∼ 10 nm and above ∼ 600 nm)
and are thus more uncertain in those ranges. Additionally,
at larger aerosol sizes, growth factor distributions can be bi-
modal (Fig. A2), which is not captured in this approach, and
this results in additional uncertainty. Because the CCN spec-
tra are generated by combining size and κ distributions, un-
certainties in each are inherited in certain regions. The high
SSw region of the CCN spectrum is dominated by smaller
particles, and the uncertainty in this region is increased due
to uncertainties in aerosol distribution shape. Beyond a cer-
tain SSw that is sufficient to activate all particles regardless
of size and composition, a CCN spectrum must level off. In

cases where there are particles present in the smallest size
bins, this region has increased uncertainty due to the effects
of very small particles (below ∼ 8 nm) that were not mea-
sured. This occurs at SSw greater than 10 %. Interestingly,
uncertainties in κ in this region are largely irrelevant, as high
SSw is required for activation regardless of hygroscopicity
(see the discussion in Sect. 3.1.2 and Fig. 4). The region of
the lowest SSw, with less than 0.1 %, is the other region sub-
ject to additional uncertainties that come from uncertainties
in κ and size distributions. Particles> 13.8 µm were not mea-
sured and are not included in our size distributions. Addition-
ally, particles larger than several microns are rare and subject
to significant shot noise, even over 45 min sampling intervals.
In the low SSw region, the κ values of these large particles
have significant impacts on critical SSw, which was not mea-
sured above 600 nm. Compared with aerosol counting uncer-
tainties, however, this is a lesser issue. For example, an error
in κ from 0.1 to 0.4 for a 5 µm particle shifts the critical SSw
from 0.001 to 0.0005, producing errors only in that region,
which is not propagated outside of it. On the other hand, un-
dercounting large aerosol produces a downward shift in the
CCN number concentration across the entire SSw spectrum
(greater than the critical SSw value), which can be quite sig-
nificant at lower SSw values. While the abundances of large
particles which activate in this low SSw regime are quite low,
they can be important in controlling further activation under
some conditions. Ultimately, the regions of increased uncer-
tainty are under SSw conditions, where few measurements of
CCN concentrations exist, which adds value to these data,
despite these uncertainties. Although further study is needed
to fully constrain the CCN concentrations in the high and low
SSw regions, this work provides best-estimate values that can
be used for the analysis or modeling of strong updraft (high
SSw) or precipitation initiation (low SSw) scenarios.
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Figure 2. Distribution of CCN number concentrations active at 1 %
SSw over the course of the study. The distribution fits a skewed
Gaussian model exceptionally well and an unskewed Gaussian
model with moderate fidelity.

3.1.1 Probability fitting

We present the statistical descriptions for key parameters re-
lated to the aerosol and CCN populations to describe their
variability over the study period. Figure 2 shows the oc-
currence probability (y axis) of the number concentration
of CCN active at 1 % SSw. Similar distribution shapes are
observed for all variables examined (total distribution num-
ber concentrations, total distribution volume concentrations,
number concentrations in 100 and 1000 nm individual bins,
and CCN concentrations at 0.01 % and 0.1 % supersatura-
tion; Appendix B).

The frequency distributions of observations fit exception-
ally well to skewed log-normal distributions (described in
Appendix B), with low degrees of skewness, such that the
log-normal distributions remain a fair approximation in many
cases. Aerosol data are seldom fit in this manner, and the
median and percentile bounds are simply reported instead.
On the other hand, log-normal distributions have been noted
and used for aerosol optical depth (AOD), either for spatial
or temporal variations (Alexandrov et al., 2004, 2016; An-
derson et al., 2003; Sayer and Knobelspiesse, 2019). While
the methods used for AOD treatments have not been widely
adopted for aerosol distributions or CCN spectra, they could
be, and hopefully supplying parameterizations in the same
form makes further work that is focused on the impacts of
variability more accessible. Additionally, better fits for the
probability distribution functions could be incorporated into
microphysical modeling studies or other efforts interested
in the likelihood of the given aerosol conditions occurring.
When using these fit data, it is important to keep in mind that
neighboring size bins are statistically correlated with each

other – the probability of finding 100 particles in the 10 nm
size bin is not independent of the probability of finding 100
particles in the 15 nm size bin. Because of this, the simplest
way to calculate combined or correlated quantities (for ex-
ample, the number concentrations of all particles between 10
and 20 nm) is through our archived distributions across time
points of interest, rather than by utilizing our fit parameters.
A similar skewed log-normal distribution could be fit for the
combined data if desired. It should also be noted that distribu-
tion shapes may not be well conserved across all timescales
or length scales. Variations are most likely to occur at small
timescales (less than 2 h) or length scales (less than 0.5 km),
based on the analysis discussed in Sect. 3.2 and previous
works (Alexandrov et al., 2004; Anderson et al., 2003). Fi-
nally, it is important to emphasize that the uncertainties in
the CCN spectra discussed in Sect. 3.1 are not necessarily
reduced by this statistical fitting approach, due to their po-
tentially systematic rather than random nature.

3.1.2 Clustering analysis

Clustering analysis is used to simplify and seek relationships
in the rather large and complicated dataset.K-means cluster-
ing is performed using a vector-based distance metric. De-
tails of the cluster analysis can be found in Appendix C. From
the K-means clustering applied to the CCN spectra, three
distinct clusters are identified that achieve good separation in
both the CCN and size distribution characteristics, as shown
in Fig. 3. The systematic uncertainties in our CCN distribu-
tions discussed in Sect. 3.1 are expected to be inherited by
the characteristic cluster spectra shown here.

Clustering is carried out based on CCN spectra – that is,
each spectrum was assigned to a cluster based on its shape
and magnitude. Even though the clustering procedure had no
direct information about particle size distributions, the size
distributions associated with each cluster are well resolved
(Fig. 3b). On the other hand, the hygroscopicity parame-
ter distributions are similar for all three clusters (Fig. 3d).
This indicates that particle size distributions have a greater
influence on the resulting CCN spectra than κ distributions
do, which is consistent with other analyses (Patel and Jiang,
2021). As a result, estimates of CCN spectra using size dis-
tribution data and either estimated or median κ values are ex-
pected to be reasonable approximations, although the devia-
tions of approximate CCN spectra from observed CCN spec-
tra can still be quite large for any given time point. We esti-
mate the error introduced using a median κ to compute CCN
spectra, as follows. For this median κ estimate, we calculated
a median κ value based on the entire dataset, and then used
this median value in combination with all individual size dis-
tributions to generate estimated CCN spectra. These are then
compared to the CCN spectrum products (using concurrent
κ and size distribution data) to calculate error estimates, with
the results shown in Fig. 4. Estimates are generally least re-
liable for lower supersaturations, with estimates below 0.2 %
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Figure 3. Clusters generated by theK-means clustering procedure. Cluster centers are shown by solid lines, with shaded region representing
the 25th and 75th percentile bounds for spectra associated with each cluster. Panels (a) and (c) show the cluster CCN spectra, panel (b) shows
the cluster size distributions, and panel (d) shows the cluster hygroscopicity parameter κ .

SSw having a 95 % confidence interval broader than ±50 %
of the estimated value. Therefore, care should be taken when
interpreting estimated CCN spectra in this low SSw region.
This highlights the region of the CCN spectrum that is most
sensitive to observed variations in κ (Mahish and Collins,
2017) and the uncertainty in our data product below about
0.03 % SSw. In this region, particles significantly larger than
600 nm are expected to activate, but we do not have accu-
rate κ measurements for these sizes, as discussed in Sect. 2.
Above 0.2 % SSw, the median κ estimate works quite well,
with uncertainties decreasing as SSw increases. This region
of the spectrum is likely a good candidate for the generation
of CCN spectra from observations of particle distributions,
where high-quality κ measurements are available for only a
limited time period. It is important to note that this approach
will only work for accurate size distribution data extending
to diameters larger than 500 nm. For distributions ending at
500 nm, many CCN activating at or below ∼ 0.2 % SSw will
not be directly counted, and due to the cumulative nature of
the distributions, this gap can introduce large errors for all
SSw values. We expect this median κ estimation method to
be especially applicable for the SGP site and similar environ-
ments, but it may apply elsewhere as well.

The clustering of CCN spectra into distinct groups high-
lights the contributions from particle size distributions as
the distinguishing factor. This analysis does not suggest that
κ distributions for small particles are invariant, random, or

Figure 4. Error estimation of the CCN product constructed from
median hygroscopicity data, as compared with that computed for
size-dependent κ . The black line depicts the median error, while the
dark and light green shaded regions depict 75 % and 95 % confi-
dence intervals, respectively.
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Figure 5. Cluster fractional likelihood for each season.

unimportant – only that their contribution to a final CCN
spectrum is small compared to the contribution of the par-
ticle size distribution. Mahish and Collins (2017) provide a
more complete analysis of the κ measurements at SGP dur-
ing this time period, which is consistent with the data we use
here.

Because of the factors discussed above, the different
CCN clusters represent different characteristic particle size
distributions. Cluster 1 represents cases where the nucle-
ation mode particles, associated with new particle forma-
tion events, dominate the size distributions. Cluster 1 also
has lower absolute number concentrations of accumulation
mode particles than found in the other clusters. Cluster 2
represents the opposite case, i.e., the absence of small par-
ticles and higher accumulation mode number concentrations
combined with a shift of the accumulation mode to larger
sizes. Cluster 3 is the intermediate case, with some nucle-
ation mode particles and a substantial accumulation mode.
The three clusters represent approximately equal portions of
the total number of observations. Because these clusters rep-
resent three different scenarios quite well, we will use them
to simplify the further discussion. Cluster 1 will subsequently
be referred to as the nucleation cluster, cluster 2 the accumu-
lation cluster, and cluster 3 the intermediate cluster.

3.1.3 Seasonal and diurnal trends

The clustered data are examined for seasonal variations in
particle and CCN characteristics. Due to the differential na-
ture of comparisons between clusters, the effect of uncertain-
ties discussed in Sect. 3.1 is likely minimized. Cluster preva-
lence shows some seasonal dependence, although all clus-
ters are still found for a significant portion of the time for
all seasons (Fig. 5). Summer (July–August; JJA) and winter
(December–February; DJF) seasons show the highest preva-
lence of accumulation clusters but significant differences in

Figure 6. Diurnal variability in cluster fractional likelihood.

fractions of the intermediate and nucleation clusters. Sum-
mer has the highest prevalence of the intermediate clusters,
while winter has the highest prevalence of nucleation clus-
ters. This suggests that, during the summer, significant parti-
cle concentrations are more likely to coexist in both the ac-
cumulation and nucleation modes, or perhaps that the growth
of nucleation mode particles to larger sizes (i.e., transfer of
particles to the accumulation mode) is more likely to occur.
These trends are not obvious from looking at seasonal par-
ticle data alone (Marinescu et al., 2019). An important con-
sideration for reconciling seasonal particle data, as discussed
in Marinescu et al. (2019), and seasonal cluster trends is the
fact that the distributions within a cluster will have seasonal
dependence as well, as shown in Fig. C1.

Figure 6 depicts how cluster prevalence changes as a
function of the time of day. Nucleation mode clusters are
most common during daylight hours, with intermediate clus-
ters most likely at night. Interestingly, accumulation clusters
show the least time dependence over the course of the day.
Analysis of CCN concentrations at several supersaturations,
as shown in Fig. 7, shows no hourly dependence in median
values at 1 % SSw or lower. At 10 % SSw, the hourly trend in
CCN is similar to the hourly trend in the nucleation cluster.
These data combined suggest that the hourly changes that
occur are due to the addition of nucleation mode particles
rather than changes in the particle concentrations of other
modes. The seasonal variability in the nucleation mode time-
of-day dependence is shown in Fig. C1 and reflects the same
overall time dependence within a day, alongside the seasonal
changes shown in Fig. 5.

Another way to examine the seasonal changes is through
a comparison of the occurrence probabilities at a single su-
persaturation, as shown in Fig. 8. Figure 8 shows this infor-
mation in two similar ways, namely with the skewed log-
normal fits from Sect. 3.1.1 and Appendix B and more tra-
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Figure 7. Median (solid lines) and 75 % confidence intervals (dotted lines) with seasonally averaged CCN concentrations at 1 % (a) and
10 % (b) SSw, as a function of the local time of day.

Figure 8. Distributions of the CCN concentrations at 1 % SSw separated seasonally, using skewed log-normal fits (a) and box plots (b).

ditional box plots. Both methods of parameterizing the data
require the same number of parameters (three coefficients, a
zero fraction, and a correlation coefficient for the fit; there
are five points for the box and whiskers), but the fits con-
vey more information. Seasonal differences are somewhat
obscured by the box plot, but, for cumulative CCN active
at 1 % supersaturation, a clear difference between the sum-
mer months and the rest of the year is observed with the
fits, where CCN concentrations are more tightly grouped at
higher values in the summer. Fit parameters for all supersatu-
rations and seasons can be found in the Supplement (support-
ing file CCN_fit_coeffs.txt). The fits derived for cumulative
CCN active at high supersaturations (1 % and higher) are rel-
evant to cases of deep convection, whereas those derived for
very low supersaturations (below 0.1 %) may be helpful for
estimates of the abundances of particles in special popula-
tions such as giant CCN.

3.2 Time evolution of clusters

Our large dataset allows for additional statistical analysis
to examine the evolution of CCN spectra over time. This
gives insight into the underlying processes that are obscured
when examining single cases or shorter data periods. Figure 9
shows the evolution of cluster classifications over time, ex-
amining all clusters starting in a given classification (nucle-
ation, accumulation, or intermediate). Cluster classification
changes for all three clusters on the timescale of hours. Nu-
cleation clusters are most likely to transition to intermediate
clusters, rather than going directly to accumulation clusters.
This could be through any or all of the following: growth
of nucleation mode aerosol into larger sizes, coagulation
scavenging-, deposition-, or evaporation-induced loss of the
nucleation mode, and changes in air mass. Similarly, accu-
mulation mode clusters are also more readily transitioned to
intermediate clusters than to nucleation clusters. The role of
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Figure 9. Cluster evolution over time (hours after the appearance of
a cluster). The y axis for each plot shows the likelihood of the clus-
ter transitioning to a new cluster type after a specified time, while
the x axis has elapsed. The first collection of traces labeled nucle-
ation shows the evolution of the nucleation cluster spectra into the
other categories, with the middle collection depicting the evolution
of accumulation cluster initial states and the bottom showing evo-
lution of intermediate cluster initial states. Traces indicate the final
states (after the specified time lag) of the nucleation cluster (red),
accumulation cluster (blue), or intermediate cluster (black).

intermediate clusters as the pathway of conversion between
accumulation and nucleation clusters is further reinforced by
the fact that they are equally likely to transition to either
cluster type. In terms outside of the clustering perspective,
it appears most likely that transitions from aerosol distribu-
tions dominated by nucleation mode particles to ones dom-
inated by accumulation mode particles (or vice versa) occur
smoothly through intermediate cases where both modes are
of similar magnitude, rather than doing so abruptly. However,
the analysis cannot distinguish the specific role of meteorol-
ogy in these transitions.

There is some periodicity observed in the cluster evolu-
tion, which we examine more closely alongside fluctuations
in CCN number concentrations using autocorrelations. Au-
tocorrelation coefficients are calculated for several different
SSw conditions, as shown in Fig. 10, using the methods de-
scribed in Appendix D. Autocorrelation coefficients can be
interpreted similarly to other correlation coefficients – they
describe that portion of the variance that can be explained by
the observation at a previous time point. Because of the dif-
ferential nature of these comparisons, uncertainties in CCN
distribution discussed in Sect. 3.1 are unlikely to propagate
into this analysis. Furthermore, the regions of highest un-
certainty are avoided here. The higher the value of an au-
tocorrelation coefficient, the more stable that quantity is over
time, so that an autocorrelation coefficient of 1 implies no
change in state at a specified time lag, while 0 implies that a
previous data point (separated by the specified time lag) has

Figure 10. Autocorrelation functions for CCN number concentra-
tions at variable SSw. Bi-exponential fits are shown for the first 12 h
of lag time for each SSw, with solid, dotted, and dashed lines corre-
sponding to 0.1 %, 1 %, and 10 % SSw, respectively.

no influence on a current one. From Fig. 10, a great deal of
variability is observed in the first several hours of the com-
puted time lags, which is an unexpected finding. Autocor-
relation coefficients are expected to be highest for the first
several time points, but the oscillating nature of these points
implies aerosol processes with some periodicity in the 2–3 h
range. Natural processes that might produce such variabil-
ity throughout the day and over all seasons seem unlikely, so
the oscillation may be an artifact, for example, introduced by
sampling schedules. We apply a bi-exponential fit as an ap-
proximate way to smooth the data for time lags of up to 12 h,
removing the effect of these oscillations. Single exponential
fits are poor approximations of the shape of the autocorrela-
tion functions for 0.1 % and 1 % SSw cases. Because a sin-
gle decay pathway is expected to produce relatively consis-
tent decay rates, the appearance of multi-exponential decays
suggests multiple decay pathways. In this case, decay path-
ways for autocorrelation can be interpreted as pathways for
changes in CCN number concentrations.

Autocorrelation decays much more quickly for larger
(10 %) SSw, with greatly increased values appearing at 24 h
intervals. At higher SSw, the CCN number concentration
is often dominated by the smallest particles, which are as-
sociated with the nucleation mode. This interpretation fits
well with the autocorrelation data, which indicate short-lived
events tied to diurnal cycles. At moderate (1 %) and low
(0.1 %) SSw, there is a pronounced fast initial decay in au-
tocorrelation, followed by a period of slower decay. Fit con-
stants are described in Appendix D and shown in Table D1.
The fast initial decay rate is comparable (within the large
uncertainties; Table D1) for low and moderate SSw cases,
but the slow decay rate is significantly slower for the low
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SSw case. The diurnal peak (at 24 h time lag) is also signifi-
cantly weaker for the lowest SSw case, suggesting that there
is less variability in these lowest SSw CCN observations, as
compared to higher SSw. This is consistent with the fact that
number concentrations at larger particle sizes are much less
variable than those at smaller particle sizes (Marinescu et
al., 2019). Previous work on AOD spatial and temporal au-
tocorrelation at the SGP site (Alexandrov et al., 2004) and
elsewhere (Anderson et al., 2003) suggest that the fast de-
cay can be attributed to 3D microscale turbulent fluctuations,
while the slow decay is due to 2D large-scale turbulence. The
aerosol data used here are obtained only at the surface, so
the influence of the three-dimensional nature of the atmo-
sphere may be present but cannot be distinguished. Given
the role of new particle formation events, there is also po-
tentially a chemical (non-turbulence-driven) source of vari-
ability for CCN, contributing to the autocorrelation decay for
CCN concentrations at high SSw. Ultimately, these data illus-
trate that CCN spectra change rapidly over 1–3 h timescales,
with some conservation at longer timescales for the lower
end of the supersaturation range. The granularity of our data
(in ∼ 45 min increments) makes it somewhat difficult to re-
solve the exact timescales, but it is clear that the period of
rapid change is in the 1–3 h range. The role of variability in
CCN concentration is something that should be considered in
modeling studies that focus on the impacts of aerosol, espe-
cially those that use fixed concentrations of aerosol particles
or those that do not capture the comprehensive processes that
cause aerosol concentrations and properties to evolve. For
example, using fixed CCN concentrations for a given short-
term (< 2 h) simulation of shallow clouds (i.e., lower super-
saturations) is more justifiable than for a longer-term sim-
ulation of the development of deep convective clouds (i.e.,
higher supersaturations), based on the faster autocorrelation
decay rates of CCN at higher supersaturations. The autocor-
relation results can also help to define the timescales for data
assimilation to ensure models are updated frequently enough
to allow for accurate simulations.

4 Conclusions

We have developed, described, and examined a long-term
CCN spectrum data product for the SGP site in Okla-
homa. The data product builds on merged size distributions
(Marinescu et al., 2019) and hygroscopicity measurements
(Mahish and Collins, 2017) to create a best estimate of CCN
spectra across a wide supersaturation range from∼ 0.0001 %
to 30 %. It has been generated and verified by combining
high quality data from seven different instruments. It has
∼ 45 min temporal resolution across 5 years of data, from
2009 to 2013, which has allowed for analyses not normally
possible for smaller datasets.

We have determined that skewed log-normal distributions
provide excellent fits to occurrence probabilities of CCN

concentrations at any given supersaturation and to occur-
rence probabilities of a wide range of other aerosol quan-
tities. These types of distributions have been observed for
AOD measurements previously but have not been widely
used. They provide more information than traditional box
plots, while requiring a comparable number of parame-
ters. For established occurrence distribution shapes, shorter
timescale measurements could likely take advantage of these
fit parameters to fill in data gaps to estimate data over longer
periods. They also serve as useful inputs to models that in-
clude the expected variability in input parameters in model
predictions.

CCN spectra are controlled primarily by particle size dis-
tributions, especially at larger SSw values (above ∼ 0.2 %).
In this high SSw region of the spectrum, it appears possi-
ble to generate estimated CCN spectra using only median κ
values, rather than concurrent measurements of κ and size
distribution. However, this estimation relies on accurate size
distribution data that extend beyond 500 nm. Approximations
of uncertainties introduced by this median κ estimation have
been investigated and should hold for data from the SGP site
during different time periods. This estimation method is also
likely applicable for other sites, especially in similar environ-
ments, but is beyond the scope of this analysis.

Clustering analysis also highlights size distributions as the
driving force behind changes in CCN spectra. There are three
distinct clusters that have been found for cases dominated
by nucleation mode particles, accumulation mode particles,
or similar amounts of each. These are analyzed seasonally
and hourly, finding all clusters in significant quantities across
all seasons and times. Intermediate clusters are more likely
during the summer months, while accumulation clusters are
abundant in the winter. Fall and spring appear similar in this
view, falling between summer and winter. Nucleation mode
clusters are most likely during daylight hours, correspond-
ing with decreased intermediate clusters but nearly invariant
accumulation clusters.

Time evolutions are examined in this dataset to try to un-
derstand the dynamics of CCN spectra. Analysis of transi-
tions between clusters reveals that the most likely path is for
nucleation and accumulation mode clusters to transition to
an intermediate cluster first, rather than to direct transitions
occurring between the two. Autocorrelation analyses probe
the evolution of a given CCN SSw bin over time. A relatively
quick decay is found for all SSw values, with the bulk of
the correlation decaying in several hours, indicating that rel-
atively large changes in CCN spectra can be expected over
that time period. An additional slow decay is observed for
smaller SSw values, indicating that the CCN number is bet-
ter conserved at longer timescales (> 2–3 h) in lower SSw
regions of the CCN spectrum, corresponding to particles in
the coarse mode.
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Figure A1. Flowchart illustrating the processing of data to various
distributions, with input instrument data shown in blue boxes, size
distributions in orange, and CCN spectra in gray.

Appendix A: Merging of distributions and CCN
spectra

The initial size distributions used in this work are gener-
ated from a combination of scanning mobility particle sizer
(SMPS), aerodynamic particle sizer (APS), and condensation
particle counter (CPC) data, as described previously by Mari-
nescu et al. (2019), which are available in the DOE ARM
archive (Marinescu and Levin, 2019). This initial dataset,
here referred to as size distribution (SD) 1, is processed to
take into account additional instrument data utilizing humid-
ified tandem differential mobility analyzer (HTDMA), CCN
counter (CCNC), nephelometer, and aerosol chemical spe-
ciation mass spectrometer (ACSM) instrument data, as out-
lined in Fig. A1. SD1 data are available in approximately
∼ 45 min time intervals, where additional instrument data are
available in a higher time resolution and are subsequently av-
eraged over the time period of SD1 data for comparison. In
order to compare to CCNC measurements, SD1 must be con-
verted to CCN spectra using the hygroscopicity parameter
(κ) that is derived from HTDMA measurements.

Size-resolved aerosol hygroscopicity was measured with a
HTDMA (Collins, 2010b), which first selected dried, mono-
disperse aerosol at seven diameters and then exposed them to
a humidified (relative humidity – RH∼ 90 %) growth region.
The humidified aerosol size distribution was then measured,
and the change in particle diameter between the selected dry
particle diameter (Dp) and the resulting humidified size (Dw)
is termed the growth factor (GF=Dw/Dp). An example of
HTDMA measured growth factor distributions is shown in
Fig. A2. The orange lines indicate the selected dry size for

Figure A2. Example aerosol number distribution (solid line; up-
per plot) and growth factor (at 90 % RH) distributions (lower plots)
measured by an HTDMA. The dashed line in the upper plot is the
corresponding volume distribution.

each GF measurement. The top part of the figure shows the
size distribution measured by the SMPS at the same time.

These GF data at a given RH (properly written as, e.g.,
GF(90 %), but abbreviated here to GF for convenience) can
be used to calculate the hygroscopicity of the particles, as ex-
pressed via the hygroscopicity parameter, κ , in the following
(Carrico et al., 2010; Petters and Kreidenweis, 2007):

κ =

(
GF3
− 1

)
(1− aw)

aw
, (A1)

where

aw =
RH

exp
(

4σwMw
ρwRTDdGF

) , (A2)

and σw, Mw, and ρw are the surface tension, molecular
weight, and density of water, respectively, T is the absolute
temperature, and R is the ideal gas constant. After calculat-
ing κ distributions from each measured GF distribution at the
diameters selected by the HTDMA, we averaged κ for each
selected Dd and linearly interpolated between selected sizes
to generate a continuous distribution of aerosol hygroscopic-
ity across the entire size distribution. Given the uncertainties
introduced by interpolation and extension of κ data beyond
measurement bounds, we believe any added uncertainty in-
troduced by using the average κ rather than a κ distribution
is relatively minor.

CCN spectra were generated using these κ values, derived
from the HTDMA growth factor data described above us-
ing either the SD1 (initial) or SD3 (final) size distributions
(described below). For each time period with concurrent κ
and size distribution data, critical SSw was calculated for
each size bin. This was accomplished using Eqs. (A1) and
(A2), assuming the following constant conditions: tempera-
ture of 25 ◦C, water density of 1 g mL−1, and surface tension
of 72 mJ m−2. This calculation is accomplished numerically,
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by calculating water SSw for a logarithmically spaced array
of wet diameters, with the largest SSw chosen as the critical
value. Calculated errors from this method were less than 1 %
of the calculated values using this method (e.g. a 1 % error
in a 0.01 % SSw being ±0.0001 % SSw). A CCN spectrum
was then generated by adding up the activated particle popu-
lations at each SSw value, making no assumptions about the
order particles activated in; smaller particles with higher κ
could activate before large particles with low κ , if appropri-
ate.

In order to compare spectra between CCN spectrum 1 and
measured CCNC values averaged across the same ∼ 45 min
time intervals, interpolation of the CCNC data across the cal-
culated SSw bins was performed using MATLAB’s built-in
piecewise cubic hermite interpolating polynomial (PCHIP)
function for each CCNC spectrum. These data were used
to create a distribution corrected for the CCNC data using
a similar method to that described for the CPC corrections
in SD1 (Marinescu et al., 2019). The only difference be-
tween the algorithm described in Appendix A of Marinescu
et al. (2019) and the one used for generation of SD2 here oc-
curs in step 3. We calculated a 2-week rolling median percent
difference between the CPC and SMPS+APS distribution
and used this as a scaling factor across the entire distribu-
tion in this step. Times between 12:00 and 18:00 LT are ex-
cluded from the rolling median since new particle formation
events are common during those times and large differences
between the SMPS+APS integrated number concentration
and the CPC number concentration are expected. To gener-
ate SD2, the average difference between CPC and CCNC (in
total, particles and SSw specific CCN numbers, respectively)
is used instead of solely using CPC data. For example, if
the comparison with the CPC suggested that there should be
25 % more particles in the SMPS+APS size distributions,
and the comparison with the CCNC suggested there should
be 15 % fewer particles in the SMPS+APS size distribu-
tions, then the SMPS+APS size distribution data are scaled
up by 5 % (the average of +25 % and −15 %). The remain-
ing steps described in Marinescu et al. (2019) are performed
unchanged on this distribution. The remaining steps in the al-
gorithm can change the shape of the size distribution, so SD1
and SD2 are not simply scaled versions of each other. If no
quality CCNC data are available for a given time point, the
SD1 and SD2 spectra are identical.

The resulting SD2 was then compared to ACSM and neph-
elometer data to examine whether the CCNC correction was
warranted. ACSM comparisons were accomplished by gen-
erating total particle mass concentration for each distribution,
assuming spherical particles and a density of 1.77 mg mL−1,
which is that of ammonium sulfate. Additionally, the ACSM
cutoff of 1 µm and the volume equivalent diameter (DeCarlo
et al., 2004) were accounted for to produce the calculated
aerosol mass for comparison. The density chosen is within
the region of best agreement between the ACSM and dis-
tribution data for both the SD1 and SD2 and is chosen for

consistency with the nephelometer comparison. The neph-
elometer comparison was accomplished by generating single
particle scattering cross-sections for all size bins in the dis-
tributions assuming the optical properties of ammonium sul-
fate, which was again within the region of best agreement in
Fig. A3. Both of these comparisons produce excellent agree-
ment for many time points, as shown in Fig. A4. There was
evidence of systematic bias for some time periods but the
bias was relatively low for periods outside of 10 March 2011
through 1 November 2011 for the nephelometer data, which
were not used in distribution selection below.

SD2 generally produced a better agreement with the neph-
elometer and ACSM than SD1 did, although this was not true
for all time periods. In order to construct a final dataset in-
cluding the nephelometer and ACSM comparisons, the ratios
between distribution-calculated values and measured values
were used to select between SD1 and SD2 at each point
where data were available. Given the better general agree-
ment for SD2, it was used as default if there were no ACSM
or nephelometer data available, or if there was disagreement
between the two instruments. Through this process, 4711 dis-
tributions were selected from SD1 and 16203 from SD2, with
19407 points defaulting to SD2. The resulting distribution, of
SD3 compared with ACSM and nephelometer measurements
in Fig. A3, is considered to be the final product distribution
and analyzed throughout the paper alongside the CCN spec-
tra generated from it.
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Figure A3. Statistical comparisons of the agreement between measured quantities (a is ACSM aerosol mass concentrations; b is PM10
nephelometer scattering coefficients) and those estimated from either the SD1 or SD3 size distributions. The x axes show the comparisons
as ratios, where a ratio of 1 indicates perfect agreement.

Figure A4. Examples of excluded (a) and included (b) nephelometer data (blue traces) compared to total scattering coefficients calculated
from the indicated estimated size distributions (SD1 or SD3).

Appendix B: Skewed log-normal fits

The log-normal probability density function is defined as fol-
lows:

ϕ(lnx)=
1

xσ
√

2π
exp

(
−

(lnx−µ)2

2σ 2

)
, (B1)

where x is a number concentration (bin), µ is the median
value of log(x), and σ 2 is the variance in log(x). The log-
normal cumulative distribution function is defined as fol-
lows:

8(lnx)=
1
2
+

1
2

erf
[

lnx−µ

σ
√

2

]
, (B2)

where erf is the error function. A skewed log-normal prob-
ability density function can subsequently be defined as fol-
lows:

f (lnx)= 2ϕ(lnx)8(α lnx), (B3)

where α is a parameter representing the degree of skewness,
such that, when α = 0, then the log-normal distribution is re-
covered. When these functions are used to fit data, µ, σ , and
α are used as the fit parameters.

There are two issues that arise when using skewed log-
normal fits. The first is that there is no closed-form expres-
sion for the median value of a skewed log-normal distribu-
tion. The median can, of course, still be evaluated numeri-
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cally. The second is that x values of zero cannot be repre-
sented within the distribution due to the logarithm. In this
work, we address these issues by simply reporting the median
values and fractions of the data where zeros occur, alongside
the fit parameters. It should be noted µ is no longer the me-
dian value of log(x) for the skewed log-normal distribution.
This can be observed in the data in the Supplement (support-
ing file CCN_fit_coeffs.txt), where µ decreases at high SSw,
while the median value increases monotonically, as expected
for a cumulative distribution. Fits are generally very good,
as shown in Fig. B1 for several different aerosol quantities.
At very low SSw, or for very large particle bins, the qual-
ity of the fits degrades due to the large amount of noise in
the data. This noise occurs largely due to the detection lim-
its of the instruments involved at low particle concentrations
(for very large particles). If concentrations are so low that the
particle detections are not guaranteed in the sampling period
(45 min), a large amount of shot noise is introduced.

Figure B1. Examples of skewed log-normal fits to occurrence probabilities for aerosol metrics are labeled as follows: total particle number,
total particle volume, dN / dLogDp function at 100 nm, dN / dLogDp function at 1000 nm, and particle number concentrations active as
CCN at 0.01 %, 0.1 %, 2.8 %, and 5.3 % SSw.
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Appendix C: Clustering analysis

Clustering was done after evaluating several different meth-
ods and options. The primary parameters that were varied
were the number of clusters used, and the distance metric
used to distinguish clusters. All analysis was performed us-
ing the built-in MATLAB functions. There were three dis-
tance metrics evaluated using the K-means function options,
i.e., the (1) squared Euclidian, (2) sum of absolute differences
(city block), and (3) cosine. Each option defines cluster dis-
tance, d , as follows:

d1 (x,c)= (x− c)(x− c)′ (C1)

d2 (x,c)=
∑
j

∣∣xj − cj ∣∣ (C2)

d3 (x,c)= 1−
xc′

√
(xx′)(cc′)

, (C3)

where x is input data (CCN spectrum for a given time point),
and c is a cluster centroid. Both x and c are arrays, with sub-
scripts indicating a single array element and apostrophes in-
dicating a transpose operation. It was found that metrics 1
and 2 produced the separation of spectra based solely on
the total particle number, depending on whether clustering
was applied to aerosol size distributions or to CCN spec-
tra. Distance metric 3, however, produced well-resolved clus-
ters, based on the distribution shape (how the CCN spectrum
changes with SSw), and was selected for final cluster desig-
nations. Mathematically, distance metric 3 is a measure of the
included angle between points treated as vectors, which pro-
vides some effective normalization, so the result of the clus-
ters based on the distribution shape rather than total aerosol
number is not surprising. Clustering in the CCN space also
produced well-resolved clusters in the size distribution space
and vice versa. The CCN space was ultimately chosen for
clustering, due to the focus of the current work, but differ-
ences from the alternative are expected to be very minor.

Next, the optimal number of clusters was explored. While
this is often accomplished somewhat arbitrarily, intuitively,
or based on external models for a given process, statisti-
cal methods have been developed to guide the process. We
chose to use the gap statistic (Tibshirani et al., 2001), a built-
in MATLAB functionality, through the evalclusters function.
This method was too computationally intensive to use on the
entire dataset, so a subset of 500 randomly selected spectra
were used instead. There were three clusters that were sug-
gested to be the optimal number to use, based on this ap-
proach. These clusters all appeared to be physically distinct,
as discussed in Sect. 3.1.2, and the addition of a fourth cluster
simply resulted in the splitting of two adjacent clusters. The
three clusters were thus chosen for use in further analysis.

Clusters are generally similar year-round, but there is some
seasonal dependence within a given cluster, as shown in
Fig. C1.
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Figure C1. Median (solid lines) and confidence intervals containing 75 % of the data (dotted lines) for each cluster as a function of the
season, along with seasonal variations in hourly cluster likelihood for the nucleation mode cluster (bottom right).

Appendix D: Non-periodic autocorrelation and fits

Autocorrelation coefficients (Box et al., 2015) were gener-
ated by comparing adjacent points in a time series to deter-
mine the portion of variance that can be explained by the
adjacent points. For a time series with equally spaced mea-
surements, the autocorrelation function is defined as follows:

rk =

∑N−k
i=1 (Yi −Y )(Yi+k −Y )

N∑
i=1

(Yi −Y )2

, (D1)

where rk is the autocorrelation coefficient at time lag k, N is
the total number of time points, Yi is the measurement value
(in our case CCN number concentration) at time point i, and
Y is the mean measurement value. For time points that are
not evenly spaced, the same coefficient can be produced with
a few extra steps. The way we have accomplished this is to
(1) calculate the differences between all adjacent time points,
for a fixed number of integer time lags, before (2) sorting all
of these data into time bins based on how much time elapsed
between any given set of measurements.

Autocorrelation functions were subsequently fit to bi-
exponential decays for the first 12 h of time lag data, using
the following form:

f (x)= c1e
−τ1x + c2e

−τ2x . (D2)
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Table D1. Bi-exponential fit coefficients.

0.1 % SSw 1 % SSw 10 % SSw

c1 0.48 (0.34, 0.61) 0.46 (0.31, 0.61) 0.39 (−0.09, 0.88)
τ1 0.036 (0.001, 0.071) 0.070 (0.027, 0.113) 0.215 (0.026, 0.404)
c2 0.55 (0.37, 0.72) 0.57 (0.38, 0.75) 0.63 (0.15, 1.11)
τ2 1.11 (0.35, 1.86) 1.18 (0.39, 1.96) 0.99 (0.08, 1.90)

This is accomplished using the fit function in MATLAB,
which provides the 95 % confidence interval information.
Best fit parameters and 95 % confidence intervals are re-
ported in Table D1 below.

Data availability. All data are publicly available via the U.S.
Department of Energy’s Atmospheric Radiation Measure-
ment (ARM) user facility data archive, including instrument
data (Salwen et al., 1990, https://doi.org/10.5439/1025152;
Hageman et al., 1996, https://doi.org/10.5439/1025259;
Collins, 2005, https://doi.org/10.5439/1025303; Collins,
2010a, https://doi.org/10.5439/1150275; Koontz et al., 2012,
https://doi.org/10.5439/1228051; Zawadowicz and Howie,
2021, https://doi.org/10.5439/1763029), the initial merged
aerosol size distribution (Marinescu and Levin, 2019,
https://doi.org/10.5439/1511037) and CCN data used here
(Perkins, 2009, https://doi.org/10.5439/1832908).

Supplement. An additional text document containing skewed log-
normal fit coefficients for all CCN data, named CCN_fit_coeffs.txt,
can be found in the Supplement. The supplement related to this
article is available online at: https://doi.org/10.5194/acp-22-6197-
2022-supplement.
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