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Abstract. Volcanic ash advisories are produced by specialised forecasters who combine several sources of ob-
servational data and volcanic ash dispersion model outputs based on their subjective expertise. These advisories
are used by the aviation industry to make decisions about where it is safe to fly. However, both observations
and dispersion model simulations are subject to various sources of uncertainties that are not represented in op-
erational forecasts. Quantification and communication of these uncertainties are fundamental for making more
informed decisions. Here, we develop a data assimilation method that combines satellite retrievals and volcanic
ash transport and dispersion model (VATDM) output, considering uncertainties in both data sources. The method-
ology is applied to a case study of the 2019 Raikoke eruption. To represent uncertainty in the VATDM output,
1000 simulations are performed by simultaneously perturbing the eruption source parameters, meteorology, and
internal model parameters (known as the prior ensemble). The ensemble members are filtered, based on their
level of agreement with the ash column loading, and their uncertainty, of the Himawari–8 satellite retrievals,
to produce a constrained posterior ensemble. For the Raikoke eruption, filtering the ensemble skews the values
of mass eruption rate towards the lower values within the wider parameters ranges initially used in the prior
ensemble (mean reduces from 1 to 0.1 Tg h−1). Furthermore, including satellite observations from subsequent
times increasingly constrains the posterior ensemble. These results suggest that the prior ensemble leads to an
overestimate of both the magnitude and uncertainty in ash column loadings. Based on the prior ensemble, flight
operations would have been severely disrupted over the Pacific Ocean. Using the constrained posterior ensemble,
the regions where the risk is overestimated are reduced, potentially resulting in fewer flight disruptions. The data
assimilation methodology developed in this paper is easily generalisable to other short duration eruptions and to
other VATDMs and retrievals of ash from other satellites.

1 Introduction

Volcanic ash in the atmosphere poses a hazard to aircraft
(Casadevall, 1994). It is therefore important to accurately
forecast the evolution of volcanic ash cloud in the atmo-
sphere for the aviation industry. Forecasting the distribution
of volcanic ash in the atmosphere is typically performed us-
ing a volcanic ash transport and dispersion model (VATDM).
VATDMs solve numerical representations of equations re-
lated to ash dispersal processes in the atmosphere, to evolve

the system state (volcanic ash cloud) forward in time. How-
ever, such simulated volcanic ash distributions are subject to
errors due to inaccurate parameterisations of physical pro-
cesses, errors in the driving meteorological fields, and er-
rors in the volcanic eruption source parameters. Observa-
tions of volcanic ash concentrations, size distributions, and
mass loadings may be obtained from ground-based aircraft or
satellite-based instruments. These observations can be used
to evaluate the accuracy of VATDM simulations (Harvey and
Dacre, 2016; Dacre et al., 2016). Geostationary satellite mea-
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surements are of particular interest as they provide informa-
tion at high temporal frequency and, thanks to the increas-
ingly growing network of satellites, over large spatial extents.
Ash retrievals from geostationary satellite data use an inverse
model to transform observations of radiance into vertically
integrated volcanic ash column loadings. However, retrievals
of volcanic ash column loading from satellite data are sub-
ject to errors, including measurement, retrieval and forward
model errors, and interference with other atmospheric con-
stituents (e.g. Krotkov et al., 1999; Francis et al., 2012). This
error information is often disregarded, and only the mean ash
retrievals are used for verification purposes. Therefore, to im-
prove estimates of the volcanic ash cloud in the atmosphere,
VATDM simulations and observations can be combined to
create an analysis. Combining satellite-based observations
and VATDM simulations allows the modelled volcanic ash
cloud to be continuously adjusted and thus improves the ac-
curacy of volcanic ash forecasts (Fu et al., 2017).

The most straightforward combination of VATDM and
satellite observations is data insertion, whereby satellite ob-
servations of volcanic ash column loading are used as initial
conditions in a VATDM simulation (Wilkins et al., 2015).
More sophisticated combinations of VATDM simulations
and satellite observations involve data assimilation tech-
niques such as variational and sequential methods. In varia-
tional data assimilation, a cost function is defined to quantify
the difference between a VATDM simulation and a satellite
observation of volcanic ash column loading, weighted by the
VATDM and observation uncertainties. The cost function is
typically minimised by adjusting one or more eruption source
parameters (e.g. plume height, mass eruption rate, particle
size distribution, ash density) to estimate their optimum value
for simultaneously fitting the simulated column loadings to
the satellite retrievals and for fitting to prior estimates of the
eruption source parameters at a given time. In the volcanic
ash literature, this technique is often referred to as source
inversion (Stohl et al., 2011; Kristiansen et al., 2012; Den-
linger et al., 2012; Pelley et al., 2015). Variational data as-
similation typically uses observations from a fixed time win-
dow, thus allowing time evolving eruption source parame-
ters to be estimated, so is suitable for long-duration volcanic
eruptions, which undergo several eruptive pulses. Alterna-
tively, sequential data assimilation provides an estimation of
the system state sequentially as it evolves forward in time us-
ing observations as they become available. Thus, sequential
data assimilation is suitable for short-duration, single-pulse
volcanic eruptions (Chai et al., 2017; Zidikheri et al., 2017).

In most cases, eruption source parameters (input parame-
ters), physical processes (internal parameters), and the driv-
ing meteorology are uncertain, so an ensemble of VATDM
simulations can be formed by perturbing the input, meteoro-
logical, and internal parameters. This estimates a probabil-
ity density function (pdf) of simulated volcanic ash distribu-
tions. In this case, the data assimilation step involves condi-
tioning the VATDM prior pdf based on a comparison with

the observed volcanic ash cloud to create a posterior pdf at
each time the data assimilation is performed. In volcanic ash
forecasting, ensemble source inversion (Harvey et al., 2020)
and ensemble sequential filtering methods, such as Ensem-
ble Kalman Filters (EnKFs) (Fu et al., 2015; Pardini et al.,
2020; Osores et al., 2020; Mingari et al., 2022) and particle
filters (Wang et al., 2017; Zidikheri and Lucas, 2021), have
been employed. EnKFs were developed for non-linear sys-
tems and so are suitable for dispersion problems. However,
they assume that the parameters to be estimated have unbi-
ased Gaussian prior pdfs, which may not be true. Conversely,
no assumptions on the form of the prior pdf of simulator
states are needed for particle filtering techniques, although
this is at the cost of requiring more simulations.

Bayesian inference is used in particle filtering to constrain
simulation parameters with observations. In this framework,
the posterior pdf of the simulation parameters given the ob-
served data is computed from a prior pdf and from the like-
lihood of the data given a choice of simulator parameters.
Bayesian inference therefore relies on the ability to compute
a formal likelihood function. For volcanic eruption source
parameters their exact likelihood function is unknown or
computationally intractable, and so direct Bayesian analysis
is therefore not possible. A technique known as Approximate
Bayesian computation uses simulations to bypass the need to
evaluate a likelihood function. Approximate Bayesian com-
putation systematically explores the prior parameter space
and compares the simulated and observed data sets using a
distance metric. By accepting simulations for which this dis-
tance metric is smaller than a given threshold, the method
provides an approximation to the Bayesian posterior pdf.
One Approximate Bayesian computation method frequently
used in hydrology forecasting is known as generalised like-
lihood uncertainty estimation (GLUE) (Beven and Binley,
1992). The GLUE methodology is based on the concept of
equifinality, which acknowledges that there exist many com-
binations of simulation input and internal parameters that
provide equally good simulations of the observed system.

There are several steps in the GLUE methodology:

1. Realistic ranges are defined for the simulator input and
internal parameters. These are known as prior pdfs since
they are defined prior to the comparison with observa-
tional data. When there is a lack of strong prior infor-
mation about the parameter distributions and their inter-
actions, uniform pdfs are often used.

2. Rejection criteria are defined to determine the accepted
agreement between the simulators and the observed sys-
tem state. These can be based on subjectively chosen
thresholds limits or as accepted minimum levels of per-
formance allowing for the expected uncertainties in the
observational data.
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3. Input and internal parameter sets are sampled from the
prior pdfs to generate an ensemble of simulation predic-
tions of the system for a given analysis time.

4. Simulations that are not in agreement with the observed
system, using the selected rejection criteria, are dis-
carded from the analysis. The subset of retained sim-
ulators with known parameter sets forms the posterior
pdfs for each input and internal parameter. Thus, the
posterior pdfs are the conditional pdfs of each param-
eter given the observations.

5. Input and internal parameter values are then sampled
from the posterior pdf to generate an ensemble predic-
tion of the system at a future time.

6. Steps 4–5 can be repeated for subsequent analysis times
and the joint posterior distributions compared to the pre-
ceding analysis time.

The main aim of this paper is to contribute to the devel-
opment of data assimilation methods to improve quantita-
tive ash dispersion forecasts. To this end we will determine
whether satellite retrievals of volcanic ash column loading
can be used to filter an ensemble of volcanic ash simula-
tions using the particle filtering methodology. We determine
which of the input and internal model parameters are most
constrained by the satellite observations and quantify how
the assimilation of satellite data changes the uncertainty es-
timate of the ensemble. Finally, for communicating the vol-
canic ash forecasts, we apply to the ensemble output the risk-
matrix approach described in Prata et al. (2019) and applied
retrospectively to the 2011 Grimsvotn eruption by Harvey et
al. (2020), where risk is defined as the likelihood of exceed-
ing ash concentrations considered a potential risk to aircraft.
This approach will be demonstrated using simulations and
observations of the Raikoke volcanic eruption, which was a
short-duration eruption lasting less than 24 h, occurring be-
tween 21–22 June 2019.

2 Methods and data

In this study, the Numerical Atmospheric–dispersion Mod-
elling Environment, NAME (Jones et al., 2007), was used
to simulate the dispersion of volcanic ash. It is the VATDM
used by the London Volcanic Ash Advisory Centre (LVAAC)
for producing volcanic ash advisories following an eruption.
Each simulated ash cloud was quantitatively evaluated using
retrievals from Himawari–8.

2.1 Himawari–8

Himawari–8 is a geostationary satellite that came into op-
eration in July 2015 (Bessho et al., 2016). It has 16 spec-
tral channels and provides observations of high temporal fre-
quency (10 min) and spatial resolution (2 km for the infrared

bands). The high temporal frequency and spatial resolution
make these observations ideally suited to evaluate the trans-
port of volcanic ash following an eruption. The Met Office
volcanic ash retrievals used in this study are based on the
method by Francis et al. (2012), with slight adaptations for
the channels of the Advanced Himawari Imager (AHI) in-
strument aboard the Himawari–8 satellite.

The volcanic ash retrieval algorithm has two steps (Fran-
cis et al., 2012). The first step detects which pixels contain
volcanic ash using the channels at 8.6, 10.4, and 12.4 µm.
The second step runs a one-dimensional variational (1D-Var)
analysis to determine an optimal estimate between the as-
sumed background and the observed radiances in the chan-
nels at 10.4, 12.4, and 13.3 µm for the column loading, ash
cloud height, and effective radius. The detection is based on
a combination of brightness temperature difference (BTD)
tests and beta ratio tests (Pavolonis, 2010). The beta ratio
tests use a derived radiative parameter β, that is the effec-
tive absorption optical depth ratio of two channels, and are
used to filter pixels marked as ash by the BTD tests. These
tests have been improved by fine tuning of the operational
thresholds to optimise coverage of the June 2019 Raikoke
eruption. In addition, several geographical filters have been
added to reduce false detections at high satellite zenith angle
and over arid land surfaces, and further false detections have
been removed by checking the consistency of ash detection
in neighbouring pixels.

The retrieval algorithm also provides a measurement of the
error on each of the retrieved values. The retrieval relies on
the minimisation of a cost function to determine the opti-
mal estimate from the assumed background and the observed
radiances. How well defined the minimum of the cost func-
tion is provides an indication of the likely accuracy of the
retrieval, in that the more well defined the minimum of the
cost function is, the more accurate the retrieval is likely to
be. By considering the inverse of the second derivative of the
cost function with respect to each of the variables considered
in the retrieval, we can provide an estimate of the error for
the retrieved ash plume pressure, ash column loading, and
ash effective radius.

Where ash is detected, these pixels are flagged as ash,
and this algorithm determines the ash column loading. If a
pixel is free from both ash and meteorological cloud, then it
is flagged as a clear sky pixel. Pixels that neither have de-
tectable ash nor are flagged as clear skies are unclassified.
As in Harvey et al. (2020), further processing is performed
to re-grid the retrieved column loadings onto a grid of 0.375◦

latitude by 0.5625◦ longitude (approximately 40 km× 40 km
in mid-latitudes) and averaged over 1 h. This is to match the
resolution of the VATDM ash concentration output and to re-
duce data volumes. If all classified pixels within a grid box
are flagged as clear sky pixels, then the grid box is deemed to
be a clear sky observation. Otherwise, the grid box is deemed
to be an ash grid observation with the column loading in this
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grid box given by the mean of all the classified pixels (in-
cluding clear skies).

2.2 VATDM

All the simulations were performed in parallel mode using
NAME version 8.1 on the Joint Analysis System Meeting In-
frastructure Needs (JASMIN) super data cluster (Lawrence et
al., 2012). Each simulation ran for 10 to 60 min to complete a
96 h forecast. The total computational time necessary to run
a complete 1000-member ensemble varied from a minimum
of 7 up to 110 h, depending on the available resources on
JASMIN and queuing times. To simulate the dispersion and
removal of volcanic ash, NAME includes parameterisation
of the effects of turbulence on the transport and dispersion,
sedimentation, dry deposition and wet deposition. In the op-
erational configuration used by the LVAAC (Beckett et al.,
2020) aggregation of ash particles, near source plume rise,
and processes driven by the eruption dynamics (e.g. Wood-
house et al., 2013) are not explicitly modelled. The default
particle size distribution used is based on data from Hobbs et
al. (1991), and the shape of the particles are assumed to be
spherical.

Ensembles of NAME simulations were created by varying
nine parameters covering the meteorology, information about
the eruption source, and the parameterisation of turbulence in
NAME (as in Harvey et al., 2018; Prata et al., 2019). Uniform
distributions between the specified ranges were used as prior
probability distributions to generate the initial ensemble (Ta-
ble 1). Full details of how these parameters are sampled is
given in Sect. 4.1.

In each ensemble, all simulations share the same start and
end time, 18:00 UTC on 21 June 2019 and 12:00 UTC on
25 June 2019, respectively, for a total run time of 96 h. The
eruption start time matches the simulation start time. Vol-
canic ash within the simulations is released along a vertical
line, between the lower and upper plume heights (Witham
et al., 2019). Ash column loadings (g m−2) and ash con-
centrations (g m−3) are output onto a global grid of 800×
600 points, corresponding to a grid of 0.45◦ longitude and
0.3◦ latitude, giving a horizontal resolution of approximately
40 km in mid-latitudes. Ash column loadings are instanta-
neous loading values outputted every 6 h, and ash concentra-
tions are output every 6 h using a 6 h time average at 22 flight
levels (FL000–FL550) with a vertical resolution of 25 FL
(“thin layers”). All the flight levels are then combined to
form three “thick” layers (FL000–200, FL200–350, FL350–
550) by taking the maximum concentration values from the
component thin layers for the corresponding thick layer value
(Witham et al., 2019).

3 Description of the 2019 Raikoke eruption

Raikoke is an uninhabited volcanic island near the centre of
the Kuril Island chain in the Sea of Okhotsk in the northwest

Pacific Ocean located at 48.2◦ N, 153.3◦ E. Its most recent
explosive eruption, after 95 years of dormancy, started at ap-
proximately 18:00 UTC on 21 June 2019 and is estimated
to have an initial eruptive plume height of 10–13 km above
sea level (a.s.l.) (Global Volcanism Project, 2019). The erup-
tion lasted approximately 12 h and ended at approximately
06:00 UTC on 22 June 2019. There is evidence from visible
satellite imagery to suggest that there was an umbrella cloud
that was quickly advected eastwards towards a large extra-
tropical cyclone, which distorted the dispersed ash cloud
(Fig. 1).

The number of satellite grid boxes that are classified as
containing ash at each time are the ones available to be used
to refine the prior pdfs. The largest number of boxes are avail-
able at 18:00 UTC on 22 June. Before 06:00 UTC on 22 June,
the number of grid boxes available is limited by the small
time the ash has had to be transported. After 18:00 UTC on
24 June, the number of grid boxes is limited due to the pres-
ence of meteorological cloud associated with an extratropical
cyclone situated to the east of Raikoke.

4 Particle filter construction

Drawing from the GLUE methodology described in Sect. 1,
we developed a new particle filter for refining a series of
ensembles moving forward in time based on their level of
agreement with Himawari–8 satellite observations. All en-
semble members are evaluated and filtered by comparing
the NAME–simulated ash column loadings (g m−2) with the
satellite–detected ash column loadings (g m−2) for a given
analysis time. Column loading retrievals from Himawari–
8 cover a time range from 18:00 UTC on 21 June 2019
to 00:00 UTC on 24 June 2019. However, due to the low
number of grid boxes containing ash before 18:00 UTC on
22 June (Fig. 1), for the initial ensemble (ENS01) we chose
as first verification time, T1, the observations at 06:00 UTC
on 22 June 2019. For this given time, 32 grid boxes contain-
ing ash are available (Fig. 1). Each satellite hourly average
represents an average of data available at two times for each
hour of the observation (e.g. for 06:00 UTC on 22 June 2019,
the satellite observations are an average of data from 06:00
and 05:30 UTC). Comparing NAME-simulated ash column
loadings with observations that had been time-averaged over
1, 3, or 6 h showed little change with averaging duration.
However, averaging over longer periods led to a decrease of
the number of grid boxes available for comparison for some
of the observations. Therefore, we retained 1 h average ob-
servations for comparisons.

The particle filtering operation is designed such that, once
all the members of an ensemble have been evaluated based on
user defined rejection criteria, only those within the limits of
acceptability are retained and used to produce posterior pdfs.
A posterior ensemble is created by re-sampling the perturbed
parameters from the posterior pdfs, which are then compared
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Table 1. Parameters sampled and their control and initial sampling ranges.

Parameter Symbol Control value Initial sampling range

Plume height (km)a H 12.45 9–17

Mass eruption rate factorb MERF 1 0.33–3

Ash density (kg m−3) ρ 2300 1350–2500

Source duration (h) L 12 9–15

Distal fine ash fraction (%) DFAF 5 0.5–20

Horizontal (vertical) Lagrangian timescale for free tropo-
spheric turbulence (s)

τ 300 (100) 100–900 (33.33–300)

Standard deviation of horizontal (vertical) velocity for free
tropospheric turbulence (m s−1)

σ 0.25 (0.1) 0.0025–2.5 (0.001–1)

Standard deviation (σ ) of horizontal velocity for unresolved
mesoscale motions (m s−1)

mσU 0.8 0.27–1.74

Meteorological fields MET Met Office Unified Model
global analysis

Met Office Global and Re-
gional Ensemble Prediction
System members 0–17

a Plume rise height above the summit. b Scaling factor applied to the default mass eruption rate value calculated using the equation from Mastin et al. (2009); see Sect. 4.1.1
for details on how mass eruption rate is calculated.

Figure 1. Hourly mean ash column loadings from the Himawari–8 satellite at (a) 06:00 UTC, (b) 12:00 UTC, (c) 18:00 UTC on 22 June 2019,
(d) 00:00 UTC, (e) 06:00 UTC, (f) 12:00 UTC, (g) 18:00 UTC on 23 June 2019, (h) 00:00 UTC, (i) 06:00 UTC, (j) 12:00 UTC, (k) 18:00 UTC
on 24 June 2019. Grey shading indicates grid boxes that are classified as clear sky. The red triangle indicates the location of Raikoke. N
indicates the number of grid boxes classified as containing ash. The same colour bar applies to all maps.

forward in time with a new set of observations, Tn. There-
fore, each posterior ensemble represents a new possible state
of our simulated ash cloud at a future time based on the eval-
uation performance of the prior ensemble at a previous time.
The main steps involved in the methodology are summarised
(Fig. 2):

1. Prior pdfs are created for the nine perturbed parame-
ters, including eruption source parameters, driving me-
teorology, and NAME model internal parameters (Ta-
ble 1; Fig. 2). We assign an initial range for each param-

eter that is then sampled independently from a uniform
distribution to create an ensemble of 1000 members,
ENS01. Perturbed parameters and their initial ranges
are detailed in Sect. 4.1.

2. We define our rejection criteria, based on the thresh-
old values for our verification metrics: Hit Rate (HR)
and Mean Percentage Difference (MPD). Section 4.2
describes how we calculate HR and MPD and how we
set the thresholds (Fig. 2).
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Figure 2. Overall workflow of the particle filtering methodology.

3. Each model prediction from ENS01 is compared with
the satellite observations at a given time, T1. All poste-
rior ensembles are verified at a future time using obser-
vations every 6 h (Fig. 2)

ENS01 → T1 = 22 Jun 2019, 06:00 UTC,
ENS02 → T2 = 22 Jun 2019, 12:00 UTC
. . .

ENSn→ Tn = Tn−1+ 6h.

4. Simulations that, based on the rejection criteria, are
not in agreement with the satellite observations are dis-
carded. The retained simulations are used to form the
posterior pdfs for each input and internal model param-
eter (Sect. 4.3; Fig. 2).

5. Posterior pdfs are generated from the parameter sets of
the retained simulations, also considering possible in-
teraction among them by including effects of covari-
ation between eruption source parameters. Parameters
are re-sampled from these posterior pdfs, creating a new
1000-member posterior ensemble (Fig. 2). The newly
created posterior ensemble represents a possible state
of our system at a future time (Sect. 4.3). Each mem-
ber of the new ensemble produces a new 96 h forecast,
from 18:00 UTC on 21 June 2019 to 12:00 UTC on
25 June 2019.

6. Each model prediction from the posterior ensemble is
compared forward in time with a new set of satellite ob-
servations (Table 2; Fig. 2).

7. Steps 4–6 are repeated until all the available satellite
observations are covered.

4.1 Ensemble creation

Each ensemble of NAME simulations is created by per-
turbing nine parameters, including eruption source param-
eters, driving meteorology, and internal NAME parameters.
To generate the ensemble efficiently, we use Latin hypercube
sampling (LHS), which covers our entire parametric space
maintaining orthogonality among the different perturbed pa-
rameters (Prata et al., 2019). For ENS01, each parameter in
the LHS is chosen from prior pdfs, which ranges are defined
by a set of minima and maxima (Table 1) and sampled from
a uniform distribution assuming that all values within these
ranges are equally likely. For each posterior ensemble, the
ESPs in the updated LHS designs are chosen from the pos-
terior pdfs, while NAME internal parameters and members
of the Met Office Global and Regional Ensemble Predic-
tion System (MOGREPS-G) forecasts continue to be sam-
pled from uniform distributions (Sect. 4.3).

4.1.1 Eruption source parameters (ESPs)

To represent an initial uncertainty associated with ESPs for
ENS01, we define a minimum and a maximum possible value
for each perturbed parameter. Then, a parameter value is
sampled from a uniform distribution across this range.

We selected a total of five ESPs to perturb from those that
have been shown to have most effect on the simulated ash
cloud (e.g. Harvey et al., 2018; Prata et al., 2019): plume
height (H ), distal fine ash fraction (DFAF), mass eruption
rate factor (MERF), ash density (ρ), and eruption duration
(L). H is used to calculate the mass eruption rate (MER) for
each member using the empirical relationship from Mastin et
al. (2009). For each ensemble member, MER is scaled by the
DFAF, representing the percentage of ash transported at long
distances, and multiplied for the MERF, to account for uncer-
tainties associated with the Mastin et al. (2009) relationship.
Hence, MER is not perturbed explicitly.

Plume height

Plume height (H ) constrains the lower and upper limits of
the ash particles’ release height and, therefore, significantly
impacts both the vertical and horizontal structure of the sim-
ulated ash cloud. Although the Raikoke eruption was char-
acterised by the formation of an umbrella cloud, in NAME,
ash release is defined as a vertical line along which the ash
is uniformly distributed, with the lower and upper bounds
representing the volcano summit height (551 m a.s.l.) and the
reported plume height, respectively. We based our initial H
range on information available at that time. The Kamchatkan
Volcanic Eruption Response Team (KVERT) and the Tokyo
and Anchorage VAAC reported a large ash plume extend-
ing from 10 to 13 km (a.s.l.) within the first few hours of
eruption (Global Volcanism Program, 2019), while data from
CALIPSO satellite indicate that the plume may have reached
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altitudes up to 17 km (a.s.l.; Hedelt et al., 2019). For our ini-
tial ensemble, we selectedH ranges between 9–17 km (a.s.l.)
and for the control run, we set H = 13 km (a.s.l.; Table 1).

Mass eruption rate (MER)

The mass eruption rate, MER, is estimated from the plume
height using the empirically derived relationship from Mastin
et al. (2009)

MER= 50.7× 107H 2/0.241, (1)

where H represents the plume height in km. MER is ex-
pressed in g h−1. By calculating the MER from H , any un-
certainty associated with H propagates in the resulting MER
calculation. Furthermore, there is also an uncertainty associ-
ated with the nature of the relationship, being an empirical
one and based on a relatively small number of eruptions of
variable magnitude (Mastin et al., 2009). In order to take this
into consideration, for all the ensemble members, the MER is
perturbed for a factor between 0.33 and 3, while we use 1 for
the control run (Mass Eruption Rate Factor, MERF; Harvey
et al., 2018; Prata et al., 2019; Table 1).

Distal Final Ash Fraction (DFAF)

The MER calculated with the Mastin et al. (2009) relation-
ship (Eq. 1) estimates the total mass released during an erup-
tion. However, the particle size distribution (PSD) of the
erupted particles includes both larger particles (> 1 mm) that
are usually removed from the column in the first phases of
an eruption and an additional finer fraction that may leave
the column due to aggregation processes. Particles larger
than 100 µm are removed rapidly, without travelling long
distances, and as result, only a fraction of fine particles
< 100 µm is transported at long distances. Details of the true
PSD are often unknown. Here, the default LVAAC PSD is
used in each simulation (Table 1 in Witham et al., 2019),
and aggregation processes are not modelled in the NAME
simulations for this study. To account for this, the model as-
sumes that most of the ash falls out close to the volcano, with
only a small percentage of it reaching the distal plume. The
NAME default value for this percentage (distal fine ash frac-
tion, DFAF, Dacre et al., 2011), used here for the control run,
is 5 %; however, the real value is uncertain and varies with
each eruption (Witham et al., 2019). Consequently, the un-
certainty associated with DFAF can be very high (Grant et
al., 2012). Recent studies challenged the 5 % assumption by
reaching contrasting conclusions: either 5 % is too high for
most of the eruptions (Gouhier et al., 2019), or it is too low,
severely underestimating mass loadings (Cashman and Rust,
2020). For our prior ensemble, the range used is 0.5 %–20 %
(Table 1).

Ash density

The default LVAAC value for particle density is 2300 kg m−3

(Witham et al., 2019) and particle shape is assumed to be
spherical in the NAME simulations. At the time of writing,
no specific ash density or shape information is available for
the 2019 Raikoke eruption. Density was selected as param-
eter to perturb as it may help in representing uncertainty at-
tributed to ash aggregation and particle shape (e.g. Harvey et
al., 2018). The range used is 1350–2500 kg m−3, while we
use the default 2300 kg m−3 for the control run (Table 1).

Source duration

The overall duration of the intense phase of the Raikoke erup-
tion is relatively well constrained, with KVERT reporting
a strong explosive eruption beginning about 18:05 UTC on
21 June and a weaker explosive event reported at 05:40 UTC
on 22 June. However, ash emission continued, possibly un-
til around 08:00 UTC on 22 June, when KVERT reported a
gas–steam plume with some ash content (Global Volcanism
Program, 2019). As uncertainty in the duration of ash emis-
sion may lead to uncertainty in both the location and timing
of the modelled ash cloud (e.g. Prata et al., 2019), we con-
sidered a duration range of 9–15 h for ENS01 and 12 h for
the control run (Table 1). In the simulations, eruption source
parameters are assumed constant throughout the release du-
ration, although this is unlikely to be true for the Raikoke
eruption.

4.1.2 Driving meteorology

In this study, NAME was driven by the operational forecasts
from MOGREPS-G. The global forecasts have 17 ensemble
members plus a control member. The horizontal resolution
is approximately 20 km in the mid-latitudes, and there are
70 vertical levels with the lid at approximately 80 km. Each
forecast is run out for 7 d, and they are initialised four times
per day at 00:00, 06:00, 12:00 and 18:00 UTC (Bowler et al.,
2008). At the time of the Raikoke eruption, MOGREPS–G
used an on-line inflation factor calculation to calibrate the
spread of the ensemble in space and time and a stochastic
physics scheme to account for model uncertainty (Flowerdew
and Bowler, 2011, 2013). The MOGREPS–G forecasts used
in this study were initialised at 12:00 UTC 21 June 2019.

4.1.3 NAME internal model parameters

Previous studies have demonstrated how the NAME internal
model parameters used for representing the free tropospheric
turbulence can significantly impact the model output as they
affect the vertical thickness of the simulated cloud and the
overall motion of particles (Dacre et al., 2015; Harvey et al.,
2018; Prata et al., 2019). To represent uncertainty in free tro-
pospheric turbulence, we perturb the standard deviation (σ )
and Lagrangian timescales (τ ) of the horizontal and vertical
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velocity components in NAME, by sampling them from a
uniform distribution using the same ranges specified in Har-
vey et al. (2018) and Prata et al. (2019), with the horizontal
component of σ sampled on a logarithmic scale. The hori-
zonal and vertical components of these parameters are var-
ied in proportion to each other. Similarly, σ of the horizontal
velocity for unresolved mesoscale motions is also varied us-
ing the same range as in Harvey et al. (2018) and Prata et
al. (2019) and sampled from a uniform distribution. For the
control run, we use the default NAME values (Table 1). For
both the control run and the ensembles, these values are fixed
in time.

4.2 Particle filter verification metrics

Each simulation is either discarded or retained based on its
level of agreement with the satellite retrievals. We restrict
the comparison only to the area covered by both NAME sim-
ulated ash cloud and by detectable ash in the satellite obser-
vations. The comparison is performed based on two verifi-
cation metrics: hit rate (HR) and mean percentage difference
(MPD).

4.2.1 Step 1: Identifying matching pixels

Most satellite retrievals are unable to detect column load-
ings less than 0.2 g m−2 (Prata and Prata, 2012). Conse-
quently, before comparing the Himawari–8 data and NAME
output (Fig. 3a and b), we apply a minimum threshold of
0.2 g m−2 to the NAME-simulated ash column loading to
align with the minimum detection limit of the satellite ob-
servations. The Himawari-8 observations and their error are
both re-gridded over the NAME horizontal grid, to facilitate
inter comparisons. The re-gridding process is performed us-
ing IRIS (Met Office, 2021). There was no noticeable dif-
ference between re-gridding either each ensemble member
based on the satellite grid, or each observation and its er-
ror based on the NAME grid, using the different re-gridding
schemes available. However, re-gridding each ensemble re-
quires long computational times. Therefore, we decided to
re-grid the observation and its error based on NAME as tar-
get grid, using an area-weighted re-gridding scheme (Met
Office, 2021). Finally, we identify the grid boxes in which
both the NAME output and the satellite retrievals detect ash
as “matching pixels” (Fig. 3c). For each ensemble member,
we then calculate the hit rate and mean percentage difference
based on all matching pixels.

4.2.2 Step 2: Calculating the hit rate

The hit rate, HR, is a widely used categorical metric applied
to many meteorological phenomena for forecast verification,
representing the proportion of observed events that are suc-
cessfully forecast by a simulation. HR can be used to dis-
criminate “yes events” and “no events”, often by specifying a

threshold to separate “yes” and “no” (Joliffe and Stephenson,
2012). Similarly, HR has also been used to provide informa-
tion on how ash forecast model outputs compare to observa-
tions in terms of binary ash yes/ash no events (e.g. Stefanescu
et al., 2014; Marti and Folch, 2018). In such cases, a grid box
would represent a hit if both simulation and observation de-
tected ash above a threshold of > 0.2 g m−2.

Here, we calculate the hit rate as the percentage of match-
ing pixels for which the simulated value lies within one stan-
dard deviation of the corresponding mean satellite-detected
ash column loading. The standard deviation is provided by
the retrieval algorithm as a measurement of the error for the
retrieved ash values in each grid box (Sect. 2.1). Hence, we
both directly compare the ash column loadings between sim-
ulation and observations for each individual matching pixel,
and we complement this by considering the error associated
with the satellite observations.

Once we have identified the total number of hits in each
member, HR can be calculated

HR=
HITS

Matching Pixels
× 100. (2)

At this point, members that have an HR below a specific
threshold are discarded (Sect. 4.2.4; Fig. 3d) and the remain-
ing members (Fig. 3e) are then verified further by testing
against the observations using mean percentage difference.

4.2.3 Step 3: Calculating the mean percentage
difference

The final step in the evaluation process determines, for the
members retained following the HR verification, how much
the NAME–simulated ash column loading values differ from
the satellite–detected ones on a grid box basis. The percent-
age difference magnitude (PD) for each matching pixel is the
absolute value of the difference between the simulated and
observed column loadings, divided by the mean of the two
values and expressed in terms of percentage.

Then, the mean of the PDs over all grid boxes (MPD)
for each ensemble member is calculated. Ensemble mem-
bers with MPD below a threshold (Sect. 4.2.4; Fig. 3g) are
retained and used to form our posterior. Those above the
threshold are rejected (Fig. 3f).

4.2.4 HR and MPD thresholds

Both HR and MPD are sensitive to the total number of satel-
lite grid boxes containing detectable ash. Therefore, when
there are only a few satellite grid boxes available, fixed HR
and MPD thresholds may retain too few ensemble members
to form posterior pdfs. As our verification method is based
on limits of acceptability, to avoid a situation where either all
simulations are rejected or too few members are retained for
re-sampling, we implemented dynamic thresholding for both
HR and MPD. The acceptability thresholds for HR and MPD

Atmos. Chem. Phys., 22, 6115–6134, 2022 https://doi.org/10.5194/acp-22-6115-2022



A. Capponi et al.: Raikoke 2019 6123

Figure 3. Ash column loading at 18:00 UTC on 22 June 2019, (a) as detected by the satellite, (b) NAME simulation of one ensemble member
in NAME, and (c) after pixel-matching (grey pixels represent a match between satellite and simulation). Examples of ensemble members
rejected depending on values of hit rate and mean percentage difference (red boxes) are shown in (d) and (f). Examples of accepted ensemble
members depending on values of hit rate and mean percentage difference (green boxes) are shown in (e) and (g). All panels except (c) use
the colour scale shown in (b). The red triangle in each panel shows the location of Raikoke.

are adjusted dynamically during the verification to ensure
that a minimum of 50 ensemble members is retained (i.e.,
5 % of total number of ensemble members). This dynamic
adjustment is carried out by initially setting the HR threshold
to 95 % and the MPD threshold to the minimum MPD value.

Ensemble members are evaluated against these thresholds,
and the thresholds adjusted (by increasing the MDP value up
to the median value, and by decreasing the HR value, in 5 %
increments) until at least 50 members lie within the limits of
acceptability.
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This dynamic thresholding method, therefore, guarantees
that the members within limits of acceptability are always
retained using the “best” threshold available for both HR
and MPD, for a given time (Table 2). Only for T1, when 32
grid boxes containing detectable ash are available, were both
thresholds varied substantially, and fewer than 50 members
were retained. Thereafter, a HR of 95 % was maintained at
each verification cycle. MPD values had to be varied more to
retain at least 50 members but were always within the range
20 %–50 % of the minimum MPD.

4.3 Posterior re-sampling

The comparison of the prior and posterior pdfs for each pa-
rameter allows us to identify the range of parameters that rep-
resent a good approximation of those generating the observed
volcanic ash cloud at the verification time. Figure 4 shows
this comparison for ENS01, ENS02, ENS03, and ENS04;
each ensemble was verified using observations at T1, T2, T3,
and T4, respectively (Table 2). For ENS01 (Fig. 4a), most
of the ESP pdfs from the retained simulations are highly
skewed. In particular, this can be seen for H , DFAF, and
MERF. H is used to calculate the mass eruption rate (shown
in Fig. 4 but not explicitly perturbed), which is then perturbed
further by DFAF and MERF. Therefore, these ESPs signif-
icantly influence both the vertical and horizontal structure
of the modelled ash cloud and ash concentrations. However,
ENS02 (Fig. 4b), ENS03 (Fig. 4c), and ENS04 (Fig. 4d),
which use the particle filter described above, show how as
more ensembles are run and evaluated forward in time with
new observations, the parameter ranges of each posterior en-
semble gradually reduce. Additionally, the differences be-
tween posterior pdfs and the prior pdfs decrease, and the
ESPs become increasingly constrained.

Although this evolution is evident for many of the ESPs,
the input model parameters (τU , σU , and mσU ) do not
show a similar behaviour among the different ensembles.
This seems to hold for all the 11 ensembles (Figs. 4 and A1
in Appendix A), suggesting that the Raikoke simulations are
not sensitive to these internal parameters.

This constraining behaviour is the result of the refinement
of each posterior ensemble, achieved by repeatedly refitting
the parameters sets of the retained simulations at each verifi-
cation time, and re-sampling posterior ensemble parameters
from the newly fitted posterior pdfs. For the prior ensem-
ble, the LHS is performed independently for each parameter.
However, eruption source parameters are likely to be corre-
lated, especially the plume height, distal fine ash fraction,
and mass eruption rate factor, which are used to estimate and
perturb the mass eruption rate. Thus, we want to maintain
dependency among the ESPs during the re-sampling process.
The main steps of this process are the following:

1. The input parameter ranges from the retained members
are fitted with a gamma distribution (which represented

the overall best-suited distribution, Fig. 5a) and used to
generate a correlation matrix for the ESPs (Fig. 5b).

2. A new LH design is created (1000 samples for 5 pa-
rameters), and each sample is mapped to values apply-
ing inverse cumulative distribution function (CDF) of a
normal variable N (0,1). The generated values are inde-
pendent and follow a normal distribution.

3. Using a Cholesky decomposition of the correlation ma-
trix, a correlation structure is enforced to the new LHS
design, adding dependency to the normal values of our
parameters.

4. Finally, by applying a normal CDF to the normal vari-
ables, we transform them into uniform random vari-
ables, and then map the uniform distribution to the spec-
ified distribution function (gamma), applying the inver-
sion CDF of our gamma distributions.

Each ESP is sampled from the newly generated posterior pdfs
in the updated LHS design, therefore maintaining the depen-
dency among the parameters (Fig. 5b). In contrast, as we did
not observe the same constraining behaviour for the model
input parameters and driving meteorology (Figs. 4 and A1),
those parameters are treated independently, and their pos-
terior pdfs are sampled again from uniform pdfs, using the
same ranges as for the prior ensemble (Table 1).

For the majority of the ESPs in ENS02, this re-sampling
strategy modifies the ESP distributions away from the ini-
tial uniform distribution of the prior ensemble to a distribu-
tion that is highly skewed towards the lower end of the initial
range (Fig. 6). Then, as the posterior pdfs are refined by mov-
ing forward in time with new observations, the pdfs for some
of the ESPs, such as particle density and duration, seem to
approximate normal distributions (Fig. 6).

5 Discussion

The particle filtering data assimilation technique described in
Sect. 4 demonstrates how a series of ensembles of volcanic
ash simulations can be successfully constrained based on the
level of agreement between the simulation output and satel-
lite retrievals. Each ensemble is verified forward in time with
new retrievals. Compared to the parameter ranges used for
the prior ensemble (Table 1), the range of eruption source
parameters used to produce simulated ash clouds that repre-
sent a good approximation to the observed volcanic ash cloud
reduces as the posterior ensembles become more constrained
by the satellite retrievals.

The effects of the refinement on the posterior ensemble
can be observed in probability of exceedance maps, given
here for three different thresholds of ash column loadings,
0.2 g m−2 (Fig. 7b), 2 g m−2 (Fig. 7c), and 4 g m−2 (Fig. 7d).
The satellite retrieval at 18:00 UTC 22 June 2019 detects two
distinct regions where ash loadings exceed 0.2 and 2 g m−2
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Table 2. Number of members within limits of acceptability (WLoA), and HR and MPD thresholds for each ensemble at each verification
time.

Ensemble Verification No. of Posterior Prior HR MPD
Time grid boxes members WLoAa members WLoAb threshold (%) threshold (%)

01 T1: 22 June 2019 06:00 32 22 22 64 152
02 T2: 22 June 2019 12:00 107 53 0 95 60
03 T3: 22 June 2019 18:00 138 90 7 95 65
04 T4: 23 June 2019 00:00 65 176 30 95 68
05 T5: 23 June 2019 06:00 71 108 33 95 78
06 T6: 23 June 2019 12:00 55 66 20 95 56
07 T7: 23 June 2019 18:00 41 60 58 95 71
08 T8: 24 June 2019 00:00 70 59 181 95 99
09 T9: 24 June 2019 06:00 66 52 35 95 54
10 T10: 24 June 2019 12:00 31 62 53 95 57
11 T11: 24 June 2019 18:00 18 118 13 95 29

a Total number of retained ensemble members for a given time. Parameters for Ensemble 01 (prior ensemble) were sampled from uniform distributions. Parameters for
each subsequent ensemble (posterior ensemble) were sampled from posterior pdfs obtained from the retained members of the previous ensemble, verified at the previous
verification time. Threshold values for HR (higher is better) and MPD (lower is better) used at each verification time are shown in the last two columns. b Total number
of ensemble members that would be retained from the prior ensemble, ENS01 if the verification was run at each verification time, using the same HR and MPD
thresholds for which each posterior ensemble has been evaluated.

(Fig. 7a). The posterior ensemble (ENS03 – brown con-
tour) agrees with the control run (black contour) and the
prior ensemble (purple contour) on regions where loadings
> 0.2 g m−2 are likely (30 %–60 %) and very likely (60 %–
100 %; not plotted in Fig. 7). The simulated ash cloud re-
gions are more extensive than the area of satellite-detected
ash. However, this overestimation is greater for both the
prior ensemble (ENS01 – purple contour) and the control
run (black contour) than for the posterior ensemble (ENS03
– brown contour) and is largest for column loadings >
2 g m−2 (Fig. 7c) and 4 g m−2 (Fig. 7d). The refined ensem-
ble shows a much-reduced region with a 30 %–100 % proba-
bility of exceeding these loadings, showing better agreement
with the observations especially when considering loadings
> 2 g m−2 detected by the satellite (Fig. 7a). Thus, by ac-
counting for uncertainties, a wider region where those load-
ings are less likely has been shown instead, for all the consid-
ered thresholds (up to 30 %, dashed blue contour, not plotted
in Fig. 7 but in Appendix C, Fig. C1).

By considering mean ash concentrations (mg m−3) at T8
for ENS08, thus at 00:00 UTC on 24 June 2019, for the
three “thick” flight layers, FL000–200 (Fig. 8a), FL200–
350 (Fig. 8b), and FL350–550 (Fig. 8c), the control run
seems to underestimate the areas with concentrations exceed-
ing 0.2 mg m−3 compared to the subset of retained mem-
bers of both ENS01 and ENS08. Contrariwise, ENS01 fore-
casts concentrations exceeding 0.2 mg m−3 over larger re-
gions compared to the posterior ensemble. The overesti-
mation increases considerably for FL200–350 but also for
FL350–550, even with the posterior ensemble forecasting
an additional plume tail extending to the east of Raikoke
(Fig. 8c). Indeed, the areas forecasted by ENS08 with con-
centrations > 0.2 mg m−3 for both FL200–350 (Fig. 8b) and

FL350–550 (Fig. 8c) are, respectively, around 60 % and 30 %
less extended than the ones forecasted by ENS01. In general,
for all three flight levels, the area that a posterior ensemble
would forecast with high ash concentrations is drastically re-
duced compared to the prior ensemble.

5.1 Application to aviation operations

The use of probability of either exceedance maps (Fig. 7) or
concentration maps (Fig. 8) condense the information given
by the ensemble of VATDM simulations. However, multi-
ple charts are still needed to cover all the relevant infor-
mation, such as different flight levels, times, and ash con-
centration thresholds. To reduce information overload from
these numerous charts, which could impede fast decision–
making during emergency response, they can be condensed
further into a single chart using a risk matrix (Prata et al.,
2019). Here, we apply this risk-based approach to interna-
tional flight routes in the vicinity of Raikoke using both the
prior and posterior ensembles outlined in Sect. 4.

5.1.1 Flight routes and dosage risk

To simulate potential aircraft encounters with volcanic ash,
flight routes with minimised travel time were generated by
solving a time-optimal control problem as described in Wells
et al. (2021). Trans-Pacific flights were generated assum-
ing a constant true airspeed of 240 m s−1 (∼ 864 km h−1) at
a cruise altitude of FL380 (or 200 hPa) and using horizon-
tal wind speeds extracted from the National Center for At-
mospheric Research re-analysis data (Kalnay et al., 1996).
Eastbound and westbound time-optimal routes from Sapporo
(CTS) to Honolulu (HNL), Los Angeles (LAX) to Seoul
(ICN), and San Francisco (SFO) to Shanghai (PVG) interna-
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Figure 4. Evolution of parameter distributions for members within limits of acceptability (WLoA) for (a) Ensemble 01, (b) Ensemble 02,
(c) Ensemble 03, and (d) Ensemble 04. ρ, τU , σU , and mσU represent density, horizontal Lagrangian timescale for free tropospheric
turbulence, standard deviation of horizontal velocity for free tropospheric turbulence, and standard deviation (σ ) of horizontal velocity for
unresolved mesoscale motions. In (a), (b), (c), and (d), the mass eruption rate (MER) is plotted to show its variation, although it is not
explicitly perturbed in any of the ensembles. Each parameter in the box plots is normalised by dividing each individual value from the
ensemble members by the mean of that entire parameter range from the selected ensemble. The evolution of parameters distributions for
ENS05–ENS11 are shown in Appendix A (Fig. A1).

Figure 5. (a) Example of distribution identification for fitting plume height (H ) from members WLoA of ENS03 and (b) comparison of
correlation matrices between ENS03 ESPs in the members WLoA (lower matrix, red triangle) and ESPs posterior pdfs for ENS04 (upper
matrix, purple triangle).
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Figure 6. Evolution of ESPs distributions for ENS01 (purple shading), ENS02 (blue shading), ENS03 (orange shading), ENS04 (green
shading), ENS05 (red shading), and ENS06 (dark purple shading). Each panel shows (a) plume height (H ), (b) distal fine ash fraction
(DFAF), (c) mass eruption rate factor (MERF), (d) mass eruption rate (MER), (e) ash density (ρ), and (f) eruption duration. For ENS01,
each parameter is sampled from a uniform distribution. For ENS02–06, each parameter is sampled from posterior pdfs following a fit of the
members WLoA and considering the interaction among the parameters. MER is plotted to show its evolution, although it is not explicitly
perturbed in any of the ensembles. Dashed black lines in each plot represent the parameter value used for the control run. The evolution of
ESPs distributions for ENS07–ENS11 are shown in Appendix B (Fig. B1).

tional airports were calculated for each day of the dispersion
model output (i.e., at 24 h intervals).

As in Prata et al. (2019), the along-flight ash dose, D, was
defined as the ash concentration multiplied by the duration in
that concentration (duration of exposure), integrated along an
aircraft’s flight path at cruise altitude (assumed to be FL350–
550). This definition means that dose always increases mono-
tonically along the route. All dose calculations assume that
the modelled ash concentration fields at a given time step
are fixed (i.e., do not change with time) as the aircraft flies
from the origin to destination at its true airspeed (Prata et al.,
2019).

5.1.2 Risk-based approach

The first step in determining the risk is to calculate the frac-
tion of ensemble members that have concentrations above
specified impact thresholds for each of the three flight levels.
In line with the current International Civil Aviation Organi-
sation (ICAO) guidance, the impact concentration thresholds
used are 0.2–2, 2–4 mg m−3 and greater than 4 mg m−3, for
low, medium, and high impact, respectively. The risk of en-
countering ash is then determined by combining the likeli-
hood ranges (less likely, 0 %–10 %; likely, 10 %–90 %; very
likely, 90 %–100 %) and the impact. The risk of flying in a
specific location and at a flight level is then assigned to be
low, medium, or high. The overall risk presented is the max-
imum risk over the three flight levels. In Prata et al. (2019),
each risk level has a set of actions that may be implemented
by the decision-maker. These range from checking updated
ash forecasts to considering alternative routes and schedul-
ing extra maintenance.

The risk can be visualised as a 2D map or projected on to
flight tracks of interest (Fig. 9). Considering risk based on ash
concentrations at 00:00 UTC on 24 June 2019, there are large
portions of the flight tracks that encounter low and mid-level
risk, with a small region of high risk to the east of Raikoke
when using the prior ensemble (Fig. 9a). Thus, based on the
prior ensemble output, flight operations could be expected to
be severely disrupted at this time. However, determining risk
from the posterior ensemble (ENS08) removes the region of
highest risk and, overall, the amount of flight track poten-
tially impacted and therefore requiring action from the flight
operator is greatly reduced (Fig. 9b).

To account for the overall exposure of the aircraft to ash,
the risk approach can also be applied to dose along a flight
track (Fig. 9). To do this the ash dose impact thresholds used
are 4.4–14.4, 14.4–28.8 and greater than 28.8 g s m−3 (Clark-
son and Simpson, 2017; Prata et al., 2019). The likelihood
ranges used are the same as those used for the concentra-
tion approach. In this scenario, the risk is only determined
at cruising altitude, which is assumed to be at FL350–550
(not the maximum over all flight levels). For the prior en-
semble, the flight tracks to and from the West Coast of North
America encounter mid-level risk and could potentially re-
quire specific actions by the airlines (e.g. more fuel and en-
gine checks). Using this metric, flights between Honolulu
and Sapporo do not reach doses that reach the lowest level
of risk (Fig. 9c). For the posterior ensemble (ENS08), only
the route from SFO to PVG and ICN reach sufficiently high
doses to be highlighted by the risk approach. The other routes
have very few ensemble members where doses are above
4.4 g s m−3 and therefore are not highlighted by the risk ap-
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Figure 7. (a) Satellite-detected column loading at T3 (22 June 2019 18:00 UTC) shown in filled contours. Probability of exceedance maps for
ENS03 at T3 for column loading thresholds of (b) 0.2 g m−2, (c) 2 g m−2, (d) 4 g m−2 shown with dashed brown contour (30 % probability
region – the region within the brown line goes from 30 % up to 100 %). The black contour in (b), (c), and (d) shows the relevant column
loading threshold for the control run. The purple contours show the 30 % probability region for ENS01 of exceeding the relevant column
loading threshold (the region within the purple line goes from 30 % up to 100 %). For generating the purple contours, members from the
prior ensemble were retained by verifying ENS01 with observations at T3 (a) and using the same HR and MPD thresholds for which ENS03
has been evaluated (Table 2) to ensure a fair comparison between the prior and posterior ensembles. See Fig. C1 in Appendix C for the same
probability maps including the 0 %–30 % probability regions for ENS03.

Figure 8. Mean ash concentration values > 0.2 mg m−3 for ENS08 members (cyan region) for (a) FL000–200, (b) FL200–350, and
(c) FL350–550 at 00:00 UTC 24 June 2019. Each panel shows also the associated 0.2 mg m−3 ash concentration contour for both the control
run (black contour) and ENS01 (red contour).
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Figure 9. Concentration risk along time optimal flight routes at 00:00 UTC on 24 June 2019 for (a) prior ensemble (b) ENS08. Ash dose
risk along the same time optimal flight routes at 00:00 UTC on 24 June 2019 for (c) prior ensemble (d) ENS08. Yellow shading indicates
the lowest level of risk, orange shading indicates mid-level risk, and red indicates the highest level of risk. Note that dose risk only considers
risk at FL350–550, whereas concentration risk considers at all levels.

proach (Fig. 9d). This could greatly reduce the need for an
operator to implement any mitigation strategies.

6 Conclusions

This study presents a new particle filtering data assimila-
tion system that combines VATDM simulations with satellite
retrievals including their uncertainty estimates, to improve
forecasts of volcanic ash cloud location and concentration. A
prior ensemble is created by simultaneously varying nine pa-
rameters representing the meteorology, eruption source, and
internal parameters. Members from the prior ensemble are
retained or discarded based on their level of agreement with
the satellite retrievals. The retained simulations are then used
to create a posterior ensemble. Each posterior ensemble is
verified and filtered using satellite data at subsequent verifi-
cation times.

The ESPs ranges in the constrained posterior ensembles
are both smaller and skewed towards lower values than those
used in the control run and prior ensemble, with the excep-
tion of ash density and eruption duration. Therefore, a sin-
gle ensemble designed with unconstrained parameters ranges
(i.e., the prior ensemble) seems insufficient for estimating
ESPs ranges that may approximate more accurately the ob-
served volcanic ash cloud. This is not the case for internal
model parameters, which remain unconstrained by the data
assimilation.

Communicating the risk of volcanic ash to aviation using
risk maps and risk trajectories shows that the prior ensem-
ble forecasts mid-level and highest risk for both ash concen-
tration and dose thresholds for much of a set of representa-
tive flight tracks. Based on this information flight operations

could be severely disrupted by the eruption. However, using
the constrained posterior ensemble, the region of highest risk
is removed, and the mid-level risk is reduced. Thus, using
the refined posterior ensembles potentially reduces the need
for the operator to implement any mitigation strategies and
hence reduces disruption to airline operations.

This methodology is easily generalisable to other VAT-
DMs and could be used to run a comparison with other mod-
els. Different remote sensing datasets could be used to as-
sess its sensitivity to the observations used. Running multi-
ple 1000-member ensembles requires either a high computa-
tional power or can be subject to variable queuing times on
computer clusters such as JASMIN. Future work could in-
clude code optimisation to make runtime and ensemble size
more efficient, potentially allowing an operational applica-
tion. With a more manageable ensemble size, it could also be
possible to introduce temporal variation of perturbed param-
eters, such as plume height, within each simulation. Further-
more, the evaluation method is based on limits of acceptabil-
ity; a future improvement would be to define the posterior by
weighting each simulation output according to some measure
of its fit to the observations, in a way that takes proper ac-
count of the epistemic uncertainties in the satellite retrievals
or any other available information.
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Appendix A

Figure A1. Evolution of parameters distributions for members within limits of acceptability (WLoA) for (a) Ensemble 05, (b) Ensemble 06,
(c) Ensemble 07, (d) Ensemble 08, (e) Ensemble 09, (f) Ensemble 10, and (g) Ensemble 11. ρ, τU , σU , and mσU represent density,
horizontal Lagrangian timescale for free tropospheric turbulence, standard deviation of horizontal velocity for free tropospheric turbulence,
and standard deviation (σ ) of horizontal velocity for unresolved mesoscale motions. In all panels, the mass eruption rate (MER) is plotted to
show its variation, although it is not explicitly perturbed in any of the ensembles. Each parameter in the box plots is normalised by dividing
each individual value from the ensemble members by the mean of that entire parameter range from the selected ensemble.
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Appendix B

Figure B1. Evolution of ESPs distributions for ENS07 (blue shading), ENS08 (orange shading), ENS09 (green shading), ENS10 (red
shading), and ENS11 (purple shading). Each panel shows (a) plume height (H ), (b) distal fine ash fraction (DFAF), (c) mass eruption rate
factor (MERF), (d) mass eruption rate (MER), (e) ash density (ρ), and (f) eruption duration. For ENS07–11, each parameter is sampled
from posterior pdfs (see the main text for a detailed description of the re-sampling method). The mass eruption rate (MER) is shown for all
the ensembles, but it is not explicitly perturbed. Dashed black lines in each plot represent the parameter value used for the control run (see
Table 1).

Appendix C

Figure C1. Same probability maps as in Fig. 7 in the main paper, with the addition of the 0 %–30 % probability region for ENS03 to exceed
mass loading of (b) 0.2 g m−2, (c) 2 g m−2, and (d) 4 g m−2 (dashed blue contours; the region within the blue line is a probability region up
to 30 %).
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