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Abstract. Atmospheric dispersion model output is frequently used to provide advice to decision makers, for
example, about the likely location of volcanic ash erupted from a volcano or the location of deposits of ra-
dioactive material released during a nuclear accident. Increasingly, scientists and decision makers are requesting
information on the uncertainty of these dispersion model predictions. One source of uncertainty is in the meteo-
rology used to drive the dispersion model, and in this study ensemble meteorology from the Met Office ensemble
prediction system is used to provide meteorological uncertainty to dispersion model predictions. Two hypothet-
ical scenarios, one volcanological and one radiological, are repeated every 12 h over a period of 4 months. The
scenarios are simulated using ensemble meteorology and deterministic forecast meteorology and compared to
output from simulations using analysis meteorology using the Brier skill score. Adopting the practice commonly
used in evaluating numerical weather prediction (NWP) models where observations are sparse or non-existent,
we consider output from simulations using analysis NWP data to be truth. The results show that on average
the ensemble simulations perform better than the deterministic simulations, although not all individual ensem-
ble simulations outperform their deterministic counterpart. The results also show that greater skill scores are
achieved by the ensemble simulation for later time steps rather than earlier time steps. In addition there is a
greater increase in skill score over time for deposition than for air concentration. For the volcanic ash scenarios
it is shown that the performance of the ensemble at one flight level can be different to that at a different flight
level; e.g. a negative skill score might be obtained for FL350-550 and a positive skill score for FL200-350. This
study does not take into account any source term uncertainty, but it does take the first steps towards demonstrating
the value of ensemble dispersion model predictions.
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1 Introduction

The release of natural and man-made contaminants into the
atmosphere can pose a hazard to human health, animal and
plant health, and infrastructure. The dispersion and deposi-

tion of these contaminants are routinely simulated using at-
mospheric dispersion models. Output from these simulations
is frequently used to provide advice to decision makers and
health professionals on the possible level of exposure. For
example, dispersion models are used to forecast the transport
of volcanic ash following an eruption, and the forecasts are
used by the aviation industry to reduce the risk of damage
to aircraft. Dispersion models are also used to provide esti-
mates of areas where radionuclide concentrations will result
in health intervention levels being exceeded following a nu-
clear accident.

The accuracy of the simulations produced by atmospheric
dispersion models is dependent not only on the numerical ap-
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proximations and physical parameterisations within the dis-
persion model, but also on the inputs to the model, the me-
teorological and source term information. Meteorological in-
formation is typically provided as four-dimensional meteo-
rological fields from numerical weather prediction (NWP)
models, although some dispersion models can also use me-
teorological observations taken from a single observing sta-
tion. Source term information typically comprises informa-
tion about the material released, such as the quantity of ma-
terial released, the height and timing of the release, and the
composition of the release. Information about the material
being released may be obtained from emission models or ob-
servations depending on the type of release.

The meteorological and source term inputs and the physi-
cal and numerical parameterisations in the dispersion model
all contain uncertainties. General discussions on the types of
uncertainties in dispersion models and their relative impor-
tance are given by Rao (2005) and Leadbetter et al. (2020).
At the Met Office, two approaches are currently taken to eval-
uate these uncertainties. First, one or two additional simu-
lations (called scenarios) are carried out where the source
term information is perturbed (Beckett et al., 2020; Milling-
ton et al., 2019). Second, uncertainties in the source term and
the meteorology are evaluated individually and qualitatively
by including a general statement on the uncertainties in a text
or verbal description accompanying the model output. How-
ever, in recent years there has been a growth in the scientific
understanding of the uncertainties and the ability to represent
them in a model framework. In addition there is an increasing
expectation from both scientific advisors and decision mak-
ers to provide a quantitative evaluation of these uncertainties.

There are a number of challenges to providing quantita-
tive estimates of uncertainty in dispersion model predictions.
First, most dispersion incidents require a rapid response, so
there is limited time to carry out uncertainty evaluations and
communicate them. Second, there are a relatively small num-
ber of dispersion incidents for which sufficient observations
exist to assess the performance of the uncertainty estimates.
These challenges have resulted in relatively few studies of
dispersion uncertainty. Nevertheless, several studies have as-
sessed the sensitivity of the output to dispersion model pa-
rameters and input variables. Statistical emulators have been
applied to model predictions for the Fukushima accident (Gi-
rard et al., 2016) and the eruption of Eyjafjallajökull in 2010
(Harvey et al., 2018). They showed that dispersion predic-
tions for the Fukushima accident are sensitive to wind speed,
wind direction, precipitation, and emission rate, and disper-
sion predictions for the part of the eruption of Eyjafjalla-
jökull around 14 May are more sensitive to initial plume
height, mass eruption rate, free tropospheric turbulence, and
the threshold precipitation above which wet deposition oc-
curs. Although statistical emulators are a valuable tool for
exploring dispersion incidents, a separate statistical emulator
needs to be constructed for each event, making them a com-
putationally expensive tool for exploring multiple events. In

more idealised studies, not focussed on a single event, Hay-
wood (2008) demonstrated the sensitivity of a surface release
to wind direction and speed.

A comprehensive study of all three sources of dispersion
model uncertainty is too large a topic for a single paper, so
here we focus on the meteorological uncertainty. Galmarini
et al. (2004) describe three methods for providing meteoro-
logical uncertainty information to a dispersion model: per-
turbations to the initial dispersion conditions, a suite of dif-
ferent NWP models, and a single NWP with perturbations to
the initial conditions and/or model physics. The first of these
approaches could be used to explore uncertainty in the source
information or the meteorology. For example, Draxler (2003)
perturbed the location of the source horizontally and verti-
cally to explore the sensitivity of the HYSPLIT dispersion
model to small perturbations in meteorology. When mod-
elling the Across North America Tracer Experiment (ANA-
TEX) with this method, he was able to account for around
45 % of the variance in the measurement data. The second
approach has been used in a few post-event analysis projects
(e.g. Galmarini et al., 2010; Draxler et al., 2015), and in gen-
eral these studies demonstrate that an ensemble of disper-
sion predictions outperforms a single dispersion prediction
when compared to observations. However, for a single insti-
tute running multiple NWP models would be prohibitively
expensive in terms of both human and computational re-
sources. In addition, Galmarini et al. (2010) demonstrated
that for the European Tracer Experiment (ETEX) the perfor-
mance of an ensemble prediction system based on a single
NWP was comparable to the performance of a multi-NWP
model ensemble. The third approach, using a single NWP
with perturbations to the initial conditions and/or the model
physics, has also been used to model the Fukushima accident
(e.g. Korsakissok et al., 2020). The Met Office has recently
added the ability to run an ensemble dispersion model opera-
tionally using this third approach, and it is this approach that
we focus on here.

Developers of NWP models represent the uncertainty in
the atmospheric state and its evolution by running multi-
ple model integrations where each model integration starts
from a perturbed initial model state and uses perturbed model
physics. These are known as “ensemble” models and were
first used for weather forecasting in the 1990s. They can
also be used to provide information about the meteorological
uncertainty to dispersion models. Meteorological ensembles
were first used with dispersion models in the late 1990s/early
2000s, when output from a dispersion model (SNAP – Se-
vere Nuclear Accident Program) driven by ensemble meteo-
rology from ECMWF (European Centre for Medium-Range
Weather Forecasts) was compared to observations taken as
part of the ETEX experiment (Straume et al., 1998; Straume,
2001). The results of this study demonstrated that for the
meteorological conditions during ETEX the ensemble mean
performed better than the control. However, Straume (2001)
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also noted that at that time there was insufficient computa-
tional power to run ensemble dispersion models routinely.

Computational power is no longer a barrier to running en-
semble dispersion models, and more recently ensemble me-
teorology has been used with dispersion models to study the
Fukushima accident and the eruption of several volcanoes
(Eyjafjallajökull in April 2010, Grimsvötn in May 2011, Ke-
lut in February 2014, and Rinjani in November 2015). A
number of other studies have also considered hypothetical
releases of radioactive material and considered how to in-
crease the computational efficiency of running dispersion en-
sembles (e.g. Sørensen et al., 2020; Sigg et al., 2018). Kor-
sakissok et al. (2020) compared ensemble forecasts for two
hypothetical accidents in Europe using a range of differ-
ent dispersion models and ensemble meteorology from the
HARMONIE meteorological model.

The Fukushima accident has been simulated using ensem-
ble meteorology from ECMWF, source terms estimated af-
ter the event using reverse or inverse techniques, and a num-
ber of different dispersion models (Périllat et al., 2016; Ko-
rsakissok et al., 2020). However, these simulations were not
compared to single meteorological model/single source-term
simulations and so do not provide an indication of whether
ensemble meteorology outperforms deterministic meteorol-
ogy for this case study.

Dacre and Harvey (2018) used ensemble meteorological
data from ECMWF for the eruption of Eyjafjallajökull. Their
work demonstrated that large errors in dispersion forecasts
can occur when the horizontal flow separation is high and
that in these circumstances ensemble meteorological data
could be used to alert forecasters to the uncertainty and
different possible travel paths of the ash. The Grimsvötn
eruption was simulated using ensemble meteorology from
ECMWF by Kristiansen et al. (2016).

The Kelut eruption in 2014 was simulated by Dare et al.
(2016) using ensemble meteorology from the Australian
Community Climate and Earth System Simulator (ACCESS)
within the HYSPLIT dispersion model. They showed that
the ensemble dispersion simulation compared better, quali-
tatively, to the satellite observations than the deterministic
dispersion simulation. They also showed that the ensemble
output could be used to highlight the positional uncertainty
of the region of maximum concentration of volcanic ash.
Zidikheri et al. (2018) also demonstrated that the ACCESS-
GE ensemble performed better than the ACCESS-R (deter-
ministic) regional model when compared to observations of
volcanic ash from the eruptions of Kelut and Rinjani in 2014
and 2015 respectively. Performance was assessed using the
Brier skill score, a skill score that measures the accuracy of
probabilistic predictions, to show that a 24-member ensem-
ble performed better than the regional model for both erup-
tions. Dare et al. (2016) and Zidikheri et al. (2018) also com-
pared the performance of a forecast generated using meteo-
rological data initialized 24 h earlier than the latest forecast at
the start of the eruption and showed that although the ensem-

ble using the older forecast outperformed the forecast using
the most recent ensemble for Kelut, the forecast using the
most recent ensemble performed better for Rinjani.

These studies suggest that for those events that have been
examined, dispersion models run using ensemble meteorol-
ogy (hereafter dispersion ensembles) outperform dispersion
models run using a single meteorological model. However,
they are focused on just a few events covering relatively short
periods of time, and with the exception of Fukushima they
are all volcanic releases extending several kilometres into the
atmosphere and so cannot be considered to be representative
of a release within the boundary layer.

In order to assess the value of using meteorological en-
sembles with dispersion models, we need to assess the per-
formance of the ensemble over a large range of meteoro-
logical conditions. In addition, verification of ensembles re-
quires larger data sets than the verification of determinis-
tic output due to the extra probabilistic “dimension” (Wilks,
2019). To increase the size of our data set, we borrow a
method regularly used to verify meteorological models and
verify our ensemble dispersion output against dispersion out-
put produced using analysis meteorological data (see for ex-
ample Ebert et al., 2013). Here we use analysis meteorology
to describe the model meteorological data constructed using
a large number of observations to produce a representation
of the current state of the atmosphere and forecast meteorol-
ogy where this atmospheric state is propagated forwards in
time. Meteorological modellers use a number of methods to
verify their models, and there are advantages and disadvan-
tages of each method. One method is to use analysis data for
verification of variables that are not easily observed and to
produce gridded fields of variables that are only measured
at a few sparsely located observation sites. This reduces the
errors that can result from comparing model grid box aver-
ages with point observations (Haiden et al., 2012). However,
the processing necessary to produce the analysis data using a
combination of observations and knowledge of atmospheric
processes potentially introduces some additional uncertainty
(Bowler et al., 2015).

From a dispersion modelling perspective simulations us-
ing analysis meteorology are dispersion simulations using
the best estimate of the meteorological conditions. The sim-
ulations do not take into account uncertainty in the source
term or uncertainty in the dispersion model itself. There are
a number of advantages to this approach. First, we can as-
sess the performance of the dispersion ensemble over a large
range of meteorological conditions. Second, we remove any
source term uncertainty, allowing us to independently assess
the meteorological uncertainty alone. Third, we can examine
case studies within and outside the boundary layer to under-
stand the value of ensembles for releases at different heights,
accepting that NWP ensembles may be configured to per-
form better for certain variables and some parts of the atmo-
sphere. Despite these advantages, we also need to be aware
of the disadvantages of verifying against analysis meteorol-
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ogy. The analysis meteorology is constructed using a model
and so still contains uncertainties, and during and following
an incident, dispersion models would be compared to obser-
vations, not analysis model data.

2 Method

To explore whether using ensemble meteorology rather than
a single meteorological model can add value to a dispersion
prediction, two scenarios were constructed: one focused on
a boundary layer radiological release and the other on a vol-
canic eruption releasing ash into the troposphere and lower
stratosphere.

The first scenario considered a radiological release. Acci-
dental releases from nuclear power plants involve many dif-
ferent radionuclides, but as the aim of this study was to ex-
plore meteorological uncertainty rather than source term un-
certainty, a hypothetical release of 1 PBq caesium-137 (Cs-
137) over 6 h at an elevation of 50 m was used. It was as-
sumed that caesium-137 was carried on particles with a di-
ameter less than 1 µm and had a decay rate of 30 years. To
sample a range of different meteorological scenarios, the re-
lease was simulated from 12 different locations with different
topographical situations and coastal and non-coastal environ-
ments across Europe (see Fig. 1a). Note that these locations
are not known locations of nuclear facilities: they were just
chosen due their topographic and coastal situation. For this
scenario, total integrated air concentrations and total deposi-
tion were output at the end of a 48 h forecast. Contaminants
can remain airborne for longer than 48 h, but the aim of this
study was to consider the uncertainty during the initial re-
sponse to a radiological accident, and this is typically 48 in
the UK. In addition, it helped to keep model run times man-
ageable. All quantities were output on a grid with a resolu-
tion of 0.141◦ longitude by 0.0943◦ latitude (approximately
10 km by 10 km at mid-latitudes).

The second scenario considered a hypothetical eruption of
two volcanoes in Iceland: an eruption of Hekla with an erup-
tion height of 12 km and an eruption of Öraefajökull with an
eruption height of 25 km (see Fig. 1b). The runs were set up
in the same manner as the operational runs at the London
Volcanic Ash Advisory Centre (VAAC) (see Beckett et al.,
2020, for more details). Mass eruption rates were computed
using a relationship between eruption height and eruption
rate proposed by Mastin et al. (2009) and assuming that only
5 % of the ash is small enough to be transported over long
distances in the atmosphere. This results in release rates of
8.787× 1012 and 1.131× 1014 gh−1 for Hekla and Öraefa-
jökull respectively. The particle size distribution is based on
the eruption of Mount Redoubt in 1990, and particles have a
density of 2300 kg m−3. The eruptions were assumed to last
for 24 h, and transport and deposition of the emitted ash were
modelled for 24 h. The simulations were limited to 24 h, first,
because this is the duration of the forecasts VAACs are re-

quired to produce and, second, to keep run times manage-
able. Airborne ash concentrations were output and processed
following the same procedure as the London VAAC. First,
ash concentrations were averaged over thin layers 25 flight
levels (FLs) deep (approximately 800 m), where FLs repre-
sent aircraft altitude at standard air pressure and are approx-
imately expressed as hundreds of feet. Then the thin lay-
ers were combined into the three thick layers (FL000-200,
FL200-350, FL350-550) by taking the maximum ash con-
centration within the thin layers, which make up a thick layer,
and applying it to the entire depth (Webster et al., 2012). In
addition, accumulated deposits and 3-hourly vertically inte-
grated ash concentrations (hereafter referred to as ash col-
umn load) were also output. All quantities were output on a
grid with a resolution of 0.314◦ latitude by 0.179◦ longitude
(approximately 20 km by 20 km at mid-latitudes).

To explore a range of meteorological conditions, both sce-
narios were repeated every 12 h. Computational constraints
restricted the period over which runs could be carried out to
4 months between late autumn 2018 and early spring 2019,
so runs were carried out for the period 3 November 2018–
28 February 2019 for the radiological scenario and 1 Decem-
ber 2018–31 March 2019 for the volcanic eruption scenario,
with each simulation being run on a single NWP forecast.
Technical issues resulted in the loss of some of the simula-
tions on 18 and 19 January. Therefore a total of 232 simu-
lations of the radiological scenario and 240 simulations of
the volcanic eruption scenario were carried out. In both sce-
narios the release start times are 6 h after the meteorological
forecast data initialisation time.

2.1 Overview of NAME

Dispersion modelling was carried out using NAME (Nu-
merical Atmospheric-dispersion Modelling Environment),
the UK Met Office’s Lagrangian particle dispersion model.
NAME is used to model the atmospheric transport and dis-
persion of a range of gases and particles (Jones et al., 2007).
It is the operational model of the London VAAC responsi-
ble for forecasting the dispersion of ash in the north-eastern
Atlantic and over the UK, Ireland, and Scandinavia, and it
is also the operational model of RSMC Exeter (Regional
Specialist Meteorological Centre) responsible for forecasting
the dispersion of radioactive material in Europe and Africa.
In NAME, large numbers of computational particles are re-
leased into the model atmosphere, with each computational
particle representing a proportion of the mass of the mate-
rial (gases or particles) being modelled. Computational par-
ticles are advected within the model atmosphere by three-
dimensional winds from numerical weather prediction mod-
els and turbulent dispersion is simulated by random walk
techniques. Mass is removed from the model atmosphere by
wet and dry deposition as well as by gravitational settling for
volcanic ash and by radioactive decay for caesium-137.
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Figure 1. Release locations, modelling domain (orange box), and output domain (yellow box) for each scenario. (a) Radiological scenario
and (b) volcanic eruption scenario. Note that the modelling domain for the volcanic ash scenario was the whole of the Northern Hemisphere
north of 25◦ N.

2.2 Meteorological data

Meteorological data sets for this study are provided by
three different model configurations of the Met Office’s Uni-
fied Model (Walters et al., 2019). The ensemble meteo-
rological data are provided by the global configuration of
the Met Office Global and Regional Ensemble Prediction
System (MOGREPS-G), which is an ensemble forecasting
system developed and run operationally at the Met Office
(Tennant and Beare, 2014). It is an 18-member ensemble
which runs four times a day at 00:00, 06:00, 12:00, and
18:00 UTC. In the global configuration it runs at a resolution
of 0.28125◦ latitude by 0.1875◦ longitude (approximately
20 km by 20 km at mid-latitudes) with 70 vertical levels ex-
tending from the surface up to 80 km (in these simulations
only the first 59 levels extending up to 30 km are used). At
the time this work was carried out initial conditions were ob-
tained from the global deterministic 4D-Var data assimila-
tion system with perturbations generated using an ensemble
transform Kalman filter (ETKF) approach. Model perturba-
tions followed a stochastic physics approach where the ten-
dency of model parameters such as temperature were per-
turbed. In this configuration MOGREPS-G does not target
specific features or geographical areas and it is optimised for
error growth at all forecast lead times.

The ensemble dispersion simulations are compared to dis-
persion runs carried out using the global deterministic config-
uration of the Met Office Unified Model (hereafter referred to
as the deterministic forecast). The global deterministic con-
figuration of the Unified Model (Walters et al., 2019) has a
resolution of 0.140625◦ latitude by 0.09375◦ longitude (ap-
proximately 10 km by 10 km at mid-latitudes) and has the
same vertical level set as MOGREPS-G. It runs four times

a day, two 168 h forecasts at 00:00 and 12:00 UTC and two
update forecasts of 69 h at 06:00 and 18:00 UTC.

An analysis meteorological data set is constructed by
stitching together the first 6 h of each 6-hourly forecast and
the dispersion simulations are repeated using this data set.
This means that for the first 6 h of meteorological data the
deterministic forecast and the analysis meteorology will be
identical. Therefore, to avoid giving the deterministic mete-
orology a skill advantage, the simulated releases are 6 h after
the meteorological forecast data initialisation time.

In this study dispersion forecasts are initiated only on
the forecasts (ensemble and deterministic) at 00:00 and
12:00 UTC because the data for NAME are only retrieved
for the first 6 h of the 69 h update forecasts in order to update
the analysis meteorology.

2.3 Assessment of ensemble skill

There are many ways to assess the performance of an ensem-
ble (Wilks, 2019). Some of these measure attributes, such
as reliability, which measures the degree to which simulated
probabilities match observed frequencies, and resolution that
measures the ability of the ensemble to distinguish between
events with different frequencies, can only be calculated for
a (large) set of ensembles. The aim of this study is to eval-
uate the skill of each individual simulation, and to do this
the Brier score relative to the analysis (Brier, 1950) is used.
The Brier score is commonly used to evaluate meteorological
ensembles and is completely analogous to the mean-square-
error measure of accuracy used for deterministic forecasts.
The Brier score is a measure of the accuracy of a forecast in
terms of the probability of the occurrence of an event. For a
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set of N forecasts it is typically expressed as

BS=
1
N

N∑
i=1

(fi − ai)2, (1)

where fi is the forecast probability of the event occurring for
the ith forecast and ai is the observation of the event, with
ai = 0 if the event does not occur and ai = 1 if it does occur.
Here the dispersion prediction using the analysis meteorol-
ogy is substituted for the observation. The Brier score ranges
from 0 to 1 and is negatively oriented, so that a perfect fore-
cast is assigned a Brier score of 0. For each scenario an event
was considered to have occurred if a threshold concentration
(or deposition amount) was exceeded in a single output grid
square.

Several thresholds were used for each of the scenarios
(see Table 1). The simplification of the release rate for the
radiological scenario means that there are no relevant pub-
lished thresholds. As part of the CONFIDENCE project a
hypothetical severe accident was modelled using a range of
dispersion models and ensemble meteorology (Korsakissok
et al., 2020). A 37 kBqm−2 threshold for deposition of Cs-
137 was exceeded at distances of 100–200 km from the re-
lease location. Here thresholds for the radiological scenario
were chosen so that the highest thresholds were exceeded at
100–200 km from the release location and with the remaining
thresholds were selected on an decreasing log scale. Average
(mean) maximum distances at which thresholds are exceeded
are calculated by computing the maximum distance at which
each threshold is exceeded for every location, every ensem-
ble member, and every simulation and then averaging over
the ensemble members and simulations.

It can be seen from the average maximum distance from
the release location that the highest threshold is exceeded is
around 100 km for all of the release locations (see Fig. 2).
The average maximum distance that the lowest threshold is
exceeded is between approximately 650 and 1000 km from
the release location for the total integrated air concentration
and between approximately 700 and 1300 km from the re-
lease location for the accumulated deposition. The average
maximum distances at which thresholds were exceeded are
lowest for the releases from Milan, Italy, and highest for
the releases from Felixstowe, UK, reflecting the different
weather patterns that influence these locations. Milan, Italy,
is surrounded by the Alps on the northern and western sides
and so is sheltered from the westerly and southwesterly pre-
vailing winds. In contrast, Felixstowe is in a low-lying region
of the UK with no shelter from the prevailing westerly and
southwesterly winds, and the prevailing winds carry material
across the sea, where winds speeds are typically higher than
over land.

Thresholds for the volcanic ash scenario air concentration
values reflect values discussed in the literature. The London
VAAC currently uses thresholds of 0.2, 2.0, and 4.0 mgm−3

(Beckett et al., 2020). Prata et al. (2019) note that thresh-

olds between 2.0 and 10.0 mgm−3 have been discussed in
meetings with aviation stakeholders, and studies of engine
damage consider damage against a log scale of air concentra-
tion (Clarkson and Simpson, 2017). Therefore, the thresholds
for air concentration of volcanic ash used in this study range
from 0.2 to 10.0 mgm−3 on a log scale. Threshold concen-
trations for ash column load assume that layers of volcanic
ash are on average 1 km thick and so are chosen to be a fac-
tor of 1000 larger than the thresholds for air concentration.
Accumulated deposition thresholds were chosen so that the
areas where deposition exceeded the thresholds were similar
to the areas where the air concentration exceeded the thresh-
olds. Average maximum distances at which thresholds are
exceeded for each of the three flight levels for the Hekla sce-
nario are shown in Fig. 3. As expected, the average maxi-
mum distance at which the thresholds are exceeded increases
over time; 3 h after the start of the eruption all of the thresh-
olds are exceeded to a maximum distance of around 250 km
at all three flight levels; 24 h after the start of the eruption
the average maximum distance over which thresholds are ex-
ceeded ranges from approximately 1600 to 2400 km. To pro-
vide a sense of scale 1600 km is the approximate distance
from Reykjavik, Iceland, to Bern, Switzerland. The small-
est distances are for the highest thresholds in FL000-200 and
FL350-550 and the largest distances are for the lowest thresh-
olds in FL200-250.

The Brier score is often compared to a reference Brier
score to produce a Brier skill score. In meteorology the most
commonly used reference is climatology. However, there is
no climatology for a single release dispersion event, so in-
stead a reference forecast is used. In this case the fore-
cast using the global Unified Model is used as a reference
as it also demonstrates whether or not the ensemble fore-
cast outperforms the deterministic forecast. This is not per-
fect because the deterministic and analysis meteorology has
the same resolution, while the ensemble meteorology has a
coarser resolution. However, all three meteorological config-
urations are initialised using the same observations, and the
models would be used in their native resolution in a real dis-
persion incident, so this provides an indication of the models’
performance in that they would be used in real incidents. The
Brier skill score is expressed as

BSS= 1−
BS

BSref
. (2)

In this case the Brier skill score indicates the level of per-
formance of the ensemble over the deterministic forecast, so
ensemble forecasts that outperform their deterministic coun-
terparts have positive Brier skill scores and ensemble fore-
casts that perform worse than their deterministic counterparts
have negative Brier skill scores. It provides an indication of
the relative performance of the ensemble and deterministic
forecasts rather than an measure of absolute performance, so
that if the deterministic and ensemble forecasts both perform
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Table 1. Thresholds used in the assessment of forecast skill for each of the quantities’ output from the radiological and volcanic ash scenarios.

Radiological scenario

48 h integrated air concentration 5× 104, 1× 105, 2× 105, 5× 105, 1× 106, 2× 106, 5× 106 Bqsm−3

48 h accumulated deposition 5× 102, 1× 103, 2× 103, 5× 103, 1× 104, 2× 104, 5× 104 Bqm−2

Volcanic ash scenario

Air concentration 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 mgm−3

Ash column load 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 gm−3

Accumulated deposition 2.0, 5.0, 10.0, 20.0, 50.0, 100.0 gm−2

Figure 2. Average maximum distances at which thresholds are exceeded for (a) total integrated air activity of Cs-137 and (b) total accumu-
lated deposits of Cs-137 for each of the 12 release locations and each of the six thresholds.

well but the deterministic performs slightly better, the ensem-
ble forecast will have a negative Brier skill score.

The Brier skill score can range from −∞ to +1, so av-
erage Brier skill scores are computed by first computing the
average Brier scores for the ensemble and the deterministic
meteorology and then using Eq. (2) to compute the average
Brier skill score.

3 Results

In this section, the Brier skill scores for the ensemble runs are
presented. First the average Brier skill scores are presented
for each scenario and each release location. Then a few sim-
ulations where the skill score was high or low are examined
to provide examples of the situations where simulations us-
ing ensemble meteorology outperform those using determin-
istic meteorology and vice versa. It should be noted that the
Brier skill scores only provide an assessment of the relative
performance of the ensemble forecast when compared to the

deterministic forecast rather than an absolute measure of the
performance of the ensemble forecast.

3.1 Radiological scenario

Figure 4 shows the average Brier skill score at each of the 12
locations where a hypothetical radiological release was sim-
ulated. Seven threshold values are shown for each of the 48 h
integrated air concentrations and the 48 h accumulated depo-
sition. Average skill scores are higher for the accumulated
deposition than the air concentration and there is more vari-
ation in skill score between the different locations for the ac-
cumulated air concentration. The highest average skill scores
are at Mace Head and the lowest skill scores at the lower
threshold values can be found at Milan. However, there is
a greater range of skill scores between the thresholds at In-
verness, and the average skill score for the highest threshold
is negative, implying that for this threshold, on average, the
dispersion runs using deterministic meteorology performed
better than the dispersion runs using ensemble meteorology.
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Figure 3. Average maximum distances at which thresholds are exceeded for air concentrations on (a) FL000-200, (b) FL200-350, and
(c) FL350-550 for each of the six thresholds. The solid line represents average maximum distances from ensemble simulations and the dotted
line represents average maximum distances from the analysis simulations of the Hekla scenario.

Figure 4. Average Brier skill score for (a) total integrated air activity of Cs-137 and (b) total accumulated deposits of Cs-137 for each of the
12 release locations and each of the six thresholds.

Atmos. Chem. Phys., 22, 577–596, 2022 https://doi.org/10.5194/acp-22-577-2022



S. J. Leadbetter et al.: Value meteorological ensembles add to dispersion modelling 585

For the accumulated air concentration the lowest skill scores
were seen for the highest threshold at 8 out of the 12 release
locations. This is typically because the highest thresholds are
exceeded close to the release location and soon after the re-
lease time when the ensemble performs less well than the
deterministic simulations (not shown). The same was true
for the accumulated deposition, although for a different set
of eight release locations.

Although the average Brier skill score at each location is
positive, implying that on average the ensemble performs
better than the deterministic simulation, there are simulations
at all locations for which the skill score is negative (Fig. 5).
The standard Brier skill score can take any value from−∞ to
1, but this means that it is difficult to assess the relative size
of negative and positive Brier skill scores on a single plot.
Therefore, in Fig. 5 the Brier skill score has been adjusted,
so that negative Brier skill scores lie in the range [−1,0).
This adjusted score is defined as

BSS_adj=

{
BSS, BSS≥ 0,
BSref
BS − 1, BSS < 0.

(3)

For the thresholds shown in Fig. 5 Brier skill scores are nega-
tive for between 10 % and 30 % of the simulations of total ac-
cumulated air concentration and between 0.5 % and 19 % of
the simulations of accumulated deposition. The highest per-
centages of negative skill scores are from the simulations of
releases at Karlsruhe and Milan for integrated air concentra-
tion and deposition respectively, and the lowest percentages
of negative skill scores are from the simulations of releases at
Warsaw for both integrated air concentration and deposition.
Generally simulations from release locations with a larger
percentage of negative skill scores for integrated air concen-
tration also have a larger percentage of negative skill scores
for deposition.

3.2 Volcanic ash scenario

For the volcanic ash scenarios Brier skill scores were com-
puted for the air concentration on three flight levels, FL000-
200, FL200-350, and FL350-550, the air concentration inte-
grated over the whole depth of the model atmosphere (the
ash column load) and the accumulated deposits. Average un-
adjusted Brier skill scores are shown in Fig. 6, and it can be
seen that after the first time step the average scores are greater
than zero, suggesting that on average the ensemble outper-
forms the deterministic forecast. Brier skill scores increase
with forecast time, and the increase is fastest for the accu-
mulated deposition and slowest for the highest flight level
(FL350-550) for the 12 km eruption scenario. Generally, av-
erage skill scores are higher for smaller thresholds, although
the difference in skill score between the thresholds is smaller
than the difference in the skill scores between the forecast
times. With the exception of the upper two flight levels, skill
scores are similar for the 12 km eruption scenario and the

25 km eruption scenario. The 12 km eruption will only emit a
small amount of material into the highest flight level, FL350-
550, because FL350 is typically around 11 km above sea
level.

Although the average Brier skill scores are generally
greater than zero, at each forecast time step there are runs
where the Brier skill score is negative, suggesting that the
deterministic forecast outperforms the ensemble (see Fig. 7,
which shows individual adjusted Brier scores). At later fore-
cast time steps there are fewer negative scoring runs, and the
range of Brier skill scores is narrower. The reduction in neg-
ative scoring runs implies that the ensemble is more likely to
perform better than the deterministic one at later time steps.
This is possibly due to the increase in ensemble spread at
later time steps. The reduction in the range of the Brier skill
scores is likely to be due to the increase in area exceeding
the threshold. At early time steps when the plume is narrow,
the Brier skill score is dominated by a few grid cells and the
ensemble tends to be less spread, resulting in either a high
Brier skill score or a very low Brier skill score. At later time
steps the plume is more spread out and the ensemble is more
spread, so there is a greater range of Brier scores for the dif-
ferent grid cells and the Brier skill score tends to be closer to
zero.

3.3 Examples of high and low Brier skill scores

The Brier skill score is a statistical method of quantifying
the performance of an ensemble of predictions against a ref-
erence prediction. However, it hides a lot of detail. In this
section examples of simulations where the Brier skill score is
high and low are examined in more detail. Examples of high
and low Brier skill score were selected from the radiologi-
cal scenario by considering predictions where the adjusted
Brier skill score was greater than 0.6 or less than −0.6 for
four or more thresholds for a single simulation. The subset
of examples in Fig. 8 was then randomly selected from the
simulations fitting these criteria.

Figure 8a shows an example of a high Brier skill score for
a prediction of integrated air concentration following a hypo-
thetical release from Milan in northern Italy. In this example
the deterministic simulation predicted some transport to the
south-west and a large amount of transport to the south-east,
broadly following the Po Valley. In contrast, the analysis sim-
ulation predicted a small amount of transport to the south-
east and a greater amount of transport to the south-west. The
ensemble simulation spans both of these predictions, and the
area where more than 60 % of ensemble members exceed the
threshold extends a similar distance in the south-westerly and
south-easterly directions. This resulted in a Brier skill score
of 0.76.

Figure 8b shows an example of a low Brier skill score for
a prediction of air concentration following a hypothetical re-
lease from Kristiansand. In this example the region where
the threshold is predicted to be above 200 kBqsm−3 is very

https://doi.org/10.5194/acp-22-577-2022 Atmos. Chem. Phys., 22, 577–596, 2022



586 S. J. Leadbetter et al.: Value meteorological ensembles add to dispersion modelling

Figure 5. Adjusted Brier skill score for (a) total integrated air activity of Cs-137 above 50 kBqsm−3 and (b) total accumulated deposits of
Cs-137 above 5 kBqm−2 for each of the 12 release locations. Black squares show average Brier skill scores at each location and the box and
whiskers show the range of adjusted skill scores for each individual simulation.

similar in the deterministic and analysis runs, extending due
west from the release site. In contrast, most ensemble mem-
bers predict that the threshold will be exceeded in a region
slightly further north. At the time of this release a high-
pressure system was located over Norway and a low-pressure
system was located to the south of Greenland. This resulted
in a high gradient of wind speed and a change in wind di-
rection close to Kristiansand (see Fig. 9a). At the start of the
release wind speeds at Kristiansand were greater in all the
ensemble members than both the deterministic and analysis
meteorological data, and wind directions were more easterly
and less southerly in all the ensemble members than both the
deterministic and analysis meteorological data (see Fig. 9b
and c). This suggests that the location of the highest gradi-
ent in wind speed and change in wind direction were slightly
different in all ensemble members, resulting in the different
predictions of air concentration.

Figure 8c shows an example of a high Brier skill score for
a prediction of accumulated deposition following a hypothet-
ical release from Kristiansand. The area where the deposits
exceed 2 kBqm−2 is complex because the deposition is dom-
inated by wet deposition. The area exceeding the threshold
predicted by the deterministic simulation covers a large area
of the North Sea between the Norwegian coast and the Shet-
land Islands. However, the area exceeding the threshold in
the analysis simulation is mostly limited to a narrow region
immediately to the west of the release site. There are three
regions where more than 60 % of ensemble members are in
agreement so that the threshold will be exceeded: one in the
narrow region immediately to the west of the release site,
one extending from 0 to 4◦ E at 59.4◦ N, and one close to
the western-most point of the Norwegian coast. Both the en-
semble and the deterministic simulation show relatively poor

agreement with the analysis simulation but, because, in most
areas, only a small proportion of the ensemble exceeds the
threshold, it has a lower Brier score than the deterministic
one, and thus the Brier skill score is positive.

Figure 8d shows an example of a low Brier skill score for
a prediction of accumulated deposition following a hypothet-
ical release from Mace Head in Ireland. In this case the area
where deposits are predicted to exceed 5 kBqm−2 is similar
in the analysis and deterministic simulations. Although this
region closely matches the region where 60 % of the ensem-
ble members exceed the same threshold, the good agreement
between the analysis and the deterministic simulations cou-
pled with a few ensemble members predicting the threshold
will be exceeded further to the north results in a lower Brier
score for the deterministic than for the ensemble simulations.
This is an example of a case where the ensemble forecast is
unable to show an improvement in the deterministic forecast
because the deterministic forecast performs highly. The neg-
ative Brier skill score only provides a comparison of the per-
formance of the ensemble relative to the deterministic one
and does not provide information about the individual per-
formance of the ensemble.

For the volcanic ash scenario, Brier skill scores were
closer to zero, so examples of high and low Brier skill scores
were selected by considering all simulations where the ad-
justed skill score was greater than 0.5 or less than −0.5 for
at least two time steps at a single flight level. Examples were
randomly chosen from the simulations meeting these criteria.

Figure 10 shows an example of a simulation where the
Brier skill score is positive, implying that the ensemble sim-
ulation performs better than the single deterministic simula-
tion. The simulation considers a hypothetical volcanic erup-
tion at Hekla with an eruption height of 12 km starting at
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Figure 6. Brier skill score against forecast time (hours since the start of the eruption) for (a, b) ash concentration on three flight levels
(solid lines are FL000-200, dashed lines are FL200-350, and dotted lines are FL350-550), (c, d) ash column load, and (e, f) accumulated
deposition for five different thresholds. The left-hand-side column is for a 12 km eruption of Hekla and the right-hand-side column is for a
25 km eruption of Öraefajökull.
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Figure 7. Adjusted Brier skill score against forecast time for ash concentration exceeding 5 mgm−3 on three flight levels: (a) Fl000-200,
(b) FL200-350, and (c) FL350-550. The left-hand-side column is for a 12 km eruption of Hekla and the right-hand-side column is for a 25 km
eruption of Öraefajökull. Black squares show average Brier skill scores and the box and whiskers show the range of adjusted skill scores for
each individual simulation.
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Figure 8. Examples of high and low Brier skill scores from the radiological scenario. The coloured contours show the probability of the
ensemble predictions exceeding the threshold. The area where the threshold is exceeded by the analysis simulation is shown by a red solid
line and the area where the threshold is exceeded for the deterministic simulation by a red dashed line.

18:00 UTC on 21 January 2019. Figure 10 shows regions
where the air concentration in FL000-200 exceeds 2 mgm−3.
Volcanic ash is initially transported in a north-easterly direc-
tion; 6 h after the start of the eruption material to the north of
Iceland is transported to the north-west, while newly emit-
ted material is transported to the south-east, resulting in a bi-
directional plume extending in the north-westerly and south-
easterly directions from the volcano.

The Brier skill score for this simulation is positive for all
flight levels and all time steps except 6 h after the eruption,
where there are negative and zero skill scores for concen-
trations exceeding 2 mgm−3 at heights of FL200-350 and
FL000-200 respectively (see Fig. 11). The skill score for the

lowest flight level gradually increases from 6 h after the erup-
tion to 21 h after the eruption before decreasing slightly. In
the middle flight level a similar pattern is observed, although
in this case the highest skill score occurs 9 h after the erup-
tion, and at the highest flight level there is a slight down-
ward trend in the skill score over time. This demonstrates
how ensemble skill, relative to deterministic simulation skill,
can vary with height.

What do these Brier skill scores mean for the difference
between the ensemble, deterministic, and analysis simula-
tions for the concentration of ash exceeding 2 mgm−3 at
FL000-200? Six hours after the start of the eruption there is
good agreement between the deterministic and analysis sim-
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Figure 9. (a) Map of 10 m wind vectors (arrows), 10 m wind speed
(red shading), and sea level pressure (grey lines) from the analysis
meteorological data set at 18:00 UTC on 19 November 2018. Kris-
tiansand (Norway) is marked with a blue triangle. (b) 10 m wind
speed and (c) 10 m wind direction at Kristiansand (Norway) from
the ensemble forecast (grey lines), deterministic forecast (green
line), and analysis meteorology (red line).

ulations, but there are a few members of the ensemble simu-
lation predicting greater plume spread in an east–west direc-
tion. This is consistent with a Brier skill score close to zero.
Twelve hours after the start of the eruption the deterministic
and analysis simulations start to diverge, particularly at the
north-western end of the plume, and 24 h after the start of
the eruption the analysis simulation predicts that the plume
will just reach the coast of Greenland, but the deterministic
simulation predicts that the plume will extend approximately
5◦ further west. A few ensemble members also predict that

the plume will extend several degrees to the west of the coast
of Greenland. However, the region where all ensemble mem-
bers are in agreement that the air concentration will exceed a
threshold of 2 mgm−3 is in good agreement with the region
where the analysis simulation exceeds the same threshold.
The Brier skill scores for 12, 18, and 24 h after the start of
the eruption are 0.407, 0.502, and 0.484 respectively, indi-
cating that during this time period the ensemble outperforms
the deterministic simulation.

Figure 12 shows an example of a volcanic ash simulation
where the Brier skill score is negative, implying that the de-
terministic simulation outperforms the ensemble simulation.
This simulation considers a hypothetical eruption of Öraefa-
jökull with an eruption height of 25 km starting at 06:00 UTC
on 24 December 2018. Material in the lowest flight level
(FL000-200) is transported eastwards from Iceland. There is
also some southward transport of the ash to the east of Ice-
land, and this increases with each time step so that the region
exceeding 5 mgm−3 extends down the North Sea across the
Shetland Islands, the southern and western coasts of Norway,
and much of Denmark.

The Brier skill score for ash concentrations exceeding
5 mgm−3 in the upper two flight levels, FL200-350 and
FL350-550, for this simulation are both positive and change
little over the duration of the simulation (see Fig. 13). How-
ever, at the lowest flight level, FL000-200, the skill score for
ash concentrations exceeding 5 mgm−3 is initially very neg-
ative and then gradually increases over time, becoming posi-
tive 21 h after the eruption.

At the lowest flight level, there is good agreement between
the regions where the ash concentration is predicted to ex-
ceed 5 mgm−3 in the deterministic and analysis runs. In ad-
dition, there is very little spread in the ensemble, and the re-
gion where 80 % of ensemble members predict volcanic ash
concentrations to exceed the threshold closely matches the
region of threshold exceedance from the analysis simulation.
There is a small mismatch on the northern edge of the re-
gion, where 80 % of ensemble members predict concentra-
tions above the threshold and where the analysis and deter-
ministic simulations predict concentrations above the thresh-
old, and this results in a negative Brier skill score.

In this section six example simulations have been consid-
ered, three where the Brier skill score had a large positive
value and three where the skill score had a large negative
value. The large positive values can be attributed to simu-
lations where the deterministic simulation performed poorly
compared to the analysis and the region where the ensemble
predicted the highest probabilities of exceeding a threshold
compared well to the analysis simulation. The large negative
values occurred in simulations where the deterministic simu-
lation performed well compared to the analysis. In this case
the ensembles demonstrated different behaviour: in one case
the ensemble predicted transport in a different direction to
the analysis, in the second case there was some spread in the
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Figure 10. A volcanic ash simulation of Hekla where the Brier skill score is high for concentrations exceeding 2 mgm−3 at FL000-200. The
coloured contours show the probability of the ensemble predictions exceeding the threshold in 6 h time steps starting 6 h after the eruption.
The area where the threshold is exceeded by the analysis simulation is shown by a red solid line and the area where the threshold is exceeded
for the deterministic simulation by a red dashed line.

ensemble, and in the final case there was very little spread in
the ensemble.

4 Summary and conclusions

This study considers how well a dispersion ensemble con-
structed using input from a meteorological ensemble model
might be expected to perform when compared to a dispersion
model using single-model deterministic meteorology. Mete-
orology from the Met Office MOGREPS-G ensemble predic-
tion system is used as input to the NAME dispersion model
generating an 18-member dispersion ensemble. The disper-
sion output is then compared to runs using forecast meteo-

rology from the global deterministic configuration of the Met
Office Unified model (referred to as deterministic meteorol-
ogy). To provide a “ground truth” an analysis meteorological
data set is constructed by stitching together the first 6 h of
each 6-hourly deterministic meteorological forecast.

Dispersion output from two hypothetical scenarios is ex-
plored: the first scenario is a near-surface release of radioac-
tive material and the second scenario is a volcanic eruption in
Iceland. Simulations of both scenarios are repeated over a 4-
month period to sample a range of meteorological conditions.
Two volcanic eruptions are considered, a 12 km eruption of
Hekla lasting 24 h and a 25 km eruption of Öraefajökull also
lasting 24 h. To sample different topographical locations, 12
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Figure 11. Brier skill score changes with time since the start of the
eruption for a simulation with a high Brier score. This is for the
same case as Fig. 10.

different release sites in Europe are considered for the radio-
logical release, and in each case the release is assumed to last
6 h. For the radiological release scenario total integrated air
concentration and total deposition are output after 48 h. For
the volcanic eruption scenario air concentrations of volcanic
ash on three vertical levels, deposits of volcanic ash and the
total column load of volcanic ash are output every 3 h. Out-
puts from the simulations using ensemble meteorology are
compared to the outputs from the simulation using determin-
istic meteorology using the Brier skill score computed for a
range of thresholds.

The results showed that on average Brier skill scores were
greater than zero for all release locations for the total inte-
grated air concentration and total deposition from the radio-
logical scenarios. This suggests that on average the ensemble
dispersion simulation performed better than the determinis-
tic dispersion simulations. Skill scores were greater than zero
for all thresholds except the highest threshold for one release
site. Skill scores were slightly higher for total deposition than
total integrated air concentration. This may be because pre-
dictions of precipitation, and therefore predictions of wet
deposition are typically more uncertain than predictions of
wind speed and direction, giving the ensemble more scope
to add value. It also demonstrates that the value of ensemble
forecast data depends on the meteorological parameters that
have the greatest influence on the output.

Skill scores for the air concentration, deposition, and to-
tal column load of volcanic ash were greater than zero ex-
cept at 3 h after the start of the eruption, where the skill
scores for deposition were negative. Zidikheri et al. (2018)
used the Brier skill score to compare ensemble simulations
of the eruptions of Rinjani and Kelut to satellite observa-
tions. Although this study is not directly comparable because
model simulations using deterministic meteorology are used

in place of observations, the Brier skill scores are in good
agreement. The skill scores increased with time since the
start of the eruption, suggesting that the skill of the ensem-
ble increases over time compared to the deterministic simula-
tions. Similar results are observed when the skill of ensemble
NWP models is assessed. Examination of individual simula-
tions showed that different skill scores could be obtained for
different flight levels so that it was possible for the ensemble
to outperform the deterministic one at one flight level but not
at the neighbouring flight level.

Two very different scenarios have been considered, the
48 h integrated concentrations resulting from a boundary
layer release and the time-varying concentrations resulting
from a vertical column release over depths of 12 and 25 km.
Average Brier skill scores were greater than zero for both
scenarios and for all outputs considered, suggesting that us-
ing ensemble meteorology provides value for a wide range
of dispersion scenarios. Brier skill scores tend to be slightly
greater for the boundary layer scenario, but further work
would be needed to determine whether this was due to the
height of the release, the averaging period, or the threshold
values.

Due to computational constraints this study was only able
to examine skill scores over a 4-month period from the end of
the Northern Hemisphere autumn to the beginning of spring.
This was partially mitigated against for the radiological sce-
nario by using a range of release locations. However, further
work would need to be carried out to demonstrate that the
results hold for the Northern Hemisphere summer.

In this study, individual ensemble simulations were com-
pared to analysis simulations to assess whether they outper-
formed forecast simulations. Using this method uncertainty
in the source term and the dispersion model parameterisa-
tions is excluded. The results could, therefore, be viewed as
assessing the performance of the NWP ensemble for disper-
sion applications; i.e. the study assesses the NWP parame-
ters of importance to dispersion over scales that are impor-
tant to dispersion. The data set could also be used to as-
sess whether the dispersion ensemble is reliable. That is,
the model-predicted probability of an event matches the ob-
served frequency of the same event and has good resolution;
i.e. the model is able to distinguish between events which
occur with different frequencies. Work to assess this and to
increase the range of metrics used to assess the performance
of the ensemble is ongoing and will be addressed in a sepa-
rate paper.

It would also be useful to determine whether there were
certain meteorological regimes where ensemble simulations
added more value. Meteorological data are often categorised
into weather patterns in order to provide a broad overview
of future weather as well as a tool to understand the per-
formance of numerical weather prediction (NWP) models.
A comparison of the skill of the ensemble within different
weather regimes may indicate the weather patterns where en-
semble simulations are most likely to add value. However, to
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Figure 12. A volcanic ash simulation of Öraefajökull where the Brier skill score is low for concentrations exceeding 5 mgm−3 at FL000-
200. The coloured contours show the probability of the ensemble predictions exceeding the threshold in 6 h time steps starting 6 h after the
eruption. The area where the threshold is exceeded by the analysis simulation is shown by a red solid line and the area where the threshold
is exceeded for the deterministic simulation by a red dashed line.

sample a range of regimes simulations would need to be car-
ried out over a long period of time. In addition, weather pat-
terns are generally applied to broad areas, whereas the results
of this study have demonstrated that skill can vary over much
smaller horizontal and vertical extents. Therefore, it may be
more helpful and appropriate to compare ensemble perfor-
mance to measures of the NWP performance or spread over
much smaller regions.

The aim of this study was to examine the ability of ensem-
ble meteorology to produce more skillful dispersion output
than deterministic meteorology. The study compares ensem-
ble simulations of hypothetical releases to the same simula-
tions carried out with analysis meteorology. Uncertainty in

the source term, e.g. release rate, timing, height, and com-
position, and model parameterisations are ignored. There-
fore, the performance of the ensemble seen here may not
be reflective of the performance of the ensemble in simulat-
ing a real release which would be compared to observations.
However, the results do show that on average the ensemble
dispersion model outperforms the deterministic model when
only meteorology is considered, providing confidence in the
use of ensemble meteorology to provide meteorological un-
certainty information to dispersion models. As noted in the
introduction, the quantification of uncertainty in dispersion
model predictions is important in the decision-making pro-
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Figure 13. Brier skill score changes over time since the start of the
eruption for a simulation with a low Brier score. This is for the same
case as Fig. 12.

cess, and this study takes the first steps towards demonstrat-
ing the value of ensemble dispersion model predictions.
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