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Estimation of AFr uncertainty
The uncertainties of BC and BrC AFr (including primary and secondary ones) were quantitatively determined using Monte
Carlo simulations. Note that the uncertainty was expressed as one standard deviation (+1c) or the coefficient of variation (CV,

o divided by the mean) as a percentage. According to the uncertainty propagation, the CV for baps, 5c (M) is:

880
CVbabs,BC(}L) ~ \/[(vaabs.BC,sso)z + [CVa * O * (ln T)]2] (l)

where CVuyabs, Bc, 880 and CV,, represent the uncertainty of measured absorption coefficient at 880nm (~ 25%) and absorption
Angstrém exponent of pure BC (~ 10%) (Gyawali et al., 2009; Bond et al., 2013; Lack and Langridge, 2013; Lu et al., 2015),

respectively. The CV for baps, Bc (1) could be quantified as:

880

CVbabs,BrC,370 ~ \/[(vaabs,total,37o)2 + [CVO‘ Ak (ln %)]2] (2)

3)

370 ]

CVbabS'BrCO*) ~ \/[(vaabs,Brc,37o)2 + [CVg B * (In T)]Z

where CViaps, Brc, 370 (~26%) and CVp represent the uncertainties of BrC absorption coefficient at 370 nm and absorption
Angstrom exponent of BrC (fitting uncertainty ~ 10%), respectively. Similarly, CVpabs, prinrc, o and CViaps, secBrcoy could also
be quantified. Then we applied normal distributions for measured data with uncertainties provided by the calculated CVs and
100 000 simulations by Monte Carlo analysis. After running the radiative forcing model repeatedly, we got 100 000 RF values,
and the standard deviation could be considered as the uncertainty of radiative forcing. The probability distributions of AFr for
BC and different types of BrC are shown in Fig. S12. The uncertainties of BC and BrC absorption AFr are comparably about

27 ~28%. And the uncertainties for primary and secondary BrC absorption AF are about 32% and 43%, respectively.



Table S1. A summary of Mann-Kendall trend test for air pollutants from 2013 to 2020.

Entire Spring Summer Fall Winter
T T T T T
(p-value) (p-value) (p-value) (p-value) (p-value)
-1 -1 -0.4 -1 -0.4
eBC
(0.01) (0.01) (0.33) (0.01) (0.33)
-0.6 0.4 -0.4 -0.8 -0.8
eBC/PMa.s
(0.14) (0.33) (0.33) (0.05) (0.05)
-0.6 -0.8 -0.4 -0.6 -0.8
eBC/CO
(0.14) (0.05) (0.33) (0.14) (0.05)
5 -0.8 -0.8 - -0.8 -0.4
o (0.05) (0.05) ; (0.05) (0.33)
1 - 0.8 0.8 0.8
SSA
(0.01) - (0.05) (0.05) (0.05)
0.4 -0.2 0.8 - -0.2
MEE
(0.33) (0.62) (0.05) - (0.62)

Table S2. A summary of relationship between aerosol optical depth and light extinction coefficient measured by CAPS

in four seasons.

Entire Spring Summer Fall Winter

Effective Height
1233 1200 1800 964 635

(m, slope)
r 0.64 0.66 0.76 0.72 0.72
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Fig. S1. Schematic representation of instrument deployment in different years.
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Fig. S2. (bans, Brc/eBC) pri determination by MRS at 370nm in September, October, November in 2020. The red line
represents the correlation coefficient (R?) between hypothetical babs, secondary Brc and eBC mass as a function of (babs,
Brc/eBC) pri_n. The shaded area in light tan represents the frequency distribution of observed (babs, Brc/eBC) pri. The

dashed green line is the cumulative distribution of observed (babs, Brc/€BC) pri.
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Fig. S3. Annual variation of CO concentration. The median (horizontal line), mean (square), 25th and 75th percentiles

(lower and upper box), and 10th and 90th percentiles (lower and upper whiskers) are also shown, same as below.
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Fig. S4. The frequency distributions of AeBC/ACO in the past three years.
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Fig. S6. Annual variations of aerosol volume size distribution in Beijing (available from the Aerosol Robotic

Network data archive).
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Fig. S8. Seasonal variations of aerosol volume size distribution in Beijing (available from the Aerosol Robotic

Network data archive).
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Fig. S9. Diurnal variations of AAE and babs, Brc for spring, summer,
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Fig. S11. Seasonal variations of BC AFr and BrC absorption AFr.
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Fig. S12. Probability distributions of AFr for BC, BrC and primary BrC based on 100,000 Monte Carlo simulations.
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