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Abstract. PM2.5, generated via both direct emission and secondary formation, can have varying environmental
impacts due to different physical and chemical properties of its components. However, traditional methods to
quantify different PM2.5 components are often based on online or offline observations and numerical models,
which are generally high economic cost- or labor-intensive. In this study, we develop a new method, named
Multi-Tracer Estimation Algorithm (MTEA), to identify the primary and secondary components from routine
observation of PM2.5. By comparing with long-term and short-term measurements of aerosol chemical com-
ponents in China and the United States, it is proven that MTEA can successfully capture the magnitude and
variation of the primary PM2.5 (PPM) and secondary PM2.5 (SPM). Applying MTEA to the China National
Air Quality Network, we find that (1) SPM accounted for 63.5 % of the PM2.5 in cities in southern China on
average during 2014–2018, while the proportion dropped to 57.1 % in the north of China, and at the same time
the secondary proportion in regional background regions was ∼ 19 % higher than that in populous regions; (2)
the summertime secondary PM2.5 proportion presented a slight but consistent increasing trend (from 58.5 % to
59.2 %) in most populous cities, mainly because of the recent increase in O3 pollution in China; (3) the secondary
PM2.5 proportion in Beijing significantly increased by 34 % during the COVID-19 lockdown, which might be
the main reason for the observed unexpected PM pollution in this special period; and finally, (4) SPM and O3
showed similar positive correlations in the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) re-
gions, but the correlations between total PM2.5 and O3 in these two regions, as determined from PPM levels,
were quite different. In general, MTEA is a promising tool for efficiently estimating PPM and SPM, and has
huge potential for future PM mitigation.
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1 Introduction

Fine particulate matter (PM2.5, with an aerodynamic diam-
eter of less than 2.5 µm) can be categorized into primary
and secondary PM2.5 according to its formation processes.
Primary PM2.5 (PPM), including primary organic aerosol
(POA), elemental carbon (EC), sea salt and mineral dust,
is a direct emission product from the combustion of fos-
sil or biomass fuel, dust blowing and sea spray. Secondary
PM2.5 (SPM) is mainly generated by the further oxidation
of gaseous precursors emitted in anthropogenic and biogenic
activities (Zhu et al., 2018; Wang et al., 2019). SPM con-
sists of secondary organic aerosol (SOA) and secondary in-
organic aerosol (SIA, including sulfate, nitrate and ammo-
nium). The primary and secondary components of PM2.5
have different environmental impacts on air quality, human
health and climate change. For example, EC is a typical PPM
that can severely reduce atmospheric visibility and greatly in-
fluence the weather and climate due to its strong absorption
of solar radiation (Bond et al., 2013; IPCC, 2013; Mao et
al., 2017). Sulfate, a critical hygroscopic component of sec-
ondary PM2.5 (SPM), can be rapidly formed in high relative
humidity and further leads to grievous air pollution (Cheng et
al., 2016; Guo et al., 2014; Quan et al., 2015). Furthermore,
sulfate and other hygroscopic PM2.5 exert considerable influ-
ences on climate change, mostly by changing cloud proper-
ties (Leng et al., 2013; von Schneidemesser et al., 2015). In
addition, different PM2.5 components also have various dele-
terious impacts on human health due to their toxicities (Hu
et al., 2017; Khan et al., 2016; Maji et al., 2018).

To understand the severe PM2.5 pollution characteristics
in China over the past several years (An et al., 2019; Song
et al., 2017; Yang et al., 2016), many observational studies
have been conducted on PM2.5 components. The basic meth-
ods used in such studies are offline laboratory analysis and
online instrument measurements, such as those made using
an aerosol mass spectrometer (AMS). Observational studies
are crucial for exactly identifying aerosol chemical composi-
tions. They represent the most widely used offline approach
(Ming et al., 2017; Tang et al., 2017; Tao et al., 2017; Dai et
al., 2018; Gao et al., 2018; W. Liu et al., 2018; Wang et al.,
2018; Zhang et al., 2018; Xu et al., 2019; Yu et al., 2019),
and have been successfully applied to investigate the interan-
nual variations of different aerosol chemical species (Ding et
al., 2019; Z. Liu et al., 2018). In terms of online approaches,
the AMS is a state-of-the-art method for analyzing different
chemical species with high time resolution, and has great ap-
plication value for diagnosing the causes of haze events in
China over the past decade (R. J. Huang et al., 2014; Quan
et al., 2015; Guo et al., 2014; Yang et al., 2021; Gao et al.,
2021; Hu et al., 2021; Zhang et al., 2022).

Nevertheless, both online and offline measurements re-
quire high levels of manpower and are economically costly;
for these reasons, these methods are expensive and rarely ap-
plied in large-scale regions or for long periods.

A chemical transport model (CTM) is another useful tool
to identify the composition characteristics of PM2.5. The sim-
ulation predicted by a CTM features high spatiotemporal res-
olution (Geng et al., 2021). Meanwhile, it also provides ver-
tical profiles of diverse chemical species (Ding et al., 2016).
However, the results of a CTM are largely dependent on ex-
ternal inputs such as emission inventories, boundary condi-
tions, and initial conditions. The internal parameterizations
of itself also significantly influence the final model results
(Huang et al., 2021), which leads to uncertainty in the sim-
ulated PM2.5 and its composition. In addition, the burden of
their high computational cost and high storage requirement
hinders the universal use of CTMs.

In this study, we develop a novel method, Multi-Tracer Es-
timation Algorithm (MTEA), with the aim of distinguishing
the primary and secondary compositions of PM2.5 from rou-
tine observation of the PM2.5 concentration. Different from
traditional CTMs, the MTEA proposed by this study is based
on statistical assumption and works in a more convenient
way. This algorithm and its application are tested in China
and the United States. In Sect. 2, we introduce the struc-
ture and principle of MTEA. In Sect. 3, we evaluate the
MTEA results, comparing three PM2.5 composition datasets:
(1) short-term measurements in 16 cities in China from 2012
to 2016, as reported in previous studies; (2) continuous long-
term measurements in Beijing and Shanghai from 2014 to
2018; and (3) the IMPROVE network in the United States
during 2014 and 2018. Additionally, we compare the MTEA
model with one of the most advanced datasets from a CTM
in China. Subsequently, in Sect. 4, we investigate the spa-
tiotemporal characteristics of PPM and SPM concentrations
in China, explain the unexpected haze events in several cities
of China during the COVID-19 lockdown, and discuss the
complicated correlation between PM and O3. This study dif-
fers from previous works as follows: (1) we develop an effi-
cient approach to explore PPM and SPM with low economic
or technique costs and a low computational burden, and (2)
we apply this approach to observation data from the MEE
(China Ministry of Ecology and Environment) network, of-
fering an unprecedented opportunity to quantify the PM2.5
components at large spatial and time scales.

2 Methodology

2.1 Multi-Tracer Estimation Algorithm (MTEA)

In order to distinguish PPM and SPM efficiently from the
observed PM2.5, we develop a new approach, named Multi-
Tracer Estimation Algorithm (MTEA). The multi-tracer (de-
noted X) is defined as representing multiple primary con-
tributions to PM2.5, which mainly results from incomplete
combustion of carbonaceous material and flying dust. We se-
lect the typical combustion product CO as one tracer to repre-
sent the combustion process, and the particles in coarse mode
(PMcoarse, denoted PMC, where PMC=PM10−PM2.5) as
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the other tracer to track flying dust. Then we combine the
CO and PMC to generate the multi-tracer X (Eq. 1), which
can represent hybrid primary contributions to PM2.5.

X = a×CO+ b×PMC(a+ b = 100%) (1)

As shown in Eq. (1), we use a and b to quantify the rela-
tive contributions of combustion and dust processes to the
PPM. Given that a complicated process such as the com-
bustion of multiple sources is hard to represent via current
routine CO observations, we avoid considering the correla-
tion among these sources but focus on the relative weights of
the combustion process and flying dust. Meanwhile, the un-
certainty resulting from the apportioning coefficients a and
b will be further discussed in Sect. 4.5. The values of these
coefficients depend on the ratio of the emission intensities
of POA+EC (combustion products) and fine-mode dust, as
shown below:

a

b
=
EOA+EEC

Efinedust

=
1.2EOC+EEC

EPM2.5 − (1.2EOC+EEC+ESO4 +ENO3 )
, (2)

where EOA, EEC, Efinedust, EOC, EPM2.5 , ESO4 and ENO3

represent the emissions of OA, EC, fine-mode dust, OC,
PM2.5, sulfate and nitrate, respectively. We obtain anthro-
pogenic PM2.5, EC and OC emissions in China from the
Multi-resolution Emission Inventory for China (MEIC, http:
//meicmodel.org/, last access: 1 August 2021) developed by
Tsinghua University (M. Li et al., 2017b). For the United
States, we retrieve the emission data from the global in-
ventory HTAP (https://edgar.jrc.ec.europa.eu/htap_v2/index.
php?SECURE=123, last access: 1 August 2021). We further
estimate the POA emission by multiplying the POC emission
by an empirical factor of 1.2, as recommended in the litera-
ture (Seinfeld and Pandis, 2006), and we quantify sulfate and
nitrate emissions by multiplying the PM2.5 emission by an in-
vestigative coefficient of 0.1 (Zhang, 2019). However, this in-
vestigative coefficient for quantifying primary sulfate and ni-
trate emissions may be relatively high compared to empirical
coefficients (0.01–0.05) used in previous simulation studies.
We evaluated the potential effect of the coefficient by con-
ducting a set of comparative simulations with a coefficient of
0.03 and found that the final estimated SPM was not sensi-
tive to this coefficient (Table S1 in the Supplement). Thus, we
concluded that the uncertainty of primary sulfate and nitrate
emissions did not significantly influence the final estimation
of the MTEA model. Other uncertainties ofX that are depen-
dent on emission intensities or tracer concentrations are dis-
cussed later, in Sect. 4.5. The aim of including coefficient b
is to reflect the activity intensity of fine-mode dust by count-
ing the emissions of this dust. However, the MEIC does not
directly provide fine-mode dust emissions. It is included in
the emissions of total PM2.5 (M. Li et al., 2017a). Thus, we
inferred the fine-mode dust emission by deducting the emis-

sions of EC, POA, sulfate and nitrate from the PM2.5 emis-
sions. Based on Eq. (2), we establish a dynamic a and b value
database that reflects the specific changes in PM2.5 sources
among years, seasons, hours and regions.

With the help of the multi-tracer X, we can describe sec-
ondary PM2.5 as follows:

SPM= PM2.5−PPM (3)

= PM2.5−
PPM
X
×X. (4)

Here, PM2.5 is the observed PM2.5 concentration, and the
multi-tracer X can be calculated from the observed CO,
PM2.5 and PM10 concentrations. The original concentrations
of CO, PM2.5 and PM10 are normalized to avoid any influ-
ence of their initial levels. To calculate the SPM, the key
step is to find the target ratio of PPM/X. In the MTEA
method, we give the PPM/X ratio a reasonable range (0–
400 is used in this work) and then scan the ratio with an
interval of 1. For more precise results, a smaller scanning
step can be applied, although this may lead to a larger cal-
culation cost. As a result, each varying ratio may give a se-
ries of SPM, along with a coefficient of determination (R2)
between SPM and X (Fig. S1 in the Supplement). If we as-
sume that the PPM and SPM came from different sources
or processes, then the appropriate PPM/X ratio should be
the one that corresponds to weak correlation between SPM
and the tracer X. To aid understanding of the principle of the
MTEA approach, we show a flow chart in Fig. 1. We also pro-
vide the MTEA software package and input datasets at http:
//nuistairquality.com/m_tea (last access: 1 August 2021).

The MTEA approach makes some improvements by using
a similar principle and similar assumptions to the modified
EC-tracer method developed by Hu et al. (2012). They esti-
mated primary and secondary organic carbon (denoted POC
and SOC) concentrations by adopting a POC/EC ratio when
SOC was least strongly correlated with EC. However, this
assumption may be too hard to achieve in the real atmo-
sphere. Therefore, in the MTEA approach, we take a range of
proper ratios of PPM/X when SPM correlates with the tracer
X nonsignificantly (with a p-value greater than 0.05). As a
result, the calculated SPM concentration for each case is a
range (Table S2 in the Supplement). We employ the concen-
tration ranges to represent the severity of secondary pollution
and discuss its uncertainties in the following discussions. For
quantitative calculations, the mean values of the concentra-
tion ranges are used for the final estimation.

2.2 PM2.5 measurements

2.2.1 PM2.5 concentration measurements from the MEE
network in China

Focusing on the PM2.5 pollution in China, MEE set up a
comprehensive air quality monitoring network that has per-
mitted consistent access to hourly concentrations of PM2.5
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Figure 1. Flow chart of the MTEA approach. The part in red indicates the air quality data and emission input. The part in green represents the
key process for predicting PPM and SPM based on routine PM2.5 observation; in this part, S.T. refers to the significance test. The significant
level α is set to 0.05. The part in orange indicates the final output.

as well as SO2, NO2, CO, O3 and PM10 since 2013. This
network is currently the most advanced monitoring network
in China. In this study, we obtained hourly surface observa-
tions of PM2.5, PM10, CO and O3 at 334 national monitoring
sites in 50 cities from 2014 to 2018 from the MEE public
website (http://106.37.208.233:20035/, last access: 1 August
2021). Among those 50 cities, 31 are provincial capital cities,
which were included to represent populous cities, while the
other 19 are relatively small cities that are categorized as re-
gional background cities (Table S3 in the Supplement). Ex-
cept for Guyuan, the mean PM2.5 concentration in each re-
gional background city is less than 35.0 µg m−3 (Chinese Na-
tional Ambient Air Quality Standard level II, NAAQS), indi-
cating that they are only slightly impacted by anthropogenic
activities. By comparing the populous cities with the regional
background cities, we can reveal the discrepancy in PPM
and SPM between regions that suffer from different levels of
PM2.5 pollution. The geographical distribution of these pop-
ulous and regional background cities is shown in Fig. 2a.

Recently, the Chinese government carried out a series of
control policies, such as the elimination of backward in-
dustry, desulfurization and denitration of flue gas, as well
as restrictions on motor vehicles (Tang et al., 2019; Wu et
al., 2017). Consequently, the concentrations of the major
gaseous and particle pollutants have been decreasing year by
year (Zhai et al., 2019; Shen et al., 2020). Taking PM2.5 as
an example, previous studies revealed that the annual mean
PM2.5 decreased by 30 %–50 % across China during the pe-
riod of 2013–2018.

2.2.2 PM2.5 composition measurements in China

Numerous studies focusing on the aerosol chemical compo-
sition in China have employed offline filter-based observa-
tions coupled with laboratory analysis to obtain detailed in-
formation on PM2.5 compositions. To directly compare the
estimated with the measured PPM or SPM in China, we per-

formed an evaluation based on two long-term time series of
in situ measurements taken in Beijing (Peking University,
PKU) and Shanghai (Shanghai Academy of Environmental
Sciences, SAES) during 2014–2018 (Huang et al., 2019; Tan
et al., 2018). The chemical composition measurements in-
cluded ions (NH+4 , Na+, K+ Mg2+, Ca2+, SO2−

4 , NO−3 and
Cl−, measured by ion chromatography), elements (Al, Si, Ti,
Ca, Ti, Mn, etc., measured by X-ray fluorescence spectrome-
try) and carbonaceous components (EC and organic carbon,
measured using a thermal-optical transmittance carbon ana-
lyzer). After accessing the chemical compositions, we cat-
egorized them into PPM and SPM for further evaluation.
Specifically, SOA was roughly identified from organic matter
(OM) by the EC-tracer model (Ge et al., 2017). SPM concen-
trations were calculated by summing the SO2−

4 , NO−3 , NH+4
and SOA concentrations. Then PPM was calculated by de-
ducting SPM from PM2.5.

In addition, we investigated observation-based analyses of
PM2.5 components in 16 cities in China during 2012–2016
from 32 published studies. This survey offered an opportu-
nity to compare the estimations from MTEA with past mea-
surements of the secondary fraction of PM2.5. SOA concen-
trations in the literature were roughly estimated by multiply-
ing the OM by 0.5 because of limited access to the source
data. Meanwhile, it should be noted that the factor that can
convert OC (organic carbon) to OM is dependent on the def-
initions used in a specific observation study.

2.2.3 PM2.5 composition measurements from the
IMPROVE network in the United States

The Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) aerosol network has continuous records
of PM10 and PM2.5 and PM2.5 chemical speciation in the
United States since 1987. The specific aerosol chemical com-
positions include ammonium sulfate, ammonium nitrate, or-
ganic carbon, EC, soil dust and mineral dust. The catego-
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Figure 2. The geographical locations of the observational data used in this study. (a) Geographical locations of the 31 populous cities (red
circles) and 19 regional background cities (blue triangles) in China considered in this study. (b) Spatial distribution of the IMPROVE aerosol
monitoring network (pink pentagrams) in the United States.

rization process for PPM and SPM in the IMPROVE dataset
is similar to the process described in Sect. 2.2.2. The only
difference is that the SPM concentration is the sum of am-
monium sulfate, ammonium nitrate and SOA. More detailed
descriptions of IMPROVE are available at http://vista.cira.
colostate.edu/Improve/ (last access: 1 August 2021). In the
present study, we extracted measurements for 104 valid sites
in the United States from 2014 to 2018 to evaluate MTEA.
The spatial distribution of the IMPROVE sites used in this
work is shown in Fig. 2b. It should be noted that the IM-

PROVE program only provides a single aerosol component
profile every 3 d. We lowered the time resolution to the
monthly average for further evaluation. However, CO is ex-
cluded from the IMPROVE program. We therefore adopted
the Kriging interpolation of CO data based on the hourly
archives from the United States EPA (https://www.epa.gov/
outdoor-air-quality-data, last access: 1 August 2021) as an
alternative for model input when running MTEA.
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2.3 PPM and SPM estimated by a CTM

Apart from evaluating PPM and SPM with various compo-
sition measurements, we also compared MTEA estimations
with CTM results. Here, we utilized the PM2.5 composition
gridded dataset with a spatial resolution of 10 km× 10 km
developed by Tsinghua University for further comparisons.
This dataset is named Tracking Air Pollution in China (TAP,
available at http://tapdata.org.cn/, last access: 15 March
2022) (Geng et al., 2021, 2017). The TAP reanalysis dataset
is originally based on CMAQ (Community Multiscale Air
Quality) simulation and is further assimilated by ground
measurements, satellite remote sensing retrievals and emis-
sion inventories with the aid of machine learning algorithm.
We collected the monthly mean concentrations of aerosol
species during 2014–2018 from TAP, including SO2−

4 , NO−3 ,
NH+4 , OM, BC (black carbon) and total PM2.5. SOA was
further calculated from OM by the EC-tracer model (Ge et
al., 2017). SPM concentrations were inferred by summing
SO2−

4 , NO−3 , NH+4 and SOA. PPM concentrations were then
obtained by deducting SPM from PM2.5.

3 Model evaluation

3.1 Evaluation in China

3.1.1 Comparison with continuous long-term
measurements in Beijing and Shanghai

We compared the MTEA results with the two sets of long-
term in situ measurements in Beijing and Shanghai, China,
and the evaluations are shown in Fig. 3. Reduced major axis
(RMA) regression was applied to fit the data. Given the dis-
crepancy in PM2.5 concentrations between the in situ mea-
surements at a single site and multiple MEE national sites,
we first preprocessed the data for further evaluation. In data
preprocessing, we removed the in situ daily measurements
with values that were over 30 µg m−3 higher than the city av-
erage (from MEE).

Comparisons between the estimated and observed PPM in
the two cities are given in Fig. 3a and c. The correlation co-
efficient r for predicted PPM versus observed PPM is 0.85
for Beijing and 0.87 for Shanghai. The slope of the regres-
sion is 1.29 for Beijing and 0.73 for Shanghai, which indi-
cates an overestimation (NMB= 32 %) and underestimation
(NMB=−9 %) for these two cities, respectively. For SPM,
the regression line for Shanghai is quite close to the 1 : 1 ratio
line (s = 1.13, d =−2.3), and its statistical correlation is up
to 0.89. The estimated SPM in Beijing also shows a high cor-
relation with the observed SPM, with its r value exceeding
0.80, though the fitting formula indicates an underestimation
of 27 %. These discrepancies can be explained by the fact that
the observations of primary emission tracers and PM2.5 are
obtained from different sites. Specifically, the CO and PMC
observations are obtained from 12 monitoring MEE sites in
Beijing, while the PM2.5 component measurements are from

Figure 3. Evaluation of the scatter between the monthly mean of
the observed PM and that of the estimated PM in Beijing (a–b)
and Shanghai (c–d), China. Panels (a) and (c) refer to the PPM,
and panels (b) and (d) refer to the SPM. The red numbers in each
panel indicate the Pearson correlation coefficient (r), the slope (s)
and the intercept of the fit line (d). The red fit lines are based on
reduced major axis (RMA) regression. The dashed black lines in
each panel represent, from left to right, the ratios 2 : 1, 1 : 1 and
1 : 2, respectively.

a single spot at PKU that is away from crowded streets (Tan
et al., 2018). The MTEA predictions based on the data from
MEE sites located in districts with high emission densities
may lead to considerable overestimation of PPM concentra-
tions.

Overall, the MTEA model performed satisfactorily in the
comparison with long-term in situ measurements in Beijing
and Shanghai. Nearly all the points in the plots are located
at the range between the ratios 2 : 1 and 1 : 2. It is believed
that our model is able to capture the magnitudes and varia-
tions of PPM and SPM. The estimated and the observed in-
terannual variations in PPM and SPM are further compared
in Sect. 4.2.2.

3.1.2 Comparison with various short-term
measurements

To evaluate the reliability of the MTEA approach, we
also conducted a literature review in which a variety of
observation-based analyses of PM2.5 components in 16 cities
of China during 2012–2016 were collected (Chen et al.,
2016; Du et al., 2017; Cui et al., 2015; Dai et al., 2018; Gao
et al., 2018; G. Huang et al., 2014; R. J. Huang et al., 2014;
Huang et al., 2017; Jiang et al., 2017; Li et al., 2016; L. Li
et al., 2017; Lin et al., 2016; Liu et al., 2017, 2014; W. Liu
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et al., 2018; Z. Liu et al., 2018; Ming et al., 2017; Niu et al.,
2016; Tan et al., 2016; Tang et al., 2017; Tao et al., 2017,
2015; Tian et al., 2015; Wang et al., 2018; H. L. Wang et al.,
2016; Y. Wang et al., 2016; Wu et al., 2016; Xu et al., 2019;
Yu et al., 2019; Zhang et al., 2015, 2018; Zhao et al., 2015).
Most field measurements focused on regions in eastern China
and on episodes during the winter. We list the observed con-
centrations of PM2.5, SO2−

4 , NO−3 , NH+4 and SOA from these
studies in Table S4 in the Supplement. It should be noted that
there may be inconsistencies between the observations due to
differences in sampling locations, observation times and an-
alytical instruments between studies.

The estimated PPM and SPM from MTEA show reason-
able agreement with the observation-based PM2.5 component
analyses in China. The MTEA-estimated secondary propor-
tions of PM2.5 (i.e., secondary PM2.5 / total PM2.5) vary in
the range of 41 % to 67 % and are higher in eastern cities
in China, consistent with the observational results. However,
we find that there are still a few discrepancies between the
estimated and observation-based results. For example, we
overestimated the secondary proportions of PM2.5 in cities
such as Haikou, Lanzhou and Lhasa. Though all of these
show considerable overestimations of over 20 %, the cause
of this bias may be quite different for each city. In the coastal
city of Haikou, we may attribute this discrepancy between
MTEA and observations to the neglect of the contribution
of sea salt aerosols. Offline PM2.5 measurements in 2015
showed that the contribution of sea salt aerosols to the ambi-
ent PM2.5 mass concentration in Haikou is 3.6 %–8.3 % (Liu
et al., 2017). Secondly, the overestimation phenomenon in
Lanzhou, which is a typical inland city located in northwest-
ern China, can be explained by the neglect of the contribution
of natural dust to PM2.5 speciation. Generally, both sea salt
and natural dust are categorized as non-anthropogenic pro-
cesses, and are not accounted for by the anthropogenic emis-
sion inventory, resulting in an underestimation of the primary
process intensity. Finally, for Lhasa, the observation-based
results are derived from too few samplers, leading to a con-
troversial comparison with the MTEA model.

3.1.3 Comparison with the CTM simulation

In addition to evaluating our model via PPM and SPM mea-
surements in China, we also provide a comparison between
MTEA estimation and CTM simulation for 31 populous
cities based on monthly mean PM concentrations. As shown
in Fig. 4a–b, the correlation coefficient r for TAP versus
MTEA is 0.86 in terms of PPM concentration and 0.91 in
terms of SPM concentration, showing a strongly positive cor-
relation between the two models. At the same time, both the
slopes (1.26 and 0.89) and intercepts (−3.7 and 1.9 µg m−3)
of the regressions about PPM and SPM illustrate that most of
the scattered points are distributed around the 1 : 1 ratio line.

Moreover, we further compared MTEA and TAP in terms
of the long-term trends in the PPM and SPM concentrations

averaged across 31 populous cities (Fig. 4c–d). Both MTEA
and TAP exhibit descending interannual trends in the PPM
concentration, with rates of −2.0 and −1.9 µg m−3 yr−1 for
MTEA and TAP, respectively. For the SPM concentration,
the rates of decline are −2.9 and −2.8 µg m−3 yr−1, respec-
tively. Meanwhile, the statistical correlations between the
two interannual variations are 0.98 (PPM) and 0.99 (SPM),
which are both quite close to 1, showing good agreement.

Thus, comparisons of the PPM and SPM concentration
magnitudes and interannual variations between the two kinds
of models suggest that our statistical model can infer similar
estimations to those given by a traditional CTM. Meanwhile,
they again highlight that our model is capable of capturing
reasonable PPM and SPM concentrations. Furthermore, they
also show that MTEA can track primary and secondary com-
ponents of PM2.5 using a proxy at a much lower cost when
compared to traditional air quality model simulations.

3.2 Evaluation in the United States

Based on the chemical component measurements of the
IMPROVE network, we evaluated the performance of the
MTEA model for the United States. Figure 5 presents scatter
plots of the evaluation results, with the x axis indicating the
observed concentrations and the y axis indicating the esti-
mated concentrations. Temporal, spatial and spatiotemporal
validations were performed. Each dot represents a monthly
mean observed or estimated PM concentration.

Almost all of the dots are located in the region between
the 2 : 1 and 1 : 2 dashed lines, indicating that our model is
capable of predicting the magnitudes of PPM and SPM in
the United States. Based on correlation analysis, we find that
the correlation coefficient r for PPM ranges from 0.69 (spa-
tiotemporal validation) to 0.75 (temporal validation), while
r reaches up to 0.98 (temporal validation) for SPM. The re-
sults reveal that the MTEA approach successfully captured
the spatial and temporal variations of PPM and SPM in the
United States.

The majority of the dots are distributed around the
1 : 1 dashed line. Based on the fitting results, the slopes
for the regression lines vary from 1.12 (spatial valida-
tion) to 1.15 (temporal validation) for PPM and from
0.92 (temporal validation) to 0.93 (spatiotemporal vali-
dation) for SPM. In general, PPM and SPM show slight
overestimation and underestimation, respectively. These
discrepancies may result from the influences of the emis-
sion inventory. It is reported that emissions of PMC and
CO in the United States continuously declined over the
past decade (https://www.statista.com/statistics/501298/
volume-of-particulate-matter-2-5-emissions-us/, last ac-
cess: 2 October 2021). Thus, the coefficients a and b derived
from the HTAP global emission inventory in 2010 overesti-
mate the contribution of primary emissions during the study
period. However, these emissions inevitably have an impact,
and we will discuss the uncertainty of the emission inventory
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Figure 4. Comparisons between MTEA and TAP in terms of PPM and SPM concentrations and their annual trends from 2014 to 2018 in 31
populous cities in China. In panels (a) and (b), each solid blue dot stands for a monthly mean concentration of PPM or SPM in one of the 31
populous cities. The number of samples is 1860 (60× 31). The metrics r , s and d represent the correlation coefficient, slope and intercept
of the fit line, respectively. The fitting method used was reduced major axis (RMA) regression. In panels (c) and (d), MTEA and TAP are
denoted by blue circles and red triangles, respectively. Each dot represents the mean PPM and SPM concentration across the 31 populous
cities. The colored numbers show the annual trends in the PPM and SPM concentrations during 2014–2018. The correlation coefficient (r)
of MTEA versus TAP is also provided.

Figure 5. Evaluation of the scatter between the monthly mean of the observed PPM (a–c) or SPM (d–f) and that of the estimated PPM
and SPM in the United States. Panels (a) and (d), (b) and (e), and (c) and (f) show temporal, spatial, and spatiotemporal mixed validations,
respectively. The red numbers in each panel indicate the Pearson correlation coefficient (r), the slope (s) and the intercept of the fit line (d).
The red fit lines are based on RMA regression. The dashed black lines in each panel represent, from left to right, 2 : 1, 1 : 1 and 1 : 2 ratios,
respectively.
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in Sect. 4.5. In addition, the intercepts of the regression
lines for both PPM and SPM are less than ±0.1 µg m−3.
The verification results strongly show that our model can
reasonably reproduce the monthly averaged concentrations
of PPM and SPM in the United States.

4 Results and discussion

We used the MTEA approach and the MEE observation data
to estimate PPM and SPM concentrations in China for the pe-
riod of 2014–2018. Observations during severe haze events
(the top 10 % of days for CO and PMC pollution) were ex-
cluded to avoid the influence of unfavorable meteorologi-
cal conditions and extremely high primary emission cases.
Unfavorable meteorological conditions are major causes of
haze events. Under these unfavored meteorological condi-
tions, PPM may have a considerably collinear relationship
with total PM2.5. The concentration of SPM from compli-
cated formation pathways is then underestimated. Therefore,
we excluded these polluted days to focus more attention on
the general characteristics of the PPM and SPM concentra-
tions.

4.1 Spatial distribution

Figure 6 shows spatial patterns of the MTEA-estimated PPM
and SPM concentrations over China averaged for the pe-
riod of 2014–2018. Sixteen populous cities and nine regional
background cities in the north, and 15 populous cities and 10
regional background cities in the south (the north and south
are separated by the Qinling–Huaihe line) are involved in the
following discussions.

In populous cities, the concentrations of both PPM and
SPM in the north (the 5-year average is 21.5 for PPM and
26.6 µg m−3 for SPM) are 15 %–43 % higher than those
in the south (the 5-year average is 15.0 for PPM and
23.2 µg m−3 for SPM). The north–south difference is mainly
caused by the higher energy consumption and consequent
stronger pollutant emission in northern populous regions.
Nevertheless, in background regions, the difference is rela-
tively small for SPM. The SPM in the south (12.5 µg m−3) is
only 1 % higher than that in the north (12.4 µg m−3).

In terms of the secondary proportion of PM2.5, the MTEA
approach speculates that it is higher in southern regions
(63.5 %) than in northern regions (57.1 %). This result con-
firms the fact that the atmospheric conditions in the south
are more favorable for secondary pollutant formation than
those in the north. In addition, the MTEA approach cap-
tures the difference in the secondary proportion of PM2.5 be-
tween populous and regional background cities reasonably
well. As shown in Fig. 6e and f, the secondary proportion
of PM2.5 in regional background cities is 19 % higher than
that in populous cities, consistent with recent observational
studies (Z. Liu et al., 2018). Secondary aerosols can affect a
larger area than primary aerosols, mostly due to the diffusion

of their gaseous precursors. Thus, for regional background
cities, the role of secondary PM2.5 tends to be more impor-
tant, mainly due to the secondary pollutants transmitted from
surrounding populous regions.

4.2 Temporal variation

4.2.1 Seasonal variation

We compare seasonal mean concentrations of the MTEA-
estimated PPM and SPM in 31 populous cities and 19 re-
gional background cities in Table 1. The concentrations of
both PPM and SPM are the highest in winter, with a sea-
sonal mean concentration of 16.6 for PPM and 24.9 µg m−3

for SPM across China. This phenomenon can be mainly ex-
plained by adverse diffusion conditions, such as a low bound-
ary layer height and strong temperature inversion (Zhao et
al., 2013), as well as fossil-fuel and biofuel usage for win-
ter home heating (Zhang et al., 2009; Zhang and Cao, 2015).
Summer is the least polluted season of the year, with a sea-
sonal mean PPM of 10.2 µg m−3 and SPM of 15.8 µg m−3

nationwide, largely due to the benefits of a higher boundary
layer (Guo et al., 2019) and abundant precipitation.

We also compared the secondary proportions of PM2.5 in
different seasons and in the 50 Chinese cities considered
in this work (Table 1). The MTEA approach estimates that
the secondary proportion tends to be lowest in fall, with a
seasonal mean value of 56.1 % nationwide, while the sea-
sonal proportions stay at around 61 % for the other three
seasons. At the same time, the seasonality of the secondary
proportion varies among regions. In the north of China,
the secondary proportions are higher in spring and summer,
which is attributed to the stronger atmospheric oxidizing ca-
pacity (AOC) in the warmer seasons. But, in the south of
China, the highest secondary proportions occur in winter,
which is mainly explained by the tremendous amounts of
pollutants (secondary particles and their gaseous precursors)
transported from northern China in the presence of the mon-
soon.

4.2.2 Interannual variation

Figure 7 illustrates the interannual variations of the estimated
PPM and SPM based on MTEA in the 31 populous cities
and 19 regional background cities of China. We analyzed the
MEE observational data during 2014–2018 but excluded the
data for 2014 in the regional background regions due to data
deficiencies for several cities.

The observed PM2.5 concentrations in populous cities have
continuously and significantly reduced since 2014, largely
due to a series of emission control measures led by the
governments, such as the Action Plan on Prevention and
Control of Air Pollution (Chinese State Council, 2013).
Using the MTEA approach, we find that both PPM and
SPM decreased simultaneously at annual rates of decrease
of 1.9 and 2.7 µg m−3 yr−1, respectively. Consequently, the
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Table 1. Seasonal mean concentrations of primary and secondary PM2.5 in 31 populous cities and 19 regional background cities in China.

City PPM (µg m−3) SPM (µg m−3) SPM/PM2.5 (%)

M J S D M J S D M J S D
A J O J A J O J A J O J
M A N F M A N F M A N F

Populous cities in northern China

Beijing 31.0 28.4 30.6 34.1 25.0 23.7 20.1 16.2 44.7 45.4 39.6 32.2
Tianjin 17.8 13.7 21.9 28.2 42.0 35.3 32.9 29.0 70.2 72.1 60.0 50.7
Shijiazhuang 35.0 22.4 41.5 54.0 36.7 35.5 32.1 37.7 51.2 61.3 43.6 41.1
Taiyuan 22.0 20.2 32.7 32.3 28.4 22.2 21.0 25.0 56.3 52.3 39.1 43.6
Hohhot 13.1 11.4 18.2 20.1 19.2 13.1 16.0 20.7 59.5 53.6 46.8 50.7
Shenyang 21.0 16.7 24.4 27.8 26.1 17.4 20.8 28.0 55.3 51.0 46.0 50.2
Changchun 21.3 15.8 20.2 28.9 18.3 12.3 17.2 25.0 46.2 43.9 46.0 46.4
Harbin 14.1 9.3 15.5 27.2 25.5 15.2 20.9 38.9 64.4 61.9 57.3 58.9
Jinan 25.6 23.0 29.9 32.4 38.2 30.7 30.7 38.3 59.9 57.1 50.7 54.2
Zhengzhou 24.8 20.2 28.6 34.1 45.2 28.8 33.9 44.1 64.6 58.7 54.3 56.4
Lhasa 6.6 5.9 8.2 5.8 13.0 9.2 9.3 13.6 66.3 61.2 53.2 70.1
Xian 24.1 15.3 31.3 37.1 31.5 20.1 24.5 41.3 56.7 56.7 44.0 52.7
Lanzhou 14.1 10.1 17.8 21.3 29.3 24.1 24.8 33.2 67.6 70.4 58.2 60.9
Xining 14.8 12.4 18.3 17.9 26.4 19.3 21.0 34.5 64.1 60.8 53.4 65.9
Yinchuan 12.9 8.2 16.1 18.7 22.8 21.8 21.1 27.0 63.8 72.8 56.7 59.1
Urumqi 15.2 9.5 16.5 27.9 30.9 19.1 32.0 63.6 67.1 66.9 66.0 69.5

Average 19.6 15.2 23.2 28.0 28.7 21.7 23.6 32.3 59.4 58.9 50.4 53.5

Regional background cities in northern China

Weihai 8.1 7.1 8.6 10.7 23.8 18.5 14.9 13.7 74.6 72.2 63.4 56.0
Jiayuguan 7.8 7.0 7.5 7.0 16.6 11.4 14.5 19.2 68.1 61.9 65.9 73.4
Zhangjiakou 10.8 11.0 10.7 10.7 14.2 14.4 12.8 14.4 56.8 56.6 54.5 57.4
Daxinganling 4.3 3.6 4.6 5.7 9.2 7.7 9.3 11.6 68.0 67.9 67.0 66.9
Xilingol 2.3 2.3 2.8 3.1 10.2 9.3 7.7 9.1 81.8 80.1 73.1 74.7
Yanbian 9.9 5.6 9.4 11.7 15.3 9.1 13.5 17.4 60.7 62.1 58.9 59.7
Guyuan 12.3 9.0 11.9 13.1 19.0 13.1 14.7 20.1 60.7 59.2 55.4 60.6
Yushu 4.3 2.1 4.2 3.9 10.0 9.6 7.1 9.9 69.8 82.3 62.7 71.5
Altay 2.0 1.3 1.7 2.7 6.3 6.3 6.0 8.0 76.1 83.5 77.5 74.7

Average 6.9 5.5 6.8 7.6 13.8 11.1 11.2 13.7 66.9 67.0 62.1 64.2

Populous cities in southern China

Shanghai 12.4 11.1 11.7 15.8 29.5 22.5 20.8 25.4 70.4 67.0 64.1 61.6
Nanjing 19.1 16.0 19.9 24.3 29.2 18.7 19.9 28.5 60.4 53.9 50.1 54.0
Hangzhou 21.1 17.8 21.5 23.6 24.9 14.5 18.9 28.5 54.1 45.0 46.8 54.7
Hefei 16.4 14.6 17.9 23.2 39.8 26.7 30.1 39.8 70.9 64.6 62.7 63.2
Fuzhou 9.0 7.5 7.5 7.6 18.0 12.9 13.7 19.7 66.6 63.3 64.7 72.2
Nanchang 14.8 9.8 13.2 15.8 20.6 13.6 22.3 28.8 58.2 58.1 62.9 64.6
Wuhan 18.5 15.6 18.9 25.3 36.4 19.9 30.0 45.3 66.3 56.1 61.3 64.2
Changsha 17.6 13.2 17.5 21.9 31.5 21.1 31.2 40.0 64.1 61.5 64.1 64.6
Guangzhou 11.6 9.5 12.1 12.7 22.6 16.3 23.4 26.6 66.0 63.3 65.9 67.7
Nanning 11.7 9.7 14.9 13.3 22.0 12.9 19.9 28.7 65.3 57.1 57.1 68.3
Haikou 5.8 4.7 8.1 6.0 11.5 6.9 8.7 15.8 66.3 59.4 51.8 72.6
Chongqing 17.9 14.0 18.6 21.6 24.1 19.4 25.0 38.8 57.5 58.0 57.3 64.2
Chengdu 29.6 20.0 27.1 31.7 23.6 15.0 18.2 39.1 44.3 42.8 40.1 55.2
Guiyang 13.5 10.6 12.2 9.9 21.3 12.2 18.5 29.8 61.2 53.6 60.4 75.0
Kunming 9.3 6.5 6.9 8.1 21.1 13.5 16.1 18.4 69.5 67.6 69.9 69.3

Average 15.2 12.0 15.2 17.4 25.1 16.4 21.1 30.2 62.2 57.7 58.1 63.5
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Table 1. Continued.

City PPM (µg m−3) SPM (µg m−3) SPM/PM2.5 (%)

M J S D M J S D M J S D
A J O J A J O J A J O J
M A N F M A N F M A N F

Regional background cities in southern China

Huangshan 5.3 5.1 5.7 6.4 20.7 11.2 16.3 22.7 79.5 68.8 74.2 78.1
Nanping 6.1 5.0 6.4 5.7 15.9 11.4 13.4 17.4 72.2 69.7 67.9 75.4
Zhoushan 9.5 8.0 8.4 11.9 13.7 10.2 10.1 11.5 59.2 56.2 54.5 49.1
Shanwei 7.9 4.8 8.2 5.7 16.6 10.3 17.4 22.7 67.8 68.2 68.1 79.9
Beihai 7.5 4.2 10.6 8.7 16.4 8.2 16.4 25.8 68.7 65.9 60.6 74.7
Qianxinan 3.3 1.7 2.2 2.9 12.5 12.1 12.2 13.8 79.2 87.9 84.8 82.9
Sanya 4.6 4.2 5.5 3.7 9.7 5.6 6.8 11.7 67.8 56.8 55.4 75.8
Aba 2.0 2.1 2.1 2.9 10.5 10.3 10.3 10.8 84.2 83.0 83.2 78.7
Linzhi 2.3 1.5 2.0 2.1 7.5 6.2 5.3 7.6 76.6 80.5 73.0 78.5
Diqing 1.9 1.5 1.7 1.6 10.5 9.4 9.4 10.2 84.7 86.4 84.8 86.2

Average 5.0 3.8 5.3 5.2 13.4 9.5 11.7 15.4 72.7 71.4 69.1 74.9

Figure 6. Spatial distributions of PPM (a, b), SPM (c, d) and the total PM2.5 concentration (e, f) averaged across the study period. The
secondary proportions of PM2.5 (SPM / total PM2.5) are also shown in (e) and (f). The left column (a, c, e) indicates populous cities. The
right column (b, d, f) is for the regional background cities. The dotted black line in each panel shows the Qinling–Huaihe line.
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Figure 7. Interannual variations of the PPM concentration (solid blue line), SPM concentration (dotted blue line) and the secondary propor-
tion of PM2.5 (solid red line) in populous cities (a–e) and regional background cities (f–j). MAM (a, f), JJA (b, g), SON (c, h) and DJF (d,
i) denote spring, summer, fall and winter, respectively. The absolute decreases in PPM and SPM concentration are written in blue and red in
panels (e) and (j).

secondary proportion of PM2.5 remains relatively constant
(56.4 %–58.5 %), but it presents a consistent increasing trend
(from 58.5 % to 59.2 %) in summer during the study pe-
riod, which can be attributed to the continuing worsening
O3 pollution (Tang et al., 2022). However, for regional back-
ground cities, the MTEA approach reports different features
of the PM2.5 mitigation. The estimated SPM is considerably
reduced by 1.1 µg m−3 yr−1 in regional background cities,
while the PPM remains nearly unchanged (the rate of de-
crease is 0.2 µg m−3 yr−1). This is because the SPM in re-
gional background cities is largely contributed by pollutant
transport from surrounding populous regions, where the air
quality is getting better as a result of the aforementioned
emission controls. However, the PPM mostly derives from
local sources and is rarely affected by those emission con-
trols, which mostly focus on densely populated and industri-
alized cities, not on background regions.

We investigated the interannual variations of PPM and
SPM concentrations on the basis of long-term in situ obser-
vations in Beijing and Shanghai as well. As Fig. 8 shows,
long-term measurements demonstrate a decline in the to-
tal PM2.5 by 4.0 µg m−3 yr−1 in Beijing (1.6 for PPM and
2.4 µg m−3 yr−1 for SPM) and by 3.9 µg m−3 yr−1 in Shang-
hai (1.7 for PM and 2.2 µg m−3 yr−1 for SPM). The observed
secondary proportion of PM2.5 shows a slight decrease of
−0.4 % yr−1 in Beijing but a small increase of 0.8 % yr−1 in
Shanghai. Applying the MTEA model to this case, we are
delighted to find that our model not only successfully repro-
duces the consistent decreasing trends in PPM and SPM in
Beijing and Shanghai (the correlation coefficient r of ob-
servation versus estimation ranges from 0.83 to 0.89), but

it also captures the different trends in the secondary propor-
tion of PM2.5 in the two cities (−0.6 % yr−1 in Beijing and
0.3 % yr−1 in Shanghai).

4.3 Application during the COVID-19 lockdown

To curb the spread of the novel coronavirus disease 2019
(COVID-19) pandemic, China conducted the first entire city
lockdown in Wuhan, Hubei on 23 January 2020. Other
provinces also gradually implemented this restriction in
the following three weeks (Le et al., 2020). The lock-
down greatly limited traffic and outdoor activities, which di-
rectly reduced the emissions of primary pollutants (Huang
et al., 2020). By analyzing the MEE monitoring data ob-
tained before (1–23 January 2020) and during (24 Jan-
uary to 17 February 2020) the nationwide lockdown (Fig. 9
and Fig. S2 in the Supplement), we show that the national
mean NO2, PM2.5 and CO concentrations were decreased
by 56 %, 30 % and 24 %, respectively, while O3 showed
an increase (of 34 %) in general, which would have effi-
ciently promoted the AOC. However, the surface monitor-
ing network still observed unexpected PM2.5 pollution in
cities over the Beijing-Tianjin-Hebei (BTH) region during
the lockdown. Especially in Beijing, the mean PM2.5 con-
centration was increased by∼ 100 % compared to its average
value (41 µg m−3) before the nationwide lockdown.

Exploring this unexpected air pollution, we find that the
enhanced secondary pollution could be the major factor;
this even offset the reduction of primary emissions in the
BTH region during the lockdown. With the help of MTEA,
we tracked variations of the secondary proportion of PM2.5
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Figure 8. The monthly time series variations of PM in Beijing (a–b) and in Shanghai (c–d). Panels (a) and (c) refer to the PPM and panels (b)
and (d) refer to the SPM. In each panel, in situ observations and MTEA estimations are shown as blue and red dots, respectively. Meanwhile,
the dashed blue and red lines show the long-term trends in concentration changes. The rates of decrease in PPM and SPM concentrations as
well as the relative changes in the secondary proportions of PM2.5 (SPM %) are also provided at the upper right corner of each panel.

Figure 9. The application of M-TEA to estimate PPM and SPM during the COVID-19 lockdown. Panels (a) and (b) denote the spatial
distribution of the PM2.5 mass concentration before the national lockdown (1–23 January 2020, pre-lockdown) and during the national
lockdown (23 January to 17 February 2020, post-lockdown). Panel (c) indicates the relative change between panels (a) and (b), i.e., (post-
lockdown − pre-lockdown)/pre-lockdown. Panels (d)–(f) are the same as panels (a)–(c) but for the secondary proportions of PM2.5.
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in East China before and during the COVID-19 lockdown
(Fig. 9d–f). The specific emission reductions owing to the
national lockdown were derived from Huang et al. (2020).
Based on bottom-up dynamic estimation, provincial emis-
sions of CO, NOx , SO2, VOC, PM2.5, BC and OC decreased
by 13 %–41 %, 29 %–57 %, 15 %–42 %, 28 %–46 %, 9 %–
34 %, 13 %–54 % and 3 %–42 %, respectively, during the
lockdown period. The secondary proportions in the BTH re-
gion show evident increases of 7 %–34 %, which highlight
the importance of secondary formation during the lockdown.
Our result is consistent with recent observation and simula-
tion studies (Chang et al., 2020; Huang et al., 2020; Le et al.,
2020) that suggested that the reduced NO2 resulted in O3 en-
hancement, further increasing the AOC and facilitating sec-
ondary aerosol formation. In addition, another cause of the
air pollution was the unfavorable atmospheric diffusion con-
ditions. CO, a nonreactive pollutant, was increased by 22 %
in Beijing during the lockdown, even given the considerable
reduction in its emission.

For other regions of China, the MTEA approach suggests
that the secondary proportion of PM2.5 increased by 20 %
over the Yangtze River Delta (YRD) region but decreased by
32 % over Central China. Although O3 and AOC enhanced in
all these regions, the unprecedented reductions in precursors
ultimately resulted in a net drop in secondary pollution.

4.4 Correlation analysis with O3

PM2.5 and O3 are closely correlated with each other. One rea-
son for this is that PM2.5 and O3 have similar precursors, i.e.,
NOx and VOCs. Besides, PM2.5 can impact O3 formation by
adjusting the radiation balance (Li et al., 2018) and affect-
ing the radical level via aerosol chemistry (Li et al., 2019).
There is therefore a complicated interaction between PM2.5
and O3. Our study utilized the MTEA approach to explore
the relationship between PM and O3 from the perspective of
exploring the statistical correlation.

Figure S3 in the Supplement illustrates the hourly correla-
tions between the estimated SPM and the observed O3 aver-
aged for 31 populous cities in China (cities that failed to pass
the significance test were excluded) in summer. In general,
SPM and O3 show a positive relationship nationwide, espe-
cially during the afternoon (during 14:00–18:00, r is up to
0.56). This phenomenon might be explained by noting that
the production of O3 and that of SPM are simultaneously
affected by AOC; thus, a higher correlation tends to occur
when the AOC is stronger. Moreover, the hourly correlations
between SPM and O3 are higher than those between PPM
and O3 throughout the day, suggesting that secondary oxida-
tion processes may be captured well by the MTEA method.

A series of recent studies have focused on the correla-
tion between PM2.5 and O3, and many of them have agreed
that the correlation varies greatly among different regions of
China. Specifically, the statistical correlation is more posi-
tive in southern cities compared to northern cities (Chu et

al., 2020). Because of this significant difference, a question
arises: is the difference mostly caused by PPM, by SPM,
or by both of them? To address this question, we com-
pared the correlations of daily PPM, SPM and total PM2.5
with O3 in the Beijing-Tianjin-Hebei (BTH) and the Yangtze
River Delta (YRD) regions during the study period with
the help of the MTEA approach. The O3 diurnal formation
regime can be destroyed because of the suppressed radia-
tive condition under precipitation. The local O3 concentra-
tion level is mainly dominated by background fields. Here,
we would like to focus our attention on the secondary for-
mation relationship between daily PM2.5 and O3. Therefore,
the cases during which precipitation took place were re-
moved to avoid the cleaning impacts of wet deposition on
MDA8 (maximum daily 8 h average) O3 concentrations. Pre-
cipitation data were based on the ERA5 reanalysis database
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF, https://www.ecmwf.int/, last access: 1 Au-
gust 2021).

As shown in Fig. 10, the correlations between total PM2.5
and O3 are positive and stronger in YRD (r = 0.14) than in
BTH (r = 0.09). However, compared with total PM2.5, the
correlations between SPM and O3 are much stronger (r =
0.21–0.24) and show minor regional differences. The corre-
lation of PPM with O3 is not significant (p-value>0.05) in
either region. The correlation between SPM and O3 is higher
mostly because both of them are secondary oxidation prod-
ucts. A higher ambient O3 concentration indicates a stronger
AOC, which leads to more SPM generation. However, for
PPM, its effect on O3 is mainly to inhibit the production of
O3 by adjusting the radiation balance and affecting the radi-
cal level. Hence, we suggest that the regional differences in
the correlation between total PM2.5 and O3 are mainly caused
by the different PPM levels in the BTH and YRD regions.

4.5 Uncertainties

Based on the previous evaluation and discussions, we believe
that MTEA can successfully capture the magnitudes and spa-
tiotemporal variations of PPM and SPM in China. However,
there are still some uncertainties in the model estimation and
its application in China.

Firstly, the assumption of nonsignificant correlation be-
tween PPM and SPM may be violated by the fact that SO2
and NOx emitted from combustion will further generate
secondary sulfate and nitrate particulates. Nevertheless, the
combustion processes for generating SO2 and NOx and PPM
are still different. PPM, i.e., BC and POC, mainly comes
from incomplete combustion in residential activities, such as
burning biofuels and coal (Long et al., 2013), but SO2 and
NOx mainly come from the complete combustion of indus-
trial and transportation sources, such as coal, gasoline and
diesel (Lu et al., 2011; M. Li et al., 2017a; Tang et al., 2019).
In addition, the MTEA approach uses the assumption of non-
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Figure 10. Scatter plots showing the correlation between daily PM concentration and MDA8 O3 concentration in Beijing (blue) and Shanghai
(red). Based on the reanalysis dataset ERA5 from ECMWF, days when precipitation took place were removed. Panels (a)–(c) indicate the
PPM, SPM and total PM2.5, respectively. In each panel, solid colored lines represent fit lines based on the least squares method. Values of
the Pearson correlation coefficient (r) are also given at the bottom right of each panel.

significant correlation rather than irrelevance. Such process-
ing also reduces the uncertainty to a certain extent.

Secondly, natural sources of PPM, such as fine dust from
desert and sea salt, are not taken into account in the MTEA
approach. As a result, the PPM in a city near a desert or sea
could be underestimated. For example, the PM2.5 component
observational campaign conducted in 2015 showed that the
contribution of sea salt aerosols to the ambient PM2.5 mass
concentration in Haikou is 3.6 %–8.3 % (Liu et al., 2017).

Thirdly, current bottom-up emission inventories are gener-
ally outdated, with a time lag of at least 1–2 years, mainly due
to a lack of timely and accurate statistics. Consequently, a
corresponding uncertainty in MTEA estimation is inevitable.
To evaluate the uncertainty, a comparison test was conducted
by adjusting the apportioning coefficients (a and b in Eq. 1)
with a disturbance of±0.1. Firstly, we decreased the value of
a in each populous city by 0.1. Meanwhile, the coefficient b
was increased by 0.1. This scenario indicates an overestima-
tion of the contribution of combustion-related processes to
the primary PM2.5 or an underestimation of the contribution
of dust-related processes. Secondly, we increased the value
of a in each populous city by 0.1 (and decreased b by 0.1) to
check the opposite case. The results are presented in Table S5
in the Supplement, and they point out that the estimated sec-
ondary proportions of PM2.5 varied by less than ±3 % in the
most populous cities due to the changes in the apportioning
coefficients. This sensitivity experiment highlights that the
apportioning coefficients, which depend on the emissions,
have a limited impact on the final estimation results. Gen-
erally, the uncertainty of the apportioning coefficients is one
of two factors that directly affect the tracer X. The other one
is the concentrations of CO and PMC themselves. Hence, we
also conducted a similar test to check the impacts of tracer
X on the model estimation by changing the tracer concen-
trations mentioned in Eq. (1). Specifically, we (1) increased
the CO concentration by 10 % and decreased the PMC con-
centration by 10 % and (2) decreased the CO concentration

by 10 % and increased the PMC concentration by 10 %. Both
sets of adjustments yield changes of within ±2 % in the es-
timated secondary proportions of PM2.5 in all cities except
for Urumqi (Table S6 in the Supplement). This phenomenon
from the perspective of tracer concentration also supports the
idea that the impact of the tracer X on the final model results
is limited. In summary, we believe that the factor that is most
determinative of the final results of our model is the princi-
ple of minimum correlation between PPM and SPM, not the
tracer X, which relies on emissions or concentrations.

5 Conclusions

In this study, we developed a new approach, MTEA, to dis-
tinguish the primary and secondary compositions of PM2.5
efficiently from routine observation of the PM2.5 concentra-
tion with a much lower computation cost than traditional
CTMs. By comparing MTEA results with long-term and
short-term measurements of aerosol chemical components
in China as well as an aerosol composition network in the
United States, we showed that MTEA was able to capture
variations of PPM and SPM concentrations. Meanwhile, our
model showed great agreement with the reanalysis dataset
from one of the most advanced CTMs in China as well.

The method was then applied to the surface air pollu-
tant concentrations from the MEE observation network in
China, and was found to offer an effective way to under-
stand the characteristics of PPM and SPM across a wide area.
In terms of the spatial pattern, MTEA reveals that SPM ac-
counts for 63.5 % of the total PM2.5 in southern cities aver-
aged for 2014–2018, while the proportion drops to 57.1 %
in the north. It should be noted that the secondary propor-
tion in regional background regions is ∼ 19 % higher than
that in populous regions. In terms of seasonality, the esti-
mated national averaged secondary proportion is the lowest
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in fall (56.1 %), and remains around 61 % during the other
three seasons.

Moreover, we applied MTEA to explore the changes in the
secondary proportion of PM2.5 in China. In recent years, the
PM2.5 pollution in China has been significantly alleviated,
mainly due to a series of emission control measures. The
MTEA results suggest that both PPM and SPM decreased
simultaneously in populous regions, while for regional back-
ground regions, the reduction in secondary PM2.5 was much
more notable than that in the PPM. The secondary proportion
of PM2.5 in populous cities during 2014–2018 remained con-
stant (56.4 %–58.5 %) in general on an annual average scale,
but it showed a slight but consistent increase in summer,
mostly due to the elevated O3 and stronger photochemical
pollution in China. In addition, with the help of MTEA, we
found that the secondary PM2.5 proportion in Beijing signifi-
cantly increased (by 34 %) during the COVID-19 lockdown,
which might be the main reason for the observed unexpected
PM pollution in this special period.

Finally, we applied MTEA to explore the synergistic corre-
lation between PM2.5 and O3. Estimated results demonstrate
that PPM is weakly correlated with O3; its effect on O3 is
mainly to inhibit the production of O3 by adjusting the radia-
tion balance and affecting the radical level. SPM is positively
correlated with O3 in the presence of the effect of AOC. A
higher ambient O3 concentration indicates a stronger AOC,
leading to more SPM generation. We suggest that regional
differences in the correlation between total PM2.5 and O3 are
mainly caused by the different PPM levels in the BTH and
YRD regions.

We also discussed the uncertainties of the MTEA method.
MTEA may overestimate the secondary fractions of PM2.5 in
regions near to the desert or sea by ∼ 20 %, as it fails to take
natural dust into consideration. In addition, a sensitivity ex-
periment in which a reasonable disturbance of emissions and
tracer concentrations was imposed also showed that such a
disturbance has limited impacts on the final estimation. Over-
all, the factor that is most determinative of our model esti-
mate is the principle of minimum correlation between PPM
and SPM.

China has been plagued by PM2.5 pollution in recent years.
Different PM2.5 compositions may have different impacts on
the environment, climate and health, due to their different
sources and generation pathways. Therefore, it is of great im-
portance to quantify PPM and SPM for pollution recognition
and prevention. The methods that are used to quantify differ-
ent PM2.5 components are often based on either lab analysis
of offline filter samplings or online observation instruments
such as AMS. However, these methods are often labor inten-
sive, highly technical and have a high economic cost. CTM
is another useful tool to reveal the composition character-
istics of PM2.5. However, traditional CTMs also have high
hardware requirements. Our study has developed an efficient,
lower-cost approach based on a statistical principle to explore
PPM and SPM, and applying this approach to large-scale

observation networks, such as the MEE network, can offer
an unprecedented opportunity to quantify the PM2.5 compo-
nents at large spatial and time scales.

Code and data availability. The MTEA software package and
input datasets are available at http://nuistairquality.com/m_tea
(Zhang an Li, 2022). Observational datasets and modeling results
described in the text are available upon request from the correspond-
ing author (linan@nuist.edu.cn).
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