



## Supplement of

# The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation

Jiandong Wang et al.

Correspondence to: Jia Xing (xingjia@mail.tsinghua.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

#### 18 **1 Model evaluation**

The simulated concentrations of surface SO<sub>2</sub>, NO<sub>2</sub> and PM<sub>2.5</sub> in SimNF (no aerosol feedbacks) and SimSF (which aerosol 19 feedbacks) are compared with observed data in Figure S2. In January, high SO<sub>2</sub> concentrations are shown in JJJ, YRD, HUZ, 20 and SCH. In general, simulated SO<sub>2</sub> concentration is underestimated in JJJ. The low-bias is getting larger under high PM<sub>2.5</sub> level, 21 22 shown in Figure S2. JJJ region is with highest observed SO<sub>2</sub> value up to 500  $\mu$ g m<sup>-3</sup>. Meanwhile, SO<sub>2</sub> concentration is 23 overestimated in PRD, HUZ, and SCH. The simulated SO<sub>2</sub> match pretty well with the observation in YRD. ADE increases SO<sub>2</sub> concentration in most regions, except eastern Henan and middle Shandong where is the downwind area of polluted regions. The 24 25 enhanced atmospheric stability reduced the ventilation condition resulting in an increased polluted level at source area but 26 decreased polluted level at downwind area. The increase of SO<sub>2</sub> is up to 56  $\mu$ g/m<sup>3</sup> in the polluted regions. In July, high SO<sub>2</sub> 27 concentrations are still shown in JJJ, YRD, PRD, HUZ, and SCH, but much lower than in January. SO<sub>2</sub> concentration is lower than 50 µg/m<sup>3</sup> in most cities, except Handan (south of JJJ). Model generally overestimates SO<sub>2</sub> concentration in most regions. 28 29 ADE enhances SO<sub>2</sub> concentration in part of JJJ, YRD, and SCH. But SO<sub>2</sub> is decreased due to ADE in PRD. NO<sub>2</sub> also exhibits 30 higher concentration in January and lower concentration in July. High NO<sub>2</sub> is usually located at large cities. In January, high 31 NO<sub>2</sub> is shown in Northeast China, JJJ, HUZ, and YRD. The cities in south part of JJJ, i.e., Beijing, Tangshan, Baoding, 32 Shijiazhuang, Xingtai, and Handan are the most polluted cities where monthly averaged NO<sub>2</sub> concentrations exceed China air quality standard of daily average NO<sub>2</sub> concentration (i.e., 80 µg/m<sup>3</sup>). In general, the model slightly underestimates NO<sub>2</sub> for most 33 regions. ADE enhances NO<sub>2</sub> concentration by over 19.7  $\mu$ g/m<sup>3</sup> in JJJ, YRD, HUZ, and SCH, which improves the model 34 35 performance. In July, the NO<sub>2</sub> concentration is much lower than in January. The model also underestimated NO<sub>2</sub> concentration. PM<sub>2.5</sub> concentrations in January exceed 160 µg/m<sup>3</sup> in all 5 regions. The model generally underestimates PM<sub>2.5</sub> concentrations in 36 37 almost all regions. ADE enhances monthly averaged  $PM_{2.5}$  concentrations by over 2  $\mu$ g/m<sup>3</sup> in most area of East China. The maximum increase reached 35.8  $\mu$ g/m<sup>3</sup>. Compared to January, PM<sub>2.5</sub> concentrations in July are much lower and mostly high 38 39 concentrations are located in JJJ and part of SCH. Simulated PM2.5 concentrations match well with the observed data.

### 40 2 Impact of ADE on oxidants

To further investigate the impacts of ADE on atmospheric chemistry, we examined the changes in production rates of new reacted OH, shown in Fig S5. The modification of atmospheric oxidants by ADE also shows solar radiation control in January and gaseous precursor control in July. In January, ADEP is the dominant process to impact atmospheric oxidation. It leads to a decrease of oxidants in the layer below 1 km and an increase in oxidants above it. ADED slightly raises oxidation near ground and exhibits little impact on layers above 500 m. In July, both dynamic and photolysis pathways are important. ADEP increases atmospheric oxidants in all layers. The height with strongest effect is about 600 m. ADED amplifies near-surface atmospheric oxidants but reduces atmospheric oxidants above 600 m.

48

#### 49 **3 Impact of ADEP on sulfate**

The influence of changes in the photolysis pathway on aerosol formation is negative in winter and positive in summer. This is mainly due to the different effects of light absorption and scattering on aerosols and surface albedo. Usually, scattering aerosol increases the effective optical path length and raises the total actinic flux in the atmosphere as a whole, while absorbing aerosol decreases the actinic flux in the layer below, compared with an aerosol-free scenario (Dickerson et al., 1997;Herman et al., 1999). The influence of aerosol on the photochemical reactions also varies with single scattering albedo (SSA). A low SSA value (strong absorption) tends to inhibit the photochemical reaction, while a high SSA tends to promote the photochemical reaction. Moreover, such impact varies with altitude and aerosol loading. Forward scattering increases actinic flux of the layer

- below, given that the diffuse light increases the effective optical path length. Backward scattering increases the actinic flux of 57 the layer above the aerosol but decreases the actinic flux below the aerosol layer. Thus, the ground-level actinic flux will depend 58 59 on aerosol loading and vertical distribution. The factors impacting actinic flux include but are not limited to single scattering albedo, aerosol loading (aerosol optical depth,  $\tau$ ) and solar zenith angle ( $\theta$ ). Higher effective optical depths ( $\tau$  /cos  $\theta$ , a variable 60 to represent aerosol loading) attenuate direct solar radiation. Thus, this impact will be more significant at high  $\theta$  (Dickerson et 61 al., 1997;He and Carmichael, 1999) and high  $\tau$ . In January, the average AOD reached 2.5, much higher than the annual average 62 level (Bi et al., 2014). Coal combustion and biomass burning, especially for residential heating, leads to high levels of black 63 carbon, which results in low SSA. High aerosol loading, low SSA, and low solar zenith angle together lead to decreased actinic 64 65 flux in near-ground layers, due to ADE. Conversely, low aerosol loading, high SSA, and high solar zenith angle together lead to 66 increased actinic flux in near-ground layers in July.
- 67





69 Figure S1. Observed and simulated SO<sub>2</sub>, NO<sub>2</sub> and PM<sub>2.5</sub> and their responses to ADE (monthly mean,  $\mu g m^{-1}$ 





Figure S2 Observed and simulated surface SO<sub>2</sub> concentration against PM<sub>2.5</sub> concentration (monthly mean,  $\mu g m^{-3}$ )



Figure S3 Observed and simulated surface NO<sub>2</sub> concentration against PM<sub>2.5</sub> concentration (monthly mean,  $\mu g m^{-3}$ )



80 Figure S4 Observed and simulated surface  $PM_{2.5}$  concentration (monthly mean,  $\mu g m^{-3}$ ) 



Figure S5: Vertical distribution of ADE impact on mean reacted oxidation production. The red line and shadow show the medium value
and 25th to 75th percentiles, respectively.