Large-eddy-simulation study on turbulent particle deposition and its dependence on atmospheric-boundary-layer stability

Xin Yin¹, Cong Jiang¹, Yaping Shao¹, Ning Huang²,³, and Jie Zhang²,³

¹Institute for Geophysics and Meteorology, University of Cologne, 50969 Cologne, Germany
²Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, 730000 Lanzhou, China
³College of Civil Engineering and Mechanics, Lanzhou University, 730000 Lanzhou, China

Correspondence: Jie Zhang (zhang-j@lzu.edu.cn)

Received: 29 September 2021 – Discussion started: 29 November 2021
Revised: 16 February 2022 – Accepted: 28 February 2022 – Published: 7 April 2022

Abstract. It is increasingly recognized that atmospheric-boundary-layer stability (ABLS) plays an important role in eolian processes. While the effects of ABLS on particle emission have attracted much attention and been investigated in several studies, those on particle deposition have so far been less well studied. By means of large-eddy simulation, we investigate how ABLS influences the probability distribution of surface shear stress and hence particle deposition. Statistical analysis of the model results reveals that the shear stress can be well approximated using a Weibull distribution, and the ABLS influences on particle deposition can be estimated by considering the shear stress fluctuations. The model-simulated particle depositions are compared with the predictions of a particle-deposition scheme and measurements, and the findings are then used to improve the particle-deposition scheme. This research represents a further step towards developing deposition schemes that account for the stochastic nature of particle processes.

1 Introduction

Dry deposition is the removal of particulates and gases at the air–surface interface by turbulent transfer and gravitational settling (Sehmel, 1980; Droppo, 2006; Hicks et al., 2016). Because it is the only process for the removal of particles from the atmosphere in the absence of precipitation, developing reliable methods for estimating dry deposition of particles has attracted much interest since the early 1940s (Gregory, 1945; Chamberlain, 1953; Slinn and Slinn, 1980; Slinn, 1982; Walcek et al., 1986; Zhang et al., 2001; Petroff and Zhang, 2010; Zhang and Shao, 2014; Seinfeld et al., 2016). Several particle-deposition schemes have been proposed (Slinn, 1982; Walcek et al., 1986; Zhang and Shao, 2014; Zhang et al., 2001) for regional and global models, which are driven using several environmental parameters, including the Reynolds surface shear stress (typically averaged over 15–30 min). However, field observations indicate that the use of Reynolds stress as the only wind-related parameter in such schemes may not be sufficient to achieve accurate estimates of particle deposition because of the nonlinear relationship between deposition velocity and wind shear. Observations using the eddy correlation method show that particle-deposition velocity has strong spatiotemporal variations associated with the fluctuations of wind speed (Connan et al., 2018; Damay et al., 2009; Lamaud et al., 1994; Wesely et al., 1983, 1985). It is also observed that when the background wind speeds are similar, dry deposition velocities under convective conditions are larger than under neutral and stable conditions (Fowler et al., 2009). Pellerin et al. (2017) suggested that cospectral similarities exist between heat and particle-deposition fluxes and that atmospheric turbulence plays a role in particle deposition. It is therefore necessary to find a link between instantaneous wind and particle deposition and to correctly represent this link in particle-deposition...
schemes, i.e., to introduce and account for the effect of turbulence on particle deposition.

Some eolian processes, e.g., turbulent particle emission (Klose and Shao, 2012, 2013) and intermittent saltation (Li et al., 2020; Liu et al., 2018; Rana et al., 2020), have been under development. To the best of our knowledge, although turbulent particle deposition is now perceived to be important, a scheme is yet to be constructed for its quantitative estimate.

The turbulent wind flow in a particle-deposition scheme is reflected in the turbulent shear stress (or vertical momentum flux) (Fowler et al., 2009; Zhang and Shao, 2014). It is well known that apart from gravitational settling, particle deposition is driven by turbulent diffusion, which is intimately related to the vertical momentum transfer in the atmospheric boundary layer (ABL) (Wyngaard, 2010). Based on the Prandtl mixing-length theory, the shear stress can be parameterized in neutral conditions. However, it is known that for a given mean wind speed (at a reference height) in the ABL, both the mean value and the perturbations of shear stress depend on the atmospheric-boundary-layer stability (ABLS); for instance, shear stress shows generally larger fluctuations in convective ABLS. Klose and Shao (2013) pointed out the following:

In a convective atmospheric boundary layer, large eddies have coherent structures of dimensions comparable to boundary-layer depth, which are efficient entities in generating localized momentum fluxes to the surface. Although the eddies only occupy fractions of time and space, the momentum fluxes to these fractions can be many times the average. (p. 49)

Hicks et al. (2016) mentioned that ABLS is of immediate concern in the micrometeorological community because of its influences on the intermittency, gustiness and diurnal cycle of particle deposition. Similar to turbulent dust emission and intermittent saltation, intermittent particle deposition also occurs as a result of fluctuating surface shear stress. The current particle-deposition schemes only consider the mean behavior of wind (Slinn, 1982; Zhang and Shao, 2014; Zhang et al., 2001) and how this mean behavior varies with ABLS via the Monin–Obukhov similarity theory (Monin et al., 2020; Monin and Obukhov, 1954) but not the fluctuations of the associated shear stress and how they vary with ABLS.

We argue that focusing only on the effects of ABLS on mean wind is insufficient to accurately model particle deposition. In this study, we explore the influences of ABLS on the turbulent behavior of particle deposition and attempt to improve an existing particle-deposition scheme. A large-eddy-simulation (LES) model is used here to simulate turbulence and particle deposition under various ABLS conditions, and parts of the study design follow Klose and Shao (2013). The particle depositions simulated using the LES model and predicted using the particle-deposition scheme of Zhang and Shao (2014, ZS14 hereafter) are compared with each other and with measurements. Specifically, we address the following three issues: (1) how ABLS affects the probability distribution of surface shear stress, (2) how ABLS impacts particle deposition and (3) how the ZS14 scheme can be improved to account for the ABLS effect. On this basis, an improvement to the ZS14 scheme (also applicable to other schemes) is proposed. The remaining part of the paper is organized as follows: Sect. 2 gives a brief description of the Weather Research and Forecasting – Large-Eddy-Simulation Model with Dust module (WRF-LES/D), the ZS14 scheme and the design of the numerical experiments. Section 3 discusses the findings of the numerical simulations and the improvement to the ZS14 scheme. The concluding remarks are given in Sect. 4.

2 Model/method

2.1 WRF-LES/D

The WRF-LES/D used here is initially developed by Shao et al. (2013) and Klose and Shao (2013) by coupling the WRF-LES (Moeng et al., 2007; Skamarock et al., 2008) with a land-surface module and dust module. As demonstrated in the earlier studies, WRF-LES/D is a well-established system for applications of simulating turbulence, turbulent particle emission and transport for various ABLS conditions. WRF-LES is a three-dimensional and non-hydrostatic model for fully compressible flow. The model separates the turbulent flow into a grid-resolved component and a subgrid component. The $k - 1$ subgrid closure (Deardorff, 1980) together with the turbulent kinetic energy (TKE) equation (Skamarock et al., 2008) is used here. The governing equations in WRF-LES/D include the equations of motion, continuity equation, enthalpy equation, equation of state and the particle conservation equation, as shown below:

\[
\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\delta_{i3}g + \varepsilon_{ij3} f u_j - \frac{1}{\rho_a} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j} - \frac{1}{\rho_a} \frac{\partial \tau_{ij}}{\partial x_j} \quad (1)
\]

\[
\frac{\partial \rho_a}{\partial t} + \frac{\partial (\rho_a u_j)}{\partial x_j} = 0 \quad (2)
\]

\[
\frac{\partial c_p T}{\partial t} + \frac{\partial (c_p u_j T)}{\partial x_j} = \frac{1}{\rho_a} \frac{\partial H_j}{\partial x_j} + s_T \quad (3)
\]

\[
p = \rho_a R_a T \quad (4)
\]

\[
\frac{\partial c}{\partial t} + u_j \frac{\partial c}{\partial x_j} - w_i \frac{\partial c}{\partial z} = - \frac{\partial F_j}{\partial x_j} + s_r \quad (5)
\]

where $u_i (u, v, w)$ is the grid-resolved flow velocity along x_i (x, y, z), referring to the streamwise, spanwise and vertical directions, respectively; g is the acceleration due to gravity; ρ_a is the air density; f is the Coriolis parameter; p is the air pressure; τ_{ij} is the subgrid stress tensor modeled using an eddy viscosity approach, where the eddy viscosity...
is represented as the product of a length scale and a velocity scale characterizing the subgrid-scale (SGS) turbulent eddies (Dupont et al., 2013), with the velocity scale being derived from the SGS TKE and the length scale from the grid spacing (Skamarock et al., 2008); \(v \) is the kinematic viscosity; \(\delta_3 \) is the Kronecker operator; \(\varepsilon_{13} \) is the alternating operator; \(c_p \) is the specific heat of air at constant pressure; \(T \) is air temperature; \(H_j \) is the \(j \)th component of subgrid heat flux; \(R_a \) is the specific gas constant of air; \(c \) is particle concentration; \(u_t \) is the particle terminal velocity; \(F_j \) is the \(j \)th component of subgrid particle flux; and \(s_F \) and \(s_p \) are the source or sink terms for heat and particles, respectively. The subgrid eddy diffusivity is set to subgrid eddy viscosity divided by the Prandtl number. For the surface layer, an important parameterization to solve the governing equations for high-Reynolds-number turbulence is embedded in the surface boundary condition, which computes the instantaneous local surface shear stress using the bulk-transfer method (Kalitzin et al., 2008; Kawai and Larsson, 2012; Piomelli et al., 2002; Zheng et al., 2020) as follows:

\[
\tau = \rho_a K_m \frac{\partial V}{\partial z},
\]

with

\[
K_m = \frac{\kappa u^+}{\varphi_m^+},
\]

where \(K_m \) is the eddy viscosity, \(\varphi_m \) is the Monin–Obukhov similarity theory (MOST) stability function, \(V = \sqrt{u^2 + v^2} \), and \(\kappa \) is the von Kármán constant. Even though Shao et al. (2013) questioned the application of the MOST in LES, it is still used here, as our emphasis is on the variance of shear stress in the simulation domain. Several land-surface models (LSMs) can be selected (e.g., Chen and Dudhia, 2000; Pleim and Xiu, 2003) in WRF-LES/D, and the 5-layer thermal diffusion (Dudhia, 1996) is used in this study. Furthermore, the surface heat flux, denoted \(H_0 \), is specified. The dry deposition flux to the ground for each grid, denoted \(F_d \), is obtained by multiplying the deposition velocity \(V_d \) and particle concentration \(c \) in the lowest layer, and \(V_d \) is estimated using the ZS14 deposition scheme.

2.2 Particle-deposition scheme of ZS14

The particle deposition on the surface is more complicated than the momentum flux as the change of particle concentration close to the surface is unclear. To solve the particle conservation equation (Eq. 5), the emission and deposition fluxes at the surface need to be specified. The problem of particle emission has been dealt with elsewhere (e.g., Shao, 2004, focuses on the particle emission without turbulence effects; Klose et al., 2014, and Klose and Shao, 2012, emphasize the turbulent particle emission) and is not considered here. For our purpose, particle emission is assumed to be zero. This section gives the parameterization scheme proposed by ZS14. The details of the scheme are described in ZS14; only the main results are given here for completeness. In general, we can express the particle-deposition flux \(F_d \) as

\[
F_d = -(K_p + k_p) \frac{\partial c}{\partial z} - u_t \cdot c,
\]

where \(K_p \) and \(k_p \) are the eddy diffusivity and the molecular diffusivity, respectively. By analogy with the bulk-transfer formulation of scalar fluxes in ABL, \(F_d \) can be parameterized as

\[
F_d = -V_d(z) \cdot c(z),
\]

where \(c(z) \) is the particle concentration at height \(z \) (the center height of the lowest model level in this study), and \(V_d(z) \) is the corresponding dry deposition velocity.

The surface layer is divided into an inertial layer and a roughness layer. Integrating Eq. (8) into the inertial layer and substituting Eq. (9) into it, \(V_d(z) \) is obtained as follows:

\[
V_d(z) = \left(r_g + \frac{r_s - r_g}{\exp\left(r_a/r_g\right)} \right)^{-1},
\]

with \(r_g \) being the gravitational resistance, \(r_s \) being the collection resistance, and \(r_a \) being the aerodynamic resistance for the inertial layer.

The gravitational resistance \(r_g \) is defined as the reciprocal of the gravitational settling velocity \(u_t \) and depends mainly on particle size and density. A free-falling particle is subject to gravitational and aerodynamic drag forces. When these forces are in equilibrium, the gravitational settling velocity of the particle smaller than 20\(\mu \)m can be reasonably accurately calculated according to the Stokes formula (Malcolm and Raupach, 1991; Seinfeld and Pandis, 2006):

\[
w_t = \frac{C_a \rho_p D_p^2 g}{18 \mu_a} = r_g^{-1},
\]

where \(D_p \) is the particle diameter, \(\rho_p \) is the particle density, \(\mu_a \) is the air dynamic viscosity, and \(C_a \) is the Cunningham correction factor that accounts for the slipping effect affecting the fine particles.

Using the MOST, the aerodynamic resistance is calculated as

\[
r_a = \frac{S_{CT}}{\kappa u_a} \ln \left(\frac{z - z_d}{h - z_d} + \psi_m \right),
\]

where \(z_d \) is the displacement height, \(h \) is the height of roughness element, \(\psi_m \) is the integral of stability function in the inertial layer, and \(S_{CT} = K_m/K_p \) (Csámady, 1963).

In the roughness layer, the collection process is reflected in collection resistance, defined by \(r_s = -\frac{c(z)}{V_d} \), with an assumption that particle concentration is zero on roughness elements or the ground. In addition to the meteorological factors and
land-use category, Zhang and Shao (2014) established a relationship between aerodynamic and surface collection processes using an analogy between the drag partition and deposition flux partition, which can describe surface heterogeneity.

\[r_s = \left[R \cdot \frac{\tau}{\rho_h u_b} \left(\frac{E}{C_d} \frac{\tau_c}{\tau} + \left(1 + \frac{\tau_c}{\tau} \right) S_c^{-1} + 10^{-3} \right) + u_t \right]^{-1}, \]

(13)

where \(R \) is the reduction in collection caused by particle rebound; \(u_b \) is the wind speed at the top of the roughness layer; \(E \) is the collection efficiency of roughness elements, and it includes the collection efficiency from Brownian motion \((E_B) \), impaction \((E_{im}) \), and interception \((E_{in}) \); \(C_d \) is the drag coefficient for isolated roughness element; \(\tau_c/\tau \) describes the drag partition, with \(\tau_c \) being the pressure drag (the force exerted on roughness elements); \(S_c \) is the Schmidt number, which is the ratio of air viscosity to molecular diffusion; and \(10^{-3/2} \hat{T}_{p,d} \) represents the turbulent impaction efficiency, with \(\hat{T} \) being the dimensionless particle relaxation time. \(E_B \), \(E_{im} \), \(E_{in} \), and \(R \) are expressed as

\[E_B = C_B S_c^{-2/3} R e^{n_B - 1}, \]

(14)

\[E_{im} = \left(\frac{S_t}{0.6 + S_l} \right)^2, \]

(15)

\[E_{in} = u_a 10^{-S_l} \frac{2D_p}{d_c}, \]

(16)

\[R = \exp(-\sqrt{S_l}), \]

(17)

where \(R e \) is the roughness element Reynolds number, \(C_B \) and \(n_B \) are parameters depending on \(R e \), \(d_c \) is the diameter of the roughness element, and \(S_l \) is the Stokes number.

The ratio \(\tau_c/\tau \) can be calculated according to Yang and Shao (2006), as follows:

\[\frac{\tau_c}{\tau} = \frac{\beta_1 \lambda_e}{1 + \beta_1 \lambda_e} \]

(18)

and

\[\lambda_e = \frac{\lambda}{(1 - \eta)^6} \exp\left(-\frac{\lambda}{10 \cdot (1 - \eta)^6} \right), \]

(19)

with \(\beta_1 (= 200) \) being the ratio of the drag coefficient for isolated roughness element to that for bare surface, \(\lambda \) being the frontal area index of the roughness elements, and \(\eta \) being the basal area index or the fraction of cover.

From Eqs. (10) to (19), it can be seen that \(V_d \) and \(\tau \) are nonlinearly related. For example, for particles with a diameter of 1 \(\mu \)m, analysis shows that \(V_d \) is dominated by \(u_t \) when \(\tau \) is small. As \(\tau \) increases, \(u_t \) and \(\tau \) are both important to \(V_d \). With \(\tau \) increasing further, the effect of \(\tau \) becomes much greater than gravitational settling; thus the \(V_d \) is mainly determined by \(\tau \).

3 Results

3.1 Turbulent shear stress

In the first set of analyses, we examine the impact of atmospheric stability on shear stress fluctuations. Early particle-deposition studies considered only the time average of surface shear stress, \(\tau_r \), with the assumption that shear stress is horizontally homogeneous. In WRF-LES/D, the corresponding mean resultant shear stress \(\tau_r \) can be obtained as

\[\tau_r = \sqrt{\tau_s^2 + \tau_z^2}. \]

(20)

The shorthand notation \(\bar{T} = \frac{1}{N_x N_y N_z} \sum_{n_x, n_y, n_z} f(n_x, n_y, n_z) \) is introduced to represent the space and time average over the simulation domain and time period (hereafter ensemble
<table>
<thead>
<tr>
<th>Name</th>
<th>U (m s$^{-1}$)</th>
<th>$z_0 = 0.153$ mm</th>
<th>$z_0 = 0.76$ mm</th>
<th>H_0 (W m$^{-2}$)</th>
<th>w_a (m s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp 1</td>
<td>4</td>
<td>Exp 21</td>
<td>5.44</td>
<td>-50</td>
<td>-1.12</td>
</tr>
<tr>
<td>Exp 2</td>
<td>8</td>
<td>Exp 22</td>
<td>10.87</td>
<td>-50</td>
<td>-1.12</td>
</tr>
<tr>
<td>Exp 3</td>
<td>12</td>
<td>Exp 23</td>
<td>18.12</td>
<td>-50</td>
<td>-1.12</td>
</tr>
<tr>
<td>Exp 4</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-50</td>
<td>-1.12</td>
</tr>
<tr>
<td>Exp 5</td>
<td>4</td>
<td>Exp 24</td>
<td>5.44</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exp 6</td>
<td>8</td>
<td>Exp 25</td>
<td>10.87</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exp 7</td>
<td>12</td>
<td>Exp 26</td>
<td>18.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exp 8</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exp 9</td>
<td>4</td>
<td>Exp 27</td>
<td>5.44</td>
<td>200</td>
<td>1.77</td>
</tr>
<tr>
<td>Exp 10</td>
<td>8</td>
<td>Exp 28</td>
<td>10.87</td>
<td>200</td>
<td>1.77</td>
</tr>
<tr>
<td>Exp 11</td>
<td>12</td>
<td>Exp 29</td>
<td>18.12</td>
<td>200</td>
<td>1.77</td>
</tr>
<tr>
<td>Exp 12</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>1.77</td>
</tr>
<tr>
<td>Exp 13</td>
<td>4</td>
<td>Exp 30</td>
<td>5.44</td>
<td>400</td>
<td>2.23</td>
</tr>
<tr>
<td>Exp 14</td>
<td>8</td>
<td>Exp 31</td>
<td>10.87</td>
<td>400</td>
<td>2.23</td>
</tr>
<tr>
<td>Exp 15</td>
<td>12</td>
<td>Exp 32</td>
<td>18.12</td>
<td>400</td>
<td>2.23</td>
</tr>
<tr>
<td>Exp 16</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>2.23</td>
</tr>
<tr>
<td>Exp 17</td>
<td>4</td>
<td>Exp 33</td>
<td>5.44</td>
<td>600</td>
<td>2.55</td>
</tr>
<tr>
<td>Exp 18</td>
<td>8</td>
<td>Exp 34</td>
<td>10.87</td>
<td>600</td>
<td>2.55</td>
</tr>
<tr>
<td>Exp 19</td>
<td>12</td>
<td>Exp 35</td>
<td>18.12</td>
<td>600</td>
<td>2.55</td>
</tr>
<tr>
<td>Exp 20</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>2.55</td>
</tr>
</tbody>
</table>
4514 X. Yin et al.: LES study on turbulent particle deposition

Figure 1. Time evolution of surface shear stress τ with different H_0 values and $z_0 = 0.153$ mm at the grid point $n_x = 198$ and $n_y = 41$ (a-c) for $U = 4$ m s$^{-1}$ and (d-f) for $U = 16$ m s$^{-1}$; the inset plots are the autocorrelation functions of τ.

Figure 2a and b, with the same wind conditions and surface heat fluxes as in Fig. 1c and f, show the time evolution of the instantaneous deposition velocity V_d for particles with a diameter of 1.46 µm. This size is chosen because it is the most sensitive to turbulent diffusion compared to the other four sizes (2.8, 4.8, 9, 16 µm) used in Exp (1–20). As shown, the fluctuating behavior of V_d is consistent with that of τ. Moreover, Fig. 2a shows a substantial difference between $V_{d,\text{LES}}$ and $V_{d,\tau}$, while Fig. 2b shows $V_{d,\tau}$ is similar with $V_{d,\text{LES}}$. This suggests that the ZS14 scheme can more accurately estimate the deposition velocity for weak TI-S but underestimates the deposition velocity for strong TI-S. The reason for this is that in the case of strong TI-S, particle deposition caused by the gusty wind plays an important role as V_d and τ are nonlinearily related, which is not reflected in $V_{d,\tau}$. Since τ fluctuates and sometimes strongly, a bias always exists in conventional particle-deposition schemes, and the magnitude of the bias depends on turbulence intensity. Therefore, in order to estimate particle deposition accurately, we need to first describe and parameterize the shear stress.

As a main predisposing factor for eolian processes, turbulent shear stress has attracted increasing attention in recent years (e.g., Klose et al., 2014; Li et al., 2020; Liu et al., 2018; Rana et al., 2020; Zheng et al., 2020). Similar to previous studies, we use the probability density function (pdf) $p(\tau)$ to characterize the stochastic variable τ. Figure 3 shows that the variability of τ increases as atmospheric instability increases in different wind conditions. The statistic moments of τ, including its mean resultant value τ_r, standard deviation σ_τ, and skewness γ_1 of Exp (1–20) are listed in Table 2. σ_τ and τ_r increase with increased instability, and the distribution is positively skewed. Positive skewness is characterized by the distribution having a longer positive tail as compared with the negative tail, and the distribution appears as a left-leaning (i.e., tends toward low values) curve. This indicates that large negative fluctuations are not as frequent as large positive fluctuations. The data also show that γ_1 generally shows a downward trend as TI-S decreases, which is consistent with Monahan (2006); i.e., as TI-S decreases, $p(\tau)$ becomes increasingly Gaussian.

The parameterization of surface shear stress has attracted intense interest; for example, Klose et al. (2014) reported that τ in unstable conditions is Weibull-distributed based on large-eddy simulations. Shao et al. (2020) found that $p(\tau)$ is skewed to small τ values (i.e., positively skewed) based on field observations. Li et al. (2020) suggested that τ in neutral conditions is Gauss-distributed based on a wind tunnel experiment. Colella and Keith (2003) explained that in turbulent shear flows, the nonlinear interaction between the eddies gives rise to a departure from Gaussian behavior. Our results show that the Gaussian approximation is inadequate in representing the skewed $p(\tau)$, especially for the conditions of strong turbulence intensity (e.g., unstable cases in Fig. 3a). Therefore, $p(\tau)$ here is approximated using a Weibull distribution, i.e.,

$$p(\tau) = \frac{\alpha}{\beta} \left(\frac{\tau}{\beta} \right)^{\alpha-1} \exp \left(-\left(\frac{\tau}{\beta} \right)^{\alpha} \right),$$

where α and β are the shape and scale parameters, respectively. The values of α and β for the numerical experiments

Figure 2. Time evolution of deposition velocity V_d at grid point $n_x = 198$, $n_y = 41$ when $H_0 = 600$ W m$^{-2}$, $z_0 = 0.153$ mm and (a) $U = 4$ m s$^{-1}$ and (b) $U = 16$ m s$^{-1}$. $\text{RE} = \left| \frac{V_{d,LES} - V_{d,exp}}{V_{d,LES}} \right| \times 100\%$ is the relative error between $V_{d,exp}$ and $V_{d,LES}$, and $\sigma_{V_d}/V_{d,LES}$ is the ratio of the standard deviation of simulated instantaneous deposition velocity V_d and mean deposition velocity, $V_{d,LES}$.

Table 2. Statistics of shear stress for numerical experiments Exp (1–20).

<table>
<thead>
<tr>
<th>Name</th>
<th>H_0</th>
<th>U</th>
<th>τ_r</th>
<th>σ_{τ}</th>
<th>σ_{τ}/τ_r</th>
<th>γ_1</th>
<th>α</th>
<th>β</th>
<th>$1/L_o$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp 1</td>
<td>−50 4</td>
<td>0.0156</td>
<td>0.0086</td>
<td>0.554</td>
<td>1.902</td>
<td>2.026</td>
<td>0.011</td>
<td>0.475</td>
<td></td>
</tr>
<tr>
<td>Exp 2</td>
<td>−50 8</td>
<td>0.0295</td>
<td>0.0096</td>
<td>0.327</td>
<td>1.573</td>
<td>3.154</td>
<td>0.023</td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td>Exp 3</td>
<td>−50 12</td>
<td>0.0524</td>
<td>0.0115</td>
<td>0.22</td>
<td>1.029</td>
<td>3.923</td>
<td>0.044</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Exp 4</td>
<td>−50 16</td>
<td>0.1009</td>
<td>0.0158</td>
<td>0.157</td>
<td>0.835</td>
<td>4.819</td>
<td>0.09</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Exp 5</td>
<td>0 4</td>
<td>0.0185</td>
<td>0.0093</td>
<td>0.5</td>
<td>1.896</td>
<td>3.049</td>
<td>0.017</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Exp 6</td>
<td>0 8</td>
<td>0.0604</td>
<td>0.0151</td>
<td>0.25</td>
<td>1.142</td>
<td>5.004</td>
<td>0.023</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Exp 7</td>
<td>0 12</td>
<td>0.1315</td>
<td>0.0266</td>
<td>0.202</td>
<td>0.166</td>
<td>5.383</td>
<td>0.122</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Exp 8</td>
<td>0 16</td>
<td>0.2136</td>
<td>0.038</td>
<td>0.178</td>
<td>0.087</td>
<td>6.191</td>
<td>0.196</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Exp 9</td>
<td>200 4</td>
<td>0.024</td>
<td>0.018</td>
<td>0.75</td>
<td>1.142</td>
<td>1.302</td>
<td>0.03</td>
<td>−0.696</td>
<td></td>
</tr>
<tr>
<td>Exp 10</td>
<td>200 8</td>
<td>0.0812</td>
<td>0.0325</td>
<td>0.4</td>
<td>1.02</td>
<td>3.022</td>
<td>0.076</td>
<td>−0.11</td>
<td></td>
</tr>
<tr>
<td>Exp 11</td>
<td>200 12</td>
<td>0.1676</td>
<td>0.0451</td>
<td>0.269</td>
<td>0.512</td>
<td>4.078</td>
<td>0.156</td>
<td>−0.037</td>
<td></td>
</tr>
<tr>
<td>Exp 12</td>
<td>200 16</td>
<td>0.2848</td>
<td>0.0624</td>
<td>0.219</td>
<td>0.766</td>
<td>5.214</td>
<td>0.259</td>
<td>−0.017</td>
<td></td>
</tr>
<tr>
<td>Exp 13</td>
<td>400 4</td>
<td>0.026</td>
<td>0.0248</td>
<td>0.955</td>
<td>1.127</td>
<td>1.302</td>
<td>0.03</td>
<td>−1.258</td>
<td></td>
</tr>
<tr>
<td>Exp 14</td>
<td>400 8</td>
<td>0.0825</td>
<td>0.0372</td>
<td>0.451</td>
<td>0.646</td>
<td>2.513</td>
<td>0.081</td>
<td>−0.216</td>
<td></td>
</tr>
<tr>
<td>Exp 15</td>
<td>400 12</td>
<td>0.1728</td>
<td>0.0522</td>
<td>0.302</td>
<td>0.677</td>
<td>3.776</td>
<td>0.160</td>
<td>−0.071</td>
<td></td>
</tr>
<tr>
<td>Exp 16</td>
<td>400 16</td>
<td>0.2992</td>
<td>0.0646</td>
<td>0.216</td>
<td>0.289</td>
<td>5.214</td>
<td>0.278</td>
<td>−0.031</td>
<td></td>
</tr>
<tr>
<td>Exp 17</td>
<td>600 4</td>
<td>0.0299</td>
<td>0.0287</td>
<td>0.96</td>
<td>1.083</td>
<td>1.303</td>
<td>0.035</td>
<td>−1.575</td>
<td></td>
</tr>
<tr>
<td>Exp 18</td>
<td>600 8</td>
<td>0.0894</td>
<td>0.0424</td>
<td>0.474</td>
<td>0.715</td>
<td>2.472</td>
<td>0.089</td>
<td>−0.29</td>
<td></td>
</tr>
<tr>
<td>Exp 19</td>
<td>600 12</td>
<td>0.1767</td>
<td>0.0604</td>
<td>0.342</td>
<td>0.614</td>
<td>3.252</td>
<td>0.167</td>
<td>−0.103</td>
<td></td>
</tr>
<tr>
<td>Exp 20</td>
<td>600 16</td>
<td>0.3003</td>
<td>0.0739</td>
<td>0.246</td>
<td>0.511</td>
<td>4.493</td>
<td>0.277</td>
<td>−0.046</td>
<td></td>
</tr>
</tbody>
</table>

Exp (1–20) are listed in Table 2. It can be seen that both α and β depend on wind speed and atmospheric stability. However, β is mainly determined by wind conditions when the wind is strong, while it is affected by ABL stability when the wind is weak. The behavior of α and β is shown in Fig. 4. $|1/L_o|$ is the absolute value of the reciprocal of the Obukhov length L_o, which can be calculated using

$$L_o = -\frac{\overline{\theta u_s^3}}{\kappa g \frac{H_0}{\rho_{\text{exp}}}}.$$ \hspace{1cm} (23)

In both stable and unstable atmospheric conditions, analysis shows that the scale parameter α is related to ABL stability as the power of $|1/L_o|$. Figure 4a shows that α decreases with $|1/L_o|$, satisfying Eq. (24) approximately. For neutral conditions, L_o goes to infinity, and Eq. (24) no longer applies. Therefore, the shape parameter obtained by the fitting was directly used for pdf reproduction for the neutral cases instead of the approximated α used for stable and unstable conditions. As Fig. 4b shows, the β parameter increases almost linearly with $u_{*r}^2 + 0.001 \cdot w_{*g}^2$ but can be best approximated using Eq. (25), with $u_{*r} = \sqrt{\tau_r/\rho_a}$.
Figure 3. Probability density functions derived from WRF-LES/D simulated surface shear stress \(\tau \) (dots) and the corresponding fitted Weibull density functions (solid lines, \(r^2 \) is the coefficients of determination) for different surface heat fluxes and different wind speeds: (a) \(U = 4 \, \text{m/s}^{-1} \), (b) \(U = 8 \, \text{m/s}^{-1} \), (c) \(U = 12 \, \text{m/s}^{-1} \), and (d) \(U = 16 \, \text{m/s}^{-1} \) with \(z_0 = 0.153 \, \text{mm} \).

\[
\alpha = 5.39 \cdot \exp\left(-5.43 \left(\frac{1}{u_0} \right)^{2/3} \right) + 1.42
\]

\[
\beta = 1.058 \cdot (u_{ar}^2 + 0.001 u_*^2)
\]

Using Eqs. (22)–(25), we can approximately describe the turbulent surface shear stress in non-neutral cases.

3.2 Improvement to particle-deposition scheme

Figure 5a shows the performance of WRF-LES/D by comparing the simulated deposition velocity, \(V_d,\text{LES} \), with wind tunnel experiments (Zhang and Shao, 2014) and field observation (Bergametti et al., 2018). The observed data are measured under neutral conditions and similar wind flow. As shown, the simulation results agree well with the observed data. On this basis, by further evaluating the performance of the ZS14 scheme, we found that the accuracy of the ZS14 scheme decreases with increasing instability. For example, Fig. 5b compares the deposition velocities of Exp (5, 9, 17) and Exp (24, 27, 33), \(V_{d,\text{LES}} \), with those calculated by the ZS14 scheme using \(\tau \) from the corresponding experiments, \(V_{d,\tau} \). It shows that under weak wind conditions, \(V_{d,\tau} \) predicts the deposition well under neutral conditions and underestimates the deposition under convective conditions, especially for particles that are not dominated by molecular diffusion and gravity, and the underestimation increases with the atmospheric instability. To predict the deposition velocity more accurately for convective conditions, we need to account for the effect of shear stress fluctuations, i.e., the instantaneous shear stress distribution. Thus, the dry deposition scheme can be improved as

\[
V_{d,\tau} = \int_0^\infty V_d(\tau)p(\tau)d\tau
\]

with \(p(\tau) \) as given by Eqs. (22)–(25). As Fig. 5c shows, the improved scheme results \(V_{d,\tau} \) and the simulation value \(V_{d,\text{LES}} \) show a remarkable congruence.

To make the comparison more clear, the relative errors (REs) of the predicted deposition velocity by the ZS14 scheme and improved scheme are compared with the WRF-LES/D simulation value and are calculated as below:

\[
\text{RE} = \left| \frac{V_{d,\text{LES}} - V_{d,\tau} \text{ (or } V_{d,\tau} \text{)}}{V_{d,\text{LES}}} \right| \times 100\%.
\]

Analysis shows that the value of relative error (RE) depends on surface conditions, wind conditions, atmospheric stabilities, and particle sizes. It increases obviously with increased atmospheric instability under weak wind conditions,
Figure 4. (a) Dependency of the shape parameter α on L_{∞}^{-1} for all numerical experiments Exp (1–35). (b) Dependency of scaling parameter β on $(u_{*}^2 + 0.001w_{*}^2)$ for Exp (1–35).

while it becomes less sensitive to stability when the wind is strong. Through the analysis, we find that the RE of the ZS14 scheme generally increases with the shear stress turbulence intensity, TI-S, and the value depends on particle size, as shown in Fig. 5d (left). Thus, we compared the RE of some different sized particles to investigate the particle in which size range is strongly affected (Fig. A2). The result shows that the RE first increases and then decreases with increasing particle size, and the particles with size normally in the range of 0.01 to 5 µm are strongly affected by turbulent shear stress, and $p(\tau)$ needs to be considered. After modification, the errors are limited to less than 10% or approximately 10%. For example, the relative error of Exp (17; i.e., $U = 4$ m s$^{-1}$ and $H_0 = 600$ W m$^{-2}$) for particles of 1.46 µm is reduced from ~ 25% to ~ 3%. The relative error of Exp (33; i.e., $U = 5.44$ m s$^{-1}$ and $H_0 = 600$ W m$^{-2}$) for particles of 0.5 µm is reduced from ~ 50% to ~ 12%.

To further analyze if the RE of ZS14 in unstable conditions is dominated by kinetic instability or dynamic instability, the Richardson number is calculated. Analysis shows that TI-S is positively correlated to gradient Richardson number Ri (Eq. A1). Under unstable conditions associated with strong vertical motion and weak winds, the RE of ZS14 increases with the increasing magnitude of Richardson number Ri (Fig. A3). The relationship between Ri and TI-S needs further study. Consequently, the results illustrate that the modified scheme $V_{d,r}$ tends to be more accurate than the unmodified scheme $V_{d,n}$.

4 Conclusions

The present study was designed to determine the effect of ABL stability on particle deposition. For this purpose, the WRF-LES/D was used to model atmospheric-boundary-layer turbulence under the presence of atmospheric stability effects to recover statistics of shear stress variability. We then presented an improved particle-deposition scheme with the consideration of turbulent shear stress. While ABLS can broadly represent levels of atmospheric turbulence, its effect on particle deposition is wind-speed-dependent. Through a series of numerical experiments, we have shown the turbulent characteristics of particle-deposition velocity caused by the turbulent wind flow and pointed out the shortcomings of the ZS14 scheme in representing particle deposition under convective conditions. The relative error (RE) increases as the ABL instability increases for low wind conditions; i.e., the RE increases with shear stress turbulence intensity, especially for a certain size range of particles.

Since the dependency of particle deposition on micrometeorology is embedded in the application of the surface shear stress, we believe that the dependency of particle deposition on ABL stability is ultimately attributed to the statistical behavior of shear stress τ. Therefore, in this study, a model including the effects of surface shear fluctuations is proposed and validated by numerical experiments. Additionally, the fluctuations of surface shear caused by turbulence can be approximated with a Weibull distribution. The shape parameter decreases exponentially with the reciprocal of Monin–Obukhov length, and the scale parameter increases linearly with $u_{*}^2 + 0.001w_{*}^2$. After statistically revising the original scheme, an improved model is obtained. Using the modified model, the deposition velocity tends towards numerical experimental results.

The project is the first comprehensive investigation of the turbulent characteristics of particle deposition, and the findings will be of interest to improve the accuracy of particle-
deposition predictions on regional or global scales. One source of weakness in this study is that the variation of τ may be changed by surface roughness and needs further study, as the roughness length does not fully reflect the effect of the surface topography on the turbulence structure. In spite of this limitation, the study adds to our understanding of the influence caused by ABLS on particle deposition.
Appendix A

Figure A1 shows the probability density distribution of surface shear stress for experiments (21–35); Fig. A2 shows the changing of relative error with particle size; Fig. A3 shows the variation of relative error (RE) of the ZS14 scheme (Eq. 10) and improved scheme (Eq. 26) with gradient Richardson number R_i.

$$R_i = -\frac{g}{\bar{\theta}} \kappa \frac{\rho_b}{\rho_a} \frac{H_0}{\rho_a c_p u^3},$$

where z is the center height of the lowest layer, and $\bar{\theta}$ is the potential temperature of the lowest layer.

![Figure A1. Probability distributions of simulated surface shear stress τ (dots) and the corresponding fitted Weibull density distribution (solid lines) with different surface heat flux for different wind conditions: (a) $U = 5.44$ m s$^{-1}$, (b) $U = 10.87$ m s$^{-1}$, and (c) $U = 18.12$ m s$^{-1}$.](https://doi.org/10.5194/acp-22-4509-2022)

![Figure A2. RE changes with particle size under weak wind conditions.](https://doi.org/10.5194/acp-22-4509-2022)
Figure A3. Comparison of relative error as a function of R_i, estimated by ZS14 scheme (circles) and the improved scheme (crosses) for Exp (1–20) (a) and Exp (24, 27, 30, 33) (b).

Code and data availability. The source code used in this study is the WRF-Chem version 3.7 in the LES mode coupled with a new deposition scheme. WRF-LES model can be downloaded at https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html (WRF Users page, 2022). The code of the coupled deposition scheme and data set obtained by the simulation are available online at https://doi.org/10.5281/zenodo.6390432 (Yin et al., 2022).

Author contributions. XY, YP, and JZ were responsible for the formal analysis and methodology. XY and CJ were responsible for the data curation, software, validation, and visualization. YP, JZ, and NH were responsible for the supervision, project administration, and funding acquisition. XY was responsible for investigation and original draft preparation. XY, YP, JZ, and CJ were responsible for the review and editing of the paper.

Competing interests. The contact author has declared that neither they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue statement. This article is part of the special issue “Dust aerosol measurements, modeling and multidisciplinary effects (AMT/ACP inter-journal SI)”. It is not associated with a conference.

Acknowledgements. We thank the Second Tibetan Plateau Scientific Expedition and Research Program (grant no. 2019QZKK020611) the State Key Program of the National Natural Science Foundation of China (grant no. 41931179), the China Scholarship Council (201606180041), the Fundamental Research Funds for the Central Universities (grant no. Izjubky-2020-cd06), and the Major Science and Technology Project of Gansu Province (grant no. 21ZD4FA010).

Financial support. This research has been supported by the Second Tibetan Plateau Scientific Expedition and Research Program (grant no. 2019QZKK020611), the State Key Program of the National Natural Science Foundation of China (grant no. 41931179), the China Scholarship Council (grant no. 201606180041), the Fundamental Research Funds for the Central Universities (grant no. Izjubky-2020-cd06), and the Major Science and Technology Project of Gansu Province (grant no. 21ZD4FA010).

Review statement. This paper was edited by Stelios Kazadzis and reviewed by Gilles Bergametti and one anonymous referee.

References

