

Supplement of

Aerodynamic size-resolved composition and cloud condensation nuclei properties of aerosols in a Beijing suburban region

Chenjie Yu et al.

Correspondence to: Dantong Liu (dantongliu@zju.edu.cn) and James D. Allan (james.allan@manchester.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

28 **S1. The instruments overview**

29

30

Figure S1. Example of a running cycle.

31

32 The size bins with D_a below 90 nm and above 1100 nm is excluded in this study since
 33 it is beyond the detection range of SP2 and AMS. The peak of aerosol concentrations
 34 at the end of each scan is caused by the purge and transition period of the AAC.

35

36 **S2. Calculation of aerosol properties parameters**

37 The particle density of all and non-refractory (NR) particles are calculated through:

38

$$\rho_{\text{all}} = \frac{M_{\text{all}}}{V_{\text{all}}} \quad (1)$$

39

$$\rho_{\text{NR}} = \frac{M_{\text{NR}}}{V_{\text{NR}}} \quad (2)$$

40 Where M_{all} is the mass concentration of all particles from the AMS and SP2 results,
 41 V_{all} is derived through the mass concentration of each measured composition mass
 42 concentration and the material density shown in Table S1. The calculation of ρ_{NR} is

43 similar to the calculation of ρ_{all} , but only NR compositions from AMS are included
 44 here.

45 The particle density of rBCc is derived by:

$$46 \quad \rho_{\text{rBCc}} = \frac{M_{\text{rBCc}}}{V_{\text{rBCc}}} = \frac{\rho_{\text{NR}} \cdot \left(\frac{1}{6} \pi D_{\text{p,rBCc}}^3 - \frac{1}{6} \pi D_{\text{c}}^3 \right) + M_{\text{rBC}}}{\frac{1}{6} \pi D_{\text{p,rBCc}}^3} \quad (3)$$

47 where M_{rBCc} and V_{rBCc} are the mass and volume of the rBCc respectively, the density
 48 of rBCc coating is assumed to be the same as bulk non-refractory particle density. The
 49 rBC core diameter (D_{c}) and total rBCc diameter ($D_{\text{p,rBCc}}$) are derived through the SP2
 50 LEO method.

51 The average single particle mass for all particles and rBCc is calculate by:

$$52 \quad M_{\text{single,all}} = \frac{M_{\text{all}}}{N_{\text{total}}} \quad (4)$$

$$53 \quad M_{\text{single,rBCc}} = \frac{M_{\text{rBCc}}}{N_{\text{rBCc}}} \quad (5)$$

54 Where N_{total} and N_{rBCc} is the number concentration for total CN and rBCc respectively.

55 Then the volume equivalent diameter of all particle is assumed to equal to the mass
 56 equivalent diameter:

$$57 \quad D_{v,\text{all}} = D_{m,\text{all}} = \sqrt[3]{\frac{6M_{\text{single,all}}}{\rho_{\text{all}} \cdot \pi}} \quad (6)$$

58 The shape factor is derived from:

$$59 \quad \chi = \frac{\rho_{\text{p}} D_{\text{v}}^2 C_c(D_{\text{v}})}{D_{\text{a}}^2 C_c(D_{\text{a}})} \quad (7)$$

60 **S3. The size-resolved aerosol composition volume fractions**

61

62 Figure S2 Composition volume fractions under different pollution level

63

64 **S4. The simplified ion pairing scheme**

65 Details about this ion pairing scheme is discussed in Gysel et al(Gysel et al., 2007), the
66 solutions are expressed as below:

67
$$n_{\text{NH}_4\text{NO}_3} = n_{\text{NO}_3^-}$$

68
$$n_{\text{H}_2\text{SO}_4} = \max (0, n_{\text{SO}_4^{2-}} - n_{\text{NH}_4^+} + n_{\text{NO}_3^-})$$

69
$$n_{\text{NH}_4\text{HSO}_4} = \min (2n_{\text{SO}_4^{2-}} - n_{\text{NH}_4^+} + n_{\text{NO}_3^-}, n_{\text{NH}_4^+} - n_{\text{NO}_3^-})$$

70
$$n_{(\text{NH}_4)_2\text{SO}_4} = \max (n_{\text{NH}_4^+} - n_{\text{NO}_3^-} - n_{\text{SO}_4^{2-}}, 0)$$

71
$$n_{\text{HNO}_3} = 0$$

72 where n represents the number of moles for each component.

73

74

75

76

77 **S5. Density and hygroscopicity parameter for each composition**

78

	Density (kg/m ³)	κ
NH ₄ NO ₃	1720	0.67 (Petters and Kreidenweis, 2007)
(NH ₄) ₂ SO ₄	1769	0.61 (Petters and Kreidenweis, 2007)
(NH ₄)HSO ₄	1780	0.65 (Petters and Kreidenweis, 2007)
H ₂ SO ₄	1830	0.90 (Petters and Kreidenweis, 2007)
Organics (Org)	1400	0.29*(O:C ratio) (Chang et al., 2010)
Black Carbon (BC)	1800	0

79

80 Table S1. The material density and hygroscopicity parameter (κ) used for calculation.

81

82 **S6. Mass absorption coefficient calculation**

83 The mass absorption coefficient of rBCc at 880 nm (MAC₈₈₀) and at 550 nm (MAC₅₅₀)
84 is calculated by using the core-shell Mie theory approach(Bohren and Huffman, 2008).
85 The refractive index of coating material is assumed to be $1.5 - 0i$, and the refractive
86 index of rBC core is assumed to be $2.26 - 1.26i$ (Taylor et al., 2020). The coating
87 material of rBCc is assumed to be non-absorbing. Both coated and uncoated cases are
88 calculated to present the absorption enhancement from lensing effect of coatings at
89 different size.

90

91

92

93

94 **S7. Correlation between measured and modelled rBCc activation**

95

96 Figure S3 Correlation between measured and modelled rBCc activation fraction (AF)
97 using Orthogonal Distance Regression (ODR) fitting method.

98

99 **S8. PM₁ frequency distribution**

100

101 Figure S4 Frequency distribution of PM₁ concentrations

102

103 **References**

104

105 Bohren, C. F., and Huffman, D. R.: Absorption and scattering of light by small
106 particles, John Wiley & Sons, 2008.

107 Chang, R. Y. W., Slowik, J. G., Shantz, N. C., Vlasenko, A., Liggio, J., Sjostedt, S. J.,
108 Leaitch, W. R., and Abbatt, J. P. D.: The hygroscopicity parameter (κ) of ambient
109 organic aerosol at a field site subject to biogenic and anthropogenic influences:
110 relationship to degree of aerosol oxidation, *Atmos. Chem. Phys.*, 10, 5047-5064,
111 10.5194/acp-10-5047-2010, 2010.

112 Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M.
113 J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study
114 between chemical composition and hygroscopic growth of aerosol particles during
115 TORCH2, *Atmos. Chem. Phys.*, 7, 6131-6144, 10.5194/acp-7-6131-2007, 2007.

116 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of
117 hygroscopic growth and cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7,
118 1961-1971, 10.5194/acp-7-1961-2007, 2007.

119 Taylor, J. W., Wu, H., Szpek, K., Bower, K., Crawford, I., Flynn, M. J., Williams, P.
120 I., Dorsey, J., Langridge, J. M., Cotterell, M. I., Fox, C., Davies, N. W., Haywood, J.
121 M., and Coe, H.: Absorption closure in highly aged biomass burning smoke, *Atmos.*
122 *Chem. Phys.*, 20, 11201-11221, 10.5194/acp-20-11201-2020, 2020.

123