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Abstract. The COVID-19 lockdown had a large impact on anthropogenic emissions of air pollutants and par-
ticularly on nitrogen dioxide (NO2). While the overall NO2 decline over some large cities is well-established,
understanding the details remains a challenge since multiple source categories contribute. In this study, a new
method of isolation of three components (background NO2, NO2 from urban sources, and NO2 from industrial
point sources) is applied to estimate the impact of the COVID-19 lockdown on each of them. The approach is
based on fitting satellite data by a statistical model with empirical plume dispersion functions driven by a mete-
orological reanalysis. Population density and surface elevation data as well as coordinates of industrial sources
were used in the analysis. The tropospheric NO2 vertical column density (VCD) values measured by the Tro-
pospheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor over 261 urban areas for the
period from 16 March to 15 June 2020 were compared with the average VCD values for the same period in
2018 and 2019. While the background NO2 component remained almost unchanged, the urban NO2 component
declined by −18 % to −28 % over most regions. India, South America, and a part of Europe (particularly, Italy,
France, and Spain) demonstrated a −40 % to −50 % urban emission decline. In contrast, the decline over urban
areas in China, where the lockdown was over during the analysed period, was, on average, only −4.4± 8 %.
Emissions from large industrial sources in the analysed urban areas varied greatly from region to region from
−4.8±6 % for China to−40±10 % for India. Estimated changes in urban emissions are correlated with changes
in Google mobility data (the correlation coefficient is 0.62) confirming that changes in traffic were one of the
key elements in the decline in urban NO2 emissions. No correlation was found between changes in background
NO2 and Google mobility data. On the global scale, the background and urban components were remarkably
stable in 2018, 2019, and 2021, with averages of all analysed areas all being within ±2.5 % and suggesting that
there were no substantial drifts or shifts in TROPOMI data. The 2020 data are clearly an outlier: in 2020, the
mean background component for all analysed areas (without China) was −6.0%± 1.2 % and the mean urban
component was −26.7± 2.6 % or 20σ below the baseline level from the other years.
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1 Introduction

Nitrogen oxides (NOx = NO2+NO) are air pollutants that
originate from various anthropogenic (fuel combustion) and
natural (e.g. biomass burning, lightning) sources and whose
emissions are regulated in many countries. Satellite measure-
ments of one component of NOx , NO2, have a long his-
tory. In the stratosphere, the SAGE (Stratospheric Aerosol
and Gas Experiment) instrument provided NO2 profile infor-
mation through the stratosphere beginning in the mid-1980s
(Cunnold et al., 1991). Satellite observations of tropospheric
NO2 columns are more recent and began with the nadir-
viewing GOME (Global Ozone Monitoring Experiment) in
1996 (Martin et al., 2002) with several successors, chief
among these OMI (Ozone Monitoring Instrument) (Duncan
et al., 2015; Krotkov et al., 2016; Lamsal et al., 2015, 2021;
Levelt et al., 2018) and, most recently, TROPOMI (Tropo-
spheric Monitoring Instrument) (van Geffen et al., 2020;
Veefkind et al., 2012). Collectively these instruments have
been used to better understand NO2 sources, sinks, distribu-
tions, and trends (Beirle et al., 2011, 2019; Liu et al., 2016;
Lorente et al., 2019; Lu et al., 2015; Martin et al., 2002;
McLinden et al., 2012; Stavrakou et al., 2020; Vîrghileanu
et al., 2020) .

One primary NO2 characteristic provided by satellites is
tropospheric vertical column density (VCD), a geophysical
quantity representing the total number of molecules or total
mass per unit of area in the troposphere. The main features
of the tropospheric NO2 VCD distribution are well estab-
lished. Due to its relatively short lifetime, a few hours within
a plume during the day, NO2 is elevated near sources such
as urban areas (Beirle et al., 2019; Lorente et al., 2019; Lu
et al., 2015) and industrial locations such as power plants
and oil refineries (Liu et al., 2016; McLinden et al., 2012).
Over high mountains, NO2 VCDs are relatively small as the
troposphere there is “thinner” with fewer emission sources.
Ship tracks and major highways also create elevated NO2
values on satellite maps (Beirle et al., 2004; Georgoulias et
al., 2020; Liu et al., 2020a; Richter et al., 2004).

The COVID-19 lockdown had an impact on tropospheric
NO2 levels, first in China and then worldwide (Bao and
Zhang, 2020; Bauwens et al., 2020; Ding et al., 2020;
Gkatzelis et al., 2021; Kanniah et al., 2020; Keller et
al., 2021; Koukouli et al., 2021; Liu et al., 2020a; Vadrevu
et al., 2020; Vîrghileanu et al., 2020; Zhang et al., 2021).
It was demonstrated that NO2 surface concentrations and
VCDs significantly declined in the US and Canada after mid-
March 2020 (Bauwens et al., 2020; Goldberg et al., 2020;
Griffin et al., 2020). A decline of about −20 % to −25 %
was observed in the US megacities as well as over some ru-
ral areas. A decline was also reported over Europe (e.g. Bar
et al., 2021; Barré et al., 2021), India (Misra et al., 2021;
Hassan et al., 2021), Pakistan (Ali et al., 2021; Mehmood et
al., 2021), Brazil (Dantas et al., 2020; Siciliano et al., 2020),
and other parts of the world (Ass et al., 2020; Aydın et

al., 2020; Fu et al., 2020) as also discussed in overview pa-
pers (Gkatzelis et al., 2021; Levelt et al., 2021).

The impact of the lockdown on tropospheric NO2 VCD
from satellite data was often estimated by comparing mean or
median values over a certain area for the periods before and
after the lockdown (e.g. Qu, et al., 2021; Barré et al., 2021;
Mehmood et al., 2021; Hassan et al., 2021; see also on-
line tool https://so2.gsfc.nasa.gov/no2/no2_index.html (last
access: 18 December 2021) or as the values weighted accord-
ing to the population density (Sannigrahi et al., 2021). This
makes the results dependent on the area analysed and sensi-
tive to the wind speed (Goldberg et al., 2020). There is also
free-tropospheric NO2 that could mask the lockdown-related
changes in anthropogenic emissions (Silvern et al., 2019).
Moreover, meteorological variability was also a contributing
factor to the differences (e.g. Barré et al., 2021; Griffin et
al., 2020), although some studies found that its impact may
not be very large (Bar et al., 2021).

An alternative approach is based on an estimation of NO2
emissions using satellite data and then comparing the emis-
sion estimates before and after the lockdown started (Lange
et al., 2022). There are several methods to estimate the
emissions (Streets et al., 2013). Methods such as inverse
modelling (Konovalov et al., 2006; Mijling and van der A,
2012) and, more recently, flux divergence (Beirle et al., 2019,
2021) are used for such a purpose. One common technique
is based on a rotation of satellite NO2 pixels around the
source so the NO2 data would appear if the wind is from
one common direction, allowing many overpasses to be com-
bined. These rotated data are then integrated in the cross-
wind direction, and then the results are fitted with an ex-
ponentially modified Gaussian (EMG) function (Lange et
al., 2022; Pommier et al., 2013). The two unknown parame-
ters, the emission strength and lifetime are estimated directly
from the fit in one-dimensional space. The method works
well for isolated stationary point sources and with steady
winds (Beirle et al., 2021) but may not work in the areas
where emissions from closely located multiple sources are
mixed with urban emissions. Another approach employs a
two-dimensional EMG plume function of the wind speed
(Dammers et al., 2019; Fioletov et al., 2015; McLinden et
al., 2020). The plume function depends on three parameters:
the plume width, lifetime, and emission strengths. While all
three parameters can be estimated from the fit, the algorithm
works better if the plume width and lifetime are estimated in
advance and then prescribed in the fit to estimate the emis-
sion strength. This algorithm was further improved to ac-
count for multiple sources or areas (Fioletov et al., 2017).

A different approach was used in this study. A statistical
model was used to describe the TROPOMI NO2 data over
3◦×4◦ areas (roughly, 330km×330km at 42◦ N) around ma-
jor cities and isolate three components related to (1) plumes
from urban sources, (2) plumes from industrial point sources,
and (3) background NO2. The parameters of the statistical
model link the satellite NO2 values to proxies related to ele-
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vation and population density as well as to locations of large
industrial point sources. Then the three components in 2020
were compared to their values in 2018–2019 to study the
COVID-19 lockdown impact. The parameters have simple
physical interpretation such as point source or area emission
rates and the background NO2 distribution. As the model
only has a few parameters and their estimates are based on
several hundreds of TROPOMI pixels in each area, statistical
uncertainties of the parameter estimates are very small. The
variability of urban, industrial, and background NO2 com-
ponents due to meteorological or observational conditions
was studied by comparing the estimates of the three com-
ponents for 2018, 2019, and 2021 that were not affected by
lockdowns.

This algorithm is based on a multi-source plume disper-
sion function fitting approach developed for sulfur dioxide
(SO2) point and area sources (Fioletov et al., 2017; McLin-
den et al., 2020). It assumes that each source produces a
plume that depends on unknown emission strength and these
emission strengths are derived from the best fit to the satellite
data. The algorithm was adapted for NO2 where emissions
from urban areas, which tend to be dominated by residential
and mobile emission sources, were often a major source sec-
tor. Since the approach is based on statistical methods it was
necessary to have a sufficiently long data set to reduce the
impact of natural factors such as meteorology that can cause
NO2 VCD differences of ∼ 15 % over monthly timescales
(Goldberg et al., 2020; Levelt et al., 2021). We use 3-month
periods, with the averages for the period from 16 March to
15 June 2020, compared to those in 2018 and 2019 for the
3◦×4◦ areas around 261 major cities worldwide. As the study
is focused on relative NO2 changes due to the lockdown,
possible systematic errors related to the TROPOMI retrievals
(Verhoelst et al., 2021) and the algorithm fitting parameters
(Fioletov et al., 2016) play a much smaller role than in the
case of absolute emission estimates.

This paper is organized as follows: Sect. 2 describes vari-
ous data sets used in the study; the analysis algorithm is dis-
cussed in Sect. 3. In Sect. 4, the COVID-19 lockdown impact
is studied. The USA and Canada are analysed in detail to il-
lustrate the method, then statistics for Europe are provided,
and finally results for the entire world are presented. Discus-
sion and conclusions are given in Sect. 5. The algorithm is
described in Appendix A. Additional technical information
and statistics are given in the Supplement.

2 Data sets

2.1 TROPOMI NO2 VCD data

TROPOMI, onboard the European Space Agency (ESA)
and EU Copernicus Sentinel-5 Precursor (S5p) satel-
lite, was launched on 13 October 2017 (van Geffen et
al., 2020; Veefkind et al., 2012). The satellite follows a Sun-
synchronous, low-Earth (825 km) orbit with a daily Equator

crossing time of approximately 13:30 local solar time (van
Geffen et al., 2019). At nadir, TROPOMI pixel sizes were
3.5km×7km at the beginning of operation and were reduced
to 3.5km× 5.6km on 6 August 2019, and the swath width
is 2600 km. TROPOMI NO2 VCD values represent the to-
tal number of molecules or total mass per unit area below
the tropopause and are often given in molecules or moles
(1 mole is equal to 6.022× 1023 molecules) per square me-
tre or centimetre as well as in Dobson units (DU, 1 DU=
2.69× 1016 molec. cm−2). In this study, level-2 TROPOMI
data available from the Copernicus open-data access hub
(https://s5phub.copernicus.eu, last access: 5 August 2021)
were used. The reprocessed (RPRO) data version V1.2.2
was used for 2018, and offline-mode (OFFL) data of ver-
sion V1.2.2 to version V1.3.2 were used for 2019–2020. The
difference between these two versions is relatively minor,
and therefore the combination is suitable to analyse NO2
changes during the period studied in this paper. The 2021
data (V1.4.0) were used only to estimate the interannual vari-
ability. The standard TROPOMI product, tropospheric verti-
cal columns, based on air mass factors (AMFs) calculated
using the vertical profile of NO2 from the TM5-MP model
at 1◦× 1◦ resolution (Williams et al., 2017) was used. In the
analysis, we use only data for which the quality assurance
value is higher than 0.75 (van Geffen et al., 2018). Also,
satellite pixels with snow on the ground, a solar zenith an-
gle greater than 75◦ and with a cloud radiance fraction above
0.3 were excluded from the analysis.

The specified random uncertainty of a single
TROPOMI tropospheric NO2 VCD measurement is
7× 1014 molec. cm−2 (or 0.026 DU) (ESA EOP-GMQ,
2017). Tack et al. (2021) estimated this uncertainty and
found it to be 5.6± 0.4× 1014 molec. cm−2. There is some
evidence that TROPOMI NO2 is biased low by 14 %–40 %
over polluted areas due to a limited spatial resolution of
the model used to calculate the AMFs (Judd et al., 2020;
Verhoelst et al., 2021; Zhao et al., 2020). This bias can
be reduced by recalculation of AMFs with higher spatial
resolution (Griffin et al., 2020; Ialongo et al., 2020; Zhao et
al., 2020; Tack et al., 2021). In addition, the cloud pressures
derived from the TROPOMI data have a positive bias in
versions 1.2.x and 1.3.x, which has an impact on the NO2
tropospheric column retrieved (van Geffen et al., 2021).
Both effects (biases) are expected to scale roughly linearly
with the column amount (van Geffen et al., 2021), consistent
with the validation results (Verhoelst et al., 2021). Therefore,
the relative differences between 2018–2019 and 2020 data
studied here should not be affected by these effects.

The TROPOMI NO2 distribution over the US and south-
ern Canada is shown in Fig. 1. The data are stratified by
the wind speed to highlight some of the features of the NO2
VCD distribution. NO2 values are elevated over highly pop-
ulated areas, as is particularly evident from the maps for low
wind speed where the NO2 remains close to the source before
chemical or physical removal. Figure 1 also illustrates the
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fact that TROPOMI NO2 values over megacities are higher
under calm winds and lower under high winds (e.g. Goldberg
et al., 2020). Elevated NO2 values are also observed over
power plants and mining operations (Goldberg et al., 2021).
The NO2 VCD distribution also depends on local topography
(Kim et al., 2021). For example, smaller values over elevated
areas such as the Rocky Mountains and Appalachians and
higher values over valleys such the California Central Val-
ley are evident from the map. There is also some background
NO2 that can be seen even over remote areas with no major
anthropogenic sources: NO2 VCDs are not negligible (about
5×1014 cm−2) over vast remote areas such as national forests
in Montana or Algonquin Provincial Park in Ontario as well
as over the oceans.

As TROPOMI has only one daily overpass at most loca-
tions, diurnal NO2 variations may affect emission estimates.
Measurements from the ground demonstrate that, unlike sur-
face concentrations, the diurnal variations in NO2 VCDs are
relatively small, particularly in spring (Herman et al., 2009;
Chong et al., 2018). However, since nighttime NO2 informa-
tion is not available from satellite, we should say that all the
results presented here are limited to daytime emissions only.

2.2 Wind data

As in several previous studies (Fioletov et al., 2015; McLin-
den et al., 2020; Zoogman et al., 2016) the plume dispersion
function (discussed below in Sect. 3) is based on the wind
speed and direction obtained from the meteorological reanal-
ysis. For each satellite pixel, wind speed and direction were
calculated based on European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5 reanalysis data (C3S,
2017; Dee et al., 2011), which were merged with TROPOMI
measurements. The wind profile data have 1 h temporal res-
olution and are available on a 0.25◦ horizontal grid. U and V
(west–east and south–north respectively) wind-speed com-
ponents were then linearly interpolated to the location of the
centre of each TROPOMI pixel and to overpass time. The
ERA5 wind components at 1000, 950, and 900 hPa were av-
eraged to obtain the wind value used (that approximately cor-
responds to the mean winds between 0 and 1 km). This inter-
val was comparable to the wind data used in other similar
studies: Beirle et al. (2019) used data at 450 m, while Lange
et al. (2022) used data from 100 m. The results are not very
sensitive to the wind profile within this range as was previ-
ously investigated by Beirle et al. (2011) because the bound-
ary layer wind is relatively constant, except close to the sur-
face. Note that in ERA5 reanalysis in pressure coordinates,
when the surface pressure is smaller than that at a given level
(e.g. 1000 hPa), the values will simply duplicate the winds at
the lowest pressure available.

2.3 Population density data

The Gridded Population of the World (GPW) data set
(SEDAC, 2017) was used as a proxy for the urban com-
ponent. GPW data are on a 0.042◦ (2.5 arcmin) grid and
consist of estimates of human population density (number
of persons per square kilometre) based on counts consistent
with national censuses and population registers. When lower-
resolution data were required, they were obtained by aver-
aging the original data within the new grid cells. Informa-
tion about large city location and population that was used
to select cities for the analysis was obtained from the World
Cities Database available from https://simplemaps.com/data/
world-cities (last access: 10 May 2021).

2.4 Industrial point source locations

The algorithm of this study requires the coordinates of indus-
trial point sources as an input. In addition, emission data from
the US and Canada are used to verify the emissions estimated
from TROPOMI data. For the US, 2018–2020 point source
NOx emissions from the U.S. Environmental Protection
Agency (EPA) National Emissions Inventory (NEI) (EPA,
2020) based on a continuous emission monitoring system
(CEMS) are used. Note that the CEMS database is based on
real emission measurements reported with 1 h resolution that
were then averaged over the analysed period. This database
includes most of the sources, including all large power plants.
For sources that are not available from CEMS (e.g. oil re-
fineries), emissions from the eGRID database (https://www.
epa.gov/egrid/download-data, last access: 5 August 2021)
for 2018 and 2019 were used. They are reported as annual
emission estimates, and we assume that the emission rates
are the same throughout the year. This database includes
emissions from oil refineries and cement factories that are
often not available from CEMS. Finally, US airport emis-
sions are obtained from the 2017 NEI version released in Jan-
uary 2021 (https://www.epa.gov/air-emissions-inventories/
2017-national-emissions-inventory-nei-data, last access: 5
August 2021). For Canada, annual emissions from the Cana-
dian National Pollutant Release Inventory (NPRI, 2020) are
used. Only Canadian and US sources with annual emissions
greater than 0.5 kt yr−1 of NOx were selected and used in this
study.

Coordinates of the European industrial point sources
were obtained from the European Pollutant Release and
Transfer Register (https://ec.europa.eu/environment/
industry/stationary/eper/legislation.htm, last access:
5 August 2021) for 2007–2017 (last access: 2 March
2021), and those that emitted more than 0.5 kt yr−1 of
NOx are included in the analysis. The world power
plant database (https://globalenergymonitor.org/projects/
global-coal-plant-tracker/, last access: 5 August 2021)
was used to find locations of power plants for the global
analysis. Missing sources were added based on the analysis
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Figure 1. Mean TROPOMI NO2 VCDs over the US and southern Canada for 16 March–15 June, in (a, b) 2018–2019 and (c, d) 2020.
The main features of the NO2 distribution such as elevated NO2 values over large cities, industrial sources, and in the valleys such as the
California Central Valley (1) and lower values over the mountains such as the Appalachians (2) are evident from the plot. Note that NO2
VCDs are not negligible (about 5×1014 cm−2) even over vast remote areas such as national forests in Montana (3) or Algonquin Provincial
Park in Ontario (4) as well as the oceans. The maps are based on level-2 data gridded on a 0.1◦× 0.1◦ grid grouped by the wind speed:
(a, c) less than 10 km h−1 and (b, d) more than 10 km h−1.

of the NO2 residuals maps (see Sect. 3) and then con-
firmed using satellite imaginary as was previously done
in other studies (e.g. McLinden et al., 2016; Fioletov et
al., 2016; Dammers et al., 2019; Beirle et al., 2021). Satellite
images from Google (https://www.google.com/maps,
last access: 5 August 2021), Microsoft Bing
(https://www.bing.com/maps, last access: 5 August 2021),
and Sentinel 2 (https://apps.sentinel-hub.com/eo-browser/,
last access: 5 August 2021) maps were used for this purpose.
Multiple image sources were used since some of the images
from Google maps are not always up to date and may not
show recently built factories.

2.5 Elevation data

Elevation data were one of the proxies used in the statisti-
cal model. Elevation data used in this study are from the 2-
Minute Gridded Global Relief Data (ETOPO2v2) database

(NOAA, 2006). When lower-resolution data were required,
they were obtained by averaging the original data within the
new grid cells.

2.6 Google mobility data and analysed period

The lockdown periods due to the COVID restrictions varied
from country to country, but in most countries, they started
in the second half of March 2020. In the analysed Canadian
cities, the lockdown started between 12 and 17 March. In the
US, it started between 18–19 March (Atlanta, Los Angeles)
and 2 April (Houston). In Europe, the lockdown started as
early as on 8 March (Milan), but for most of the cities the
lockdown was introduced after 14 March. The second half of
March is also the time when the lockdown measures started
in many other cities around the world including Auckland,
Baghdad, Buenos Aires, Johannesburg, Lagos, Manila, New
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Delhi, Sydney, and many others (Levelt et al., 2021, their
Appendix B).

It is more difficult to determine the time of return to normal
activities because the restrictions were often lifted in phases.
For example, in the US, a “stay at home” order was lifted be-
tween 30 April (Texas) and 11 June (New Hampshire). More-
over, there was no formal lockdown in some countries (Be-
larus, Japan, South Korea, Sweden, Taiwan), but a decline in
public activities can be seen even in these countries as well.
For example, there was an up to 40 % decline in road trans-
port emissions in Sweden even in the absence of any formal
lockdowns (Guevara et al., 2021). For this reason, we use
mobility data as a proxy instead of the lockdown dates to se-
lect the analysed period.

The Google Community Mobility Report data (avail-
able from https://www.google.com/covid19/mobility/, last
access: 1 March 2021) were used to determine a common
time period for our analysis. These data represent the changes
in the number of people at locations of various types com-
pared to a baseline level. A baseline day represents a nor-
mal value for that day of the week. The baseline day is the
median value from the 5-week period 3 January–6 February
2020. These mobility data can be used as a proxy for urban
traffic (e.g. Guevara et al., 2021) and are known to be corre-
lated with urban NOx emissions (Venter et al., 2020; Bar et
al., 2021; Misra et al., 2021). In this study, they were com-
pared to urban and background NO2 levels in different coun-
tries. The mobility data are available for several categories.
Results for mobility for “retail and recreation” presented as
this category demonstrated the highest correlation with es-
timated urban emissions. The retail and recreation category
covers visits to restaurants, cafes, shopping centres, theme
parks, museums, libraries, movie theatres, and similar loca-
tions. We will refer to this category as the “Google mobility
data” for brevity.

Figure 2 shows changes in Google mobility data (available
as deviations relative to the baseline period) for the regions
analysed in this study (see Sect. 4). During the 3-month-long
period from 16 March to 15 June 2020, the mobility data
were below the baseline level in all analysed regions. Note
that for China, Google mobility data are not available. In
China, the lockdown occurred earlier (in February), except
for Wuhan, where the lockdown was lifted only on 8 April.
Note that there was no formal lockdown in the Japan, South
Korea, and Taiwan region, although we still see some decline
in mobility data there.

3 The fitting algorithms

The technique used here is a further development of a point
source emission estimation algorithm (Fioletov et al., 2015,
2016; McLinden et al., 2016; Dammers et al., 2019) that
was later expanded to estimate multi-source and area-source
emissions (Fioletov et al., 2017; McLinden et al., 2020). This

Figure 2. Changes in weekly Google mobility data (for “retail and
recreation” category) relative to the baseline period (3 January–
6 February 2020) for 12 regions analysed in this study. The black
vertical lines represent the beginning and the end of the period anal-
ysed in this study (16 March–15 June).

section provides only a general description of the method.
The calculation formulas are given in Appendix A. The ap-
proach used in this study is based on a linear regression
model. All satellite measurements over a certain area dur-
ing a certain period are linked to locations of industrial point
sources as well as to population density and elevation-related
proxies by a few parameters that characterize these links.
Thus, information from thousands of satellite measurements
is compressed into a handful of parameters and therefore
their estimates can have very low statistical uncertainties.
Then, satellite measurements can be reconstructed using the
regression model, and the contribution of three terms of the
model (industrial, urban, and background) can be studied.
Such a model may not be very accurate in “predicting” val-
ues of individual satellite pixels, but we will show that it per-
forms well when it is used to describe a 3-month mean NO2
VCD distribution over the analysed areas.

The method is adapted from the previously designed al-
gorithm for multi-sources SO2 emission estimates (Fioletov
et al., 2017) where the emissions are determined from the
best fit of satellite observation by a set of plume functions
(one per source) scaled by parameters of estimation repre-
senting the emission strength. Unlike SO2, where emissions
are mostly generated by point sources, NO2 emissions also
originate from area sources such as large cities. As shown in
Fig. 1, landscape also has a major impact on the NO2 distri-
bution. To accommodate these features, the statistical model
was modified to

TROPOMI NO2 = α0+ (β0+β1 (θ − θ0)+β2 (ϕ−ϕ0))
· exp(−H/H0)+αp�p+6αi�i + ε , (1)

where α0, αp, αi , β0, β1, and β2 are the unknown regression
parameters representing population-density-related proxies
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and emissions from individual point sources and a back-
ground with a contribution from the elevation; �p is the
source plume function for the population-density-related dis-
tributed source (or area source);�i is the source plume func-
tions for industrial point sources; H is the elevation above
sea level, and the empirical scaling factor H0 = 1.0 km was
introduced to make the exponential argument dimensionless
and to account for altitudinal dependence better; and ε is the
residual noise.

Equation (1) is a linear regression statistical model
with unknown coefficient sets α and β. There are three
main components in the model: the background term,
α0+(β0+β1(θ − θ0)+β2(ϕ−ϕ0))·exp(−H/H0), related to
background and elevation (four fitted coefficients); the ur-
ban component term, αp�p, related to the population density
(one coefficient); and the industrial term, 6αi�i , which rep-
resents the contribution from industrial point sources (vari-
able number of coefficients from zero to a few dozen). We
will refer to them as background, urban, and industrial com-
ponents.

The fitting was done for all satellite pixels centred within
3◦× 4◦ areas around large cities and collected during a 3-
month period by minimization of the squares of the residuals
(ε). The size of the area is based on the following considera-
tions: the larger the area the less accurate assumptions about
a linear gradient of background NO2 and constant emissions
per capita are. The algorithm is based on fitting plumes. For
typical plume characteristics (discussed below), the size of
fitting area should be long, in the order of 100 km, to have
enough data for the fit. Finally, the area should be large
enough to avoid a correlation between the elevation and pop-
ulation density proxies.

As in Fioletov et al. (2017), the plume from an in-
dustrial point source i is described by a plume function
�(θ,ϕ,ω,s,θi,ϕi) where θ and ϕ are the satellite pixel co-
ordinates; ω and s are the wind direction and speed for that
pixel; and θi and ϕi are the source coordinates. An unknown
parameter (αi) represents the total NO2 mass emitted from
the source i. The emission rate for source i can be expressed
as Ei = αi/τ , where τ is a prescribed NO2 lifetime (or, more
accurately, decay time, but we use the term “lifetime” be-
cause it is more common). Note that τ is different from the
chemical lifetime (de Foy et al., 2015). Once the emission
rate is established, it can be used to reconstruct how the dis-
tribution of NO2 emitted by that source would be seen by a
satellite, i.e. to estimate the industrial component in satellite
data. We expressed emission rates in kilotonnes per year in
this study to make it easier to compare with the rates avail-
able from emission inventories. However, all emission calcu-
lations here are done for a 3-month period (from 16 March
to 15 June).

The plume functions � are EMG functions that are com-
monly used to approximate plumes of VCDs of trace gases
such as NO2, SO2, and ammonia (Beirle et al., 2011, 2014;
Dammers et al., 2019; Fioletov et al., 2017, 2015; de Foy et

al., 2015; Liu et al., 2016; McLinden et al., 2020). Similar in
concept to a Gaussian plume function, they also take into ac-
count the finite physical size of the source and the spatial res-
olution of the satellite instrument being utilized. The lifetime
τ reflects the rate at which NO2 is removed from the plume
due to chemical conversion or physical removal such as de-
position; it depends on several factors such as season and
NO2 concentration. It is about 2–6 h in summer and longer in
winter (de Foy et al., 2014; Liu et al., 2016). Moreover, for
some sources, the lifetime may change over time (Laughner
and Cohen, 2019) as NO2 concentration declines, although
other studies suggest that such changes are minor (Stavrakou
et al., 2020). Recent TROPOMI-based estimates show that a
typical lifetime in urban areas is between 2 and 5 h in spring
and autumn with shorter lifetimes at low latitudes (Lange et
al., 2022). While the lifetime has a large impact on the emis-
sion estimates, relative changes are less sensitive to it. In ad-
dition to τ , the shape of the EMG function depends on the
prescribed plume width (w), which depends on the size of the
source and the size of satellite pixel. The value of w = 8 km
for plume width was used in this study for TROPOMI along
with a constant value of τ = 3.3 h. These values are based on
a sensitivity study where TROPOMI data over Canada and
the US were fitted by plume functions with various combi-
nations of w and τ . The switch from 7 to 5.6 km along-track
resolution in 2019 might have some impact on the optimal
plume width, but the sensitivity analysis shows that small
changes in w only have a minor impact on the results. We
estimated that, for the urban component, on average, a 1 h
deviation from the τ value used (3.33 h) or a 2 km variation
in w changes the differences between 2020 and 2018–2019
values only by about 1 %.

Unlike many previous studies (Beirle et al., 2011; Fi-
oletov et al., 2016; Lange et al., 2022) where the back-
ground offset was presumed to be constant and esti-
mated from, for example, upwind NO2 data, we included
a special term that is responsible for it. In Eq. (1), the
α0+ (β0+β1(θ − θ0)+β2(ϕ−ϕ0)) · exp(−H/H0) term is
assumed to be declining exponentially with elevation; i.e.
within the analysed 3◦× 4◦ area, the higher the elevation is
the lower the background tropospheric NO2 VCD is. It was
also assumed that this contribution from elevation depends
on geographical coordinates only and not on the winds. Even
in the absence of any sources, there could be some gradi-
ent in tropospheric NO2 over the analysed area, as for ex-
ample over some regions in northern Canada or along the
east coast of the US (Fig. 1). To account for such gradi-
ents, the linear term β1(θ − θ0)+β2(ϕ−ϕ0), where θ0 and
ϕ0 are the coordinates of the centre of the analysed area, was
added. In other words, it was assumed that there is a linear
gradient of background NO2 within the analysed area and
NO2 VCD declines exponentially with height over elevated
regions. Finally, α0 was added to the model to account for
remaining free-tropospheric NO2 at high elevations where
exp(−H/H0) is very close to 0. Its presence gives a better
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agreement of the fitting results with the satellite data for ar-
eas with a high range of elevations. Since this term is part
of the statistical model, all parameters α0, β0, β1, and β2 are
estimated from the fitting. Once they are estimated, the term
can be calculated for any place within the analysed 3◦× 4◦

area that gives a “background” value for that location that de-
pends on the coordinates and elevation only. For simplicity,
we will refer to the term discussed in this paragraph as the
background component.

Finally, the ap�p term represents the emission contribu-
tion from factors related to urban activity. Such emissions
can be estimated by establishing a regular grid and then esti-
mating emissions for each grid point as was previously done
for SO2 (Fioletov et al., 2017; McLinden et al., 2020). If,
for example, we use a 0.2◦× 0.2◦ grid (i.e. 336 (16× 21)
grid cells) within the analysed 3◦×4◦ area, this would mean
that we need to add 336 unknown coefficients to Eq. (1). It
would make the coefficient estimates less robust and prevent
us from estimating emissions from individual industrial point
sources because their plume functions would be highly corre-
lated with the plume functions of the neighbouring grid cells.
Instead, we assumed that emissions from each grid cell are
proportional to the cell population and the coefficient of pro-
portionality is the same for the entire analysed 3◦× 4◦ area.
Thus, we just need to estimate one coefficient (αp), which
is proportional annual emissions per capita. This makes the
statistical uncertainty of such a coefficient very small. In fact,
for most analysed areas, the uncertainty was at least 10 times
less that the coefficient itself. The composite plume func-
tion �p is a sum of plume functions of all individual cell
centres multiplied by the grid cell population. Thus, �p de-
pends on geographical coordinates, population density, and
local winds. The original population density data were con-
verted to a 0.2◦× 0.2◦ grid by averaging population density
data within each grid cell. Smaller grids such as 0.1◦× 0.1◦

were also considered, but it was found that the reduction of
the grid size does not change the results, while it increases
the computation time.

The downside of this approach is that the estimates would
produce mean emissions per capita for a rather large area.
This may not be very representative if there are cities with
different economical conditions within the analysed area as,
for example, at the border of North and South Korea. Such
cases are easily identifiable from the maps of the fitting resid-
uals: such cities would appear as areas of large positive and
negative anomalies. We did find several such cases and man-
ually adjusted the area to include only one highly populated
area.

The proxy plume functions used in the model preferably
should be uncorrelated because otherwise the coefficients
have correlated errors making their interpretation difficult.
For a typical urban area, the plume functions related to ur-
ban activity and to industrial sources are expected to be in-
dependent: high population density zones typically occupy
a small part of the area and industrial sources are typically

located away from such highly populated zones. Note that
the NO2 lifetime is relatively short and the median wind
speed in, for example, the eastern US is about 10 km h−1, so
sources located 30–40 km apart typically have uncorrelated
plume functions.

A high correlation between the population and landscape-
related proxies is possible if a city is in a valley surrounded
by mountains. The correlation could be reduced by increas-
ing the size of the analysed area, but if the area is too large,
the assumption that the background level has a linear gradient
in the area may not be valid. Therefore, we limited the area
to 3◦× 4◦. The correlation coefficients between the site ele-
vation and population density for 3◦× 4◦ areas are typically
small. For example, in the US, correlations are positive over
Florida (about 0.2), with the population density higher in the
inland area, and negative in the Portland–Seattle–Vancouver
area (about −0.35), where it is higher near the ocean and
lower in the mountains. As the plume functions of individual
industrial sources are very local (∼ 50 km footprint), they do
not correlate with the elevation. With such low correlation
coefficients, elevation does not affect estimates of other pa-
rameters of the regression model.

When industrial point sources are located in close proxim-
ity, their plume functions in the statistical model (Eq. 1) are
highly correlated. In practice, it often appears if, for exam-
ple, estimated emissions from one source are unrealistically
high, while emissions from the other nearby source are low
or even negative. In such cases, emissions from individual
industrial sources often cannot be estimated. However, the
sources can be grouped into independent clusters and total
emissions from such clusters can be estimated. Such group-
ing could be done manually on a case-by-case basis, but it
would be subjective and very time consuming. Instead, we
applied an algorithm based on factor analysis. We would like
to emphasize that the factor analysis, described in the next
two paragraphs, was used to improve emission estimation for
individual sources or clusters of sources. It is not required if
only total emissions from all point sources in the area are es-
timated in order to separate them from urban emissions or if
all industrial sources are isolated remote sources.

To group industrial sources into clusters, an orthogonal-
ization process was applied to the plume functions of indi-
vidual industrial sources. First, the correlation matrix for the
plume functions of individual point sources (�i) was cal-
culated and eigenvalues and eigenvectors (or “factors”) of
the correlation matrix were determined. The correlation ma-
trix was calculated just once using 16 March–15 June data
from all 3 years. An isolated remote source would appear
as an eigenvector with an eigenvalue of 1. Two (or more)
sources that are closely located, but isolated from the other
sources, have one corresponding eigenvector and an eigen-
value of 2 (or more). Eigenvalues lower than 1 mean that the
corresponding sources are already partially included in other
eigenvectors. To reduce the number of factors, only factors
with eigenvalues> 0.6 were kept.
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The approach based on eigenvalues of the correlation ma-
trix creates proxies that are not correlated and reduces the
number of the fitting coefficients. While they correctly de-
scribe the total contribution of all industrial sources in the
area in the total NO2 variability (or total emissions), indi-
vidual eigenvectors, i.e. linear combinations of the original
plume functions, may not have a clear interpretation. For ex-
ample, they may include the original plume functions with
negative coefficients. In order to avoid that and obtain prox-
ies that have a meaningful interpretation, the eigenvectors
were linearly transformed, so they became as close to the
original plume functions as possible, while the correlation
coefficients between them remained low. This was done us-
ing the varimax factor analysis method that is implemented
in modern statistical software packages such as R and SAS
(Belhekar, 2013). It orthogonally rotates the established fac-
tors to maximize the sum of squared correlations between the
original variables and factors. Then, the algorithm uses a lin-
ear combination of the original variables that have the high-
est correlations with the rotated factors, i.e., the condition of
orthogonality is removed in order to find the simplest linear
combination of the original variables. In practice, the algo-
rithm produces a set of “clusters”, i.e. linear combinations
of the original plume functions that have low correlation co-
efficients (typically less than 0.2) between them, and each
cluster has high correlation coefficient (typically more than
0.95) with one orthogonal factor. To simplify this further, if a
linear combination has a weight for an original variable un-
der 0.2, its weight was set to 0. As a result, all non-isolated
point sources were grouped into small clusters, and emission
estimates were done for such clusters instead of individual
sources, while each isolated remote source forms a single-
source cluster that corresponds to only that source. It is pos-
sible that a single source contributes to more than one clus-
ter, which makes interpretation of emissions for such clusters
more difficult, but such cases are rare.

As in any regression-analysis-based study, correlation be-
tween the proxies is one of the main obstacles in the result
interpretation. The “orthogonalization” of plume functions
from industrial sources greatly reduces cross-correlations be-
tween the proxies, but high correlations between industrial
and population-density-related plume functions are still pos-
sible if industrial sources are located in highly populated ar-
eas. In such cases, it may be difficult to separate the indus-
trial source signal from the contribution of the population-
density-related proxy. For example, in one case (Edmonton,
Canada) this correlation coefficient was as high as 0.94 and it
was not possible to separate urban and industrial emissions.
Without such separation, industrial emissions are counted as
population-density-related, which makes Edmonton annual
per capita emissions nearly twice as large as emissions for
other cities. Note that for large cities and small industrial
sources, high correlation means that the emissions from such
industrial sources cannot be reliably estimated, although the
impact on estimation of the population-density-related sig-

nal is small. For this reason, industrial point sources located
in the 0.2◦× 0.2◦ cells where the population is greater than
600 000 people were excluded. This is an empirically esti-
mated limit, and, in a few cases of very large cities (New
York, Moscow), it was manually adjusted.

The fitting and parameter estimation was done using all
individual TROPOMI level-2 pixels for the period from
16 March to 15 June four times: for 2018, 2019, 2020, and
2021. So, four sets of coefficients (one set per year) were ob-
tained and then used to estimate the background levels and
emissions. Then, the results for 2018 and 2019 were com-
pared with these for 2020. We also performed the same anal-
ysis for 2021, but these results were only used to analyse in-
terannual variability because COVID-19 lockdowns may still
have some impact on NO2 in 2021.

As the regression model has three main terms (back-
ground, urban, and industrial), the NO2 VCD for each
TROPOMI pixel is represented in Eq. (1) as a sum of three
values (components) plus a residual error. Then the values
of individual components and residuals can be analysed the
same way as the original TROPOMI measurements; e.g.
mean values over a certain period (in our case, 16 March–
15 June) can be calculated as a function of latitude and lon-
gitude.

This is illustrated in Fig. 3, where individual terms of
Eq. (1) are shown for an area centred on Montreal. The area
includes two large cities, Montreal (4.2 million) and Ottawa
(1.4 million, including the sister city of Gatineau). The ter-
rain elevations in the analysed area are in the range from just
a few metres above sea level along the Saint Lawrence River
to more than 500 m at 100 km north of Montreal. For this plot
(as well as for Fig. 1 and other figures), we used a non-linear
scale that is more sensitive to small quantities in order to
make small deviations more pronounced. Figure 3a–c shows
the mean TROPOMI NO2 data (Fig. 3a), the fitting results
(Fig. 3b), and the difference between them or the residuals
(Fig. 3c). The background, urban, and industrial components
are shown in Fig. 3d, e, and f respectively.

The contribution of industrial point sources (6αi�i) is il-
lustrated by Fig. 3g–i. In the case of Montreal, total emis-
sions from industrial sources are relatively small, less than
1.8 kt yr−1 from our estimates. Note that unlike the previ-
ous algorithm (Fioletov et al., 2017), where �i represented
plume functions from individual sources, this new �i rep-
resents plume functions of clusters of closely located indi-
vidual sources determined by factor analysis. The estimated
parameter αi represents total NO2 mass of the entire cluster,
while �i is a weighted sum of plume functions of individual
sources in the cluster. The weighting coefficients are deter-
mined by the varimax technique, described above. In the case
of Fig. 3, the first cluster is comprised of two sources and the
second and third clusters are each just single point sources.
The estimated parameter αi represents emissions from the
entire cluster, required that αi ≥ 0.

https://doi.org/10.5194/acp-22-4201-2022 Atmos. Chem. Phys., 22, 4201–4236, 2022



4210 V. Fioletov et al.: Quantifying TROPOMI NO2 changes during the COVID-19 lockdown

Figure 3. (a) Mean TROPOMI NO2 for 16 March–15 June, 2018–2019, over the Montreal area, (b) the fitting results and (c) the residuals
(i.e. the difference between a and b). Tropospheric NO2 VCDs have a large “background” level that is reflected by (d) the elevation-related
component. (e) The population-density-related and (f) industrial-source-related components. Panel (b) is the sum of panels (d), (e), and (f).
Emission point sources are shown by the black dots and the airport by the slightly larger grey dot. The industrial-source-related component
is comprised of three clusters: one (g) with two sources and two (h, i) with one source each. The data are smoothed by the oversampling
technique with the averaging radius R = 10 km. Proxies used by the statistical model (Eq. 1): (j) elevation map on the colour scale that is
similar to that for the elevation-related (background) component; (k) population density map. (l) Mean TROPOMI values (a) vs. the fitting
results (b). Each dot represents the mean value for a cell on a 0.2×0.2 grid for 2018 or 2019. The number of data points (N ), the correlation
coefficient (R), and the slope are also shown.

The background and urban component maps have a sim-
ple interpretation. Figure 3j and k show maps of the eleva-
tion and population density respectively. Not surprisingly, the
background component, which is dominated by scaled eleva-
tion, looks similar to the elevation map itself. The urban com-

ponent is the population density map convoluted with EMG
functions, and therefore it looks like a smoothed population
density map.

The suggested algorithm essentially finds the emission
levels that give the best agreement with the TROPOMI data
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NO2 VCD and then uses these estimates to “reconstruct” the
spatial NO2 distribution as well as the contribution from each
source. As explained by Fioletov et al. (2017), the technique
of satellite VCD reconstruction from fitted coefficients αi us-
ing Eq. (1) to isolate different components can be applied
to the reported emissions Ei by using αi = Ei · τ . This pro-
duces a map of VCD that would be seen by satellites if these
reported emissions are the only sources of NO2. The same
approach was employed here using US emission inventories.
For such estimates, the ratio between NOx and NO2 is re-
quired. Beirle et al. (2021, their Fig. 2) have recently esti-
mated the NOx-to-NO2 ratio for different parts of the world
and found that the ratio is about 1.4 over the US and typically
between 1.2 and 1.6. elsewhere. The value of 1.4 was used in
this study.

The quality of a regression model (Eq. 1) can be described
in terms of the correlation coefficient between the original
and predicted values. In the case of Montreal, the correlation
coefficient is about 0.55; i.e., a set of about half a million
original TROPOMI observations over the 3◦×4◦ area during
a 3-month period can be described by just eight parameters
(αp, α0, β0, β1, and β2 plus three coefficients αi for indus-
trial sources) with that correlation coefficient. The model can
be further improved by adding parameters responsible for
workday–weekend differences, seasonal changes, and mete-
orological proxies (Goldberg et al., 2021; Kim et al., 2021).
However, we focused on the mean NO2 changes over a 3-
month period, and they can be successfully estimated without
such additional parameters. Figure 3 shows that the fitting re-
sults are able to reproduce such mean data accurately: in the
case of Montreal, the coefficient of determination (R2), i.e.
the ratio of the variance of the residuals (Fig. 3c) to the vari-
ance of the averaged TROPOMI data (Fig. 3a), is between
0.9 (in 2019) to 0.93 (in 2020) meaning that fitting results
“explain” from 90 % to 93 % of the observed variance. The
Pearson correlation coefficient between the mean TROPOMI
data and the fitting results is about 0.96 (Fig. 3l).

The necessity of both linear gradient- and elevation-related
components in the background term in Eq. (1) is illustrated
by Fig. 4. If the surface is nearly flat in the analysed area (as,
for example, in the case of Minneapolis, Fig. 4g), the back-
ground component is dominated by the linear gradient. How-
ever, the elevation affects the NO2 distribution near mountain
areas as, for example, in the case of Seattle, where mountains
as high as 2000 m are located east of the city (Fig. 4i). It is
interesting to note that the background components are prac-
tically identical for both periods, which gives a high confi-
dence in the obtained results. The influence of the landscape
on the NO2 distribution also explains why the distribution
near Seattle does not look like a “hotspot” NO2 distribution
near a typical large urban area. As Fig. 4 shows, the statistical
model can successfully reproduce the NO2 VCD distribution
in both areas. The Pearson correlation coefficient between
the 3-month mean TROPOMI data and the fitting results for
Minneapolis and Seattle are 0.96 and 0.94 respectively.

Since the fitting results are based on just a handful of pa-
rameters, the approach of this study is to investigate changes
in these parameters or the three regression terms themselves
between 2020 and 2018–2019.

4 NO2 VCD estimation results for urban areas

To test the method, the described technique was applied to
the 22 largest urban areas in the US and 5 in Canada (Fig. 5).
Four examples with detailed analysis of the components of
the NO2 distribution are discussed below with results shown
in Fig. 6. Eight types of maps are shown. They include
mean values for the analysed period for the actual TROPOMI
data (column a), the fitting results (b), the residuals (c), i.e.
(a) minus (b), and individual components of the fitting: the
background (d) and urban (e) components and the industrial
source clusters (f). Figure 6 is divided into four sections with
the area name shown at the top of each cluster of plots.

As mentioned in Sect. 3, reported emissions can be used
to reconstruct VCD distribution for NO2 emitted from these
sources using Eq. (1). The maps of NO2 VCDs from the re-
ported bottom–up emissions is shown in Fig. 6 (column g).
We would like to emphasize that such a reconstruction is
based on industrial emission data only, without any satellite
NO2 observations (although τ and w in the plume functions
were the same as in the satellite-based estimates). Finally,
the maps of the difference between the TROPOMI industrial-
source-related component (Fig. 6, column f) and NO2 VCD
from the reported “bottom–up” emission-based reconstruc-
tion (Fig. 6, column g) is also shown in Fig. 6 (column h).

4.1 Case studies

Four examples that represent different cases of NO2 distri-
butions around large urban areas are discussed below. In the
case of Boston, there is a single urban source with no large in-
dustrial sources nearby and with relatively small impact from
the terrain. The Atlanta area represents the case where the
urban component is well-separated from industrial sources
and the area also contains the world’s largest airport. In the
Pittsburgh area, industrial and urban sources have compara-
ble contributions, and the TROPOMI-based industrial emis-
sion estimates can be validated by EPA NEI CEMS mea-
sured emissions. Multiple industrial sources in the Houston
area are missing from the EPA NEI CEMS emission database
used, and in this example emissions from the EPA eGRID
database can be compared with TROPOMI-based estimates.

Boston is a major urban area with a population of more
than 8 million (for the combined statistical area of Greater
Boston). On the TROPOMI NO2 map (Fig. 6, column a),
it appears as a large hotspot that can be successfully repro-
duced by the statistical model (Eq. 1) using the population
density as a proxy. From our estimates, there is a −24± 2 %
decline (the error bars correspond to 2σ for random uncer-
tainty; see Sect. 4.3) in the urban emissions in 2020 com-
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Figure 4. Mean TROPOMI NO2 for 16 March–15 June over a flat area around Minneapolis and a mountain area around Seattle as indicated.
The columns represent mean TROPOMI NO2 values (columns a, d), the fitting results (columns b, e), and the elevation-related background
component (columns c, f). Elevation map on the colour scale that is similar to the background component (g, i) and the population density
maps (h, j). The “hotspots” on the population density maps correspond to Minneapolis (h) and Seattle (j).

Figure 5. The map of locations of the analysed 27 most populated urban cites in (red) the US and (blue) Canada (22 and 5 areas respectively).
The analysis was done for 3◦ (latitude) by 4◦ (longitude) areas around the sites. The mean NO2 values for eight areas for the period from
16 March to 15 June in 2018–2019 and 2020 are also shown.
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Figure 6. Mean TROPOMI NO2 for 16 March–15 June over the four areas as indicated. For each area, the first row shows the 2018–2019
averages and the second row shown the 2020 averages. The columns represent mean TROPOMI NO2 VCD values (column a), the fitting
results (column b), the residuals (column c) as well as individual components of the fitting: the background (elevation-related) (column d),
the urban (population-density-related) (column e), and the industrial-source-related (column f) components. VCDs estimated from reported
emissions are in column (g), and the difference between columns (f) and (g) is in column (h). 1 – Hartsfield–Jackson Atlanta International
Airport; 2 – oil refineries near Houston.
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pared to the 2018–2019 average. Our estimates of urban
emission changes in 2020 are similar to the −22.8 % drop in
TROPOMI NO2 values estimated by Goldberg et al. (2020)
for the period from 15 March to 30 April and a−18.3 % drop
estimated by Bar et al. (2021) for the period from 22 March
to 30 May. Boston also shows one of the largest declines in
the US in the background component (about 20±0.5 %). Al-
though the background component is not linked to particular
plumes, it is likely that very high emissions from the largest
NO2 hotspot in the US over the New York–Philadelphia area
contributed to the background NO2 over Boston, and a de-
cline in emissions there caused changes in the background
NO2 over Boston.

Our estimate of the urban emission decline for Atlanta
is about −35± 2 %. This is higher than the −20 % decline
estimated by Goldberg et al. (2020). However, changes in the
background component were about −13± 0.4 %, while the
background (Fig. 6, column d) component over Atlanta is
comparable to the urban (Fig. 6, column e) component (both
are about 0.04 DU), so the decline in the sum of the two
components over Atlanta should be about −23 %. The urban
component estimates are based on the fitting of the plume
from the city itself where NO2 is dominated by on-road
vehicle emissions. Kondragunta et al. (2021) estimated that
the decline in on-road emissions is about −28 %, which
is closer to our estimate. The Atlanta area also hosts the
Hartsfield–Jackson Atlanta International Airport (labelled
as “1” in Fig. 6, column h), the world’s busiest airport with
more than 100 million passengers per year in 2018–2019
(https://aci.aero/data-centre/annual-traffic-data/passengers/
2017-passenger-summary-annual-traffic-data/, last access:
5 August 2021). The Atlanta airport NO2 signal can be easily
isolated since the airport is located far away from industrial
sources (the correlation coefficients between the plume func-
tions are less than 0.2) and at a distance from Atlanta’s most
populated area (the correlation coefficient is 0.54). VCDs es-
timated for the industrial source clusters (column f in Fig. 6)
are in line with those based on reported emissions (column g
in Fig. 6). Our estimated annual emissions for the airport are
5.1±0.2, 6.4±0.2, and 2.9±0.2 kt yr−1 in 2018, 2019, and
2020 respectively, while the EPA emission inventory value
is 3.7 kt yr−1 for 2017 (the last available year). Thus, our
estimates show a 55 % decline in airport emissions between
2019 and 2020. The decline in aircraft operations for the
analysed period was about 75 % for passenger flights and
25 % for cargo operations (according to the Department of
Aviation, Hartsfield–Jackson Atlanta International Airport,
https://www.atl.com/business-information/statistics/, last
access: 15 November 2021). For illustration purposes only,
for Hartsfield–Jackson Atlanta International Airport, the
2017 EPA emission inventory value was used to calculate
NO2 VCD in column g of Fig. 6 for 2018 and 2019 and half
that value for 2020.

The Pittsburgh area includes the cities Pittsburgh (popula-
tion of ∼ 2.4 million) and Cleveland (∼ 3.6 million) and has

one of the highest emissions from industrial sources among
the analysed areas. Several coal-burning power plants are
located east, west, and south of the city. Their emissions
are comparable or even larger than from Pittsburgh itself.
The NO2 distribution around major industrial sources re-
constructed from the reported emissions (Fig. 6, column g)
is similar to the NO2 distribution from industrial sources
based on satellite estimates (Fig. 6, column f). The differ-
ences (column f minus column g) are small, although NO2
from the reported emissions is slightly larger for the cluster
of power plans east of the city. The total reported emissions
from all industrial sources in the Pittsburgh area are 43, 37,
and 26 kt yr−1 for 2018, 2019, and 2020 respectively, while
our estimates are 36, 34, and 24 kt yr−1 (with 2σ uncertainty
of about 1.5 kt yr−1); i.e. the 2020 decline from our estimates
is 35 %, while the decline in reported emissions is 31 %. The
urban emissions declined from about 72±2.3 kt yr−1 in 2018
and 2019 to 36± 1.2 kt yr−1 in 2020, i.e. by −50 %.

In the case of Houston, the EPA NEI CEMS emission
inventory contains emissions from the power plants in the
area but not from large oil refineries that are responsible
for hotspots seen on the TROPOMI mean NO2 plot. Their
coordinates and emission estimates were obtained from the
eGRID inventory. The reported industrial emission values
for the analysed Houston area in 2018–2019 are 17 kt yr−1,
while our estimates are 36 and 31 kt yr−1 for 2018 and 2019
respectively, and the estimated value for 2020 is 33 kt yr−1.
It appears that TROPOMI-based emission estimates agree
with emissions from the power plants from CEMS but are
noticeably larger that emissions from oil refineries available
from the eGRID inventory (Fig. 6, column h). Our estimated
changes in background and urban components for the Hous-
ton area are −2.3± 0.4 % and −18± 1.6 % respectively; i.e.
we see a decline in the urban component and practically no
changes in the two other components. Goldberg et al. (2020)
estimated the decline over Houston as being −15.6 %, al-
though the spread between the three methods of estimation
used is large: from −26.3 % to −1.9 %. Note that the lock-
down period in Houston was relatively short: from 2 April to
30 April.

4.2 Relative contribution of different components

NO2 VCD represents the total number of molecules and
equivalently mass per area unit. When background, urban,
and industrial components of the NO2 distribution are esti-
mated as described in Sect. 3, it is possible to calculate the
total NO2 mass of each of the components and estimate their
relative contribution to the total NO2 mass. The diagram in
Fig. 7 shows such a contribution of individual components
for the Montreal area (Fig. 3d, e, f). Most NO2 mass is as-
sociated with the term related to the background component.
For the Montreal area, the contribution of industrial sources
is 4 times less than the contribution of the urban component,
and these two components are responsible for less than one-
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quarter of the total NO2 mass in the area. The relative con-
tribution of the three components in the other areas for the
2018–2019 period are shown in Fig. S1 in the Supplement.
Most NO2 mass belongs to the background component that
is not directly linked to plumes from urban and industrial
sources. These plumes are responsible for about one-third of
total satellite-estimated NO2 mass in New York and Los An-
geles and far less in the other analysed 3◦× 4◦ urban areas
in the US and Canada. This result depends on a particular
size of the area, but the fraction of the background compo-
nent is larger for larger areas as all major urban areas are
already included in the analysis. Figure S1 also shows that
NO2 mass emitted from cities is larger than emissions from
the industrial sources for most of the analysed areas in the
US and Canada. Note that characteristics such as the mean
background value and annual emissions per capita are much
less dependent on the area size, and the rest of the study is
focused on them.

The mean NO2 distribution near major emission sources
has sharp gradients that suggest that the NO2 lifetime is rel-
atively short (on the order of a few hours), which is also
confirmed by direct estimates (Beirle et al., 2011; de Foy
et al., 2015). However, a large background component may
suggest that the lifetime should be relatively long since NO2
distribution follows the terrain over large areas. This differ-
ence in the lifetime could be reconciled if we assume that
a fraction of NO2 emitted from cities and industrial sources
gets into the free troposphere and has a longer lifetime there
than near the ground. Also, levels of the OH radical, the main
chemical NOx sink, within a plume can be much larger than
under “clean” conditions, and NO2 lifetime could be longer
under such conditions than in the plume (Juncosa Calahor-
rano et al., 2021). Other sources, e.g. lightning or soil emis-
sions, may contribute to background component NO2 di-
rectly. The background term can also include components of
stratospheric NO2 that were imperfectly removed as part of
the retrieval algorithm (von Geffen et al., 2020). Finally, es-
timates of NO2 lifetime from TROPOMI data (e.g. de Foy
et al., 2015; Liu et al., 2016; Lange et al., 2022) are based
on daytime observations only. However, the lifetime at night
could be different (Kenagy et al., 2018), and nighttime emis-
sions and NOx evolution during the nights are not reflected
in our estimates.

4.3 Variability and uncertainty estimates

Two characteristics of uncertainties of the estimated NO2
components are calculated, and the results are presented in
Table 1. Uncertainties related to the random measurement er-
rors can be estimated assuming that the residuals ε in Eq. (1)
are uncorrelated and have the same variance. Since the total
number of satellite pixels in the statistical model is very large
(several hundred thousand) and the number of parameters is
small, such uncertainties are typically low. These uncertain-
ties are calculated for the three components in each analysed

year, and the average value for each area (in percent) is given
in Table 1 as “random error”. On average, these random er-
rors are about 0.25 %, 1 %, and 3 % for the baseline, urban,
and industrial components respectively. The random uncer-
tainty represents how precisely the component value is cal-
culated and provides the lowest limit of the total uncertainty.

Interannual variability is another characteristic that reflects
uncertainties related to the contributions from meteorology,
possible instrument or algorithm-related issues, differences
in sampling due to variations in cloud cover, and perhaps
other factors. It is also affected by the changes in emissions
themselves. Internal variability can be estimated by compar-
ing the components, estimated for different years. The 2020
data are not used in this estimate since they were greatly
affected by the lockdowns. Instead, we added estimates for
2021 and calculated the standard deviations from the three
values (Table 1). Although estimates from just three data
points are not very reliable, they show similar results for most
of the analysed areas, and their average can be used as a char-
acteristic of the interannual variability. The average standard
deviation of the interannual variability for the background
component is only 7.5 %. The interannual variabilities for the
urban and industrial components are 10 % and 18 % respec-
tively. The interannual variability represents the upper limit
of the total uncertainty.

The uncertainty of the percentage change between 2018–
2019 and 2020 values is a combination of the uncertainty of
the baseline, estimated from just 2 years, and the uncertainty
of the 2020 value. This gives the following values for 2-σ
confidence limits for the percent changes: 18 %, 24 %, and
44 % for the baseline, urban, and industrial components re-
spectively.

4.4 The COVID-19 lockdown impact: the US and
Canada

The ability of the method to isolate individual components
of the satellite-measured total NO2 mass makes it possible to
estimate the impact of the COVID-19-related lockdown on
these components separately. As mentioned, we compared
the averages for the period from 16 March to 15 June in 2018
and 2019 to the same period averages for 2020.

To illustrate the changes in the background component,
Fig. 8a–b show the mean VCD values of that component
shown in Fig. 6, column d (or, in other words, the mean
value of α0+ (β0+β1(θ − θ0)+β2(ϕ−ϕ0)) · exp(−H/H0))
for the analysed areas for the two time intervals (a, c, e)
as well as the percentage change in 2020 vs. 2018–2019
values (b, d, f). The mean value of decline for the back-
ground components among all urban areas is −6.5± 3.0 %.
As mentioned, the largest decline in the background com-
ponent was observed in Boston. The decline was also large
(about−20 %) over two areas (Edmonton and Calgary) in the
Canadian province of Alberta. It is unlikely that this decline
is related to the lockdown; the restrictions in Alberta were
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Figure 7. The contribution of the three components to the total NO2 mass in the Montreal area for 16 March–15 June (average for 2018–
2019). The total mass can be represented as a sum of three components shown in Fig. 2.

not as tight as in many other areas: only some non-essential
services were closed on 27 March and the restriction started
to be eased in May (https://edmonton.citynews.ca/2020/
12/24/2020-look-back-albertas-pandemic-response/, last ac-
cess: 20 November 2021). In 2020, Alberta had a “his-
torically low” level of forest fires: by June 2020, fires
had burned just about 450 ha of forest, compared to, for
example, 650 000 ha by June 2019 (https://globalnews.ca/
news/7396849/alberta-2020-slow-wildfire-season/, last ac-
cess: 10 November 2021), and therefore likely lower than
normal natural NO2 emissions resulted in lower background
levels.

The changes in the urban component are shown in Fig. 8c,
d expressed as annual NO2 emissions per capita. Recall that
emission rate is the mass divided by the constant lifetime;
therefore, the percent changes in emissions per capita and the
changes in total mass are identical. The relative changes for
the urban component (Fig. 8d) are typically larger than those
for the background component (Fig. 8b). The average total
emissions per capita declined by −28 % in 2020 compared
to the 2018–2019 average (from 5.6 to 4.2 kg yr−1). The me-
dian value of decline among all urban areas is −26 %, and
the mean value of percentage decline is −27± 6.2 %. The
changes in emissions per capita are rather uniform except
in Vancouver, where 2020 emissions are 15 % larger than
the average 2018–2019 emissions. This Vancouver anomaly
is within the 2σ limits of natural variability as discussed in
Sect. 4.3 (Table 1) and may be related to unusual meteorol-
ogy and persistent cloud cover there in 2020. Edmonton is
excluded from this panel because two industrial sources are
located in the city itself, and, therefore, it is hard to separate
their emissions from the urban emissions.

The number of large industrial sources and their emis-
sion strengths vary from area to area. Some areas, e.g. Las
Vegas, do not have such emission sources at all. The total
emissions from all large industrial emission sources and the
percentage change in emissions are shown in Fig. 8e, f. The
mean value of percentage decline in the areas with industrial
sources is −22± 11 %. Unlike background and urban com-
ponents, changes in emissions from industrial point sources
demonstrate rather large scattering from one area to another.
It is not a surprise since in addition to the difference in the
strength and length of the lockdown between the areas, there
is a difference in the lockdown impact on various industrial
sectors.

Overall, the 2020 values for the baseline and industrial
components at individual sites are within 2σ limits of the in-
terannual variability (the grey dashed lines in Fig. 8b, d) with
just a few exceptions, while 16 of 27 urban component val-
ues are outside these limits. As noted in Sect. 4.3, the interan-
nual variability is rather large, and, therefore, the decline for
individual areas is often not significant (Fig. 8f). For this rea-
son, we analysed 27 individual areas covering a vast region
with very different meteorological conditions, so the average
of individual area estimates (i.e. the regional mean) can be
calculated with high confidence. Indeed, the regionally mean
values of the ratios of changes in 2020 urban and industrial
components to the standard errors of these regional means
are about 8.5 and 5.9 respectively (assuming that deviations
for individual areas are not correlated), i.e. well outside the
limits of interannual variability. The approach that is focused
on regional statistics rather than on individual areas is used
for all other regions in this study.

Since industrial point source emission estimates are ob-
tained as part of our TROPOMI NO2 VCD data analy-
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Figure 8. (a, c, e) The background (a), urban (c), and industrial (e) components for all 27 analysed areas in the US and Canada in 2018–
2019 (blue) and 2020 (orange). (b, d, f) The decline in 2020 values in percent from the 2018–2019 values for the same components. The
background component is expressed as the mean value of that component for the analysed area. The urban component is expressed as annual
emissions per capita, and the industrial component is expressed as total emissions from the point sources for the period from 16 March to
15 June. The grey dashed lines in (b), (d), and (f) indicate the 2σ level for the interannual variability.
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Table 1. The standard deviations of the random errors and interannual variability for background, urban, and industrial components for the
US and Canada in percent. The random errors are calculated as the averages of estimates for individual years. The interannual variability
estimates are the standard deviations calculated from 3 years (2018, 2019, and 2021). Interannual variability of the industrial component is
calculated for regions with estimated total emissions greater than 1 kt yr−1.

Area Random error (%) Interannual variability (%)

Background Urban Industrial Background Urban Industrial

Atlanta 0.20 1.04 1.47 5.9 9.7 11.3
Boston 0.29 0.93 5.68 4.0 10.8 39.3
Calgary 0.27 1.62 2.40 7.5 3.5 23.8
Charlotte 0.25 1.80 2.64 5.1 7.0 19.2
Chicago 0.27 0.73 1.74 17.5 9.3 11.6
Dallas 0.20 0.82 2.34 5.8 9.2 6.2
Denver 0.27 0.89 2.29 4.0 7.8 17.5
Detroit 0.27 0.99 2.17 13.3 5.5 16.8
Edmonton 0.34 0.80 1.91 11.0 15.6 8.1
Houston 0.22 0.78 1.25 6.7 13.0 10.5
Las Vegas 0.12 0.48 7.6 16.7
Los Angeles 0.22 0.22 1.4 9.2
Miami 0.15 0.88 2.66 1.9 5.8 40.7
Minneapolis 0.20 1.42 3.28 15.1 10.1 29.5
Montreal 0.29 1.21 3.24 11.8 7.3 19.7
New York 0.36 0.41 5.17 8.2 5.8 8.0
Orlando 0.17 1.17 2.16 4.0 10.6 16.5
Phoenix 0.17 0.75 2.84 4.9 17.0 23.5
Pittsburgh 0.33 1.62 2.20 6.5 6.3 7.0
Portland 0.29 0.87 4.32 5.8 21.2 23.2
San Antonio 0.18 1.50 1.20 8.1 5.9 42.0
San Francisco 0.17 0.64 4.64 1.1 12.8 20.9
Seattle 0.31 1.14 2.71 9.0 11.0 18.9
St. Louis 0.20 1.48 1.87 16.3 4.5 7.8
Toronto 0.29 0.78 1.97 10.8 12.9 13.7
Vancouver 0.49 0.74 5.74 2.1 9.6 14.7
Washington 0.24 1.03 2.76 6.8 13.2 8.0

Average 0.25 0.99 2.82 7.5 10.0 18.3

Standard deviation 0.08 0.4 1.3 4.4 4.3 10

sis, such estimated emissions can be compared to the re-
ported ones. In general, there is an agreement between esti-
mated and reported emissions, as was already demonstrated
in Fig. 6a. The scatter plot of estimated vs. reported emis-
sions in 2018–2019 is shown in Fig. 9 for the US urban
areas. Each dot in the plot corresponds to industrial emis-
sions from one area in either 2018 or 2019 with the total of
40 data points. The correlation coefficients between the two
data sets from Fig. 9 is 0.84. The slope of the regression line
is about 0.7 suggesting that, on average, our estimates are
30 % higher that reported emissions. The standard deviation
of the residuals is about 5 kt yr−1. This value gives an ap-
proximate uncertainty for the point source of NO2 emission
estimates for a 3-month period from TROPOMI data. As it
is a direct comparison with the actual reported emissions, it
includes all possible sources of errors. Then, the annual NO2
emissions are expected to be estimated with uncertainties of

about 2.5 kt yr−1, which is twice less than about 5 kt yr−1 for
SO2 emission uncertainties (Theys et al., 2021).

4.5 The COVID-19 lockdown impact: Europe

The described technique was applied to the European Union
countries (plus non-members from former Yugoslavia) where
detailed information about the industrial emission sources is
available. The analysis was also done for 3◦×4◦ areas around
the 36 largest European cities with a population greater than
1 million plus some national capitals with a population of
more than 500 000. Note that to avoid double-counting, if
more than one city was located within an area, we used that
area just once (e.g. Manchester and Birmingham are in one
area).

The absolute and relative changes between 2018–2019 and
2020 for the three components are shown in Figs. 10 and 11.
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Figure 9. Estimated and reported annual NO2 emission rates for US
sources for 2018–2019. Each dot represents the sum of all emissions
in one urban area in 2018 or 2019, and there are 40 dots in the plot.
The emissions are expressed as annual rates. The correlation coeffi-
cient between the two data sets is 0.84, and the slope is 0.71±0.15.
The standard deviation of the residuals is about 5 kt yr−1. The plot
also shows the predicted regression line (blue), 95 % confidence in-
tervals for the regression mean (the shaded area), and 95 % predic-
tion intervals (dashed lines).

The NO2 decline in the urban component was particularly
large (more than 50 %) for the countries in the most west-
ern part of the continent where the strictest lockdown mea-
sures were taken: France, Spain, and the UK (Fig. 10). In
contrast, the decline in the German, Czech, and some other
eastern European cities was only 20 %–25 % (Fig. 11). For
this reason, two sub-regions were formed for the analysis:
Europe-1 (Italy, France, Spain, Portugal, Belgium, Ireland,
and the UK) and Europe-2 with all other countries. In gen-
eral, the mean background values and estimated NO2 emis-
sion rates per capita in Europe are similar to those in the US
and Canada. However, relative changes are somewhat differ-
ent.

In 2018–2019, the estimated annual emissions per capita
for both European regions were very similar to those for
the US and Canada. In 2020, the urban component de-
clined in almost every analysed area. The average declines
for the Europe-1 and Europe-2 regions were −54± 4 % and
−13± 8 % respectively. This is in general agreement with
total NOx emission reduction for these two European sub-
regions: −50 % for Europe-1 countries (Italy, Spain, France)
and−15 % to−25 % for Europe-2 countries (Germany, Swe-
den) with−85 % of the total reduction attributable to on-road
transport (Guevara et al., 2021). The decline in Europe-1 was
rather uniform with all but one area demonstrating a decline
of more than −40 %. In contrast, only two areas demon-
strated a −40 % decline in Europe-2, while most of the areas

had a decline of under −20 %. Two areas in Europe-2 (Bu-
dapest and Belgrade) demonstrated an increase in NO2. They
are located 320 km apart, and it is possible that relatively high
NO2 values there were caused by some specific meteorologi-
cal conditions in the spring of 2020: the NASA GEOS Com-
position Forecasting (GEOS-CF) simulations with constant
anthropogenic emissions show a positive NO2 anomaly over
Hungary in April–May 2020 (Liu et al., 2020b).

As in the case of the US and Canada, the mean back-
ground component in Europe shows a smaller decline than
the urban component. On average, it was −5.9± 2 % and
−11.5±3 % lower in 2020 than in 2018–2019 for the Europe-
1 and Europe-2 regions respectively, but it was pretty consis-
tent as almost all individual areas demonstrated a decline. A
large decline in population-related emissions and a relatively
small decline in the background component for Europe-1
and the opposite for Europe-2 may create an impression that
there is anticorrelation between the background level and
population-related component, but this is not true. The large
decline in average background for Europe-2 was caused by
large negative background values for the Scandinavian coun-
tries in 2020, which also had large negative changes in the
urban components. As discussed later in Sect. 4.6, there is
no correlation between the changes in the background levels
and the urban component.

The emissions from industrial sources also demonstrated
a decline, although the scattering of the values is large as
the changes varied from country to country and from sector
to sector. Guevara et al. (2021) estimated that the emission
decline in the energy industry was up to −30 % in Italy but
under −5 % in Sweden. The emission decline from the man-
ufacturing industry was smaller: from about −15 % in Italy,
Spain, France, and the UK to −5 % in Germany and near
zero in Sweden. Emissions from aviation were reduced by
−90 % in all European countries (Guevara et al., 2021). We
estimated changes in emissions only for industrial sources
that are located in the analysed areas around major cities
and therefore do not represent the entire industrial emis-
sions, but our estimates also show a difference between the
Europe-1 and Europe-2 regions: the average decline values
are −34± 10 % and −13± 16 % respectively.

The uncertainty estimates are also in general similar to
those for the US and Canada: the random uncertainty is
about 0.25 % for the background component and 1 % for the
urban component. The interannual variability estimates are
also similar for the background component (5.6 %, 6.8 %,
and 7.5 % for Europe-1, Europe-2, and Canada–US respec-
tively). The interannual variability for the urban component
for Europe-1 (12 %) is also the same as that for the Canada–
US region but higher (15 %) for the Europe-2 region (Sup-
plement, Tables S1 and S2). For Europe-1, the decline in the
background component is within the 2σ level for all the areas
and the decline in the urban component outside the 2σ level
for all the areas. For Europe-2, however, the decline in the
urban component is within the natural variability limits. For
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Figure 10. The same as Fig. 8 but for the Europe-1 sub-region (Italy, France, Spain, Portugal, Belgium, Ireland, and the UK).

the industrial component, the variability is high and the 2020
decline is within the 2σ level for most of the areas.

For illustration purposes, four areas are examined in
greater detail in Fig. 12. The Manchester map (Fig. 12 top
row) illustrates a large area of high population density in cen-
tral England with several power plants to the east. Recall that
the urban component is essentially the population density

convoluted with EMG functions, and the two large hotspots
in the urban component corresponds to the Manchester and
Liverpool area to the north and the Birmingham area at the
south. Our TROPOMI data analysis shows a −40± 1.4 %
decline in the urban component and about a −18± 5.6 %
decline from total emissions from the power plants. These
numbers are close to the decline in road traffic (−35 % and
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Figure 11. The same as Fig. 8 but for the Europe-2 sub-region (other EU countries and non-members from former Yugoslavia).

−50 % for April and May respectively) and industrial ac-
tivity (−20 %) (Potts et al., 2021) reported by the UK Of-
fice of National Statistics. The estimated decline in the urban
component is very close to the −42 % decline in the surface
NO2 concentrations reported by Lee et al. (2020). In contrast,
the background component shows almost no change in 2020
compared to 2018–2019. For this reason, the total decline in

TROPOMI NO2 VCD over Manchester (−27 % according
Barré et al., 2021, and−32 % according to Potts et al., 2021)
is smaller than our estimates for the urban component alone.

Paris is an example of a city that appears as a large,
isolated urban source. The change between the two peri-
ods in the background component (Fig. 12, column d) is
about −10± 0.5 %, while the decline in the urban compo-
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Figure 12. Similar to Fig. 6 columns (a)–(f), for areas around four European cities: Manchester, Paris, Milan, and Prague. 1 – Charles de
Gaulle Airport; 2 – power plants in Germany; 3 – power plants in the Czech Republic.
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nent (Fig. 12, column e) is about −57± 1.5 %, as clearly
seen in the plot. As in the other cases, this value of decline is
larger than the decline from TROPOMI NO2 VCD data with-
out separation of the two components and is closer to the
changes in NO2 surface concentrations. The estimated de-
cline in TROPOMI NO2 VCDs over Paris was about −30 %
(Bauwens et al., 2020; Barré et al., 2021), while the estimated
decline in NO2 concentrations was −40 % to 50 % (Keller
et al., 2021; Barré et al., 2021). The terrain does not play a
major role in the background component for the Paris area.
There is a north–south gradient in the background compo-
nent with higher values in the north-eastern corner of the
area. The only relatively large industrial point source in the
Paris area is Charles de Gaulle Airport which is evident on
the 2018–2019 plot and practically disappears on the 2020
plot. Our estimates show an 90 % decline in NO2 emissions
from 2018–2019 averages (from about 6.1± 2.2 to 0.5±
0.2 kt yr−1), which is in line with a more than −95 % de-
cline in the passenger traffic of Charles de Gaulle Airport in
April and May 2020 (https://www.parisaeroport.fr/en/group/
finance/investor-relations/traffic, last access: 10 November
2021).

Milan was one of the first European cities where some
lockdown measures were imposed in late February, and a
−40 % to −60 % reduction in NO2 concentrations was re-
ported (Collivignarelli et al., 2020). Complex terrain affects
the NO2 distribution creating large differences between VCD
values over the mountains and valleys and also makes it
more difficult to fit the observations with the plume functions
based on the assumption of straight-line plumes resulting in
relatively high residuals. The background component shows
practically no difference between the two periods. The con-
tribution from industrial point sources for that area is small.
The urban component demonstrates a −53± 1.5 % decline
in 2020 that is similar to other TROPOMI-based estimates
for Milan (−38± 10 %, Bauwens et al., 2020; about −50 %,
Barré et al., 2021), while the estimated decline in surface
NO2 concentrations was only slightly larger at−41 % (Keller
et al., 2021) and about −52 % (Barré et al., 2021). Such a
small difference in decline between VCDs and surface con-
centrations may be due to a relatively small contribution of
the background component to the total VCD: it is just about
one-third of the urban component over Milan.

The maps for the Prague–Dresden area illustrate how
changes in NO2 from industrial sources reflect differences in
COVID-19 lockdown policies in Germany and the Czech Re-
public. The decline in the urban component was only about
−16± 3 %. In addition to Prague that component also in-
cludes cities in east Germany (Dresden, Leipzig), but the
changes over these cities and Prague are similar and close
to −20 % (Barré et al., 2021). Otherwise, the difference
would appear in the residuals (Fig. 12, column c). The main
industrial sources in the Prague area are coal mines and
coal-burning power plants in the Czech Republic west of
Prague near the German border and in Germany north of

Prague, near the Polish border. In the Czech Republic, the
NO2 values of the industrial component remain unchanged,
while the values over German industrial sources declined
by a factor of 2. This is likely the result of different ap-
proaches to the coal power industry in the two countries.
In the Czech case, power plants remained fully functioning
and certain steps were taken to assure smooth operation and
protect the workers: employees of power plants stayed on
their job for longer periods, to avoid the risk of infection at
home (EC, 2020). In Germany, the power generation from
coal-burning plants was reduced by 60 % (from 13.4 TWh
to 5.6 TWh per month) in April–May 2020 compared
to 2019 (https://www.energy-charts.info/charts/energy/chart.
htm?l=en&c=DE&year=2022, last access: 1 March 2021).
As a result, we see a large difference in NO2 VCDs from
the power plants in the two countries.

4.6 The global COVID-19 lockdown impact

To evaluate the COVID-19 lockdown impact worldwide, the
analysis described earlier in Sect. 4 was performed for 261
urban areas around the world. All cities with a population
greater than 1 million were considered. However, some of
them, particularly in Africa, do not produce significant NO2
emissions that can be measured by TROPOMI over the 3-
month period selected for this study. Another obstacle is in
western Africa, where biomass burning made it difficult to
estimate background levels as they were very different from
year to year. Biomass burning areas appear as large anoma-
lies on the maps of the residuals (such as shown in Fig. 3c)
making the standard deviations of the residuals much higher
than in the other African cities. For this reason, several areas
with a population of over 1 million in western Africa were
not included in the analysis. In the case of China, there are
too many cities with a population of over 1 million. We raised
the limit for China and considered only cities with a popula-
tion greater than 6 million to keep the number of analysed
areas similar to other regions.

The analysis algorithm requires the coordinates of indi-
vidual industrial sources in order to separate them from
the urban component. The world power plant database (see
Sect. 2.3) was used to locate most of the power plants. Other
sources were identified from hotspots on the NO2 residual
maps as typically corresponding to emission sources that
are not included in the original fitting. Coordinates of such
sources are determined from high-resolution satellite im-
agery and added to the point source list, and then the fitting
process is repeated. A total of 357 such additional sources
were identified. Most of them were cement and steel facto-
ries and oil refineries. In addition, the world’s busiest air-
ports were included as “industrial” emission sources. How-
ever, other sources, e.g. ship tracks or major highways, may
still be missing, which may affect estimates for some areas.
Some of these sources are identifiable in the residual maps
and could be added to the statistical model in the future.
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Figure 13. (a) The map of the mean background component NO2 for all individual areas in 2018–2019 for the period 16 March–15 June
estimated from TROPOMI. (b) The map of annual per capita urban NO2 emissions for the same period. The analysis was done using
estimates for cities with a population greater than 6 million in China and 1 million for the rest of the world.

The map of the background and urban components for all
261 sites in 2018–2019 is shown in Fig. 13. The analysed
period from mid-March to mid-June is close to spring in
the Northern Hemisphere and autumn in the Southern Hemi-
sphere, i.e. the seasons with very similar values of lifetime
(Lange et al., 2022). Therefore, seasonal differences between
the two hemispheres should be minimal, and maps of the
main estimated components should represent their global dis-
tribution well. The highest background values are seen over
east China and the northern part of central Europe, while the
lowest are mostly over South America and East Africa.

The urban component demonstrates that the highest val-
ues are over the Siberian region of Russia. They are likely
related to additional NOx emissions due to heating there
since the climatological temperatures there are relatively low
in March–April compared to other regions. Another hotspot

is Edmonton, but as mentioned, its high value is due to
poor separation of urban and industrial sources there. An-
nual emissions per capita are also high over the Middle East.
However, in this region we found that the population density
data in some areas including, for example, Riyadh may not
be reliable and emissions per capita may be overestimated.
The population density maps there do not match Google map
satellite images and other proxies such as night light data.
This requires further investigation.

As Fig. 13b shows, the lowest annual emissions per capita
are in South America, Africa, and India (under 2 kg yr−1).
Although emissions per capita were calculated for each area
independently and the population and industrial sources vary
greatly from area to area, the per capita values are uniform:
for example, almost all areas in India are marked by green
dots (0 to 2 kg yr−1), most European areas are orange (4 to
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6 kg yr−1), etc. This gives further confidence in the obtained
estimates. Figure 13 shows NO2 emissions based on the NO2
total mass estimates and a fixed lifetime. These could be fur-
ther converted to the NOx emissions by applying a conver-
sion factor that typically varies from 1.2 to 1.4 (Beirle et
al., 2021).

Note that the urban NO2 “footprints” of cities with the
same population vary greatly from region to region with
the highest values in northern Eurasia and Australia and the
smallest in Africa and India. To illustrate these large differ-
ences, Fig. S2 shows the examples of NO2 distribution near
cities with a population of about 5–6 million with very large
(Saint Petersburg, Russia) and very small (Dar es Salaam,
Tanzania) per capita emissions. The total mass of NO2 per
capita related to the urban component for Saint Petersburg
was 40 times larger than for Dar es Salaam.

Figure 14 shows the maps of percent changes for individ-
ual areas for the background and urban components. Relative
changes in the background component are typically within
±15 % and are much smaller than in the urban component.
One of the regions with large negative changes in the back-
ground component is the Middle East. As mentioned, the
population density data are not always accurate in that region
and the background component may not be perfectly sepa-
rated from the urban and industrial components. In contrast,
the urban component demonstrates a much larger decline,
particularly over Europe-1 and India. Note that the changes
in the urban and background components are fairly indepen-
dent: analysis of all 261 areas revealed that the correlation
coefficient between them is −0.007.

The estimates for individual areas were then grouped into
13 large regions with 10–20 areas in each: the US and
Canada, Europe-1 and Europe-2, China, India, South-East
Asia (also includes Pakistan and Bangladesh), Japan with
Taiwan and South Korea, northern Eurasia (former USSR
countries and Mongolia), the Middle East, Africa, Australia
and New Zealand, Central America, and South America. The
regions are based on geographical location with similarities
in economic development, and reactions to the COVID-19
pandemic were also considered. Then, the average character-
istics of the background, urban, and industrial components
were calculated for each region. Johannesburg (South Africa)
and Pyongyang (North Korea) were not included in any par-
ticular region because their NO2 emissions were very dif-
ferent from those from neighbouring countries and therefore
may bias regional statistics.

The summary results for the regions are shown in Fig. 15.
The regions in Fig. 15 are sorted by relative decline in the
urban component (from smallest to largest). The regional
changes were calculated as the average of percent changes
for individual areas for that region. The uncertainty values
in Fig. 15 are based on variation in the values for individual
areas within the region. The background component has the
smallest variability among the three components, typically
between 5 % and 9 %. The urban component variability is

between 7 % and 17 %, and the decline observed in the urban
component for South America, Europe-1, and India is outside
the 3σ limits even for individual areas in these regions. The
industrial component was added to separate emissions from
large industrial sources in the urban areas from urban emis-
sions themselves. Emissions from such industrial sources are
typically similar to or smaller than urban emissions, and the
variability of the industrial component (10 %–30 %) is simi-
lar to or larger than that for the urban component.

China shows the smallest and non-significant decline in
the urban component over the analysed period as the main
COVID-19 lockdown in China occurred earlier (in Febru-
ary). Most of the regions demonstrated a statistically signif-
icant urban emission decline within the range of −18 % to
−28 %. The decline was the largest (−36 % to −52 %) in
three regions: Europe-1, South America, and India. The map
of the urban emission changes (Fig. 14b) shows that the first
two regions did indeed contain countries with a large decline
in urban emissions. In the case of India, a similar decline can
be seen in neighbouring Pakistan and Bangladesh. In Africa,
a decline is seen in the south and the north of the continent,
while countries in West Africa mostly show no decline and
even some increase probably due to a contribution from for-
est fires.

As mentioned in Sect. 4.3, the industrial NO2 component
varies from area to area and from one type of NO2 source
to another, although there are some clear regional differ-
ences. Chinese cities demonstrated small changes in both ur-
ban and industrial components (−2.8 % and +5 % respec-
tively) with one exception. Emissions from Wuhan, the city
where the pandemic began, declined by more than −60 %.
Industrial emissions there also declined but only by −30 %.
The background component shows no change there. A very
strict Wuhan lockdown ended on 8 April 2020, but during
that lockdown, NO2 emissions in Wuhan declined by −82 %
relative to the 2019 level (Ghahremanloo et al., 2021). That
strict lockdown period lasted for less than one-third of the
analysed period, but apparently it took some time for NO2
emissions to return to the pre-lockdown levels.

It is more difficult to interpret changes in industrial source
emissions because they change over time for various reasons
that may require an investigation on a case-by-case basis. For
example, the large uncertainties in the industrial emission
changes for Central America in Fig. 15 are caused by the
doubling of emissions from power plants near Havana. This
increase is likely caused by emissions from three power ships
(power plants on ships) with a total capacity of 184 MW,
which started their operation in Port de Mariel near Havana
in the second half of 2019 (https://karpowership.com/en/
project-cuba, last access: 4 November 2021). The largest re-
gional industrial emission decline was observed over Europe-
1 and India, i.e. where the largest urban emission decline was
also observed. It is likely that the severe restrictions during
the COVID-19 lockdown period there affected industrial ac-
tivity. However, on a larger scale, this link is not that obvious.

https://doi.org/10.5194/acp-22-4201-2022 Atmos. Chem. Phys., 22, 4201–4236, 2022

https://karpowership.com/en/project-cuba
https://karpowership.com/en/project-cuba


4226 V. Fioletov et al.: Quantifying TROPOMI NO2 changes during the COVID-19 lockdown

Figure 14. The map of NO2 percent changes between 2018–2019 and 2020 for the period 16 March–15 June estimated from TROPOMI
data for (a) the background component and (b) urban annual emissions per capita. The analysis was done using estimates for cities with a
population greater than 6 million in China and greater than 1 million for the rest of the world.

Although the lockdown had an impact on industrial sources,
the correlation coefficient between changes in urban and in-
dustrial emissions among all analysed areas is −0.01.

As mentioned, statistical errors related to the fitting proce-
dure are relatively small due to a very large number of satel-
lite pixels used in the fit. For the urban component, they are
between 1 % and 10 % for the cities analysed in this study.
However, the year-to-year variability could be high. Table 2
summarizes the uncertainty for the 13 regions analysed in
this study. It is similar to Table 1; however, individual rows
contain the averages of uncertainty estimates for all individ-
ual areas in the region. The uncertainties for the background
component are between 4.9 % and 9 %. The urban compo-
nent demonstrates the interannual variability between 9 %
and 22 % with the largest value over the Middle East, where,
as mentioned, there could be a problem with the population

density data quality. It is far more difficult to interpret the es-
timated interannual variability for the industrial sources be-
cause it depends on multiple factors from the meteorological
conditions to the emission strength itself. The main conclu-
sion here is that it is typically−10 % to−20 % for emissions
from large (about 5 kt yr−1 or more) sources estimated based
on 3 months of data.

To demonstrate that the observed NO2 changes in urban
emissions are indeed linked to the restricting measures taken
by different countries, the estimated percent NO2 changes in
annual emissions per capita were compared to the Google
Earth Community Mobility Report data. The mobility data
represent the changes in the number of people at locations
of various type and can be used as a proxy for urban traffic.
The changes in the background and urban components were
calculated for every country and compared to changes in mo-
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Figure 15. (a, c, e) The mean values for 16 March–15 June in 2018–2019 (blue) and 2020 (orange) values for (a, b) the background,
(c, d) urban, and (e, f) industrial components for the 13 regions. (b, d, f) The decline in 2020 mean values in percent from the mean 2018–
2019 values. The data are sorted according to the changes between 2020 and 2018–2019 in the urban component (d). Mean values for each
region were calculated as a mean of the values from all areas for that region. The uncertainty (σ ) was calculated as a standard error of the
mean. The error bars represent 2σ intervals.
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Table 2. The standard deviations of the random errors and interannual variability for background, urban, and industrial components for 13
regions in percent. The random errors and interannual variability are calculated from 3 years (2018, 2019, and 2021) for each area and then
averaged for all areas in the region. Interannual variability of the industrial component is calculated for regions with estimated total emissions
greater than 1 kt yr−1.

Area Random error (%) Interannual variability (%)

Background Urban Industrial Background Urban Industrial

Africa 0.21 1.56 2.42 7.3 19.8 21.3
Australia and New Zealand 0.34 0.80 1.22 8.6 9.2 12.2
Canada and US 0.25 0.99 2.82 7.5 10.0 18.3
Central America 0.21 0.95 1.72 5.4 11.0 20.3
China 0.30 1.06 1.90 7.3 19.6 16.4
Europe-1 0.23 0.96 4.06 5.6 12.3 27.6
Europe-2 0.25 1.30 3.13 6.8 15.4 17.1
India 0.23 1.78 0.77 9.0 16.6 12.4
Japan, Korea, Taiwan 0.31 0.86 1.29 4.9 12.9 13.2
Middle East 0.29 1.43 0.86 7.5 22.2 19.9
Northern Eurasia 0.29 1.42 2.78 8.8 13.5 25.4
South America 0.39 2.97 6.72 7.8 18.6 23.6
South-East Asia 0.29 1.03 1.68 8.0 14.1 16.1

Average 0.28 1.32 2.41 7.3 15.0 18.8

Standard deviation 0.05 0.58 1.61 1.3 4.1 4.9

bility data. Only countries with two or more cities were used
in the comparison. Note that the mobility data were averages
of all regions for the entire country, while the NO2 changes
were estimated for areas around large cities only. Mobility
data for China, North Korea, and some other countries were
not available.

The scatter plot of the mobility and the NO2 VCD changes
(Fig. 16) demonstrates a very different relationship between
the urban and background components. Changes in mobil-
ity and urban components are correlated (Fig. 16a). As ex-
pected, the relative changes in the urban component are
smaller than the mobility changes as the urban component
includes more than just mobility-related traffic. The high-
est correlation is observed when changes in the NO2 urban
component are compared with mobility for retail and recre-
ation, covering visits to restaurants, cafes, shopping centres,
theme parks, museums, libraries, movie theatres, and simi-
lar locations. The correlation coefficient between the percent
changes in per capita emissions and retail and recreation mo-
bility is 0.62 (the probability that there is no correlation is
less than 0.0003). There is no statistically significant correla-
tion (the correlation coefficient is −0.08) between the back-
ground NO2 and mobility data (Fig. 16b).

For individual areas, the uncertainties due to the interan-
nual variability are rather large, so the observed 2020 de-
cline in the urban component in many areas is within that
uncertainty. Regional averages are more accurate and de-
clines in urban emissions are statistically significant for all
regions except China. Finally, mean 2020 declines in all ar-
eas (except China) are −6.0± 1.2 % and −26.7± 2.6 % for

the background and urban components respectively, which
corresponds to 10σ and 20σ levels (Supplement, Fig. S3). In
2018, 2019, and 2021, such global averages are remarkably
stable, as all mean values are within ±2.5 % and are within
±5 % if the means are taken with the 2σ uncertainties. This
suggests that there are no substantial drifts or shifts on the
global scale in TROPOMI data, and the 2020 data are clearly
an outlier.

5 Discussion and conclusion

Statistical regression analysis was used to separate the contri-
bution from industrial sources, urban areas, and background
levels to the satellite-observed tropospheric NO2 columns
(VCDs) and to study the impact of the COVID-19 lockdown
on each component separately. The analysis was done for 261
major urban areas around the world grouped into 13 large
regions. The algorithm also estimates urban and industrial
emissions assuming a constant NO2 lifetime (or, more accu-
rately, decay time). A constant value of 3.3 h was used as the
lifetime.

To verify the obtained emission estimates, we compared
our result with the estimates from a similar study by Lange
et al. (2022). In that study, TROPOMI NO2 data were used
to estimate emissions from 45 sources worldwide, and then
the results were compared with the available emission in-
ventories and some other satellite-based emission estimates.
There were 33 sources common to both works. In order to
compare them we first calculated our total emissions, i.e. the
sum of urban and industrial emissions, and then converted
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Figure 16. A scatter plot of Google mobility statistic changes vs. TROPOMI NO2 VCD changes for (a) the urban and (b) background
components during the period from 16 March to 15 June 2020 compared to the baseline period. The Google mobility statistic changes show
the difference with the pre-lockdown period (3 January–6 February 2020) in percent. For TROPOMI, the difference is between the 2020 and
the 2018–2019 average. Each symbol represents one country; the dot colour demonstrates the region as shown in the legend. Only countries
with at least two cities used in this study are included in this plot. The correlation coefficient between the two data sets is 0.62. The dashed
y = x line is shown for reference. The error bars represent the standard errors.

them to the same lifetimes as in Lange et al. (2022) and then
multiplied them by 1.4 to calculate NOx emission. As ex-
pected, our emission estimates were higher than from Lange
et al. (2022) because there is typically more than one emis-
sion source in the analysed 3◦× 4◦ areas of this study. Nev-
ertheless, there is a 0.78 correlation coefficient between the
two estimates.

Unlike other similar studies that simply removed the back-
ground offset (e.g. Beirle et al., 2011; Lange et al., 2022),
this study included the background component as a function
of the elevation in the analysis. On a scale of several hundred
kilometres (as we analysed 3◦× 4◦ areas), most of the NO2
mass is typically related to the background component. Even
in the areas such as New York City, the background compo-
nent accounts for two-thirds of the total mass. This explains
why the estimated impact of the COVID-19 lockdown in ur-
ban areas depends on the size of the analysed area: the larger
the area the more background NO2 it includes and, therefore,
the smaller the NO2 difference between the COVID-19 lock-
down and reference periods.

In most of the analysed areas, changes in the background
components between the COVID-19 lockdown period anal-
ysed here (from 16 March to 15 June 2020) were typically
within 10 % from the 2018–2019 levels. In contrast, the ur-
ban component, based on population density, demonstrated
a substantial and rather uniform decline of about −18 % to
−28 % in most of the regions. Two regions (the most west-
ern part of Europe and India) demonstrated a larger decline:
about −40 % to −50 %. China showed a much smaller de-

cline (−4.4±8 %) because the lockdown there occurred prior
to the analysed period. As for industrial point sources, emis-
sions from them varied from region to region and from sector
to sector. They demonstrate a decline of about −20 % or less
except for the India and Europe-1 regions.

Abrupt changes in urban and industrial emissions due to
the COVID-19 lockdown did not immediately result in a sim-
ilar decline in the background component. This may explain
why large changes in NO2 emissions in urban areas pro-
duced a relatively small, about 9 % decline in global NO2
(Bray et al., 2021). The importance of background NO2 VCD
was previously noted by Qu et al. (2021) and Silvern et
al. (2019) when they found that the observed satellite tro-
pospheric NO2 VCD trends in remote areas do not match
the expected changes. The origins of background NO2 are
still largely related to urban and industrial sources as it is
clearly higher in the Northern Hemisphere, particularly over
China, central Europe, and the eastern US, than in the South-
ern Hemisphere and tropics. However, the analysed 3-month
period may simply not be long enough for the lockdown
to cause large changes in the background levels. There are
also other NOx sources such as soil emissions (Hudman et
al., 2012; Sha et al., 2021). They directly contribute to the
background component as do sources aloft, such as lightning
and to a lesser extent aircraft NOx . It is estimated that light-
ning is responsible for roughly 16 % of global production,
and most of this NOx is found in the free troposphere (Buc-
sela et al., 2019). Furthermore, Zhang et al. (2012) estimated
that sources such as lightning, soils, and wildfires account for
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about 20 % of emissions annually and up to 39 % in summer.
Satellite measurements are also more sensitive to NO2 in the
free troposphere than in the boundary layer and relatively
small amounts of NO2 there produce a larger signal in satel-
lite data. Another possible explanation is that low NO2 con-
centrations in the boundary layer and free troposphere may
have longer lifetimes than in the plumes. The fact that NO2
fluctuations remain persistent over a longer time in clean con-
ditions than over polluted areas (Vinnikov et al., 2017) indi-
rectly confirms that.

Barré et al. (2021) noticed a different lockdown-related
decline between NO2 VCDs and surface concentrations
(−23 % and−43 % over Europe respectively). Moreover, Qu
et al. (2021) reported that VCDs and surface concentrations
had a similar decline between 2019 and 2020 at only 5 % of
the most polluted sites. At the other sites, TROPOMI NO2
VCD data demonstrated, on average, a smaller decline than
surface concentrations. Different changes in background and
urban components in TROPOMI NO2 could explain this in-
consistency between the surface and satellite VCD-based re-
sults. The urban component is directly linked to city plumes
and therefore is a better proxy for surface concentrations in
polluted areas, while the background component includes
contributions from other sources that were not affected by
the lockdown.

The urban and industrial components are based on plume
dispersion functions that correspond to NO2 near the ground,
almost always in the boundary layer. The urban component is
based on the population density and the assumption that an-
nual emissions per capita are uniform in the analysed 3◦×4◦

area. There are very large differences, up to factor of 40, in
estimated emissions per capita among the different areas. The
estimates were done for 3-month periods. For such a short
time interval, most of the cities with a population of more
than 1 million produce a statistically significant signal that
can be readily detected in TROPOMI NO2 data. As estimated
emissions per capita are rather uniform, they can be used to
account for the urban component outside large cities. Thus, it
should be possible to estimate background, urban, and indus-
trial components on the global scale and analyse the residuals
in search of other factors contributing to the NO2 budget.

The approach described in this study can be used to esti-
mate emissions from cities and industrial point sources. For
the latter, only source coordinates are required. A compari-
son of reported and TROPOMI-derived NOx emissions for
the US demonstrated a good correlation between them. As
source coordinates can be also detected from satellite data
alone (Beirle et al., 2019; Ding et al., 2020; McLinden et
al., 2016), it may be possible to develop an independent “top–
down” NOx emission inventory from satellite measurements
to complement and improve available bottom–up inventories
as was done for SO2 (Liu et al., 2018). This could be im-
portant for regions where no other emission information is
available.

Appendix A:

This appendix contains additional details of the fitting algo-
rithm used that is largely based on the algorithm for multi-
ple point source emission estimates (Fioletov et al., 2017).
TROPOMI NO2 VCD can be expressed as a sum of con-
tributions αi ·�i from all individual industrial sources (i),
a population-density-related term αp�p, an elevation-related
background, and noise (ε):

TROPOMI NO2(θ,ϕ)= α0+αp�p(θ,ϕ)+6αi�i (θ,ϕ)

+ (β0+β1(θ − θ0)+β2(ϕ−ϕ0))

· exp(−H (θ,ϕ)/H0)+ ε(θ,ϕ). (A1)

All � function are normalized (i.e. their total integral equals
1) plume functions: the value of that function for a particu-
lar pixel with latitude θ and longitude ϕ is proportional to the
value of the plume parameterization from the source i located
at the latitude θi and longitude (ϕi) (all in radians). The pa-
rameterization assumes that the plume is moving downwind
along a straight line and has a Gaussian shape spread across
that line. To describe the plume, we can rotate satellite pixels
for a particular day around the source, so the plume would
always be moving from north to south, apply the plume pa-
rameterization, and then rotate the pixels back. If (xi,yi) and
(x′i,y′i) are the pixel’s Cartesian coordinates (km) in the sys-
tem with the origin at the source i before and after the rota-
tion respectively, then they can be calculated from the pixel
and source latitudes and longitudes as

xi = r · (ϕ−ϕi) · cos(θi);

yi = r · (θ − θi);x′i = xi · cos(−ω)+ yi · sin(−ω);

y′i =−xi · sin(−ω)+ yi · cos(−ω),

where r = 111.3km ·180/π (or r = 6371km ·π/180 for lat-
itude and longitude in degrees); ω is the pixel wind direction
(0 for north); and ϕi and θi are the source i longitude and
latitude (all in radians). Note that there was a typo in this
original formula for r in Fioletov et al. (2017).

Following Fioletov et al. (2017), the contribution αi ·�i =
αi� (θ,φ,ω,s,θi,φi) from the source i can be expressed as
αi ·�i = αi · f (x′i,y′i) · g(y′i, s), where

f (x′i,y′i)=
1

σ1
√

2π
exp

(
−
x′

2
i

2σ 2
1

)
;

g(y′i , s)=
λ1

2
exp

(
λ1(λ1σ

2
+ 2y′i )

2

)
· erfc

(
λ1σ

2
+ y′i
√

2σ

)
;

σ1 =

{ √
σ 2− 1.5y′i,y′i < 0;

σ,y′i ≥ 0;

λ1 = λ/s. (A2)

It is assumed that NO2 emitted from a point source declines
exponentially (i.e. as exp(−λt)) with time (t) with a constant
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lifetime (or decay rate) τ = 1/λ. The second parameter is the
plume width (σ ).

Note that
∫
∞

−∞

∫
∞

−∞
f (x,y) · g(y,s)dxdy =∫

∞

−∞
(
∫
∞

−∞
f (x,y)dx) · g(y,s)dy =

∫
∞

−∞
g(y,s)dy = 1;

therefore the parameter αi represents the total observed
number of NO2 molecules (or the NO2 mass) near the source
i. If TROPOMI NO2 is in DU and σ is in kilometres, then a
is in 2.69× 1026 molecules or 0.021 T(NO2). Furthermore,
the emission strength (E) can be calculated as E = α/τ
assuming a simple mass balance.

As mentioned in Sect. 3, some of the sources used in the
analysis are not point sources but clusters. In that case, �i =∑
jwj�j

(
θ,φ,ω,s,θj ,φj

)
, where�j is the plume function

for source j and wj is the weighting coefficient established
by the factor analysis.

Similarly, αp�p represents the contribution from the
population-density-related component, where �p is the
plume function from an area-distributed source. �p is a
weighted sum of plume functions from a grid with the
weighting coefficients proportional to the population at the
grid points�p =

∑
ijρij�

(
θ,φ,ω,s,θij ,φij

)
, where θij and

φij are the grid points coordinates and ρij is the population
associated with that grid point. Thus, αp is the coefficient
that represents the total NO2 mass which corresponds to one
person. In our calculations we used a 3◦× 4◦ area with a
0.2◦× 0.2◦ grid with 336 (16× 21) grid cells.

Finally, the elevation-related background term α0+

(β0+β1 (θ − θ0)+β2 (ϕ−ϕ0))·exp(−H/H0), where θ0 and
ϕ0 are the coordinates of the centre of the analysed area and
E is the elevation in kilometres and H0 = 1 km, is deter-
mined by three parameters.

Equation (A1) represents a linear regression model where
the unknown parameters αp and αi can be estimated from
the measured variable (TROPOMI NO2) at many pixels and
known regressors. The fitting was done three times using all
data for the analysed period (16 March–15 June) in 2018,
2019, and 2020.

Data availability. The TROPOMI NO2 product is publicly avail-
able on the Copernicus Sentinel-5P data hub (https://s5phub.
copernicus.eu, last access: 5 August 2021; S5P Data Hub, 2022).
The reprocessed (RPRO) and offline mode (OFFL) data of version
V1.2.2 to version V1.3.2 were used. The Gridded Population of the
World (GPW) data set is available from the NASA Socioeconomic
Data and Applications Center at https://sedac.ciesin.columbia.
edu/data/collection/gpw-v4 (last access: 1 March 2021; SEDAC,
2017). The European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA5 reanalysis data are available from https://
www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (last
access: 5 August 2021; C3S, 2017). Elevation data are from the
gridded global relief ETOPO2v2 database (https://www.ngdc.noaa.
gov/mgg/global/etopo2.html, last access: 1 March 2021; NOAA,
2006).
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