

Supplement of

Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere

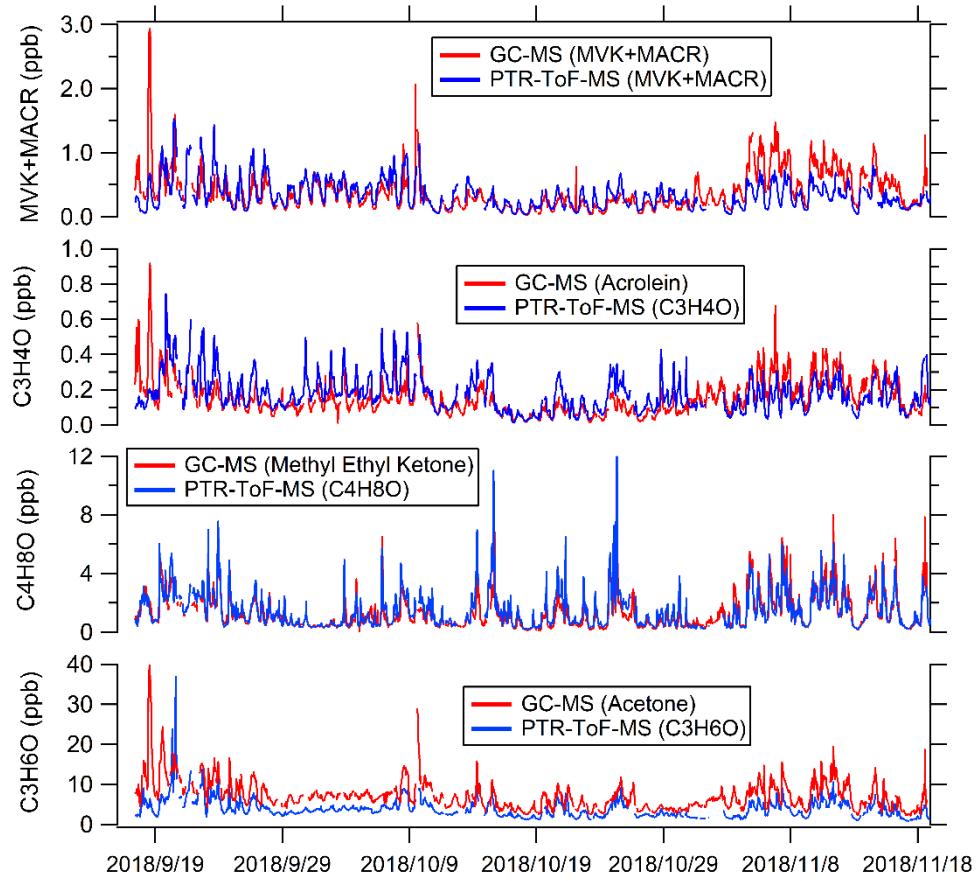
Wenjie Wang et al.

Correspondence to: Bin Yuan (byuan@jnu.edu.cn) and Hang Su (h.su@mpic.de)

The copyright of individual parts of the supplement might differ from the article licence.

25 **1 Calibration of GC-MS**

26 Cylinder standard gases were employed to calibrate the online GC-MS/FID
27 system. A 63-chemicals mixture standard (Spectra Gases) was used to calibrate C2–
28 C6 OVOCs and halocarbons. The calibration curves for each species were acquired by
29 diluting the mixture standard gas into five concentration gradients. The coefficients of
30 determination (r^2) for all calibration curves are larger than 0.995. Ambient
31 concentrations of C2–C6 OVOCs were calculated according to their calibration
32 curves. It is worth noting that these OVOCs may be unstable in cylinders.
33 Additionally, the preconcentration procedures for the GC-MS technique may cause
34 loss of the OVOCs especially under high RH condition because of their relatively
35 high Henry constants. We compared OVOC concentrations measured by GC-MS and
36 PTR-ToF-MS. The measurement results of the two instruments are generally similar
37 (Figure S1). The differences of the two instruments for MVK+MACR, C3H4O and
38 C4H8O are within 20%. However, acetone measured by GC-MS is 46% higher than
39 that measured by PTR-ToF-MS. The differences between GC-MS and PTR-ToF-MS
40 are acceptable, as uncertainties of OVOCs measurements of GC-MS and PTR-ToF-
41 MS are in the range of 20-30%.


42 Given the higher accuracy of PTR-ToF-MS technology in terms of measuring
43 OVOCs, we gave priority to utilizing the OVOCs data of PTR-ToF-MS for analysis in
44 this study. To reduce the uncertainty of PTR-ToF-MS induced by isomers, the
45 concentrations of acetone were determined by the difference between the C₃H₆O
46 concentrations measured by PTR-ToF-MS and propanal concentrations measured by
47 GC-MS; the concentrations of MVK and MACR were determined according to
48 C₄H₆O concentration measured by PTR-ToF-MS and the ratio of MVK to MACR
49 measured by GC-MS.

50 **2 The influence of measurement uncertainty on the calculation of P(RO_x)**

51 The common OVOCs species were calibrated in this study. However, some
52 OVOC species, including pyruvic acid, nitrophenol, methyl nitrophenol and carbonyls
53 with large carbon number, were not calibrated. For these OVOC species, we used the
54 method proposed by Sekimoto, et al.¹ to determine the relationship between VOC

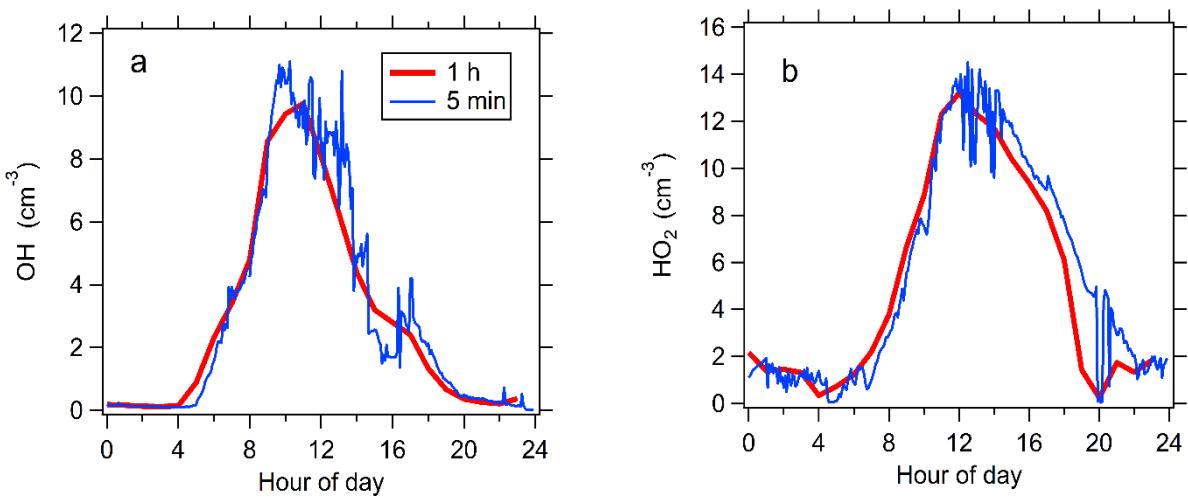
55 sensitivity and kinetic rate constants for proton transfer reactions of H_3O^+ with VOCs.
56 The fitted line was used to determine the concentrations of those uncalibrated species.
57 Following the discussions in Sekimoto, et al.¹, the uncertainties of the concentrations
58 for uncalibrated species were about 50 %. The uncertainties in the concentrations of
59 these species lead to uncertainties of 0.04~0.23 ppb h^{-1} (1.3%~8.0%) in calculation of
60 $\text{P}(\text{ROx})$. Among these species, $\text{C}_n\text{H}_{2n-2}\text{O}_2$ ($n > 3$) contributes the largest uncertainty,
61 followed by $\text{C}_n\text{H}_{2n-4}\text{O}_2$ ($n > 3$), $\text{C}_n\text{H}_{2n-4}\text{O}_3$ ($n > 3$), $\text{C}_n\text{H}_{2n-2}\text{O}$ ($n > 3$), $\text{C}_n\text{H}_{2n}\text{O}$ ($n > 5$),
62 pyruvic acid, nitrophenol and methyl nitrophenol.

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

91 Figure S1. Comparison of typical OVOC concentrations measured by both GC-MS
 92 and PTR-ToF-MS.

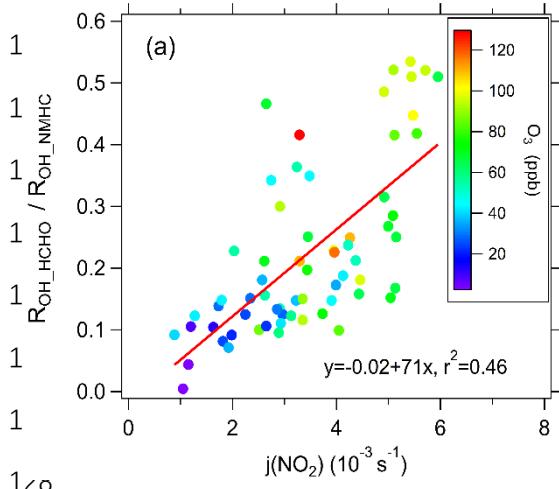
93


94

95

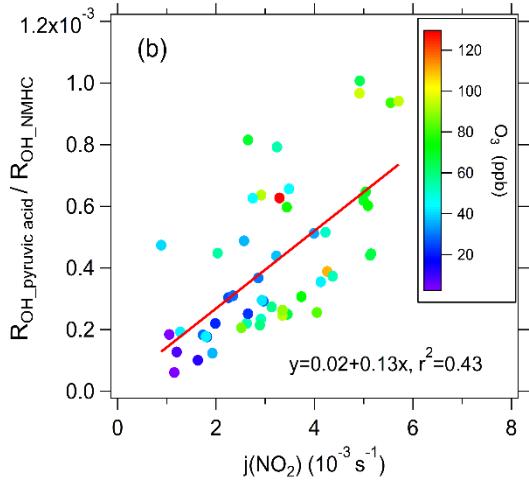
96 Figure S2. The average diurnal variations of concentrations of formic acid and acetic
97 acid during the campaign.

98
99
100
101
102
103
104
105


114
115 Figure S3. The simulated radical concentrations with 1-h and 5-min time resolution
116 on October 1, 2018.

117

118


119

120

120

129 Figure S4. The scatter plot of daily daytime average $\text{ROH}_{\text{HCHO}} / \text{ROH}_{\text{NMHC}}$ (and
130 $\text{ROH}_{\text{pyruvic acid}} / \text{ROH}_{\text{NMHC}}$) ratios versus $j(\text{NO}_2)$ color-coded using ozone concentrations
131 during the campaign. Each point corresponds to a daytime average over one day of the
132 campaign.

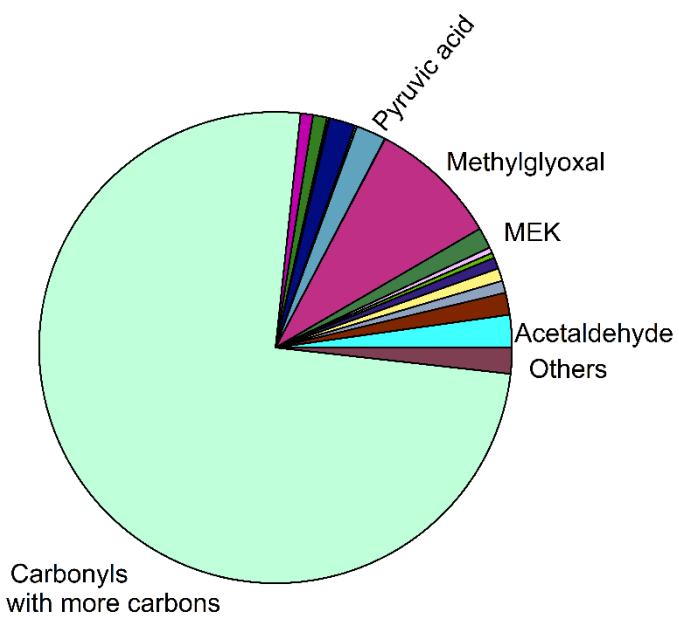
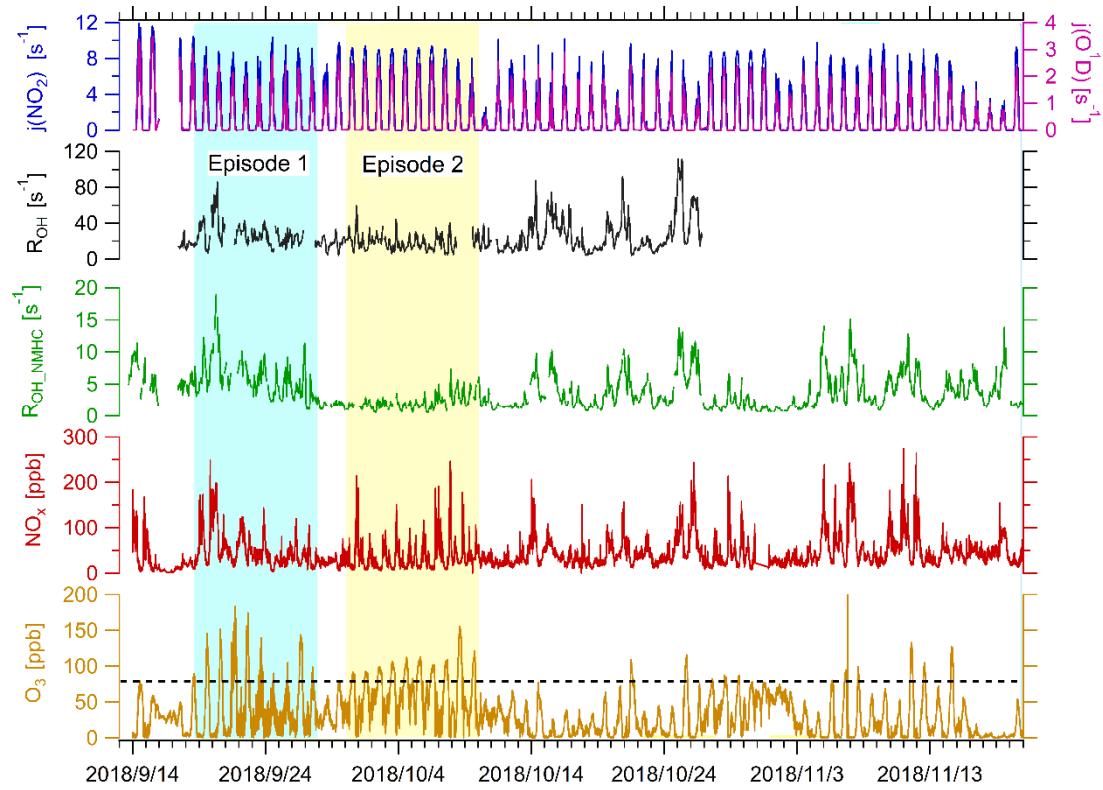
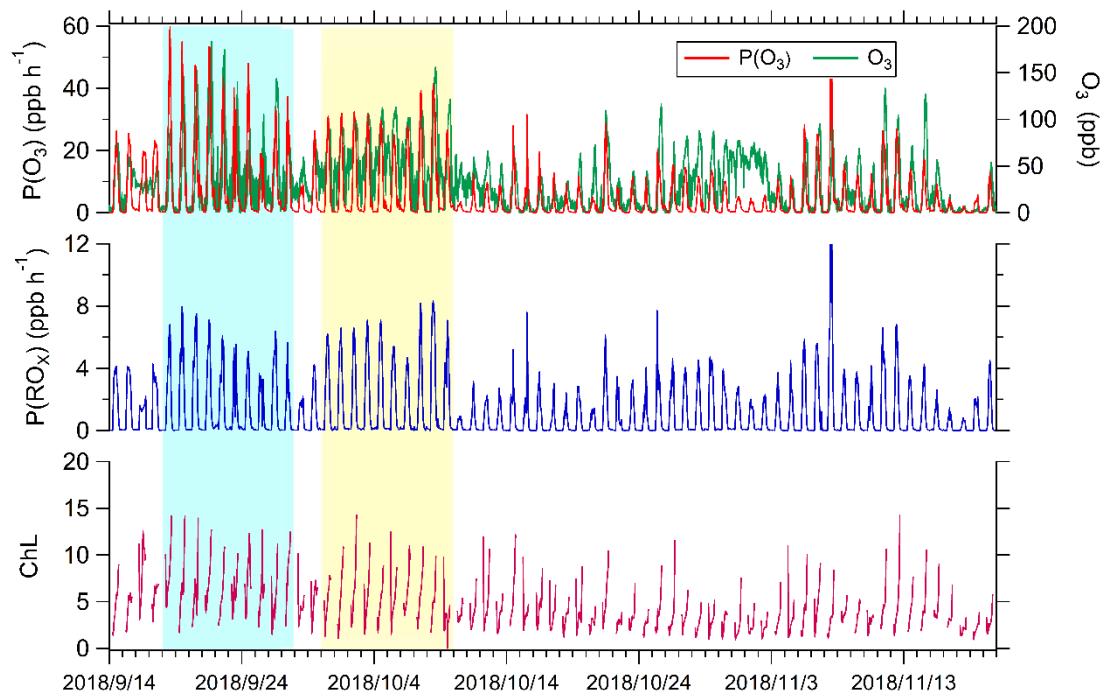




Figure S5. The relative contributions of non-HCHO OVOC species to P(RO_x) for the scenarios with maximum OVOC contribution to P(RO_x).

152

153 Figure S6. Time series of photolysis frequencies ($j(\text{NO}_2)$ and $j(\text{O}^1\text{D})$), total OH
 154 reactivity (ROH), OH reactivity of NMHCs (ROH_{NMHC}), NO_x concentration and O_3
 155 concentration during the campaign. The blue shade and yellow shade represent the two
 156 ozone pollution periods which are defined as episode 1 and episode 2, respectively.

157

158 Figure S7. Time series of $P(O_3)$, $P(ROx)$ and ChL during the campaign in Guangzhou.

159 The blue shade and yellow shade represent the two ozone pollution periods which are

160 defined as episode 1 and episode 2 respectively.

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

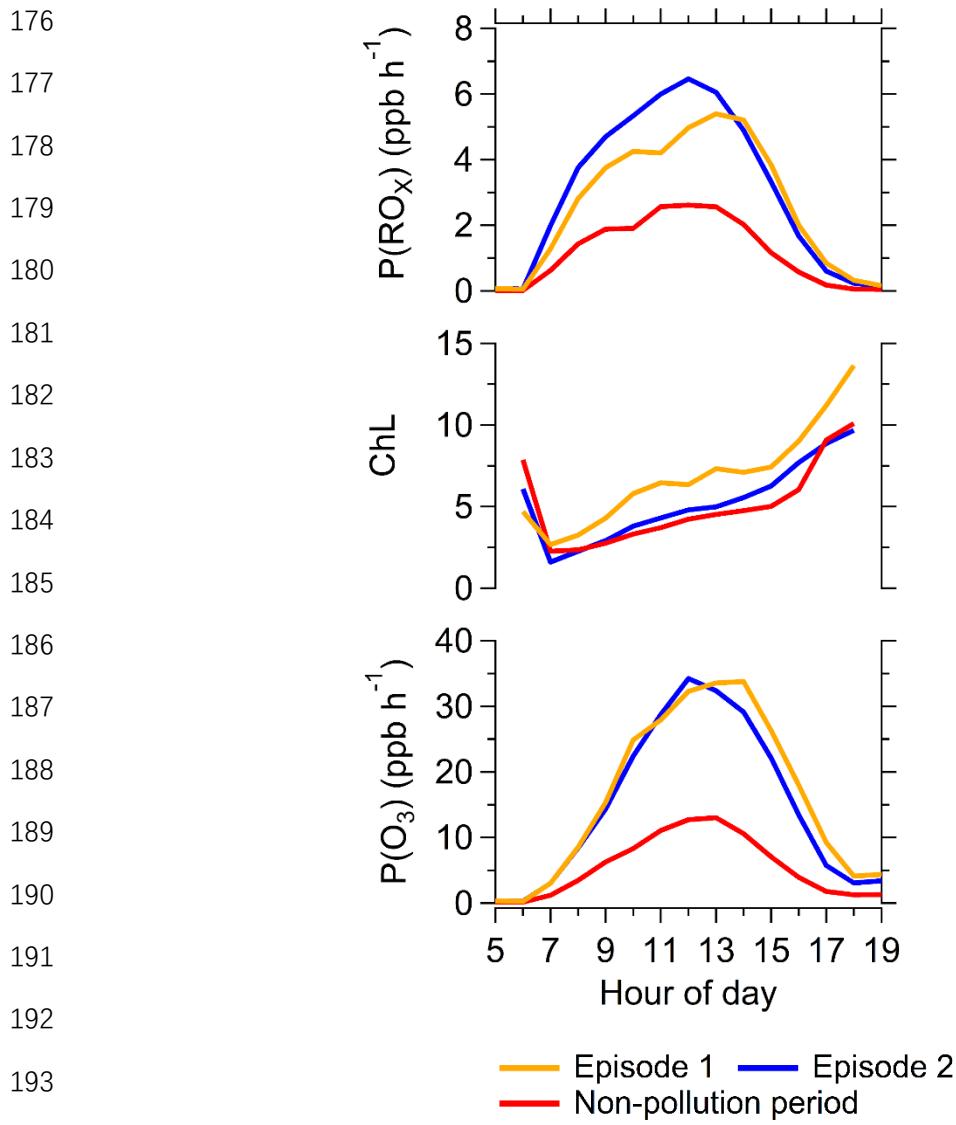


Figure S8. Averaged diurnal variations of $P(RO_x)$, ChL and $P(O_3)$ during episode 1

(yellow line), episode 2 (blue line) and non-pollution period (red line).

198 Table S1. Molecular formula, photolysis reactions, daytime average mixing ratio and
199 photolysis frequencies of photodegradable species during the campaign.

Photodegradable species	Molecular formula	Measurement technology	Mixing ratio (ppbv)	Photolysis frequency (s ⁻¹)
Ozone	O ₃	49i O ₃ analyzer	48±17	7.0×10 ⁻⁶
Nitrous acid	HONO	LOPAP	0.47±0.20	5.7×10 ⁻⁴
Formaldehyde	HCHO	Hantzsch fluorimetry	5.2±3.8	1.1×10 ⁻⁵
Acetaldehyde	CH ₃ CHO	GC-MS	2.3±1.2	1.3×10 ⁻⁶
Propanal	C ₂ H ₅ CHO	GC-MS	0.35±0.21	6.1×10 ⁻⁶
n-butanal	C ₃ H ₇ CHO	GC-MS	0.20±0.14	6.5×10 ⁻⁶
n-pentanal	C ₄ H ₉ CHO	GC-MS	0.21±0.14	6.5×10 ⁻⁶
n-hexanal	C ₅ H ₁₁ CHO	GC-MS	0.18±0.15	6.7×10 ⁻⁶
Methacrolein	C ₄ H ₆ O	PTR-QiTof-MS, GC-MS	0.22±0.14	1.0×10 ⁻⁶
Acetone	CH ₃ COCH ₃	PTR-QiTof-MS	4.4±2.5	1.4×10 ⁻⁷
Methyl Ethyl Ketone	C ₄ H ₈ O	PTR-QiTof-MS	1.8±1.4	1.2×10 ⁻⁶
Methylglyoxal	C ₃ H ₄ O ₂	PTR-QiTof-MS	0.32±0.20	5.5×10 ⁻⁵
Methyl vinyl ketone	C ₄ H ₆ O	PTR-QiTof-MS, GC-MS	0.26±0.15	7.2×10 ⁻⁷
Methyl hydroperoxide	CH ₃ OOH	PTR-QiTof-MS	0.022±0.015	1.8×10 ⁻⁶
Pyruvic acid	CH ₃ COCO ₂ H	PTR-QiTof-MS	0.05±0.04	6.5×10 ⁻⁵
Acrolein	CH ₂ =CHCHO	PTR-QiTof-MS	0.21±0.10	3.4×10 ⁻⁷
Hydroxyacetone	CH ₃ C(O)CH ₂ OH	PTR-QiTof-MS	2.0±1.5	1.4×10 ⁻⁶
Hydroxymethyl hydroperoxide	HOCH ₂ OOH	PTR-QiTof-MS	0.06±0.03	1.6×10 ⁻⁶
Benzaldehyde	C ₇ H ₆ O	PTR-QiTof-MS	0.15±0.11	1.0×10 ⁻⁶
Nitrophenol	C ₆ H ₅ NO ₃	PTR-QiTof-MS	0.026±0.018	5.7×10 ⁻⁵
Methyl nitrophenol	C ₇ H ₇ NO ₃	PTR-QiTof-MS	0.023±0.017	5.7×10 ⁻⁵
	C _n H _{2n} O (n>5)	PTR-QiTof-MS	0.31±0.24	1.2×10 ⁻⁶ ~6.5×10 ⁻⁶
	C _n H _{2n-2} O (n>3)	PTR-QiTof-MS	2.04±1.60	1.2×10 ⁻⁶ ~6.5×10 ⁻⁶
Carbonyls with more carbons	C _n H _{2n-2} O ₂ (n>3)	PTR-QiTof-MS	0.42±0.32	1.2×10 ⁻⁶ ~1.2×10 ⁻⁴
	C _n H _{2n-4} O ₂ (n>3)	PTR-QiTof-MS	0.20±0.11	1.2×10 ⁻⁶ ~3.0×10 ⁻⁴
	C _n H _{2n-4} O ₃ (n>3)	PTR-QiTof-MS	0.13±0.07	1.2×10 ⁻⁶ ~1.8×10 ⁻⁴

Nitrophenol with more methyl	$C_{6+n}H_{5+2n}NO_3$ ($n \geq 1$)	PTR-QiToF-MS	0.021 ± 0.014	5.7×10^{-5}
Benzal with more methyl	$C_{7+n}H_{6+2n}O$ ($n \geq 1$)	PTR-QiToF-MS	0.33 ± 0.19	1.0×10^{-6}
<hr/>				

200

201 Table S2. Observed and box-model simulated daytime average concentrations of
 202 photodegradable OVOCs and the underestimation fraction of simulation during the
 203 campaign.

Photodegradable species	Molecular formula	Observed Concentration (ppbv)	Simulated Concentration (ppbv)	Underestimation of simulation (%)
Formaldehyde	HCHO	5.2±3.8	4.1±3.0	21
Acetaldehyde	CH ₃ CHO	2.3±1.2	1.5±0.85	35
Propanal	C ₂ H ₅ CHO	0.35±0.21	0.25±0.16	29
n-butanal	C ₃ H ₇ CHO	0.20±0.14	0.048±0.035	76
n-pentanal	C ₄ H ₉ CHO	0.21±0.14	0.029±0.021	86
n-hexanal	C ₅ H ₁₁ CHO	0.18±0.15	0.0034±0.0030	98
Methacrolein	C ₄ H ₆ O	0.22±0.14	0.29±0.22	-32
Acetone	CH ₃ COCH ₃	4.4±2.5	1.3±1.1	70
Methyl Ethyl Ketone	C ₄ H ₈ O	1.8±1.4	0.38±0.29	79
Methylglyoxal	C ₃ H ₄ O ₂	0.31±0.20	0.20±0.16	35
Methyl vinyl ketone	C ₄ H ₆ O	0.26±0.15	0.34±0.30	-31
Methyl hydroperoxide	CH ₃ OOH	0.022±0.015	0.016±0.013	27
Pyruvic acid	CH ₃ COCO ₂ H	0.05±0.04	0.026±0.022	48
Acrolein	CH ₂ =CHCHO	0.21±0.10	0.005±0.004	97
Hydroxyacetone	CH ₃ C(O)CH ₂ OH	2.0±1.5	0.66±0.54	67
Hydroxymethyl Hydroperoxide	HOCH ₂ OOH	0.06±0.03	0.02±0.01	67
Benzaldehyde	C ₇ H ₆ O	0.15±0.11	0.11±0.09	27
Nitrophenol	C ₆ H ₅ NO ₃	0.026±0.018	0.022±0.020	15
Methyl nitrophenol	C ₇ H ₇ NO ₃	0.023±0.017	0.021±0.018	8.7
	C _n H _{2n} O (n>5)	0.31±0.24	0.11±0.08	65
Carbonyls with more carbons	C _n H _{2n-2} O (n>3)	2.04±1.60	0.52±0.37	75
	C _n H _{2n-2} O ₂ (n>3)	0.42±0.32	0.11±0.07	74
	C _n H _{2n-4} O ₂ (n>3)	0.20±0.11	0.035±0.26	83
	C _n H _{2n-4} O ₃ (n>3)	0.13±0.07	0.031±0.022	74
Nitrophenol with more methyl	C _{6+n} H _{5+2n} NO ₃ (n≥1)	0.021±0.014	0.011±0.009	48

Benzal with more methyl	$C_{7+n}H_{6+2n}O$ ($n \geq 1$)	0.33 ± 0.19	0.13 ± 0.08	61
-------------------------	-----------------------------------	-----------------	-----------------	----

204

205

206

207

208 Table S3. Daytime (6:00-19:00) average of O₃, j(NO₂), NOx, total OH reactivity (R_{OH}),
 209 OH reactivity of NMHCs (R_{OH_NMHC}), and R_{OH_NMHC}/ NOx for the two ozone episodes,
 210 other periods, and the campaign average.

Parameter	episode 1	episode 2	Other periods	campaign average
MDA1 O ₃ (ppbv)	114±35	106±33	62±22	75±26
MDA8 O ₃ (ppbv)	84±27	96±31	48±17	60±19
j(NO ₂) (s ⁻¹)	0.0037±0.0028	0.0053±0.0041	0.0031±0.0025	0.0034±0.0026
NOx (ppbv)	41±27	21±14	37±21	32±17
R _{OH_NMHC} (s ⁻¹)	6.0±2.8	2.0±0.63	3.2±1.4	3.6±1.6
R _{OH} (s ⁻¹)	26±16	16±8.0	/	/
R _{OH_NMHC} / NOx (s ⁻¹ ppb ⁻¹)	0.15±0.10	0.095±0.065	0.086±0.055	0.11±0.067

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225 Reference:

226 1. Sekimoto, K.; Li, S.-M.; Yuan, B.; Koss, A.; Coggon, M.; Warneke, C.; de Gouw,
227 J., Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-
228 MS) for organic trace gases using molecular properties. *International Journal of Mass
229 Spectrometry* **2017**, *421*, 71-94.

230