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Abstract. We quantify methane emissions and their 2010–2017 trends by sector in the contiguous United States
(CONUS), Canada, and Mexico by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite
(GOSAT) atmospheric methane observations. The inversion uses as a prior estimate the national anthropogenic
emission inventories for the three countries reported by the US Environmental Protection Agency (EPA), En-
vironment and Climate Change Canada (ECCC), and the Instituto Nacional de Ecología y Cambio Climático
(INECC) in Mexico to the United Nations Framework Convention on Climate Change (UNFCCC) and thus
serves as an evaluation of these inventories in terms of their magnitudes and trends. Emissions are optimized
with a Gaussian mixture model (GMM) at 0.5◦× 0.625◦ resolution and for individual years. Optimization is
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done analytically using lognormal error forms. This yields closed-form statistics of error covariances and infor-
mation content on the posterior (optimized) estimates, allows better representation of the high tail of the emission
distribution, and enables construction of a large ensemble of inverse solutions using different observations and
assumptions. We find that GOSAT and in situ observations are largely consistent and complementary in the op-
timization of methane emissions for North America. Mean 2010–2017 anthropogenic emissions from our base
GOSAT+ in situ inversion, with ranges from the inversion ensemble, are 36.9 (32.5–37.8) Tga−1 for CONUS,
5.3 (3.6–5.7) Tga−1 for Canada, and 6.0 (4.7–6.1) Tga−1 for Mexico. These are higher than the most recent
reported national inventories of 26.0 Tga−1 for the US (EPA), 4.0 Tga−1 for Canada (ECCC), and 5.0 Tga−1 for
Mexico (INECC). The correction in all three countries is largely driven by a factor of 2 underestimate in emis-
sions from the oil sector with major contributions from the south-central US, western Canada, and southeastern
Mexico. Total CONUS anthropogenic emissions in our inversion peak in 2014, in contrast to the EPA report of a
steady decreasing trend over 2010–2017. This reflects offsetting effects of increasing emissions from the oil and
landfill sectors, decreasing emissions from the gas sector, and flat emissions from the livestock and coal sectors.
We find decreasing trends in Canadian and Mexican anthropogenic methane emissions over the 2010–2017 pe-
riod, mainly driven by oil and gas emissions. Our best estimates of mean 2010–2017 wetland emissions are 8.4
(6.4–10.6) Tga−1 for CONUS, 9.9 (7.8–12.0) Tga−1 for Canada, and 0.6 (0.4–0.6) Tga−1 for Mexico. Wetland
emissions in CONUS show an increasing trend of +2.6 (+1.7 to +3.8)%a−1 over 2010–2017 correlated with
precipitation.

1 Introduction

Atmospheric methane (CH4) is the most important anthro-
pogenic greenhouse gas after carbon dioxide (CO2). Nat-
ural emissions are mainly from wetlands. Anthropogenic
emissions are from many sectors including the oil and gas
supply chain, coal mining, livestock, and waste manage-
ment. Individual countries must report their anthropogenic
methane emissions by sector to the United Nations in ac-
cordance with the United Nations Framework Convention on
Climate Change (UNFCCC, 1992). These national emission
inventories are mainly constructed by bottom-up methods as
the product of activity data and emission factors, following
methodological guidelines from the Intergovernmental Panel
on Climate Change (IPCC). The emission factors are highly
variable and have large uncertainties, leading to errors in
estimating national emissions, their trends, and the contri-
butions of different sectors (Kirschke et al., 2013; Saunois
et al., 2020). Top-down methods involving inversion of at-
mospheric methane observations can usefully diagnose these
errors (Houweling et al., 2017). Here, we use an inverse anal-
ysis of 2010–2017 in situ and satellite observations of at-
mospheric methane over North America to evaluate national
emission inventories and their trends by sector for the United
States (US), Canada, and Mexico.

US anthropogenic methane emissions are reported yearly
by the US Environmental Protection Agency (EPA, 2021)
as part of the Inventory of US Greenhouse Gas Emissions
and Sinks (GHGI). Methane emissions for the year 2012,
from the 2016 version of this inventory (EPA, 2016), were
spatially allocated on a 0.1◦× 0.1◦ (10× 10 km) grid by
Maasakkers et al. (2016) to enable its evaluation using
top-down methods. Results using analysis of atmospheric

methane measurements from ground, aircraft, and satellite
platforms show larger methane emissions than reported in the
GHGI, particularly for the oil and gas industry (Alvarez et al.,
2018; Zhang et al., 2020; Lu et al., 2021; Maasakkers et al.,
2021; Qu et al., 2021) and for livestock (Lu et al., 2021; Yu
et al., 2021). Atmospheric observations also suggest an in-
creasing trend of US anthropogenic emissions over the past
decade (Turner et al., 2016; Sheng et al., 2018a; Lan et al.,
2019; Maasakkers et al., 2021), while the GHGI indicates a
decrease (EPA, 2021).

Anthropogenic methane emissions for Canada are re-
ported yearly by Environment and Climate Change Canada
(ECCC, 2020a; 2021) as part of the National Inventory Re-
port (NIR). Atmospheric observations again indicate an un-
derestimate of emissions from oil and gas production (Ather-
ton et al., 2017; Johnson et al., 2017; Chan et al., 2020; Baray
et al., 2021; Lu et al., 2021; Tyner and Johnson, 2021) but a
decrease in these emissions over the past decade (Lu et al.,
2021; Maasakkers et al., 2021). Scarpelli et al. (2021) re-
cently allocated the ECCC NIR (ECCC 2020a) for the year
2018 on a 0.1◦× 0.1◦ grid, and our work is the first to use it
in an inverse analysis.

Mexico’s anthropogenic methane emissions are reported
by the Instituto Nacional de Ecología y Cambio Climático
(INECC) in Mexico’s National Inventory of Greenhouse
Gases and Compounds (INEGyCEI) for selected years (IN-
ECC and SEMARNAT, 2018). The last communication to
the UNFCCC was in 2015, and this inventory was allocated
to a 0.1◦× 0.1◦ grid by Scarpelli et al. (2020). A recent in-
verse analysis of satellite data finds oil and gas emissions to
be underestimated by a factor of 2 over eastern Mexico (Shen
et al., 2021).
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The above top-down studies, except for Baray et al. (2021)
and Lu et al. (2021), used either in situ or satellite obser-
vations but not both. Satellite observations have better data
coverage but are less sensitive to emissions (Turner et al.,
2018) and have larger uncertainties, particularly at high lat-
itudes. In a previous inverse analysis (Lu et al., 2021), we
showed that in situ and satellite observations provide comple-
mentary global information for inverse analyses of methane
emissions. That inversion was conducted at 4◦× 5◦ resolu-
tion, which is too coarse for specific evaluation of national
inventories.

Here we apply extensive in situ observations from sur-
face sites, towers, ships, and aircraft (GLOBALVIEWplus
CH4 ObsPack data compilation) together with the Green-
house Gases Observing Satellite (GOSAT) observations in
an inverse analysis for 2010–2017 to optimize methane emis-
sions and their year-to-year variability at up to 0.5◦×0.625◦

resolution for North America. We use as prior estimates the
gridded national emission inventories from the EPA (US),
ECCC (Canada), and INECC (Mexico) so that our results
can inform inventory improvement planning at the emission
sector level. Following Lu et al. (2021), we use an analytical
inversion method that provides closed-form characterization
of error statistics and information content on the inverse so-
lution and that also allows us to quantitatively compare the
information from the in situ and satellite observations.

2 Methods

We use methane observations from the GLOBALVIEWplus
CH4 ObsPack in situ data (Sect. 2.1) and/or GOSAT satellite
retrievals (Sect. 2.2) with the GEOS-Chem chemical trans-
port model (Sect. 2.4) as the forward model to optimize a
state vector of mean methane emissions for individual years
(Sect. 2.3) covering the North American continent at a spatial
resolution of up to 0.5◦× 0.625◦. We derive posterior esti-
mates of the state vector and the associated error covariance
matrix by analytical solution to the Bayesian optimization
problem (Sect. 2.5). Our base inversion uses GOSAT+ in
situ observations and our best choices of inversion param-
eters. We also present results from an ensemble of sensitivity
inversions using observation subsets (in situ or GOSAT) and
varying inversion parameter assumptions (e.g., different er-
ror distributions). We attribute inversion results to different
methane emission sectors with the methodology described in
Sect. 2.6.

2.1 In situ methane observations

We use the comprehensive database of in situ (surface, tower,
shipboard, and aircraft) methane observations over North
America for 2010–2017 from the GLOBALVIEWplus CH4
ObsPack v1.0 product compiled by the National Oceanic
and Atmospheric Administration (NOAA) Global Monitor-
ing Laboratory (Cooperative Global Atmospheric Data In-

tegration Project, 2019). Following Lu et al. (2021), data
from surface and tower sites are sampled only during daytime
(10:00–16:00 LT) and averaged as daytime mean values on
individual days for use in the inversion. For sites with stan-
dard deviations larger than 30 ppb, we exclude data points
that depart by more than 2 standard deviations from the mean
because such local extreme conditions are difficult to simu-
late with the chemical transport model. For other sites we
exclude data points that depart by more than 3 standard de-
viations from the mean. We also exclude aircraft measure-
ments higher than 9 kma.s.l. as these measurements would
have weak sensitivity to surface fluxes.

The in situ observations thus include 49 742 data points
from surface sites, 15 285 from towers, 56 from ship cruises,
and 26 620 from aircraft campaigns over North America and
adjacent waters (Fig. 1a). The number of available in situ ob-
servations per year increases from 10 830 in 2010 to 13 593
in 2017. All these in situ data points are used in the base in-
version to optimize methane emissions for individual years.
We also conduct sensitivity inversions by only using surface
and tower sites with continuous 8-year records for trend anal-
yses.

2.2 GOSAT satellite methane observations

The GOSAT satellite launched in 2009 measures the
backscattered solar radiation from a sun-synchronous or-
bit at around 13:00 LT (Kuze et al., 2016). Methane is re-
trieved in the 1.65 µm shortwave infrared absorption band.
We use the column-averaged dry-air methane mixing ratios
from the University of Leicester version 9.0 Proxy XCH4 re-
trieval (Parker et al., 2020a). Comparison with ground-based
methane observations from the Total Carbon Column Ob-
serving Network (TCCON) shows that the retrieval has a
single-observation precision of 13 ppb and an overall global
bias of 9 ppb that is removed from the Proxy XCH4 data
(Parker et al., 2020a). Here we use a total of 205 875 (25 734
per year on average) GOSAT retrievals for 2010–2017 over
North America in the inversion, excluding glint data over the
oceans and data poleward of 60◦, which are not representa-
tively sampled and for which errors are large (Fig. 1b).

2.3 Prior emission inventories

We use as prior estimates of anthropogenic methane emis-
sions the gridded versions of the official national invento-
ries for the US (EPA, 2016), Canada (ECCC, 2020a), and
Mexico (INECC and SEMARNAT, 2018) (Maasakkers et al.,
2016; Scarpelli et al., 2020, 2021). These emissions are listed
in Table 1 for individual countries, and the spatial distribu-
tions for major sectors are shown in Fig. 2. We assume no
year-to-year trend in the prior emissions so that trends from
the inversion are solely driven by observations. Prior an-
thropogenic emissions for the contiguous US (CONUS) are
28.7 Tga−1. Anthropogenic US emissions outside CONUS
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Figure 1. Methane observations over North America used in the inversion. The observations are from the in situ GLOBALVIEWplus CH4
ObsPack data product and from the GOSAT satellite instrument. Mixing ratios shown for surface, tower, and GOSAT observations are means
for 2010–2017. Aircraft and shipboard observation locations are shown as additional symbols. The GOSAT data are dry column mixing
ratios from the University of Leicester version 9 Proxy XCH4 retrieval (Parker et al., 2020a) and are averaged here on the 0.5◦× 0.625◦

GEOS-Chem model grid.

(mostly Alaska, not optimized in the inversion) account for
only 0.3 Tga−1 according to Maasakkers et al. (2016). The
latest GHGI report from the EPA (2021) gives mean emis-
sions of 26.0 Tga−1 for 2010–2017. Prior anthropogenic
emissions for Canada are 3.7 Tga−1. The most recent 2021
version of the ECCC NIR gives a mean of 4.0 Tg a−1 for
2010–2017 (ECCC, 2021). Mexico anthropogenic emissions
are 5.0 Tga−1, and 2015 is the latest available year from IN-
ECC.

Prior methane emissions from wetlands are the 0.5◦×0.5◦

gridded mean monthly values for 2010–2017 from the nine
highest-performance members of the WetCHARTs v1.3.1 in-
ventory ensemble (Ma et al., 2021), selected for their fit to
the global GOSAT inversion results of Zhang et al. (2021).
This choice of prior estimate effectively corrects the large
overestimates of wetland emissions for North America previ-
ously found in inversions of GOSAT and aircraft data when
using the overall mean of the WetCHARTs v1.0 ensemble
(Sheng et al., 2018b; Maasakkers et al., 2021). We do not
include interannual variability from WetCHARTs because it
is highly uncertain and we prefer to have it informed by the
observations. Unlike in our global inversion (Lu et al., 2021),
we do not optimize the relative seasonal variation of wetland
emissions and instead have it imposed by the prior estimate
(Parker et al., 2020b). Prior estimates of open fire emissions
are the daily values for individual years from the Global Fire
Emissions Database (GFED) version 4s (van der Werf et al.,
2017). Other small natural emissions (seepages, termites) are
as described in Lu et al. (2021).

2.4 The GEOS-Chem forward model

We use the nested version of the GEOS-Chem 12.5.0
chemical transport model (http://geos-chem.org, last access:
6 April 2021) (Wecht et al., 2014) as the forward model for
the inversion. The model is driven by MERRA-2 re-analysis
meteorological fields at their native 0.5◦× 0.625◦ resolution
(Gelaro et al., 2017). Methane loss from atmospheric oxida-
tion is as described in Lu et al. (2021) but is inconsequential
here because it is negligibly slow compared to the timescale
for ventilation of the North American domain. Soil uptake
of methane is from the MeMo model v1.0 (Murguia-Flores
et al., 2018) but is very small and therefore not optimized in
the inversion.

The GEOS-Chem model simulation is conducted at 0.5◦×
0.625◦ resolution over the North America domain (130–
55◦W, 15–65◦ N) (Fig. 1) for the 2010–2017 period, with dy-
namic boundary conditions archived every 3 h from a global
2010–2017 simulation at 4◦× 5◦ resolution using methane
emissions and sinks previously optimized with GOSAT ob-
servations (Lu et al., 2021). This means that GOSAT ob-
servations over North America are used twice: once for the
global inversion (along with other observations worldwide)
and once for the North American inversion, but this is in-
consequential because the sole purpose of the global opti-
mization is to avoid biases in boundary conditions that would
cause spurious corrections to emissions within the inversion
domain (Wecht et al., 2014). Lu et al. (2021) show that their
optimized simulation is unbiased in comparison to global
zonal mean observations for 2010–2017, but we still find
some residual biases for individual years up to 5 ppbv. We
therefore optimize the mean boundary conditions for indi-
vidual years on each side of the domain (north, south, west,
east) as part of the North American inversion. The initial
methane concentration fields on 1 January 2010 are from Lu
et al. (2021), which have been adjusted to have an unbiased

Atmos. Chem. Phys., 22, 395–418, 2022 https://doi.org/10.5194/acp-22-395-2022
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Table 1. (a) Mean 2010–2017 methane emissions for the contiguous US (CONUS).

Priora Posteriorb Sensitivityc

Total sources [Tga−1] 36.8 46.3 (40.2–48.4) 0.72

Anthropogenic sources 28.7d 36.9 (32.5–37.8) 0.55

Livestock 9.2 10.6 (9.2–11.8) 0.43
Oil 2.3 4.6 (3.0–4.7) 0.43
Natural gas 6.8 9.9 (8.1–10.5) 0.42
Coal mining 2.9 2.8 (2.4–3.5) 0.44
Landfills 5.8 7.2 (6.0–7.6) 0.34
Wastewater 0.70 0.63 (0.56–0.74) 0.57
Rice cultivation 0.48 0.65 (0.49–0.68) 0.33
Other anthropogenic 0.46 0.45 (0.44–0.54) 0.30

Natural sources 8.6 9.5 (7.4–11.5) 0.64

Wetlands 7.5 8.4 (6.4–10.6) 0.57
Open fires 0.16 0.17 (0.15–0.24) 0.43
Termites 0.59 0.63 (0.57–0.76) < 0.1
Seeps 0.28 0.27 (0.23–0.35) 0.14

a Prior estimates for the inversion. Anthropogenic emissions are from the Environmental
Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for the
year 2012 as reported by the EPA (2016). Wetland emissions are the 2010–2017 mean of the
high-performance subset of the WetCHARTs ensemble (Ma et al., 2021). Open fire emissions
are from GFEDv4s (van der Werf et al., 2017). Termite and seep emissions are as described in
Lu et al. (2021).
b Results from the base inversion of GOSAT and GLOBALVIEWplus data, with the range from
the inversion ensemble and from the two sectoral attribution methods (66 total ensemble
members) in parentheses.
c Sensitivity of the posterior estimate to the observations as diagnosed by the diagonal elements
of the averaging kernel matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full
sensitivity, posterior fully determined by the observations). Values are from the base inversion
for the year 2015. Results for other years show similar values. See Sect. 2.6 for more details.
d The most recent EPA GHGI report (EPA, 2021) gives a mean anthropogenic emission of
26.0 Tg a−1 for 2010–2017. Anthropogenic US emissions outside CONUS (mostly Alaska)
account for only 0.3 Tg a−1 according to the EPA (Maasakkers et al., 2016) and are not
optimized in the inversion.

zonal mean relative to GOSAT observations such that model
discrepancies with observations over our 2010–2017 simu-
lation period can be attributed to model errors in emissions
instead of errors in initial conditions.

2.5 Inversion procedure

Our state vector x to be optimized in the inversion includes
spatially resolved emissions in North America and bound-
ary conditions for each year of 2010–2017. Although we
could technically optimize methane emissions for each of
the 0.5◦× 0.625◦ native model grid elements, the observa-
tions do not have sufficient coverage to constrain emissions
everywhere at that resolution, and doing so would intro-
duce large smoothing errors in the inversion (Wecht et al.,
2014). Following Turner and Jacob (2015) and Maasakkers
et al. (2021), we use instead a Gaussian mixture model
(GMM) to determine the emission patterns that can be con-
strained effectively by the inversion. This is done by project-
ing the native-resolution methane emissions onto 600 Gaus-
sian functions optimized to fit the location, magnitude, and

distribution of methane emissions for different sectors as
given by the prior estimates. Optimal construction of the
GMM aggregates regions with weak or homogeneous emis-
sions while preserving native resolution for strong localized
source regions. The Gaussian functions overlap, providing
additional high-resolution structure in the inverse solution on
the 0.5◦×0.625◦ native grid. The state vector x for individual
years is defined as the emission of each of the 600 Gaussians,
plus the correction to the model boundary conditions as de-
scribed earlier, for a total dimension n= 604.

The inversion finds the optimal estimate of x by minimiz-
ing the Bayesian cost function J (x) (Brasseur and Jacob,
2017):

J (x)=(x− xA)T S−1
A (x− xA)

+ γ (y−F(x))T S−1
O (y−F(x)), (1)

where xA is the prior estimate of x, SA denotes the prior er-
ror covariance matrix, y is the observation vector, SO denotes
the observation error covariance matrix, γ is a regularization
factor (see below), and F(x) represents the GEOS-Chem sim-
ulation of y. The GEOS-Chem forward model F(x) as imple-
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Table 1. (b) Mean 2010–2017 methane emissions for Canada.

Priora Posteriorb Sensitivityc

Total sources [Tga−1] 17.1 16.2 (13.5–17.4) 0.60

Anthropogenic sources 3.7 5.3 (3.6–5.7) 0.59

Livestock 1.1 1.4 (1.0–1.6) 0.48
Oil 0.75 1.8 (0.81–1.9) 0.48
Natural gas 0.80 1.1 (0.76–1.6) 0.54
Coal mining < 0.1 < 0.1 0.51
Landfills 0.66 0.69 (0.45–0.74) 0.33
Wastewater < 0.1 < 0.1 0.20
Rice cultivation 0 0 /
Other anthropogenic 0.27 0.31 (0.26–0.36) 0.18

Natural sources 13.5 10.9 (8.7–13.2) 0.54

Wetlands 12.0 9.9 (7.8–12.0) 0.57
Open fires 1.1 0.67 (0.48–0.95) 0.54
Termites 0.28 0.29 (0.24–0.30) < 0.1
Seeps < 0.1 < 0.1 < 0.1

a Prior estimates for the inversion. Anthropogenic emissions are from the Environment and
Climate Change Canada (ECCC) National Inventory Report (NIR) for the year 2018 (ECCC,
2020). Wetland emissions are the 2010–2017 mean of the high-performance subset of the
WetCHARTs ensemble (Ma et al., 2021). Open fire emissions are from GFEDv4s (van der Werf
et al., 2017). Termite and seep emissions are as described in Lu et al. (2021).
b Results from the base inversion of GOSAT and GLOBALVIEWplus in situ data, with the
range from the inversion ensemble and from the two sectoral attribution methods (66 total
ensemble members) in parentheses.
c Sensitivity of the posterior estimate to the observations as diagnosed by the diagonal elements
of the averaging kernel matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full
sensitivity, posterior fully determined by the observations). Values are from the base inversion
for the year 2015. Results for other years show similar values. See Sect. 2.6 for more details.

mented here is strictly linear (because methane sinks are not
optimized) so that the model can expressed as y =Kx+ c,
where K= ∂y/∂x represents the Jacobian matrix and c is
a constant. Minimizing the cost function (Eq. 1) by solv-
ing∇x J (x)= 0 yields closed-form posterior estimates of the
state vector x̂, its error covariance matrix Ŝ, and the aver-
aging kernel matrix A (Rodgers, 2000; Brasseur and Jacob,
2017):

x̂ = xA+G(y−KxA), (2)

Ŝ= (γKT S−1
O K+S−1

A )−1, (3)

A=
∂x̂

∂x
= In− ŜS−1

A , (4)

where G in Eq. (2) is the gain matrix,

G=
∂x̂

∂y
=

(
γKT S−1

O K+S−1
A

)−1
γKT S−1

O . (5)

The averaging kernel matrix A in Eq. (4) quantifies the sen-
sitivity of the posterior estimate to changes in the true value
and therefore measures the information content provided by
the observing system for correcting the prior estimates and
returning the true values as posterior estimates. We refer to
the diagonal elements of A as the averaging kernel sensitivi-
ties and to the trace of A as the degrees of freedom for signal

(DOFS) representing the number of pieces of independent
information on the state vector obtained from the observing
system (Rodgers, 2000). Our inversion returns the posterior
estimates of mean emissions and averaging kernel sensitivi-
ties for each Gaussian, and these can be mapped additively
to the 0.5◦× 0.625◦ grid using their spatial distributions on
the grid.

The analytical solution to Eq. (2), and inference of er-
ror statistics and information content from Eqs. (3) and
(4), requires explicit construction of the Jacobian matrix K.
We construct K by conducting GEOS-Chem simulations in
which each element of the state vector (methane emission
and model boundary correction) is perturbed separately. This
is readily done computationally as an embarrassingly paral-
lel problem. The analytical solution has several advantages
relative to the more widely used variational (numerical) ap-
proach. (1) It identifies the true minimum in the cost function.
(2) It provides complete explicit forms of the posterior error
covariance and averaging kernel matrices. (3) It enables a
range of sensitivity analyses at no significant computational
cost by modifying the inversion parameters and adding or
subtracting observations.

To construct the prior error covariance matrix SA, we as-
sume a 50 % error standard deviation for individual Gaus-
sians in the base inversion (and we test the sensitivity to that

Atmos. Chem. Phys., 22, 395–418, 2022 https://doi.org/10.5194/acp-22-395-2022
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Table 1. (c) Mean 2010–2017 methane emissions for Mexico.

Priora Posteriorb Sensitivityc

Total sources [Tga−1] 5.8 6.8 (5.4–6.9) 0.40

Anthropogenic sources 5.0 6.0 (4.7–6.1) 0.41

Livestock 2.3 2.5 (2.0–2.6) 0.24
Oil 0.44 0.84 (0.42–0.85) 0.20
Natural gas 0.34 0.42 (0.36–0.53) 0.44
Coal mining 0.28 0.26 (0.26–0.52) 0.80
Landfills 0.77 1.0 (0.67–1.0) 0.30
Wastewater 0.69 0.80 (0.65–0.86) 0.14
Rice cultivation < 0.1 < 0.1 < 0.1
Other anthropogenic 0.13 0.14 (0.12–0.16) 0.10

Natural sources 0.79 0.83 (0.64–0.89) 0.10

Wetlands 0.52 0.57 (0.43–0.60) < 0.1
Open fires 0.14 0.14 (0.10–0.16) < 0.1
Termites 0.13 0.12 (0.10–0.14) < 0.1
Seeps < 0.1 < 0.1 < 0.1

a Prior estimates for the inversion. Anthropogenic emissions are from the National Inventory of
Greenhouse Gases and Compounds constructed by the Instituto Nacional de Ecología y Cambio
Clim′atico (INECC). Wetland emissions are the 2010–2017 mean of the high-performance
subset of the WetCHARTs ensemble (Ma et al., 2021). Open fire emissions are from GFEDv4s
(van der Werf et al., 2017). Termite and seep emissions are as described in Lu et al. (2021).
b Results from the base inversion of GOSAT and GLOBALVIEWplus data, with the range from
the inversion ensemble and from the two sectoral attribution methods (66 total ensemble
members) in parentheses.
c Sensitivity of the posterior estimate to the observations as diagnosed by the diagonal elements
of the averaging kernel matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full
sensitivity, posterior fully determined by the observations). Values are from the base inversion
for the year 2015. Results for other years show similar values. See Sect. 2.6 for more details.

assumption, as will be described later), with no spatial error
covariance so that SA is diagonal. There is necessarily some
spatial covariance in the prior estimates since the Gaussians
have spatial overlap, and there is also some spatial covariance
in the forward model error contributing to SO, but these are
difficult to quantify. The former would underestimate the in-
formation content of the observations, while the latter would
overestimate it. We effectively correct for this using the reg-
ularization parameter γ as described below, and we further
rely on our inversion ensemble rather than the posterior error
covariance matrix to characterize the error in our posterior
solution.

The standard assumption of Gaussian error statistics in the
cost function of Eq. (1) is required to achieve an analyti-
cal solution but may lead to unphysical negative emissions
(Miller et al., 2014) and fail to capture the heavy tail of the
emission distribution (Zavala-Araiza et al., 2015; Franken-
berg et al., 2016; Alvarez et al., 2018). We solve this problem
by optimizing for ln(x) instead of x, with the error on ln(x)
following a normal Gaussian distribution, i.e., lognormal er-
rors for x (Maasakkers et al., 2019). The forward model is
then nonlinear so that the solution must be solved iteratively
with a transformed Jacobian matrix K′N = ∂y/∂ ln(x) at each
iteration N . Once the original Jacobian matrix K= ∂y/∂x
for the linear model has been computed, we can derive K′N

immediately at any iteration by ∂yi/∂ ln(xj )= xj∂yi/∂xj ,
where i and j represent the indices of the observation and
state vector elements, respectively. The iterative solution is
obtained with the Levenberg–Marquardt method (Rodgers,
2000) for each iteration N :

x′N+1 =x′N +
(
γK′TNS−1

O K′N + (1+ κ)S′−1
A

)−1

(
γK′TNS−1

O (y−KxN )−S′−1
A
(
x′N − x′A

))
, (6)

where x′ = ln(x) with the initial value x′0 from the prior es-
timate, and κ = 10 is a coefficient for the iterative approach
to the solution (Rodgers, 2000). S′A (with diagonal elements
denoted by s′A) is the prior error covariance matrix for the
inversion in log space and can be derived from the original
prior error covariance matrix SA (with diagonal elements de-
noted by sA) following (Maasakkers et al., 2019)

s′A =


(

ln
(
xA+
√
sA

xA

)
+

∣∣∣ln( xA−√sAxA

)∣∣∣)
2

2

. (7)

We adopt as a convergence criterion that the maximum dif-
ference between x′N+1 and x′N elements be smaller than 5 ‰,
at which point we adopt x̂′ = x′N+1 as our posterior solution.
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Figure 2. Prior estimates of methane emissions from individual sectors. Anthropogenic emissions are from spatially explicit versions of
the EPA, ECCC, and INECC official national inventories. Wetland emissions are from the mean of the high-performance subset of the
WetCHARTs inventory ensemble.

The posterior error covariance and averaging kernel matri-
ces Ŝ′ and A′ on the log solution are obtained by replacing
SA and K with S′A and K′ in Eqs. (3) and (4). Optimization
of emissions in log space means that x̂′ is a best estimate
of the median of the lognormal error distribution rather than
the mean. The mean values for spatial and sectoral aggrega-
tion purposes can be inferred from the properties of the log-
normal distribution as xj (mean) = xj (median)e

ŝ′jj /2, where ŝ′jj
is the corresponding diagonal element of the posterior error
covariance matrix in log space, i.e., the geometric error stan-
dard deviation. The boundary conditions are still optimized
with normal error distributions, assuming an error standard
deviation of 10 ppb.

The above describes our base inversion. We also conduct
sensitivity inversions using different error assumptions. This
includes (1) using the quadrature sum of error variances for
all sectors contributing to a given Gaussian with a cap of
50 % following Maasakkers et al. (2021), resulting in a 43 %
error on average; (2)–(4) using the normal error distributions
(then with the linear Jacobian matrix) with 50 %, 95 %, and
the quadrature sum of errors for individual Gaussians as er-
ror variances; and (5) assuming an error standard deviation
of 5 ppb for boundary conditions.

The observation error covariance matrix SO includes con-
tributions from measurement and forward model errors. We
compute it following the residual error method originally de-
scribed by Heald et al. (2004) and previously used by Lu

et al. (2021). A GEOS-Chem simulation with prior emis-
sion estimates yields a prior model estimate F(xA) of con-
centrations at the observation points. The mean 2010–2017
discrepancy between the observations and the prior model,
y−F(xA), is determined for each grid cell (for GOSAT), in-
dividual observation site (surface and tower), and observa-
tion platform (shipboard and aircraft). y−F(xA) is taken to
represent the systematic bias in the prior emissions to be cor-
rected in the inversion. The residual term, εO = y−F(xA)−
y−F(xA), represents the random observation error includ-
ing contributions from the measurements, the forward model,
and the representation of the observation points on the model
grid (Heald et al., 2004). The variance of εO provides the
diagonal terms of SO. The resulting observation error stan-
dard deviations average 13 ppb for GOSAT, 26 ppb for sur-
face sites, 39 ppb for towers, 19 ppb for ships, and 22 ppb
for aircraft. The observation error is larger for in situ than
for satellite observations, even though the in situ measure-
ments are more precise, because the forward model error is
larger for vertically resolved points (particularly for surface
air in source regions) than for atmospheric columns (Cus-
worth et al., 2018). The observation error for in situ observa-
tions is dominated by the forward model error, while that for
GOSAT is dominated by the measurement error.

We do not have sufficient objective information to quan-
tify the error correlation structure of SO, and we therefore
assume it to be diagonal. This may underestimate SO be-

Atmos. Chem. Phys., 22, 395–418, 2022 https://doi.org/10.5194/acp-22-395-2022



X. Lu et al.: Methane emissions in the United States, Canada, and Mexico 403

cause of correlated transport and source aggregation errors
in the forward model, as noted above. We follow Zhang
et al. (2018) to introduce a regularization factor γ for the
observation terms in the cost function J (x) (Eq. 1) to avoid
either overfits or underfits that would result from missing co-
variant (off-diagonal) structure in SO and SA, respectively.
Lu et al. (2021) showed that the optimal value of this reg-
ularization factor can be selected such that the sum of the
n prior terms in the posterior estimate of the cost function
(JA(x̂)= (x̂− xA)T S−1

A (x̂− xA)) has a value ≈ n,which is
the expected value from the chi-square distribution with n
degrees of freedom. Here we determine the regularization
factor γ separately for in situ and GOSAT data following
Lu et al. (2021) and find that γ = 1 is best for both. We also
conduct a sensitivity inversion using γ = 0.5 for the GOSAT
observation terms (while keeping γ = 1 for in situ data terms
in the joint inversion) as adopted in Maasakkers et al. (2021).

Table 2 summarizes the settings of our base inversion (in
bold) and the inversion ensemble. The ensemble comprises
33 inversions using the different combinations of settings in
the table. The base inversion including GOSAT and in situ
data represents our best estimate, but we will compare it
prominently to the GOSAT-only and in-situ-only inversions
with the same inversion parameters in order to evaluate the
contributions from the different observing platforms for op-
timizing emissions. We will use the other ensemble members
to discuss the sensitivity of inversion results to the choices of
observations and inversion parameters, as well as to define
the range of uncertainty in the inversion results.

2.6 Sectoral attribution and aggregation of inversion
results

The inversion returns the posterior estimates of mean emis-
sions for each of the Gaussians, and we allocate these emis-
sions to the native 0.5◦× 0.625◦ model grid by summing
the contributions of all Gaussians on the grid. This de-
fines a correction factor f0 to total prior emissions for each
0.5◦× 0.625◦ grid cell and including the contributions from
all q emission sectors (in our case q = 12; see Table 1). For
sectoral attribution of this total correction factor we need
to derive the correction factors fi to the individual sectors
i ∈ [1,q] contributing to f0.

We use two alternative methods for this purpose. The first
method simply takes fi = f0 for all i, thus assuming that
the partitioning of sectoral emissions in individual grid cells
is correct in the prior inventory and all sectors contribute
equally to the grid-level correction factor (Maasakkers et al.,
2021; Lu et al., 2021; Zhang et al., 2021). These assump-
tions are reasonable when the sectors are spatially separated
but may be a source of error when they spatially overlap.
The second method (Shen et al., 2021) accounts for emis-
sions from different sectors having different prior error stan-
dard deviation σi and therefore contributing differently to f0.

Following Shen et al. (2021), fi is then given by

fi = 1−
ηαiσ

2
i (1− f0)

σ 2
A

, (8)

where αi is the fraction of total emissions in the grid cell
contributed by sector i,σA is the prior error standard devia-

tion for total emissions in the grid cell, and η = σ 2
A

q∑
i=1

α2
i σ

2
i

is a

normalization factor. For the prior error standard deviations
σi on the 0.5◦×0.625◦ grid we use the scale-dependent adap-
tation by Maasakkers et al. (2016) of EPA sectoral national
error estimates. This results in prior error standard deviations
of 43 % for rice, 66 % for wastewater, 51 % for landfills, 38 %
for livestock, 18 % for coal, 30 % for gas, and 87 % for oil
emissions. We further use 70 % for wetlands (Bloom et al.,
2017) and 100 % for all other natural sources. These error
estimates are solely used to infer fi values in Eq. (8) so that
more uncertain emissions will contribute more to the correc-
tion. We use the second method in our base attribution of
posterior estimates to emission sectors but will also use the
results from the first method to contribute to error ranges in
these sector-attributed posterior estimates.

We also need to aggregate posterior emission estimates na-
tionally and by sector for comparison to the national emis-
sion inventories. Following Maasakkers et al. (2019), this is
done by a transformation from the posterior full-dimension
state vector x̂ to the reduced state vector x̂red (national emis-
sion for a given sector) with a summation matrix W:

x̂red =Wx̂. (9)

The posterior error covariance and averaging kernel matri-
ces for the reduced state vector are then given by

Ŝred =WŜWT , (10)
Ared =WAW∗, (11)

where W∗ =WT (WWT )−1 (Calisesi et al., 2005). Ŝred en-
ables us to determine whether national correction factors for
individual sectors are affected by error correlations between
sectors. Ared enables us to determine the ability of the ob-
serving system to quantify national emissions from a partic-
ular sector independently from the prior estimate.

3 Results and discussion

3.1 Base inversion compared to GOSAT-only and
in-situ-only inversions

Figure 3a shows the gridded posterior correction factors from
the base inversion averaged over 2010–2017, i.e., the mul-
tiplicative factors applied to the total prior emissions from
Fig. 2, mapped on the 0.5◦× 0.625◦ model grid. Figure 3b
shows the corresponding averaging kernel sensitivities, indi-
cating the dependence of the posterior solution on the prior
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Table 2. Settings for generation of the 33-member inversion ensemblea.

Observations Regularization parameter γ Prior error standard deviation
Emissions Boundary conditions

GOSAT+ in situ 1 50 % (lognormal) 10 ppb
GOSAT+ in situ (long-term)c 0.5 (GOSAT) quadrature sum (lognormal)d 5 ppb
GOSAT 50 % (normal)
In situ 95 % (normal)
In situ (long-term)c quadrature sum (normal)d

a Settings for the base inversion are in bold. The 33-member inversion ensemble uses the different combinations of settings to probe the effects of different
choices in observations and in inversion parameters. The GOSAT+ in situ inversion includes the following seven-member ensemble: (1) base inversion with
γ = 1 for in situ and GOSAT observations , σA = 50 % (lognormal) for emissions, and σA = 10 ppb for boundary conditions; (2) the same as (1) except that
γ = 0.5 for GOSAT observations; (3)–(6) the same as (1), except that σA for emissions uses the other four options in the table; and (7) is the same as (1),
except that σA = 5 ppb for boundary conditions. Similarly, the GOSAT+ in situ (long-term) and GOSAT inversions have seven ensemble members,
respectively. The in situ and in situ (long-term) inversions have six ensemble members, respectively. This adds up to 33 inversion ensemble members.
Sectoral attribution is done by two alternative methods (see text in Sect. 2.6), resulting in a total of 66 members.
c Including only long-term surface and tower sites with observations for all years of the 2010–2017 record.
d Adding the errors from individual sectors in quadrature following Maasakkers et al. (2021).

estimate (0: total dependence, 1: no dependence). The num-
ber of independent pieces of information afforded by the ob-
servations (DOFS= 114) can be placed in the context of the
600 Gaussian state vector elements used to optimize the spa-
tial distribution of emissions. We see that the observations
provide considerable information to optimize methane emis-
sions, but we also see that a finer resolution for the inversion
would not be justified on the continental scale.

Figure 3c–f show the results from the GOSAT-only and in-
situ-only inversions, enabling us to compare the information
contents and consistency of the two data sets. The GOSAT-
only inversion yields a DOFS of 68, while the in-situ-only
inversion yields a DOFS of 80, even though there are 50 %
fewer in situ observations than GOSAT observations. This is
because the sensitivities of surface observations to emissions
are an order of magnitude higher than those of satellite ob-
servations (Cusworth et al., 2018). The GOSAT observations
have the advantage of broader coverage. Thus, we find that
the in situ observations dominate the information content of
the base inversion over California, the upper Midwest, and
Canada, whereas GOSAT dominates the information con-
tent in Mexico (where there are no in situ observations) and
most of the western US. GOSAT and in situ observations
contribute comparably in the south-central and eastern US,
though with different weights in different locations. We con-
clude that GOSAT and in situ observations make compara-
ble and complementary contributions to the optimization of
methane emissions for North America.

We next examine the consistency in the information from
GOSAT and in situ observations for correcting prior methane
emissions. Inspection of the posterior correction factors from
the GOSAT-only and in-situ-only inversions in Fig. 3 shows
overall qualitative agreement. Figure 4 displays a more quan-
titative comparison of the posterior corrections by correlating
the values for 0.5◦× 0.625◦ grid cells between the GOSAT-
only and in-situ-only inversions, selecting regions with rel-
atively high averaging kernel sensitivities for both. We find

overall good consistency between the two inversions (cor-
relation coefficient r = 0.47 for the ensemble of points, with
73 % of grid cells showing corrections in the same direction).
The reduced-major-axis regression slope is 0.62, consistent
with GOSAT providing overall less information. Both inver-
sions find that methane emissions over the south-central US,
the southeast US, the Great Plains, and Alberta are underes-
timated in the prior inventories. They also agree on down-
ward corrections over central Canada and the upper Mid-
west where wetland emissions dominate. The largest incon-
sistency is over California where the two inversions show
correction factors in the opposite direction for much of the
state. This may reflect the coarse resolution of model CO2
used in the proxy GOSAT retrieval that leads to underesti-
mation of CO2 (and hence methane) over the Los Angeles
Basin (Turner et al., 2015; Maasakkers et al., 2021) and/or
complex topography. Results from the base inversion tend
toward either of the two inversions depending on which has
the most information content.

We evaluated the ability of the base GOSAT+ in situ in-
version to fit the two observational data sets by comparing
2010–2017 GEOS-Chem simulations with posterior versus
prior emissions and boundary conditions. Results are shown
in Fig. 5. The posterior simulation reduces the model mean
bias (MB) in surface and tower measurements from −11 ppb
in the prior simulation to−5 ppb, and it also narrows the root
mean square error (RMSE) from 24 to 14 ppb. For GOSAT
the improvement is less apparent from the continental-scale
comparison statistics because the prior simulation already
has a low mean bias (MB=−0.5 ppb) and a small RMSE
of 6.9 ppb. However, we see from Fig. 5 that the small
mean bias reflects an offset between high bias in the west-
ern US and Canada and low bias in the central and eastern
US. The inversion results in spatial whitening of this bias.
Independent evaluation with the ground-based column ob-
servations from the Total Carbon Column Observing Net-
work (TCCON) (Wunch et al., 2011) further shows that the
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Figure 3. Optimization of mean 2010–2017 methane emissions over North America. Results are from the base inversion using both GOSAT
and GLOBALVIEWplus in situ observations, the GOSAT-only inversion, and the in-situ-only inversion. The left panels show the posterior
correction factors, i.e., the multiplicative factors applied to the total prior emissions in Fig. 2, and the right panels show the averaging
kernel sensitivities (diagonal elements of the averaging kernel matrix). The degrees of freedom for signal (DOFS, defined as the trace of the
averaging kernel matrix) are shown in the inset.

mean model bias at five sites in CONUS decreases from 5.2–
14.0 ppbv in the prior simulation to 1.0–13.5 ppbv in the pos-
terior simulation.

3.2 Optimized 2010–2017 anthropogenic methane
emissions for CONUS, Canada, and Mexico

Table 1 (a–c) summarizes our inversion results for na-
tional 2010–2017 methane emissions by sector in CONUS,
Canada, and Mexico. Our best posterior estimates of to-
tal anthropogenic+ natural emissions from the base inver-
sion are 46.3 (40.2–48.4) Tga−1 for CONUS, 16.2 (13.5–
17.4) Tga−1 for Canada, and 6.8 (5.4–6.9) Tga−1 for Mex-
ico. The ranges given in parentheses are from the 33 inver-
sion ensemble members (Table 2). Averaging kernel sensitiv-
ities for these total national emissions (the diagonal elements
in Ared, Sect. 2.6) are 0.72 for CONUS, 0.60 for Canada, and
0.40 for Mexico, indicating that the GOSAT+ in situ obser-
vation system informs 72 % of total methane emissions in
CONUS, 60 % in Canada, and 40 % in Mexico, with the re-
mainder of the posterior emissions anchored to the prior es-
timate. The lower information content for Mexico is due to
the lack of in situ observations.

We partition these national totals into different sectors as
described in Sect. 2.6 and use the posterior error covari-

ance matrix (Eq. 10) to evaluate the ability of the inversion
to separate between sectors. This is shown in Fig. 6 as the
posterior error correlation matrix, displaying the error cor-
relation coefficients (r) in the inversion results for all sec-
tor pairs. Error correlation coefficients are generally lower
than 0.2 for CONUS, indicating successful separation, except
for small sources (termites, seeps, other anthropogenic). The
same holds for Canada except for error correlation between
landfills and wastewater treatment, which are both associated
with urban areas. Anthropogenic emissions in Canada are
well separated from the large wetland emissions. Error cor-
relations are higher in Mexico because emissions from dif-
ferent sectors tend to be concentrated in Mexico City and the
eastern part of the country (Scarpelli et al., 2020), but even
there the error correlation coefficients are generally less than
0.4. Optimization of the oil and gas sector is well separated
from the other sectors in all three countries, and separation
between oil and gas is also successful because the two sec-
tors have very different spatial distributions in the gridded in-
ventories (Fig. 2). However, there is some ambiguity for the
production subsectors because wells often produce both oil
and gas (Maasakkers et al., 2016), and for this reason some
studies prefer to refer to oil and gas emissions as a combined
sector (Alvarez et al., 2018). Separating oil and gas emis-
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Figure 4. Comparison of posterior correction factors to prior methane emissions on the 0.5◦× 0.625◦ grid between GOSAT-only and in-
situ-only inversions. The comparisons are for nine regions with relatively high averaging kernel sensitivities for both inversions. Each point
represents the posterior correction factors from both inversions in a 0.5◦× 0.625◦ grid cell (Fig. 3). Correlation coefficients for each of the
nine regions are shown in the inset. Percentiles in each quadrant show the fraction of the total points in that quadrant.

sions is useful for our purpose because such separation is
required under UNFCCC reporting, but the reader should be
aware that this separation is done on the basis of the spatial
distributions of emissions in Fig. 2.

We find that anthropogenic methane emissions for all three
countries are larger in our inversion results than in the na-
tional inventories submitted to the UNFCCC. Our best esti-
mate of the mean 2010–2017 anthropogenic methane emis-
sion for CONUS is 36.9 (32.5–37.8) Tga−1, which is 30 %
higher than the 28.7 Tga−1 in the 2016 version of the EPA
GHGI used as a prior estimate (EPA, 2016) and 42 % higher
than the mean 26.0 Tga−1 for 2010–2017 in the most recent
version of the GHGI (EPA, 2021). Maasakkers et al. (2021)
previously obtained a mean 2010–2015 CONUS anthro-
pogenic emission of 30.6 (29.4–31.3) Tga−1 by inversion of
GOSAT data using the same prior anthropogenic estimate as
ours but a much higher prior estimate for CONUS wetlands
(15.7 Tga−1). The need to decrease the wetlands source in
their inversion (to a posterior estimate of 11.8 Tga−1), as
well as their reliance on GOSAT observations only, may have
dampened their ability to quantify anthropogenic emissions.

Our best estimate of the mean 2010–2017 anthropogenic
methane emission for Canada is 5.3 (3.6–5.7) Tg a−1, which
is 43 % higher than the 3.7 Tga−1 in the ECCC NIR (2020
version) used as a prior estimate and 33 % higher than the
4.0 Tga−1 for 2010–2017 reported in the most recent version
of the ECCC NIR (ECCC, 2021). Baray et al. (2021) previ-
ously obtained a mean 2010–2015 anthropogenic emission

of 6.1 Tga−1 for Canada by inversion of data from GOSAT
and ECCC surface sites.

Our best estimate of the mean 2010–2017 anthropogenic
methane emission for Mexico is 6.0 (4.7–6.1) Tga−1, which
is 20 % higher than the 5.0 Tga−1 in Mexico’s national in-
ventory (INECC and SEMARNAT, 2018) used as a prior es-
timate. Shen et al. (2021) similarly found higher emissions
than the national inventory in their inversion of TROPOMI
satellite methane data for eastern Mexico.

Figure 7 displays the data from Table 1a–c for the na-
tional posterior emission estimates from different sectors in
comparison with the EPA (US), ECCC (Canada), and IN-
ECC (Mexico) national inventories used as prior estimates.
We find that emissions from all major sectors except coal
and wastewater are lower in the national inventories than our
inversion results, with the largest underestimates for fugi-
tive emissions from the oil sector. The total CONUS oil and
gas emissions in our inversion are 4.6 and 9.9 Tga−1, re-
spectively, which is 109 % and 45 % higher than the EPA
(2016) inventory used here as a prior estimate and 177 % and
65 % higher than the most recent EPA (EPA, 2021) inventory
for the 2010–2017 mean. The EPA inventory reports an un-
certainty of −24 % to +29 % for oil and −15 % to +14 %
for natural gas emissions (EPA, 2021). Our estimates are
also higher than those in Maasakkers et al. (2021), which
are 3.6 and 8.0 Tga−1, respectively, for oil and gas emis-
sions in 2010–2015. They are consistent with the Alvarez
et al. (2018) estimates for total CONUS oil and gas emis-
sions of 13 (11–15) Tga−1 in 2015 based on field measure-
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Figure 5. Ability of the base inversion to fit the in situ (surface and tower) and GOSAT observations for 2010–2017. The figure shows
the mean differences between GEOS-Chem simulations and the observations using either prior or posterior methane emissions. Mean bias
(MB) and root mean square error (RMSE) are shown in the inset, calculated from the temporally averaged differences for each in situ site or
GOSAT grid cell.

ments within oil and gas basins, scaled up to derive a national
value.

We mentioned previously that the lower estimates in
Maasakkers et al. (2021) could reflect their use of GOSAT
observations only, the difference in time frame, and their
high prior estimate for wetlands, but another factor is their
assumption of normal distributions for prior emission error
standard deviations. We find from our inversion ensemble
that assuming a lognormal distribution (as in our base inver-
sion) rather than a normal distribution increases the resulting
posterior oil and gas emissions by 0.8 and 0.9 Tg a−1, respec-
tively. This is because the lognormal distribution does much
better at capturing the heavy tail of the emission probability
density functions for oil and gas production (Zavala-Araiza
et al., 2015; Frankenberg et al., 2016; Alvarez et al., 2018).
Adding the in situ observations to the GOSAT-only inversion
further increases the posterior oil and gas emissions by 0.2
and 0.3 Tga−1, respectively. The assumption of larger un-
certainty of oil than gas emissions in Eq. (8) furthermore
attributes larger upward corrections to oil emissions. Thus,
our base inversion yields the high end of the estimated range
from the inversion ensemble (Table 1a) but still represents
our best estimate.

Our inversion increases the oil emissions over Canada
by more than a factor of 2 to 1.8 Tga−1 compared to the
ECCC inventory. The total posterior oil and gas emissions for
Canada are 2.9 (1.6–3.3) Tga−1. This is in good agreement
with a recent inversion study (3.0 Tga−1) based on 2010–

2017 surface methane measurements in western Canada
(Chan et al., 2020). Most of the information for Canada in
our base inversion indeed comes from the in situ measure-
ments (Fig. 3), which are relatively dense in Canada (Fig. 1),
and considering that GOSAT observations at high latitudes
are relatively sparse and seasonally limited (Lu et al., 2021).
Maasakkers et al. (2021) previously found little information
for Canadian anthropogenic emissions in their GOSAT-only
inversion, although that was further complicated by their
large overestimate of prior wetland emissions that dominate
total emissions in Canada.

We further compared our oil and gas inversion results for
CONUS, Canada, and Mexico to the TRACE bottom-up in-
ventory aggregating data from individual assets up to the
country level (Climate TRACE, 2021). This inventory uses
life-cycle assessment emissions models for production, pro-
cessing, refining, and shipping (Gordon et al., 2015; Mas-
nadi et al., 2018; Gordon and Reuland, 2021). The TRACE
oil and gas total emission estimates for CONUS (9.6 Tga−1),
Canada (1.8 Tga−1), and Mexico (0.8 Tga−1) are similar to
the prior estimates from the EPA, ECCC, and INECC, re-
spectively (Table 1), and correspondingly lower than our best
posterior estimates of 14.5 Tga−1 for CONUS, 3.2 Tga−1 for
Canada, and 1.3 Tga−1 for Mexico. The bottom-up oil and
gas modeling in TRACE assesses routine methane emissions
from normal operations, assuming normal fugitive emis-
sions. Recent flyover work, however, shows that methane
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Figure 6. Posterior error correlation coefficients (r) between sec-
toral methane emissions in the contiguous US (CONUS), Canada,
and Mexico+ using the sector-aggregated error covariance matrix
as described in Sect. 2.6. Error correlation coefficients indicate the
ability of the inversion to separate emissions between sectors (0:
perfectly, ±1: not at all). Results are from the base inversion for the
year 2015. Results for other years show similar patterns.

emissions are highly intermittent (Cusworth, et. al., 2021),
and this is not well captured in bottom-up estimates.

Figure 8 shows the spatial distributions of posterior cor-
rection to the gridded version of national inventories for the
oil, gas, livestock, and landfill sectors. We find large upward

Figure 7. Mean 2010–2017 anthropogenic methane emissions by
source sectors for the contiguous US (CONUS), Canada, and Mex-
ico, displaying values and ranges from the corresponding Table 1a–
c. The official UNFCCC-reported national inventories for the US
(EPA), Canada (ECCC), and Mexico (INECC) are used as prior es-
timates for the inversion. Inversion results are from the base inver-
sion of GOSAT+ in situ observations, and the ranges are for the
ensemble of 66 sensitivity inversions (Table 2) and sectoral attribu-
tion methods (Sect. 2.6).

corrections for the major oil and gas production basins in
the US including the Permian, Barnett Shale, Eagle Ford,
Bakken Shale, Marcellus Shale, and Anadarko basins, con-
sistent with previous reports based on field measurements
and satellite observations (Miller et al., 2013; Karion et al.,
2015; Peischl et al., 2015; Lyon et al., 2015; Ren et al., 2019;
Robertson et al., 2020; Zhang et al., 2020). Upward correc-
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tions in Canada are concentrated over the oil and gas pro-
duction regions of Alberta and Saskatchewan, again consis-
tent with previous studies (Johnson et al., 2017; Baray et al.,
2018; Chan et al., 2020). For Mexico the upward correction
is concentrated in the onshore Sureste Basin, which is the
largest oil field in the country, but with a downward correc-
tion for offshore operations. This is consistent with aircraft
and TROPOMI satellite observations, which attributed the
low offshore emissions to piping of the gas onshore followed
by inefficient flaring (Zavala-Araiza et al., 2021; Shen et al.,
2021). In addition, methane released to the ocean could be
oxidized to CO2 in the oxic water and hence not reach the
atmosphere.

The spatial distribution of posterior corrections to live-
stock emissions indicates that the national inventories are too
low for most regions, although there are exceptions, in par-
ticular in the western US (Fig. 8). The highest emissions in
the gridded version of the EPA (2016) GHGI are for the up-
per Midwest, and our inversion results suggest that these are
too low, possibly reflecting higher-emitting manure manage-
ment systems from confined animal feeding operations than
included in the GHGI calculations (Sheng et al., 2018a). Yu
et al. (2021) also found from an aircraft-based inversion that
livestock emissions from the EPA inventory over the US corn
belt and upper Midwest region are underestimated by 25 %
during summer and winter.

Our inversion finds CONUS methane emissions from
landfills of 7.2 (6.0–7.6) Tga−1, which is 24 % higher than
the prior EPA (2016) estimate of 5.8 Tga−1. The most recent
EPA (2021) inventory gives 4.5 Tga−1 for landfill emissions
with an uncertainty of ±22 %. The organic decay rate and
methane production potential used in the GHGI calculation
may be too low (Wang et al., 2013; Sun et al., 2019).

3.3 The 2010–2017 trends in anthropogenic methane
emissions

Our inversion optimizes emissions for individual years in
2010–2017, allowing investigation of emission trends. Fig-
ure 9 shows the 2010–2017 time series of total anthropogenic
methane emissions from CONUS, Canada, and Mexico, as
well as the contributions from the dominant sectors (oil, gas,
coal, livestock, and landfills). We include no trend in the
prior estimates so that the trends in Fig. 9 are solely driven
by the observations. Table 3 gives the corresponding 2010–
2017 linear trends in emissions inferred from ordinary linear
regression and compares to the trends reported in the most re-
cent national inventories for the US (EPA, 2021) and Canada
(ECCC, 2021). Mexico only reports emissions up to 2015.

Our inversion shows that over the time frame of 2010
to 2017, total anthropogenic methane emissions in CONUS
peaked in 2014 and then decreased, resulting in no net
trend for the 2010–2017 period (+0.1 (−0.1 to+0.3) %a−1).
The increasing trend for 2010–2015 is +0.9 (+0.4 to
+1.8) %a−1, which is higher than +0.4 %a−1 in the

GOSAT-only inversion by Maasakkers et al. (2021) and
more consistent with the 0.7± 0.3 %a−1 for 2006–2015 es-
timated by Lan et al. (2019). Inspection of CONUS trends
for different emission sectors in the base inversion indicates
that the 2014 maximum largely reflects opposite trends be-
tween oil and landfill emissions, which increased by +2.9
(+1.0 to +2.9) %a−1 and +1.7 (+1.0 to +1.8) %a−1, re-
spectively, over the 2010–2017 period, and gas emissions,
which decreased by 1.8 %a−1 over the 2010–2017 period,
with livestock and coal emissions showing no significant
trend (Fig. 9). In contrast, the most recent EPA GHGI in-
ventory reports a steady decreasing trend of −0.8 %a−1

in US anthropogenic methane emissions over the 2010–
2017 period mostly driven by coal (−5.4 %a−1) and land-
fills (−1.6 %a−1) (EPA, 2021). The decrease for gas is
more pronounced in our inversion than in the EPA inventory
(−0.4 %a−1). The EPA inventory reports no significant trend
for oil emissions and attributes the decrease in gas emissions
to gas exploration (80 % decrease from 2010 level) and distri-
bution (12 % decrease from 2010 level), with flat emissions
from gas production. However, both oil production and nat-
ural gas production have increased significantly over the pe-
riod (https://www.eia.gov/, last access: 31 July 2021). More
work is required to understand the discrepancies in oil and
gas trend estimates between the inversion and EPA reports.
We cannot exclude the possibility that oil and gas emissions
are not adequately separated in the EPA inventory and/or the
inversion at this stage.

Figure 10 shows the spatial distributions of the linear re-
gression fits to the 2010–2017 trends for the major anthro-
pogenic sectors, i.e., the equivalent linear trends over the
period. We find that the oil increases are mostly driven by
major basins in the south-central US including the Permian
and Eagle Ford basins. The gas decreases are mostly driven
by fields in the western US (Niobrara) and southeastern US
(Haynesville). Livestock emissions show variable regional
patterns of increase and decrease that could reflect variations
in animal populations. The increase in Iowa is consistent with
a previous study of GOSAT trends by Sheng et al. (2018a),
who attributed it to an increase in the number of swine (Iowa
Department of Natural Resources, 2017). Landfills also show
variable patterns of increase and decrease.

The ECCC reports no significant trends of Canadian an-
thropogenic methane emissions over 2010–2017 but notes
some decreases in oil emissions, in particular after 2014
(ECCC, 2021). Here we find a decreasing trend in Cana-
dian anthropogenic emissions of −2.3 (−2.5 to −1.6) %a−1

from the inversion, mainly driven by gas (−3.8 (−3.9 to
−1.7) %a−1) and oil (−1.7 (−2.0 to−0.4) %a−1). This may
reflect reductions in livestock and oil and gas emissions over
this period (ECCC, 2020b) as well as the ongoing regula-
tion of methane released from the oil and gas sectors fol-
lowing the Pan-Canadian Framework on Clean Growth and
Climate Change, which aims to reduce methane emissions
by 40 %–45 % by 2025 relative to the 2012 level (ECCC,

https://doi.org/10.5194/acp-22-395-2022 Atmos. Chem. Phys., 22, 395–418, 2022

https://www.eia.gov/


410 X. Lu et al.: Methane emissions in the United States, Canada, and Mexico

Figure 8. Posterior correction for mean 2010–2017 methane emissions from the oil, gas, livestock, and landfill sectors as given by the base
inversion. The correction factors for anthropogenic emissions are relative to the national emission inventories used as prior estimates (EPA
GHGI for the US, ECCC NIR for Canada, INECC for Mexico).

Table 3. The 2010–2017 trends in methane anthropogenic emissions (%yr−1)a.

Inversion ensembleb National inventoriesc

CONUS

Total anthropogenic +0.10 (−0.11 to +0.34) −0.8∗

Livestock −0.25 (−0.61 to +0.09) +0.5
Oil +2.9∗ (+1.0 to +2.9) −0.4
Natural gas −1.8∗ (−1.8 to −0.48) −0.4∗

Coal mining −1.0 (−1.9 to −0.04) −5.4∗

Landfills +1.7∗ (+1.0 to +1.8) −1.6∗

Canada

Total anthropogenic −2.3 (−2.5 to −1.6) −0.3
Livestock −2.2 (−2.7 to −1.5) −0.3
Oil −1.7 (−2.0 to −0.42) −1.2
Natural gas −3.8 (−3.9 to −1.7) −0.1
Landfills −2.3 (−3.9 to −1.7) −0.4∗

Mexico

Total anthropogenic −3.3 (−3.4 to −1.7) NA
Oil −11.6∗ (−15.0 to −3.5) NA
Natural gas −3.1 (−6.1 to −1.0) NA

aFrom ordinary linear regression of emissions in individual years, reported in % a−1 relative to
the 2010–2017 mean. Figure 9 shows the time series for the base inversion. Trends marked with ∗
are significant with a p value< 0.1.
bTrends from the base inversion, with the range of trends from the inversion ensemble members
in parentheses.
cFrom national inventory emissions in individual years reported by the Environmental Protection
Agency (EPA, 2021) and Environment and Climate Change Canada (ECCC, 2021). INECC in
Mexico only reports emissions up to 2015, hence the entries marked not available (NA).
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Figure 9. The 2010–2017 trends in anthropogenic methane emissions in CONUS, Canada, and Mexico as inferred from the base inversion.
The left panels show the total national anthropogenic methane emissions, and the right panels show changes relative to 2010 for major
sectors.

2017). The inversion also suggests a decreasing trend in total
Mexican anthropogenic methane emissions by −3.3 (−3.4
to −1.7) %a−1, but this is mainly driven by a decrease from
2010 to 2011, in particular for offshore Sureste oil emissions,
and is consistent with the increasing utilization of associated
gas (Zhang et al., 2019).

3.4 The 2010–2017 wetland methane emissions and
trends

Our inversion shows a strong ability to optimize wetland
emissions over CONUS and Canada (averaging kernel sen-
sitivity of 0.57). Wetland emissions in Mexico are much
smaller and are not efficiently optimized by the inversion,
as shown in Table 1c. Posterior wetland emissions are 8.4
(6.4–10.6) Tga−1 for CONUS and 9.9 (7.8–12.0) Tga−1 for
Canada compared to 7.5 and 12.0 Tga−1 in the prior esti-
mate from the WetCHARTs v1.3.1 high-performance subset
for North America (Ma et al., 2021). There are larger regional
upward (southeast US) and downward (upper Midwest) cor-

rections even with this high-performance subset, as shown in
Fig. 11, pointing to major gaps in our understanding.

Figures 11 and 12 show the 2010–2017 trends of wet-
land emissions for CONUS and Canada. We find a sig-
nificant increase of +2.6 (+1.7 to +3.8) %a−1 in wetland
methane emissions over CONUS in 2010–2017, in partic-
ular after 2014, and this is consistent with but higher than
the WetCHARTs trend estimates of 1.3 %a−1 (not used in
the inversion). The trends over CONUS are mostly driven
by increases in the southeast US (Fig. 11b). Fluctuations in
emissions for temperate and boreal wetlands are mostly mod-
ulated by temperature, snowmelt, precipitation, and drought
events (Watts et al., 2014). We find a significant correlation
of 0.89 between the CONUS wetland emissions and annual
precipitation in the CONUS wetland regions and a strong
2010–2017 increase in precipitation that may drive the wet-
land trends (Fig. 12c). Wetland emissions over Canada do
not show significant trends in the inversion. The 2016 peak is
consistent with WetCHARTs and may be explained by high
precipitation (Fig. 12d).
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Figure 10. The 2010–2017 linear trends in emissions from major anthropogenic sectors on the 0.5◦× 0.625◦ grid as inferred from the base
inversion. The linear trends are fitted by linear regression to the inversion results for individual years. Areas in white have no emissions from
the corresponding sector.

Figure 11. Posterior correction and linear trends for 2010–2017 wetland emissions in North America. The posterior correction factors are
relative to the 2010–2017 mean of the high-performance subset of the WetCHARTs inventory ensemble (Ma et al., 2021). The linear trends
are from ordinary linear regression to base inversion results for individual years.

4 Conclusions

We estimated mean methane emissions and trends for 2010–
2017 in the contiguous United States (CONUS), Canada, and
Mexico by inversion of in situ (GLOBALVIEWplus CH4
ObsPack) and satellite (GOSAT) atmospheric methane ob-
servations. Our inversion used gridded versions of the na-
tional anthropogenic emission inventories reported to the
UNFCCC by EPA (CONUS), ECCC (Canada), and INECC
(Mexico) as prior estimates. It optimized a 600-member
Gaussian mixture model (GMM) of emissions for individ-
ual years at up to 0.5◦× 0.625◦ resolution using lognormal
prior error statistics on emissions to account for the heavy tail

in the probability distribution. The inversion solved for the
minimum of the Bayesian cost function with lognormal prior
statistics analytically, thus enabling a large inversion ensem-
ble to test the sensitivity of results to a range of assumptions
and providing closed-form expressions of posterior error co-
variance and information content. We find that GOSAT and
in situ observations make comparable and complementary
contributions to the optimization of methane emissions for
North America and that they show overall consistent correc-
tions to prior methane emissions.

We estimate from our base inversion a mean 2010–2017
methane emission for CONUS of 46.3 (40.2–48.4 ensemble
range) Tg a−1, 36.9 (32.5–37.8) Tga−1 of which is anthro-
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Figure 12. The 2010–2017 trends of wetland methane emissions and precipitation in CONUS and Canada. The left panels show the results
from the base inversion and the mean annual emissions from the high-performance ensemble of the WetCHARTs v1.3.1 inventory (Ma et al.,
2021), The 8-year WetCHARTs average is used as a prior estimate for the inversion so that the trend in the inversion results is solely from the
atmospheric observations. The right panels show the annual precipitation over the wetland regions of CONUS and Canada, as determined by
weighting precipitation amounts with the WetCHARTs wetland emission fluxes on their native 0.5◦× 0.5◦ grid. The gridded precipitation
data are from the ERA-Interim re-analyses (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim/, last access: 31 July
2021, 0.5◦× 0.5◦).

pogenic. This anthropogenic emission is 30 % higher than
the EPA inventory of 28.7 Tga−1 used as a prior estimate
(EPA, 2016) and 42 % higher than the 2010–2017 mean of
26.0 Tga−1 in the most recent version of the EPA inventory
(EPA, 2021). These upward corrections are largely attributed
to the oil (4.6 Tga−1) and gas (9.9 Tga−1) sectors, which are
respectively 177 % and 65 % higher than the EPA (2021) esti-
mates and are mainly in large basins of the south-central US.
The inversion also shows upward corrections of livestock
emissions to 10.6 Tga−1, which is 15 % higher than the EPA
estimate (9.2 Tga−1), and of landfill emissions to 7.2 Tga−1,
which is 24 % higher than the EPA estimate (5.8 Tga−1).

We estimate a mean 2010–2017 emission for Canada of
16.2 (13.5–17.4) Tg a−1, 5.3 (3.6–5.7) Tga−1 of which is an-
thropogenic. This anthropogenic emission is 43 % higher
than the 3.7 Tga−1 in the ECCC (2020) national inventory
used as a prior estimate. Most of this difference is due to oil
emissions, which we estimate at 1.8 Tga−1; this is more than
twice the ECCC estimate and mainly from production in Al-
berta and Saskatchewan.

We estimate a mean 2010–2017 emission for Mexico of
6.8 (5.4–6.9) Tga−1, 6.0 (4.7–6.1) Tga−1 of which is anthro-
pogenic. This anthropogenic emission is 20 % higher than
the 5.0 Tga−1 in the INECC (2018) national inventory used
as a prior estimate. Again, most of the underestimate is due

to the oil sector, specifically to oil production in the Sureste
onshore region. Offshore oil emissions are lower than the IN-
ECC estimate.

We find from the inversion that anthropogenic emissions in
CONUS peaked in 2014 and had no net trend over the 2010–
2017 period (+0.1 (−0.1 to +0.3) %a−1), in contrast with
the EPA inventory that reports a steady decreasing trend of
−0.8 %a−1 over the period. The overall US emission trend
reflects increases in the oil and landfill sectors, decreases
in the gas sector, and flat emissions in the livestock and
coal sectors. We find a decreasing trend in Canadian anthro-
pogenic emissions of −2.3 (−2.5 to −1.6) %a−1 over the
2010–2017 period, mainly driven by oil and gas production.
We also find a decreasing trend in Mexican anthropogenic
methane emissions (−3.3 (−3.4 to −1.7) %a−1) over the
2010–2017 period, mostly driven by the oil sector, in par-
ticular by offshore operations.

Wetlands are the main natural source of methane in all
three countries. Starting from the high-performance sub-
set of the WetCHARTs inventory ensemble as a prior esti-
mate, our inversion yields mean wetland emission estimates
for 2010–2017 of 8.4 (6.4–10.6) Tga−1 for CONUS, 9.9
(7.8–12.0) Tga−1 for Canada, and 0.6 (0.4–0.6) Tga−1 for
Mexico. Wetland emissions in CONUS show a significant
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increase of 2.6 (1.7–3.8) %a−1 over 2010–2017 correlated
with precipitation.
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