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Abstract. Transportation represents the largest sector of anthropogenic CO2 emissions in urban areas in the
United States. Timely reductions in urban transportation emissions are critical to reaching climate goals set
by international treaties, national policies, and local governments. Transportation emissions also remain one
of the largest contributors to both poor air quality (AQ) and to inequities in AQ exposure. As municipal and
regional governments create policy targeted at reducing transportation emissions, the ability to evaluate the
efficacy of such emission reduction strategies at the spatial and temporal scales of neighborhoods is increasingly
important; however, the current state of the art in emissions monitoring does not provide the temporal, sectoral, or
spatial resolution necessary to track changes in emissions and provide feedback on the efficacy of such policies
at the abovementioned scale. The BErkeley Air Quality and CO2 Network (BEACO2N) has previously been
shown to provide constraints on emissions from the vehicle sector in aggregate over a ∼ 1300 km2 multicity
spatial domain. Here, we focus on a 5 km, high-volume, stretch of highway in the San Francisco Bay Area.
We show that inversion of the BEACO2N measurements can be used to understand two factors that affect fuel
efficiency: vehicle speed and fleet composition. The CO2 emission rate of the average vehicle (in grams per
vehicle kilometer) is shown to vary by as much as 27 % at different times of a typical weekday because of changes
in these two factors. The BEACO2N-derived emission estimates are consistent to within ∼ 3 % of estimates
derived from publicly available measures of vehicle type, number, and speed, providing direct observational
support for the accuracy of the EMission FACtor model (EMFAC) of vehicle fuel efficiency.

1 Introduction

Urban emissions currently account for ∼ 75 % of all anthro-
pogenic CO2 emissions (Seto et al., 2014). By 2050, roughly
two-thirds of the Earth’s projected population of 9.3 billion
is expected to reside within urban areas (Seto et al., 2014),
meaning that effective greenhouse gas (GHG) emission re-
duction strategies must focus on urban emission reductions.

The transportation sector is responsible for ∼ 23 % of
global GHG emissions worldwide (Seto et al., 2014) and

represents the greatest sectoral percentage (∼ 25 %–66 %) of
emissions from within the boundaries of urban areas in the
United States (City of Oakland, 2020; Gurney et al., 2021).
Although the fuel efficiency of new internal combustion en-
gine vehicles has increased by ∼ 30 % over the last 20 years,
and electric vehicles (EVs) are becoming more prevalent
(e.g., https://arb.ca.gov/emfac/emissions-inventory, last ac-
cess: 12 January 2022), emission reductions resulting from
fuel efficiency gains in newer vehicles are negated by an in-
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creasing percentage of heavy-duty vehicles (HDVs) (Moua,
2020), speed-related reductions in fuel efficiency resulting
from increases in congestion, and an increase in the total ve-
hicle kilometers traveled. Over the past 20 years, even in lo-
cations with aggressive climate change policies, these fac-
tors have resulted in CO2 emissions from vehicles that have
increased or stayed nearly constant. For example, the Cali-
fornia Air Resources Board estimates that per capita vehicle
emissions in the state of California in 2015 were only 2 %
lower than in 2000, and per capita vehicle kilometers trav-
eled increased ∼ 2.5 % over that time period (California Air
Resources Board, 2018). In addition to GHG emissions, the
transportation sector is responsible for a significant share of
fine particulate matter (PM2.5) and NOx emissions, exacer-
bating PM2.5 and ozone exposure in BIPOC already experi-
encing disproportionate health burdens associated with poor
air quality (Tessum et al., 2021).

Municipal and regional governments have increasingly
shown interest in tracking and reducing CO2 emissions from
all sectors, including transportation. For example, Boswell et
al. (2019) found that 64 % of Californians live in a city with
a climate action plan. For urban and regional governments
to plan, monitor, and responsively adjust emission reduction
policies, an up-to-date understanding of the spatial and tem-
poral variations in total emissions and in emissions by sector
and subsector processes is key.

For transportation, reductions in vehicle kilometers, con-
gestion mitigation, and rules affecting fleet composition
(e.g., limiting road access to HDVs, incentivizing use of elec-
tric vehicles, or buy-backs of older vehicles) are three levers
that can be employed to reduce CO2 and AQ emissions from
vehicles, thereby affecting the climate footprint, air quality
(AQ), and environmental justice (EJ) in a region. However,
the current state of the art in emission monitoring and model-
ing do not provide the temporal, sectoral, or spatial resolution
necessary to track changes in urban emissions and provide
feedback on the efficacy of each lever separately. Further-
more, current estimates of the magnitude and sectoral appor-
tionment of urban CO2 emissions can vary widely. For ex-
ample, Gurney et al. (2021) show how a consistent approach
to total emissions from cities across the United States differs
from locally constructed inventories in magnitude and sector
by sector.

Spatial and temporal process-level maps of emissions are
needed to improve the scientific basis for emission control
strategies. The current state of the art involves finding ag-
gregate emissions over large regions (e.g., counties or states)
using economic data and then downscaling those totals us-
ing proxies such as road length, building type, or population
density. These models meet the need for high spatial reso-
lution (∼ 500 m) and capture emissions from many detailed
subsectors (Gately et al., 2015; Gurney et al., 2012; McDon-
ald et al., 2014). Because fuel sales are well characterized,
these models are also likely to produce accurate region-wide
CO2 emission totals from the transportation sector.

However, even the most detailed of these inventories do
not presently describe the temporal variability in processes
that affect emissions, such as the direct response of home
heating or air conditioning to ambient temperature or, with
one exception (Gately et al., 2017), the variations in emis-
sions per kilometer when comparing free-flowing with stop-
and-go traffic. These models often disagree with one another
spatially (Gately and Hutyra, 2017), have been subject to
only limited testing against observations of the atmosphere,
and are not designed to be consistent with separately con-
structed AQ inventories that have been subject to much more
extensive testing against observations.

Mobile monitoring campaigns and high-density mea-
surement networks highlight the importance of character-
izing and identifying the processes contributing to sharp
neighborhood-scale AQ and GHG hot spots and point to the
importance of traffic emissions at neighborhood scales. For
example, Apte et al. (2017) showed that concentrations of
NOx and black carbon (BC) can vary by as much as a fac-
tor of ∼ 8 on the scale of tens to hundreds of meters. Caubel
et al. (2019) showed BC concentrations to be ∼ 2.5 times
higher on trucking routes than on neighboring streets. Such
gradients are not represented in inventories based on down-
scaled economic data.

Observations of CO2 and other GHGs can play an impor-
tant role in improving and maintaining the accuracy of emis-
sion models – especially during a time of rapid proposed
changes. CO2 measurements paired with Bayesian inverse
models have been shown to provide a quantitative assess-
ment of emissions (Lauvaux et al., 2016, 2020; Turner et
al., 2020a). To date, most attempts at quantifying urban CO2
emissions have focused on extracting a temporally averaged
(often a full year) total of the anthropogenic CO2 across the
full extent of city. A few studies have attempted to disag-
gregate emissions by sector or fuel type or to describe large
shifts in aggregate emissions (Newman et al., 2016; Nathan
et al., 2018; Lauvaux et al., 2020; Turner et al., 2020a), but
none characterize the subsector processes of vehicle emis-
sions.

High-spatial-density observations offer promise as a
means to explore process-level emission details. The BErke-
ley Air Quality and CO2 Network (BEACO2N) is an observ-
ing network deployed in the San Francisco Bay Area and
other cities with a measurement spacing of ∼ 2 km (Fig. 1,
left). In a prior analysis, Turner et al. (2020a) showed that
BEACO2N measurements can detect variation in CO2 emis-
sions with time of the day and day of the week in addition to
the dramatic changes in CO2 emissions due to the COVID-
related decrease in driving.

Here, we analyze hourly, spatially allocated CO2 emis-
sions derived from the inversion of BEACO2N observations
(Turner et al., 2020a) to explore how well they constrain the
CO2 emissions from a 5 km stretch of highway. This stretch
was chosen because of its location upwind of consistently
active BEACO2N sites, for completeness of traffic data, and
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Figure 1. The left panel presents a map of the BEACO2N network, showing all sites (blue dots) for which there are more than 4 weeks of
data during the period analyzed (January to June from 2018 to 2020). Red stars indicate the location of the PeMS monitors used in this study.
The top right panel presents CO2 values shown for a “typical week” during the time period observed. The dark line represents the median
value observed across all sites and times, and the shaded envelope represents 1σ variance across the network and over the 2-year period. The
bottom right panel presents CO2 emissions on all highway pixels in the domain as derived from the inversion of BEACO2N observations
(blue), BEACO2N prior (black), and the PeMS-EMFAC-based estimate (red). The shaded envelope shows variance in emissions during the
18-month analysis window.

because emission rates are highly affected by speed (vehicles
use more fuel per kilometer at very low and high speeds) and
fleet composition (HDVs emit more CO2 per kilometer than
light-duty vehicles, LDVs). The variation in the ratio of total
fleet CO2 emissions per vehicle kilometer traveled (grams of
CO2 per vehicle kilometer) is used to explore variations in
on-road fuel efficiency and the factors responsible for that
variation. We show that the average fuel efficiency of the ve-
hicle fleet on the road varies by as much as 27 % over the
course of a typical weekday.

2 Methods and data

2.1 The Berkeley Air quality and CO2 Network

We use hourly CO2 observations from the Berkeley Air qual-
ity and CO2 Network (BEACO2N) (Shusterman et al., 2016;
Kim et al., 2018; Delaria et al., 2021). The BEACO2N net-
work includes more than 70 locations in the San Francisco
Bay Area, spaced at ∼ 2 km, and measures CO2 with a net-
work instrument error of 1.6 ppm or less (Delaria et al.,
2021). All available data from January to June during the
2018–2020 period are included in this analysis. During this
time, more than 50 distinct locations had nodes that were ac-
tive for a month or more (including 19 sites within 10 km of
our highway stretch of interest). The number of nodes ac-
tive at any given time ranged from 7 to 41, with a mean of

17. Figure 1 shows sites in operation at some point during
analysis period, and Fig. S1 in the Supplement shows a time
series of the number of nodes available throughout the study
period.

2.2 The BEACO2N Stochastic-Time Inverted
Lagrangian Transport inversion system
(BEACO2N-STILT)

To infer CO2 emissions from within the BEACO2N foot-
print, we use the Stochastic-Time Inverted Lagrangian Trans-
port (STILT) model, coupled with a Bayesian inversion as
described in detail in Turner et al. (2020a). Briefly, we
use meteorology from the National Oceanic and Atmo-
spheric Administration (NOAA) High-Resolution Rapid Re-
fresh (HRRR) product at a 3 km resolution to calculate foot-
prints from each hour at each site, weighted by a priori
CO2 emissions. The overall region of influence, the net-
work footprint, as defined by a contour representing 40 %
of the CO2 influence, is shown in Fig. S2 (left). We con-
struct a spatially gridded prior emission inventory using point
sources provided by the Bay Area Air Quality Management
District (BAAQMD) (2015), home heating emissions as re-
ported by BAAQMD (2011) and distributed spatially accord-
ing to population density, on-road emissions from the High-
resolution Fuel Inventory for Vehicle Emissions (McDonald
et al., 2014) varying by hour of week and scaled by year us-
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ing fuel sales data, and a biogenic inventory derived using
solar-induced fluorescence (SIF) satellite data (Turner et al.,
2020b).

To ensure a focus on highway emissions, we subtract prior
estimates associated with non-highway sources from pos-
terior BEACO2N-STILT fluxes. Non-highway sources are
small (∼ 12 %) in comparison with highway emissions for
the pixels corresponding to the highway stretch analyzed in
this study (Fig. 2, left). We assume the error in prior esti-
mates of these sources to be an even smaller fraction of the
total. For reference, a diel cycle of sector-specific, weekday
prior emissions for the pixels analyzed in this study is shown
in Fig. S3.

We estimate the BEACO2N-STILT inversion to be precise
to at least 30 % for a line source. This estimate is based on
the results of Turner et al. (2016), who used observation sys-
tem simulation experiments to demonstrate that a 45 tC h−1

line source could be constrained to 15 tC h−1 with 7 d of ob-
servations at 30 sites. However, this paper also demonstrated
that error in the posterior decreased as results were averaged
over a longer period of time. Here, as we are using 18 months
(rather than 7 d) of observations, we expect and observe bet-
ter precision than 30 %.

2.3 PeMS-EMFAC-derived CO2 emission estimates

Total hourly vehicle flow, the HDV (truck) percentage, and
speed were retrieved from http://pems.dot.ca.gov (last ac-
cess: 12 January 2022) for the period from January to June
for the years from 2018 to 2020. There are ∼ 1800 traf-
fic counting stations hosted by the Caltrans Performance
Measurement System (PeMS) in the San Francisco Bay
Area, including more than 400 sites (Fig. S2) within the
2020 footprint of the BEACO2N network, as described in
Turner et al. (2020a). These stations count vehicle flow us-
ing magnetic loops imbedded in roadways and estimate the
HDV fraction using calculated vehicle speed and assump-
tions about vehicle length (Kwon et al., 2003). For hours
during which fewer than 50 % of measurements were re-
ported, we fill in the total speed and light-duty vehicle (LDV)
flow gaps using linear fits to nearest-neighbor sites, and we
fill in gaps in the HDV flow using hour-of-day-specific and
weekend/weekday-specific median ratios between neighbor-
ing sites. Using this imputation method, we find that mean
absolute errors in speed are 5–10 km h−1, mean absolute er-
rors in the LDV flow are 500 vehicles per hour, and mean
absolute errors in the HDV flow are 50 vehicles per hour (see
Fig. S4).

We calculate both LDV and HDV vehicle kilometers
for each highway segment during each hour using down-
loaded flow data at each sensor location and segment
lengths obtained from the PeMS database. For highway seg-
ments within the BEACO2N footprint, vehicle kilometers are
summed to obtain regional highway HDV and LDV vehicle
kilometers for every hour. Figure S2 (left) shows the extent of

the PeMS network in comparison to the BEACO2N-STILT
footprint as well as the total HDV vehicle kilometers and the
total LDV vehicle kilometers.

Vehicle fuel efficiency is dependent on both fleet compo-
sition and vehicle speed. We calculate an emission rate at
each location by combining the speed and the HDV per-
centage with fuel efficiency estimates provided by the Cal-
ifornia Air Resources Board EMission FACtor model (EM-
FAC2017). The EMFAC2017 model provides yearly fuel ef-
ficiency estimates for the San Francisco Bay Area for 41 ve-
hicle classes as a function of speed. We group these 41 ve-
hicle types into the LDV or HDV categories (Table S1). The
PeMS vehicle-type classification system is length based, as-
suming that LDVs have a median length of 3.7 m and HDVs
have a median length of 18.3 m (Kwon et al., 2003). As a
result, we group most light-duty trucks into the LDV cat-
egory. To find speed-dependent emission rate values for the
LDV and HDV groups, we find a vehicle-kilometer-weighted
mean of emission rates across all vehicle classes within a
group at a given speed:

erspeed,group =

∑n
i=1vkmi,speederi,speed∑n

i=1vkmi,speed
, (1)

where er denotes the total emission rate, i is a vehicle class,
and vkm denotes vehicle kilometers. From this, we generate
LDV and HDV emission rates at 8.02 km h−1 (5 mph) inter-
vals (see Fig. S5). EMFAC does not provide data for several
LDV vehicle classes at and above 96.8 km h−1 (60 mph). To
fill this gap, we estimate emission rates for the LDV group
by employing the emission rate to speed slopes (grams of
CO2 per vehicle kilometer per hour) for high speeds (88–
145 km h−1), using data from Davis et al. (2021).

We calculate emission rates (grams of CO2 per vehi-
cle kilometer) for each (< 1 km) road segment between the
PeMS sensors at a moment in time:

er(t,seg)=

vkmLDV(t,seg)erLDV(t,seg)+ vkmtHDV
(t,seg)ertHDV(t,seg)

vkmLDV(t,seg)+ vkmHDV(t,seg)
, (2)

where the emission rates for cars and trucks are found via a
spline fit between the reported speed for that segment and
time with our curves for the emission rates of each vehi-
cle group. A fit is used rather than individual bins, due to
the sharp gradients that exist at low speeds for LDVs. From
the emission rate for each (∼ 1 km) segment, we calculate an
emission rate for a stretch of highway including several seg-
ments to find the total emission rate (er) along a “stretch”
over a period of time:

er (t,stretch)=

∑
all segments(vkmLDV)(t, s)erLDV(t, s)
+vkmHDV(t,seg)erHDV(t, s)∑

all segments(vkmLDV(t, s)
+vkmHDV(t, s))

. (3)

The total CO2 emission rates for the highway stretch ana-
lyzed in this work are shown in Fig. 2 (bottom right).
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Figure 2. The left panel shows the ∼ 5 km stretch over which we analyze grams of CO2 per vehicle kilometer (vkm). Points show the
location of PeMS stations, and squares show the pixels associated with BEACO2N-STILT output that we use for comparison for the 5 km
stretch. The top right panel presents the hourly average speed shown for two opposite (west in red, and east in blue) PeMS measurement
stations for a typical week. The middle right panel presents the PeMS-EMFAC-derived emission rates calculated for two opposite (west in
red, and east in blue) PeMS measurement stations for a typical week. The bottom right panel presents the aggregate PeMS-EMFAC-derived
estimated emission rates from the two directions of traffic for a typical week for this highway stretch.

3 Results

To gain insight into the relative impacts of congestion and
fleet composition, we first calculate fleet-wide vehicle emis-
sion rates (in grams of CO2 per vehicle kilometer) using two
different methods. For both methods, the Caltrans Perfor-
mance Measurement System (PeMS; http://pems.dot.ca.gov,
last access: 12 January 2022) provides vehicle counts, speed,
and vehicle category (HDVs or LDVs). Using these data
and estimates of fuel consumption per kilometer from the
EMission FACtor 2017 (EMFAC) model, we calculate the
CO2 emissions per kilometer for the average vehicle with
an hourly time resolution, as described above. Second, we
use the PeMS data in combination with the grams of CO2
per unit area derived from the BEACO2N-STILT inversion
system. We focus on the ∼ 5 km stretch of Interstate 80 just
north of the San Francisco–Oakland Bay Bridge (Fig. 2). In-
terstate 80 is an east–west Highway whose orientation along
this stretch is mainly north–south, with eastbound lanes trav-
eling north and westbound lanes traveling south. The road
has five lanes in each direction and is often subject to high
congestion (vehicles traveling slower than the posted speed).

PeMS-EMFAC-derived emission rates give us insight into
(1) the expected variation in emission rates across a typi-
cal day (Fig. 2) and (2) the relative impacts of congestion

vs. the HDV percentage as factors leading to this variation
(Fig. S6). For example, while the westbound segment ex-
periences speeds significantly below free-flow during both
morning and evening rush hours, the eastbound segment ex-
periences significant congestion only during the evening. Be-
cause of a steep gradient in LDV emission rates between 20
and 50 km h−1 (Fig. S5), the westbound congestion in this
segment occurs at speeds that are more fuel efficient than free
flow. The overall variance in emission rates over the whole
stretch is significantly smaller than in either of the directions
shown individually.

From PeMS-EMFAC-derived emission factors, we predict
a median diel cycle with the emissions per kilometer traveled
ranging from ∼ 247 to ∼ 314 g CO2 per vehicle kilometer.
For reference, if all vehicles were driving at the speed limit
of 104.6 km h−1 (65 mph) and the fleet mix was 6 % HDVs
and 94 % LDVs, we calculate an emission rate of 265 g CO2
per vehicle kilometer. The range of predicted emissions is
narrower on the weekend (238–276 g CO2 per vehicle kilo-
meter), as fewer HDVs use the road and there is a smaller
range with respect to speed.

Figure S6 shows the hourly variation in the relative con-
tributions of LDV speed, HDV percentage, and HDV speed
to the deviation in grams of CO2 per vehicle kilometer from
the reference value of 265 g CO2 per vehicle kilometer. The
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solid line is the mean, and the shaded envelope represents
the day-to-day variance. In the morning and at midday, the
HDV percentage and LDV speed have opposite impacts on
the grams of CO2 per vehicle kilometer, leading to small vari-
ations in the grams of CO2 per vehicle kilometer over the day,
despite substantial variations in the separate effects of speed
and HDV percentage. During evening rush hour, low vehicle
speeds result in higher emission rates, leading to large pos-
itive deviations. High day-to-day variance in vehicle speed
contributes to high day-to-day variance in emission rates. At
times near midnight, large, positive deviations are observed,
mostly as a consequence of a high HDV percentage but also
because traffic flows at rates higher than 104.6 km h−1, lead-
ing to higher emission rates. Night-to-night variance in the
HDV percentage is low; thus, variance in the nighttime pre-
dicted grams of CO2 per vehicle kilometer is small. The
HDV speed has little impact on the grams of CO2 per vehicle
kilometer.

We use CO2 measurements from 50 BEACO2N sites
across the San Francisco Bay Area combined with the
BEACO2N-STILT inversion system to assess highway emis-
sions from our stretch of interest. In Fig. 1, we show the lo-
cation of BEACO2N sites, the stretch of interest, and emis-
sion estimates for this stretch. Note that the posterior emis-
sions move substantially from prior emissions towards what
is estimated from PeMS-EMFAC, particularly during the
evening rush hour, when the prior overestimates emissions
by ∼ 20 %.

We compare BEACO2N-derived and PeMS-EMFAC-
derived emission rates (grams CO2 per vehicle kilometer)
and find remarkable agreement. The PeMS-EMFAC-derived
emission rates range from 225 to 300 g CO2 per vehicle kilo-
meter and include the effects of both fleet composition and
variation in speed. For BEACO2N, we use the total CO2
emissions from the inversion at times corresponding to nar-
row bins of PeMS-EMFAC (grams of CO2 per vehicle kilo-
meter). Figure 3a shows an example of data selected at times
with PeMS-EMFAC-derived fuel efficiency in the range of
271.4 to 279 g CO2 per vehicle kilometer. There is a range
of emissions at each vehicle kilometer because of noise in
the inversion, variation in speed, and variation in the fleet
composition. The slope of a fit to the data in Fig. 3a is an es-
timate of the emission rate (Eq. 4), where CO2 emissions are
defined as hourly emissions summed over BEACO2N pixels
corresponding to our highway stretch of interest (Fig. 2):

er
(

gCO2 vkm−1
)
=

CO2 emissons
vkm

. (4)

Using 18 months of data for weekdays between 04:00 and
22:00 local time, we compare PeMS-EMFAC-derived and
BEACO2N-derived CO2 per vehicle kilometer (Fig. 3b).
These hours were chosen, because they represent the hours
for which we expect traffic emissions to be substantially
larger than emissions from other sources in our area of in-
terest (see Fig. S3). When fitting to a line forced through

the origin, emission rates found via the BEACO2N inversion
are within 3 % (0.97± 0.01) of those predicted using PeMS-
EMFAC traffic counts. A more complete description of this
fitting and error calculation process can be found in Sect. S8,
and a comparison to the results from applying this method
to the prior can be found in Sect. S9. Using the definition of
the limit of detection as 3 times our uncertainty, we calculate
that we would be able to detect an 11 % change in individ-
ual points (representing bins of fuel efficiency from a com-
bination of HDV percentage and speed) and a 3 % change in
the slope. Because 18 months of data was required to reach
this level of certainty, if we assume the 2.3 %–3.8 % yr−1 de-
crease in the emission rate found by Kim et al. (2021), we
should be able to detect a change in the overall fuel efficiency
with 3 full years of BEACO2N-STILT output.

We also consider how emission rates compare through-
out the day (Fig. 4a). During the evening, PeMS-EMFAC-
derived and BEACO2N-derived emission rates are in good
agreement. The BEACO2N grams of CO2 per vehicle kilo-
meter increases from 256 g CO2 per vehicle kilometer before
rush hour (14:00) to 324 g CO2 per vehicle kilometer dur-
ing peak rush hour (17:00). Likewise, the PeMS-EMFAC-
derived CO2 per vehicle kilometer increases from 256 to
320 CO2 per vehicle kilometer over the same time period.
The BEACO2N prior has a slightly larger increase in the
emission rate over this period (256 g CO2 per vehicle kilo-
meter at 14:00 to 361 g CO2 per vehicle kilometer at 17:00).
In contrast, during the morning rush hours, we see less
agreement between PeMS-EMFAC-derived and BEACO2N-
derived emission rate estimates. The BEACO2N inversion is
similar to the PeMS-EMFAC estimate at 05:00 local time
(280 g CO2 per vehicle kilometer), and the BEACO2N esti-
mate then increases over the morning rush hour to 330 g CO2
per vehicle kilometer at 8:00. This behavior is different from
both the BEACO2N prior (175 g CO2 per vehicle kilometer at
05:00 and 275 g CO2 per vehicle kilometer at 08:00) and the
PeMS-EMFAC calculation which decreases over this period
(275 g CO2 per vehicle kilometer at 05:00 and 250 g CO2 per
vehicle kilometer at 08:00).

The discrepancy in the morning between emissions de-
rived from PeMS-EMFAC and BEACO2N can potentially be
reconciled by congestion. There is a nonlinear relationship
between vehicle speed and the rate of emissions. As such,
congestion involving nonconstant speeds can result in higher
emissions than would be estimated using the average vehi-
cle speed. This can be seen from a simple example. Consider
two cases: (1) an LDV traveling at a constant 50 km h−1 for
1 h and (2) an LDV traveling at 100 km h−1 for 20 min and at
25 km h−1 for 40 min. Both vehicles travel 50 km in 1 h and,
therefore, have the same average speed; however, the emis-
sion rate is 461.5 g CO2 per vehicle kilometer at 25 km h−1,
195 g CO2 per vehicle kilometer at 50 km h−1, and 221 g CO2
per vehicle kilometer at 100 km h−1. Using these emission
rates, the vehicle in the first case would emit 9.75 kg of CO2,
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Figure 3. (a) BEACO2N-derived emissions vs. vehicle kilometers (vkm) for times corresponding to modeled emission rates of 271.4–
279 g CO2 per vehicle kilometer. Red points represent binned medians used in fitting. (b) BEACO2N-derived vs. PeMS-EMFAC-derived
emission rates with the uncertainty estimate. The black line shows the fit weighted by variance: y = 0.97(.01)x. The gray envelope is the 5 %
deviation from fit, and the red line represents the 1 : 1 line.

Figure 4. (a) Emission rates by time of day on weekdays for PeMS-
derived (red), BEACO2N prior (blue), and BEACO2N posterior
(green) data. Probability density functions of the HDV (truck) frac-
tion (b) and speed (c) from a weekday morning (05:00–09:00) and
evening (16:00–20:00) rush hour period on the segment of Interstate
80 analyzed in Sect. 3. The y axis represents the relative probability
of the HDV fraction (b) or averaged hourly speed (c). Speeds are
from individual PeMS sensors, whereas the HDV fraction is aggre-
gated over the whole stretch under consideration (both directions).

whereas the vehicle with the variable speed in the second
case would emit 15 kg of CO2.

Contrasting the speeds (Fig. 4c) during these two peri-
ods, we see that while both show a bimodal speed distri-
bution, a greater fraction of morning speeds fall into the
40–100 km h−1 range, whereas a greater fraction of evening
speeds are < 40 or > 100 km h−1. In Fig. S8, we show that
emission rate estimates based on hourly averaged speeds be-
tween 0 and 40 km h−1 and between 100 and 140 km h−1

(more common in evening rush hour) are likely an upper
bound on possible emission rates corresponding to those
hourly averaged speeds, whereas emission rate estimates
based on hourly averaged speeds between 40 and 100 km h−1

(more common in morning rush hour) likely represent a
lower bound of emissions. The predicted range in the emis-
sion rate, resulting from nonconstant speeds combined with
a larger HDV percentage, in the morning (Fig. 4c) is large
enough to explain the mismatch observed during the morn-
ing rush hour.

4 Discussion

The strategic reduction of emissions from transportation is
important for both reducing total GHG emissions and im-
proving AQ. To make informed decisions that reduce GHGs
and exposure to poor AQ, policy makers need to know
(1) how much is being emitted, (2) the location and timing
of emissions, and (3) the relative impact of various subsector
processes (e.g., vehicle kilometers and fleet composition).

To effectively capture emissions from subsector processes,
models are also reliant on emission factor models, such
as the EMFAC2017 model used in this paper. While our
BEACO2N-STILT-based estimates largely agree with EM-
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FAC2017 with respect to CO2, tracking on-road changes in
emission factors will be especially important as the impacts
of congestion and fleet composition evolve rapidly, making
timely updates essential to creating spatially accurate inven-
tories. For example, the EMFAC model predicts an 18 % de-
crease in overall CO2 emission rates by 2030, resulting from
the improved fuel efficiency of combustion engine vehicles
and a transition to hybrid vehicles and EVs (∼ 6.8 % of LDV
vehicle kilometers and ∼ 6 % of HDV vehicle kilometers are
expected to be traveled by EVs by 2030). While the increased
share of hybrid vehicles and EVs should work to decrease
the impact of congestion, a projected increase in total con-
gestion and the congested vehicle kilometer share by HDVs
(Texas A&M Transportation Institute, 2019) is likely to work
against that trend, making the overall result difficult to pre-
dict.

To our knowledge, this paper represents the first demon-
stration that a high-density atmospheric observing network
can both diagnose and quantify the relative contributions of
subsector processes at the neighborhood scale. We demon-
strate that the BEACO2N network (∼ 2 km spacing) of low-
cost CO2 sensors can be used to quantify emission rates at a
specific location (a ∼ 5 km stretch) and by time of day. We
show that, on the highway stretch examined, activity-based
emission estimates that account for speed and HDV per-
centage match the inference from atmospheric measurements
to within 3 %. Finally, we demonstrate that the BEACO2N-
STILT system detects daily changes in fuel efficiency that
range from 200 to 300 g CO2 per vehicle kilometer and that
this system would be capable of detecting fleet-wide changes
in fuel efficiency in ∼ 3 years.

5 Outlook

In this work, we have demonstrated that the BEACO2N-
STILT system was able to infer emission rates from vehi-
cles along a specific stretch of highway. To understand the
extent to which this method can be applied to other contexts,
future work should investigate the extent to which various el-
ements of the BEACO2N-STILT system, including measure-
ment density, error in meteorology used to calculate STILT
trajectories, and the quality of the prior, impact the ability of
similar systems to estimate emissions.

For example, it is possible that the mismatch that we ob-
serve during the morning rush hour may be due to a larger
relative meteorological model error in the morning compared
with the afternoon and early evening, during which time the
boundary layer is relatively well mixed. Because a highly
mixed boundary layer is important for minimizing discrep-
ancies between particle trajectories in the STILT model and
real transport (Lin et al., 2003), inversions typically use only
measurements taken during the afternoon, (Lauvaux et al.,
2016, 2020; Nathan et al., 2019) when the boundary layer
is relatively well mixed. However, as discussed by Martin et

al. (2019), the impacts of meteorological mismatch during
the morning may be offset by a stronger signal, and future
work should explore the extent to which averaging results
over long time periods or strategic filtering of meteorologi-
cal mismatches can combat emission error.

Beyond further exploration of the elements influencing
the sensitivity and precision of the BEACO2N-STILT sys-
tem, because each BEACO2N node measures CO, NOx , and
PM2.5 in addition to CO2 (Kim et al., 2018), the method pre-
sented in this paper has the potential to shed light on sub-
sector processes impacting the emission factors of these co-
emitted species. This is salient because plume-based emis-
sion factor measurements of co-emitted pollutants show that
various emission factor models systematically underestimate
emissions (Bishop, 2021), fail to capture spatial heterogene-
ity in these factors due to fleet composition (age and compli-
ance with control technologies) for PM (Haugen et al., 2018;
Park, et al., 2016) and black carbon (Preble et al., 2018), or
fail to capture the impact of temperature on emission factors.

Applying these methods across a broader spatial area and
to other species (e.g., PM2.5, NOx , and CO) should yield in-
formation of interest to both scientists and policy makers by

1. revealing spatial and temporal trends in emission rates
and emission factors across an urban area and quantify-
ing the contributions of congestion, fleet composition,
or other factors to spatial variations;

2. identifying and diagnosing the causes of traffic-related
AQ hot spots that contribute to exposure inequities;

3. tracking trends in the above over periods of years to
decades.
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