



## Supplement of

## The impact of peripheral circulation characteristics of typhoon on sustained ozone episodes over the Pearl River Delta region, China

Ying Li et al.

Correspondence to: Xiangjun Zhao (iamzxj841025@163.com) and Xuejiao Deng (dxj@gd121.cn)

The copyright of individual parts of the supplement might differ from the article licence.



**Figure S1.** The 1000 hPa horizontal wind vector and the 500 hPa Geopotential height (unit: m/s) of NCEP-FNL data at 14:00 on 5 July (a), 6 July (b),7 July (c) and 8 July(d); the red typhoon signs represent the moving typhoon center and the strings WPSH represent the location of WPSH.



Figure S2. Map of the two nested model domains.



**Figure S3.** The profile evolution of horizontal wind speed of 59285 wind profile radar station in PRD from 3 July to 13 July; the black solid line denotes the surface ozone concentration.



**Figure S4.** The profile evolution of horizontal wind speed of 59294 wind profile radar station in PRD from 3 July to 13 July;the black solid line denotes the surface ozone concentration.



**Figure S5.** The profile evolution of horizontal wind speed of 59476 wind profile radar station in PRD from 3 July to 13 July; the black solid line denotes the surface ozone concentration.



**Figure S6.** Comparison of measured (red dots) and simulated (black dots) data for temperatures, wind speeds, wind directions, and ozone concentrations at (a-d)Guangzhou, (a1-d1)Shenzhen, (a2-d2)Zhongshan and (a3-d3)Zhuhai.

## The derivation of C<sub>d2</sub> - C<sub>d1</sub>:

In the numerical IPR analysis, the ozone concentration at any location at time t+1 follows Eq. (S1):

$$C_{t+1} = C_t + SUM_{t+1}, \qquad (S1)$$

where  $C_{t+1}$  and  $C_t$  are the ozone concentrations at time t+1 and time t, respectively. SUM<sub>t+1</sub> is the net change in contributions from all of the physical and chemical processes from time t to time t+1, and is shown in Eq. (S2):

$$SUM_{t+1} = ADV_{t+1} + CHEM_{t+1} + VMIX_{t+1} + CONV_{t+1}.$$
 (S2)

As specified in Eqs. (S1) and (S2), ozone concentration is a cumulative amount. Then, according to Eq. (S1), we obtain:

$$C_{t+24} - C_t = \sum_{j=1}^{j=24} SUM_{t+j}, (t = 08:00,09:00,...,20:00),$$
 (S3)

where  $C_t$  and  $C_{t+24}$  are the ozone concentrations at the corresponding time on two adjacent days. For example, if  $C_t$  is the ozone concentration at 8:00 in the morning on a certain day,  $C_{t+24}$  represents the ozone concentration at 8:00 in the next morning. SUM<sub>t+j</sub> is the sum of the contributions from all of the physical and chemical processes at the corresponding time over the time slots. For example, when t is 08:00, SUM<sub>08+1</sub> indicates the SUM at 9:00 in the morning, and SUM<sub>08+24</sub> indicates the SUM at 8:00 in the next morning. To give the daytime average ozone concentration difference of two adjacent days, we use 08:00 and 20:00 as the daytime and nighttime boundaries to reprocess the hourly data into a half-day average. If the daytime average ozone concentrations for two adjacent days are denoted as  $C_{d1}$  and  $C_{d2}$ , the difference between the daytime average ozone concentrations on two adjacent days can be further expressed by three continuous contribution terms from 09:00 on the first day (d1) to 20:00 on the second day (d2):

$$C_{d2} - C_{d1} = \frac{1}{N} \sum_{t_1=0}^{t_1=20} (t_1 - 8) \cdot SUM_{t_1} + \sum_{t_2=21}^{t_2=08} SUM_{t_2} + \frac{1}{N} \sum_{t_3=09}^{t_3=20} (21 - t_3) \cdot SUM_{t_3}, \quad (S4)$$

where  $C_{d2}$  and  $C_{d1}$  are the daytime average ozone concentrations on two adjacent days.

According to Eq. (S2), Eq. (S4) can be further decomposed into the following form:

$$C_{d2} - C_{d1} = \frac{1}{N} \sum_{t1=09}^{t1=20} (t1-8) \cdot CHEM_{t1} + \sum_{t2=21}^{t2=08} CHEM_{t2} + \frac{1}{N} \sum_{t3=09}^{t3=20} (21-t3) \cdot CHEM_{t3}$$

$$+ \frac{1}{N} \sum_{t1=09}^{t1=20} (t1-8) \cdot VMIX_{t1} + \sum_{t2=21}^{t2=08} VMIX_{t2} + \frac{1}{N} \sum_{t3=09}^{t3=20} (21-t3) \cdot VMIX_{t3}$$

$$+ \frac{1}{N} \sum_{t1=09}^{t1=20} (t1-8) \cdot CONV_{t1} + \sum_{t2=21}^{t2=08} CONV_{t2} + \frac{1}{N} \sum_{t3=09}^{t3=20} (21-t3) \cdot CONV_{t3}$$

$$+ \frac{1}{N} \sum_{t1=09}^{t1=20} (t1-8) \cdot ADV_{t1} + \sum_{t2=21}^{t2=08} ADV_{t2} + \frac{1}{N} \sum_{t3=09}^{t3=20} (21-t3) \cdot ADV_{t3} \quad . \tag{S5}$$

The decomposed items are respectively denoted as:

$$TOTAL\_SUM\_HEM = \frac{1}{N} \sum_{t=0}^{t=20} (t1-8) \cdot CHEM_{1} + \sum_{t=21}^{t=08} CHEM_{2} + \frac{1}{N} \sum_{t=09}^{t=20} (21-t3) \cdot CHEM_{3},$$
  
$$TOTAL\_SUM\_VMIX = \frac{1}{N} \sum_{t=09}^{t=20} (t1-8) \cdot VMIX_{t1} + \sum_{t=21}^{t=08} VMIX_{t2} + \frac{1}{N} \sum_{t=09}^{t=20} (21-t3) \cdot VMIX_{t3},$$
  
$$TOTAL\_SUM\_CONV = \frac{1}{N} \sum_{t=09}^{t=20} (t1-8) \cdot CONV_{t1} + \sum_{t=21}^{t=08} CONV_{t2} + \frac{1}{N} \sum_{t=09}^{t=20} (21-t3) \cdot CONV_{t3},$$
  
$$TOTAL\_SUM\_ADV = \frac{1}{N} \sum_{t=09}^{t=20} (t1-8) \cdot ADV_{t1} + \sum_{t=21}^{t=08} ADV_{t2} + \frac{1}{N} \sum_{t=09}^{t=20} (21-t3) \cdot ADV_{t3}.$$

Equation (S5) shows that the daytime average ozone concentration difference of two adjacent days is determined by TOTAL\_SUM\_CHEM, TOTAL\_SUM\_VMIX, TOTAL\_SUM\_CONV and TOTAL\_SUM\_ADV.