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Abstract. Improvements in air quality and Earth’s climate predictions require improvements of the aerosol spe-
ciation in chemical transport models, using observational constraints. Aerosol speciation (e.g., organic aerosols,
black carbon, sulfate, nitrate, ammonium, dust or sea salt) is typically determined using in situ instrumenta-
tion. Continuous, routine aerosol composition measurements from ground-based networks are not uniformly
widespread over the globe. Satellites, on the other hand, can provide a maximum coverage of the horizontal and
vertical atmosphere but observe aerosol optical properties (and not aerosol speciation) based on remote sens-
ing instrumentation. Combinations of satellite-derived aerosol optical properties can inform on air mass aerosol
types (AMTs). However, these AMTs are subjectively defined, might often be misclassified and are hard to relate
to the critical parameters that need to be refined in models.

In this paper, we derive AMTs that are more directly related to sources and hence to speciation. They are
defined, characterized and derived using simultaneous in situ gas-phase, chemical and optical instruments on the
same aircraft during the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by
Regional Surveys (SEAC4RS, an airborne field campaign carried out over the US during the summer of 2013).
We find distinct optical signatures for AMTs such as biomass burning (from agricultural or wildfires), biogenic
and polluted dust. We find that all four AMTs, studied when prescribed using mostly airborne in situ gas mea-
surements, can be successfully extracted from a few combinations of airborne in situ aerosol optical properties
(e.g., extinction Ångström exponent, absorption Ångström exponent and real refractive index). However, we
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find that the optically based classifications for biomass burning from agricultural fires and polluted dust include
a large percentage of misclassifications that limit the usefulness of results related to those classes.

The technique and results presented in this study are suitable to develop a representative, robust and diverse
source-based AMT database. This database could then be used for widespread retrievals of AMTs using existing
and future remote sensing suborbital instruments/networks. Ultimately, it has the potential to provide a much
broader observational aerosol dataset to evaluate chemical transport and air quality models than is currently
available by direct in situ measurements. This study illustrates how essential it is to explore existing airborne
datasets to bridge chemical and optical signatures of different AMTs, before the implementation of future space-
borne missions (e.g., the next generation of Earth Observing System (EOS) satellites addressing Aerosols, Cloud,
Convection and Precipitation (ACCP) designated observables).

1 Introduction

Aerosols have an important yet uncertain impact on the
Earth’s radiation budget (e.g., Boucher et al., 2013) and hu-
man health (e.g., U.S. Environmental Protection Agency,
2011, 2016; Lim et al., 2012; Lanzi, 2016; Landrigan et al.,
2018; Wu et al., 2020). In particular, aerosols impact human
health by increasing the number of cases of emphysema, lung
cancers, diabetes, hypertension and premature deaths (e.g.,
Wichmann et al., 2000; Pope et al., 2002; Lim et al., 2012;
Lelieveld et al., 2019, 2015; Stirnberg et al., 2020; Nault et
al., 2021); this particularly holds true for specific species of
aerosols with high oxidative potential (e.g., Daellenbach et
al. 2020).

We define aerosol speciation as the inherent chemical
composition of the aerosol, the chemical species that are rep-
resented in chemical transport models (CTMs) (e.g., black
carbon (BC), organic aerosol (OA, typically classified into
primary and secondary organic aerosol, SOA), brown carbon,
sulfate, nitrate, ammonium, dust, and sea salt). These are typ-
ically defined to match the operational quantities reported by
in situ instruments.

CTMs derive aerosol optical properties and estimate
the radiative forcing due to aerosol–radiation interactions
(RFari), based on simulated water uptake, simulated aerosol
mass concentrations, simplified aerosol size distributions and
assumed aerosol refractive indices per species (Chin et al.,
2002). RFari for individual aerosol species are less certain
than the total RFari (Boucher et al., 2013; Myhre et al.,
2013). Myhre et al. (2013) present a large AeroCom Phase II
inter-model spread in the RFari of several aerosol species.
BC, for example, had a 40 % relative standard deviation in
RFari. Inter-model diversity in estimates of RFari is caused
in part by different methods for estimating aerosol proper-
ties (e.g., emissions, transport, chemistry, deposition, optical
properties; Loeb and Su, 2010) and to a lesser extent by sur-
face and cloud albedos, water vapor absorption, and radia-
tive transfer schemes (e.g., Randles et al., 2013; Myhre et al.,
2013; Stier at al., 2013; Thorsen et al., 2021).

In order to constrain model simulations, and in particular
to reduce the uncertainties associated to RFari per species,

data assimilation techniques have been adopted using opti-
mal estimation methods and observational constraints that
we separate in four main groups. The first group of con-
straints consists in column-integrated aerosol optical proper-
ties from passive orbital and/or suborbital instruments (e.g.,
Collins et al., 2001; Yu et al., 2003; Generoso et al., 2007;
Adhikary et al., 2008; Niu et al., 2008; Zhang et al., 2008;
Benedetti et al., 2009; Schutgens et al., 2010; Kumar et al.,
2019; Tsikerdekis et al., 2021). The second group consists
in fine aerosol mass concentrations from airborne and/or
ground-based instruments (e.g., Lin et al., 2008; Pagowski
and Grell, 2012). The third group consists in a combination
of in situ gas-phase measurements (e.g., sulfur dioxide, ni-
trogen dioxide (NO2), ozone and carbon monoxide (CO)),
fine aerosol mass concentrations from ground-based instru-
ments and column-integrated aerosol optical properties from
passive orbital instruments (e.g., Ma et al., 2019). The fourth
group consists in surface (e.g., Kahnert, 2008, Yumimoto et
al., 2008; Uno et al., 2008) and space-based aerosol lidar pro-
files (e.g., Sekiyama et al., 2010; Zhang et al., 2011), which
are used to constrain aerosol mass and extinction. Constrain-
ing model-predicted aerosol mass concentrations with pas-
sive satellite total column-integrated aerosol properties has
been shown to be useful to constrain model-predicted aerosol
optical depth (AOD). This is the case for the single-channel
visible AOD retrievals from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) sensor (e.g., Yu et al., 2003;
Zhang et al., 2008; Benedetti et al., 2009; Sessions et al.,
2015; Buchard et al., 2017; Kumar et al., 2019; Ma et al.,
2019). However, this process does not correct the uncer-
tainty associated with the simulated vertical distribution of
aerosols, nor can it derive aerosol chemical speciation. On
the other hand, assimilation of satellite-derived optical prop-
erties related to particle size (e.g., extinction Ångström ex-
ponent, EAE) and light absorption (e.g., single scattering
albedo, SSA) represents a step forward (e.g., Tsikerdekis et
al., 2021). Another way to improve estimates of speciated
RFari would be to use satellite-derived total column speci-
ated aerosol mass concentration to adjust the mass concen-
tration of individual aerosol masses when applying data as-
similation techniques in the model (and potentially the emis-
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sion/chemistry/transport processes driving them). However,
currently no satellite-derived retrievals of aerosol chemical
speciation exist.

Let us note an important distinction between what is called
aerosol speciation and air mass aerosol type (AMT). The
AMT is representative of typical aerosol mixes associated
with certain seasons and geographical locations. It is a coarse
definition (qualitative) of the aerosol size, shape and color
that dominates an air mass (e.g., clean marine, dust, pol-
luted continental, clean continental, polluted dust, smoke and
stratospheric in the case of the active spaceborne Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) on
board the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observation (CALIPSO); Omar et al., 2009).

In the next paragraphs, we concentrate on A-Train’s
POLDER (Polarization and Directionality of Earth’s Re-
flectances) passive satellite observations on board the PARA-
SOL platform. POLDER measures polarized radiances in
14–16 viewing directions at 443, 670, and 865 nm and re-
trieves aerosol optical properties over land (Deuzé et al.,
2001) and over ocean (Herman et al., 2005) using its stan-
dard retrieval algorithm. In addition, two alternate POLDER
retrieval algorithms from the Netherlands Institute for Space
Research (SRON) algorithm (Hasekamp et al., 2011, Fu
et al., 2020) and generated by the GRASP (Generalized
Retrieval of Atmosphere and Surface Properties) algorithm
(Dubovik, 2014) make full use of multi-angle, multi-spectral
polarimetric data.

On the one hand, recent techniques infer aerosol speciation
from POLDER using an inverse modeling framework, which
consists in fitting satellite observations to model estimates by
adjusting aerosol emissions. For example, Chen et al. (2018,
2019) use POLDER/GRASP spectral AOD and aerosol ab-
sorption optical depth (AAOD) to estimate, e.g., emissions
of desert dust or BC. Similarly, Tsikerdekis et al. (2021) use
POLDER/SRON AOD, AAOD, EAE and SSA but with a dif-
ferent model and assimilation technique, as well as to esti-
mate the aerosol mass and number mixing ratio of specific
aerosol species.

On the other hand, AMTs inferred by various techniques
and using satellite remote sensing observations are useful
to provide spatial context (e.g., regional, seasonal, annual
trends) to support other observations of aerosols and clouds
or evaluate other aerosol type classifications. These AMTs
are also useful in evaluating models in simple cases where a
single aerosol species is present (e.g., pure dust). For exam-
ple, Johnson et al. (2012) demonstrated how CALIOP min-
eral dust aerosol extinction retrievals were applied to im-
prove dust emission and size distribution parameterizations
in the global GEOS-Chem model, a global 3-D model of at-
mospheric chemistry driven by meteorological input from the
Goddard Earth Observing System (GEOS).

We have inferred qualitative AMTs from passive
POLDER/SRON remote sensing retrievals of EAE between
491 and 863 nm, SSA at 491 nm, a difference in single scat-

tering albedo (dSSA) between 863 and 491 nm, a real refrac-
tive index (RRI) at 670 nm, and a pre-specified clustering and
Mahalanobis classification method (SCMC) (Russell et al.,
2014).

The SCMC method, based on the methodology developed
by Burton et al. (2012), uses the Mahalanobis distance (Ma-
halanobis, 1936) analysis in multidimensional space to as-
sign AMTs based on a suite of observed parameters. The
number of parameters is adjustable, as is the nature of the
parameters themselves. Similarly, the AMT definitions are
flexible. However, a key requirement for the SCMC method
is that reference values for each AMT must be defined (i.e.,
the mean, variances and covariances of the aerosol variables),
typically using prescribed AMTs for a subset of observa-
tions. In practice, when applying SCMC to a new environ-
ment, a training dataset is created by prescribing a set of
air masses based on independent observations. Those pre-
specified AMTs from Russell et al. (2014) are based on
dominant aerosol types from AErosol RObotic NETwork
(AERONET) stations at specific locations and times (Hol-
ben et al., 1998). In Russell et al. (2014), qualitative AMTs
were derived over the island of Crete, Greece, during a 5-
year period using the SCMC method and pre-specified AMTs
from global AERONET observations. We refer the reader to
Sect. 2 of Russell et al. (2014) or Burton et al. (2012) for a
thorough description of the SCMC method.

We have extended the methods of Russell et al. (2014)
(i.e., over Greece) to the entire globe for the year 2006. On
the one hand, the POLDER-derived AMTs presented reassur-
ing features such as (i) dust over the Atlantic between the Sa-
haran coast and Central to South America, predominant from
March to August; (ii) urban industrial aerosols found near
industrialized cities such as the east coast of North Amer-
ica and over Southeast Asia; and (iii) two different types of
biomass burning (BB) over the southeast Atlantic (i.e., one il-
lustrating more smoldering combustion and pre-specified us-
ing AERONET stations located in South America and the
other one illustrating more flaming combustion and using
AERONET stations in Africa). We found darker BB (i.e.,
lower SSA) in August compared to September, due to an in-
crease in POLDER-retrieved SSA during the season, reflect-
ing either a change in BB aerosol composition (Eck et al.,
2013) or a mix of AMTs (Bond et al., 2013).

On the other hand, many features such as marine aerosols
over the Saharan desert or urban industrial aerosol type in
South America were most likely misclassified. Ambiguities
in POLDER-derived AMTs could result from a combination
of four factors:

i. errors in POLDER reflectance/polarization measure-
ments and aerosol retrievals (e.g., errors in POLDER
retrievals get larger for smaller AODs and/or a smaller
range of scattering angles);

ii. a coarse spatial resolution of the gridded POLDER
product (e.g., 2◦× 2◦);
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iii. non-optimal AERONET-based pre-specified AMTs
used as a training dataset (e.g., the AMT illustrating
more flaming combustion is defined in locations, such
as Mongu in Africa, where smoldering and flaming
combustion might be occurring at the same time, to-
gether with other AMTs present in the atmospheric col-
umn); and/or

iv. a restricted number of POLDER-derived aerosol optical
parameters – that is, the relative AMT discriminatory
power increases with the number and diversity of ob-
served parameters.

Unlike in Russell et al. (2014), where we used total column
remote-sensing-inferred optical properties which are often
representative of a mix of different AMTs, the AMTs in this
study are defined, characterized and derived using simultane-
ous gas-phase, chemical and optical instruments on the same
aircraft. This reduces errors in measurements/retrievals and
errors due to spatiotemporal colocation (see i–ii above). It
also reduces ambiguities in the selection of the AMT training
dataset (see iii), and we specifically investigate the strengths
and weaknesses of optical properties used as tools to define
AMTs and how much these optical properties can capture
dominant aerosol speciation (see iv).

The objectives of this study are to

– prescribe well-informed AMTs that display distinct
aerosol chemical and optical signatures to act as a train-
ing AMT dataset and

– evaluate the ability of airborne in situ-measured aerosol
optical properties that are suitable to be retrieved from
space to successfully extract these AMTs.

We first describe the instruments, observations and meth-
ods used in this study (Sect. 2). We provide additional in-
formation on the methods in Appendix A1. We then present
(Sect. 3), conclude (Sect. 4) and discuss (Sect. 5) our results.
We provide additional results in Appendix A2. We refer the
reader to Appendix B for the abbreviations and acronyms
used in this paper.

2 Data and method

2.1 Instruments and observations

We select NASA DC-8 airborne in situ data collected dur-
ing the Study of Emissions and Atmospheric Composi-
tion, Clouds, and Climate Coupling by Regional Surveys
(SEAC4RS) project (Toon et al., 2016), which was carried
out in August–September 2013 over North America with a
strong focus on the southeastern US (SEUS). Measurements
are collected at the altitude of the aircraft and are not repre-
sentative of the full column satellite retrieval. Although these
airborne in situ observations lack the widespread coverage

of surface networks or satellite retrievals, their benefits in-
clude measuring a wide variety of gas-phase species, aerosol
types and aerosol optical properties (Toon et al., 2016). A
major strength of our study is the use of in situ gas-phase,
chemical and optical instruments on the same NASA DC-
8 research aircraft during the SEAC4RS campaign. Table 1
lists the various airborne in situ instruments, products used
in this study and important references for each instrument.
It also shows that the instruments in Table 1 sample different
aerosol sizes. This is especially true for the DASH-SP instru-
ment, which sampled particles with dry diameters between
180 and 400 nm during SEAC4RS (Shingler et al., 2016). In
contrast, the sampled air was provided to the PI-Neph in-
strument through the NASA LARGE shrouded diffuser inlet,
which sampled isokinetically and is known to have a 50 %
passing efficiency at an aerodynamic diameter of at least
5 µm at low altitude (McNaughton et al., 2007; Espinosa et
al., 2017).

In this study, we use the 16 aerosol optical parameters
listed in Table 2 (i.e., five first parameters at three wave-
lengths or three combinations of wavelengths and last pa-
rameter at 532 nm) and derived from the optical instruments
in lines 6–8 of Table 1.

Instead of simply using the standardized SEAC4RS
merged dataset, a lot of effort was dedicated to carefully col-
locate, combine, cloud-screen, filter, and humidify datasets
(i.e., convert from dry to ambient conditions), as well as com-
pute and interpolate/extrapolate optical parameters to spe-
cific wavelengths (see Sect. A1.1 and A1.2).

2.2 Method

Figure 1 illustrates the overall method in this study, which
involves following the five steps described below.

1. Prescribe source-based aerosol air mass types (called
PS-AMTs). The PS-AMTs are defined using the gas-
phase and aerosol instruments in lines 1–2 of Ta-
ble 1 and a method based on Espinosa et al. (2018)
and Shingler et al. (2016) illustrated in Fig. 2. These
aerosol and gas measurements better characterize the
aerosol properties in these AMTs compared to ob-
servations of aerosol optical properties. First, we de-
fine polluted dust PS-AMT (called PollDust) using
PALMS dust number fraction (i.e., PALMS Miner-
alFrac_PALMS) above 0.15 and the integrated dry
aerosol volume concentration by the TSI aerody-
namic particle sizer (APS) above 2 µm3 cm−3 (i.e.,
IntegV_Daero-PSL_APS_LARGE; note that APS mea-
surements sampled dry aerodynamic diameters rang-
ing from 0.56 to 6.31 µm; Espinosa et al., 2018).
Similarly, we define marine PS-AMTs when PALMS
sea salt number fraction> 0.15 and total volume>
2 µm3 cm−3. The remaining observations may then be
evaluated for BB PS-AMTs using PTR-MS acetoni-
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Table 1. Instruments, products, sampled aerosol size and references relevant to this study. More information on the instruments during
SEAC4RS can be found at https://espo.nasa.gov/home/seac4rs/content/Instruments (last access: 13 March 2022).

Instruments Products Sampled aerosol size References

1 PTR-MS,
DACOM,
TD-LIF,
NOyO3

Acetonitrile, isoprene,
monoterpene, carbon
monoxide (CO), nitro-
gen dioxide (NO2)

– PTR-MS (Mikoviny et al., 2010);
DACOM (Fried et al., 2008);
TD-LIF (Cleary et al., 2002);
NOyO3 (Ryerson et al., 2012)

2 PALMS Internally mixed sul-
fate/organic/nitrate
(SON), biomass burn-
ing (BB), sea salt and
dust particle types

< 5 µm dry diameter Murphy et al. (2006)
Froyd et al. (2019)

3 SAGA Chloride (Cl), bromide
(Br), nitrate (Nit.),
sulfate (Sul.), oxalate
(C2O4), sodium (Na),
ammonium (Amm.),
potassium (K), magne-
sium (Mg), calcium
(Ca.)

< 4 µm dry diameter Dibb et al. (2003)

4 AMS Organic aerosol (OA),
sulfate, ammonium,
nitrate

0.02–0.8 µm (trapezoidal
transmission efficiency,
D50 at 0.035 and 0.35 µm)

DeCarlo et al. (2006);
Canagaratna et al. (2007);
Hu et al. (2015);
Guo et al. (2021)

5 SP2 Black carbon (BC) 0.1–0.5 µm (BC component,
only)

Perring et al. (2017)

6 LARGE TSI neph-
elometer and PSAP

Absorption, scattering
and extinction coeffi-
cient (AC, SC and EC)
at 450, 550 and 700 nm

< 5 µm dry diameter for dry
total scattering coefficients at
450, 550 and 700 nm (TSI
nephelometer) and total ab-
sorption coefficients at 467,
530 and 660 nm (PSAP)

Ziemba et al. (2013);
McNaughton et al. (2007)

7 DASH-SP Real refractive index
(RRI) at 532 nm

0.18–0.40 µm dry diameter Sorooshian et al. (2008);
Shingler et al. (2016)

8 PI-Neph RRI at 532 nm < 5 µm dry diameter Dolgos and Martins (2014);
Espinosa (2017, 2018)

trile, WAS isoprene_WAS, PTR-MS isoprene-furan,
PTR-MS monoterpenes, WAS CO_WAS and DACOM
CO_DACOM if (i) acetonitrile> 250× 10−3 ppbv
or (ii) (acetonitrile> 190× 10−3 ppbv) and (acetoni-
trile/(isoprene+monoterpene)> 2.5) or (iii) CO>
250 ppbv. BB PS-AMTs are further differentiated as
coming from agricultural fires (called BBAg.) if the lon-
gitude is east of −95◦ or from wildfires (called BB-
Wild.) if the longitude is west of −95◦. The −95◦ lon-
gitude threshold was selected according to the location
of agricultural fires in Liu et al. (2016). If observations
are not classified as PollDust or BB, we classify them
as biogenic (called Bio.) if isoprene+monoterpene>

2 ppbv. Finally, remaining observations are classified
as urban if the altitude is below 3 km and NO2>

1 ppbv (i.e., using the NOAA nitrogen oxides and ozone
(NOyO3), NO2_ESRL or TD-LIF NO2_TD-LIF). Sec-
tion 3.1 describes these PS-AMTs, their location and
composition during SEAC4RS.

2. Determine most useful and well-separated aerosol opti-
cal properties. Once the PS-AMTs are defined, we test
whether these PS-AMTs exhibit distinct aerosol opti-
cal properties and then select the most useful and well-
separated aerosol optical properties. This step and the
following steps use the optical parameters listed in Ta-
ble 2 and provided by the instruments listed in lines 6–8
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Table 2. In situ optical parameters used in this study (provided at a given aircraft altitude by the instruments in lines 6–8 of Table 1), the way
we call them in this paper, and how they are computed. The way we call these parameters is closer to what would be observed from remote
sensing instruments. In the calculations, λ1 and λ2 are two given wavelengths. In this paper, we compute (i) SSA and AC at 450, 550 and
700 nm; (ii) EAE, AAE and dSSA between 450–550, 550–700 and 450–700 nm; and (iii) RRI at 532 nm.

Initial names What we call them in this study Calculation

1 AC AC ACλ1 = ECλ1−SCλ1

2 EAC Extinction Ångström exponent (EAE) EACλ1,λ2 =− ln(ECλ1/ECλ2)/ ln(λ1/λ2)

3 AAC Absorption Ångström exponent (AAE) AACλ1,λ2 =− ln(ACλ1/ACλ2)/ ln(λ1/λ2)

4 SSAC Single scattering albedo (SSA) SSACλ1 = SCλ1/ECλ1

5 dSSAC Difference in SSA at λ1 and λ2 (dSSA) SSACλ1,λ2 = SSACλ1−SSACλ1

6 RRI Real refractive index (RRI) –

Figure 1. Overall method in this study. PS-AMTs: prescribed source-based air mass types (AMTs); DO-Classes: defined optical-based class
definitions; DO-AMTs: derived optical-based AMTs; EAE: extinction Ångström exponent; SSA: single scattering albedo; dSSA: difference
in SSA; AAE: absorption Ångström exponent; AC: absorption coefficient; RRI: real refractive index; SCMC: pre-specified clustering and
Mahalanobis classification. The concept of the wolf and its tracks is based on the dragon and its tracks in Bohren and Huffman (2008).

of Table 1. To select the most useful and well-separated
aerosol optical properties for each PS-AMT, we define a
cluster in multi-dimensional parameter space, which is
composed of all the data points (values of optical prop-
erties) in that PS-AMT category. Then, for each point
in the dataset, we calculate the nearest cluster using the
Mahalanobis distance (Mahalanobis, 1936). If the near-
est cluster to a point corresponds to the PS-AMT, then
that point is steady. This method was used in previous
studies (e.g., Espinosa et al., 2018) and is described in
further detail in Sect. A1.3. Section 3.2 describes the
results from this step, i.e., the most useful and well-
separated aerosol optical properties in our study.

3. Define optical-based training classes (called DO-
Classes). We use the set of aerosol optical parameters
defined in the second step above to define optical-based

class definitions (called DO-Classes), including means,
variances and covariances. In other terms, in this step,
we form the mathematical definitions of the classes. The
DO-Classes use the steady (i.e., well separated) points
from the first half of all valid aerosol optical obser-
vations. Once the training clusters DO-Classes are de-
fined, we use the Mahalanobis distance to filter out-
liers from our training dataset and further purify them.
Similar to Russell et al. (2014), we delete points that
have less than 1 % probability of belonging to each pre-
specified DO-Class. We also delete from a specified
cluster any points that are closer (in terms of Maha-
lanobis distance) to a different cluster. Note that unlike
in Russel et al. (2014), this additional filtering step has
a minimal impact on the training dataset in our study.

Atmos. Chem. Phys., 22, 3713–3742, 2022 https://doi.org/10.5194/acp-22-3713-2022
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Figure 2. Scheme to pre-specify air mass types (PS-AMTs; step 1 of Fig. 1) using mostly gas measurements and a method based on Espinosa
et al. (2018) and Shingler et al. (2016) but modified to include marine and two different types of BB AMTs (i.e., BBAg. and BBWild.).

4. Derive optical-based aerosol air mass types (called
DO-AMTs). The DO-AMTs are analyzed and classi-
fied using the set of aerosol optical properties defined
in the second step above, the DO-Class defined in the
third step and the SCMC method for a set of observa-
tions that was not included in the training datasets. This
test dataset is based on independent observations and
must be of the same nature as the training dataset. In
this study, our test dataset is composed of independent
airborne in situ optical properties. It is the other half
of all valid aerosol optical observations (DO-Classes
are defined using the steady portion of the first half).
We derive DO-AMT for each test data point using the
SCMC method and the DO-Class. This is achieved by
assigning the test data point to the DO-Class that shows
minimum Mahalanobis distance in a multi-dimensional
space made of the best suited and most separable op-
tical properties. Section 3.3 describes the results from
this step.

5. Compare derived optical-based AMTs (DO-AMTs) and
prescribed source-based AMTs (PS-AMTs). We evalu-
ate the ability of airborne aerosol optical properties to
successfully extract PS-AMTs by comparing PS-AMTs
and DO-AMTs. Section 3.4 describes the results of this
final step in our study.

In Fig. 1, we illustrate AMTs as wolves and their optical
properties as their tracks. The second and third step consist
in describing the optical properties (or tracks) of each AMT
(or wolf). The fourth step consists in inferring an AMT (or
wolf) from its optical properties (or tracks). The fifth and last
step consist in comparing the inferred to the initial AMT (or
wolf).

3 Results

3.1 Prescribe source-based air mass types (PS-AMTs)

Figure 3 shows the PS-AMTs pre-specified using mostly
measured gas-phase compounds and the method described
in Fig. 2.

During SEAC4RS, according to Kim et al. (2015) and
Wagner et al. (2015), the campaign-averaged aerosol mass
was composed of mostly OA that is internally mixed with
sulfate and nitrate at all altitudes over the SEUS i.e., 55 %
OA and 25 % sulfate mass on average according to ground-
based filter-based PM2.5 (particulate matter concentration
with an aerodynamic diameter smaller than 2.5 mum) speci-
ation measurements from the US EPA Chemical Speciation
Network. This is consistent with the findings of Edgerton et
al. (2006), Hu et al. (2015), Xu et al. (2015) and Weber et
al. (2007) which show that PM2.5 is dominated by SOA and
sulfate during the summer in SEUS. Aircraft data show that

https://doi.org/10.5194/acp-22-3713-2022 Atmos. Chem. Phys., 22, 3713–3742, 2022



3720 M. S. F. Kacenelenbogen et al.: Bridging aerosol chemistry and physics

Figure 3. Air mass types pre-specified (PS-AMT) using mostly gas
measurements and methods based on Espinosa et al. (2018) and
Shingler et al. (2016) (see Fig. 2). The number of data points as-
signed to each PS-AMTs are N = 31 BBAg., N = 382 BBWild.,
N = 646 Bio. and N = 46 PollDust PS-AMTs. PS-AMTs marine
and urban were not analyzed in the remainder of this study due
to their limited number of data points (N = 9 urban in black and
N = 7 marine in blue). Green triangles show the location of agri-
cultural fires according to Liu et al. (2016).

60 % of the aerosol column mass (i.e., mostly OA and sul-
fate) is contained within the mixing layer (Kim et al., 2015).

GEOS-Chem attributes OA mass as 60 % from biogenic
isoprene and monoterpenes sources (with a significant role
of isoprene in accordance with Hu et al., 2015; Marais et
al., 2016; Zhang et al., 2018; Jo et al., 2019; and Liao et
al., 2015), 30 % from anthropogenic sources, and 10 % from
open fires (Kim et al., 2015). Espinosa et al. (2018) confirm
the domination of biogenic emissions in the SEUS (see their
Fig. 2). Figure 3, in agreement with these studies, shows a
majority of biogenic PS-AMTs (in green, N = 646), mostly
in the SEUS.

During SEAC4RS, the air sampled by the DC8 was also af-
fected by both long-range transport of wildfire from the west
(Peterson et al., 2015; Saide et al., 2015; Forrister et al., 2015;
Liu et al., 2017) and local agricultural fires mostly from the
burning of rice straw along the Mississippi River Valley (Liu
et al., 2016). Figure 3, in agreement with these studies, shows
BBWild. PS-AMT in the west (in grey,N = 382) and BBAg.
PS-AMT in the east (in salmon, N = 31). Both agricultural
and wildfire smoke are mainly composed of OA, which in-
cludes a substantial amount of light-absorbing brown carbon
(Liu et al., 2017), produced mostly by smoldering combus-
tion (Reid et al., 2005; Laskin et al., 2015).

Although Fig. 3 also shows urban and marine PS-AMTs in
the SEUS, these PS-AMTs were not further analyzed in the
remainder of this study due to their limited number of data

points (urban in black with N = 9 and marine in blue with
N = 7 data points).

Figure 4 describes the aerosol chemical signatures of the
principal PS-AMTs using the PALMS, SAGA, AMS and
SP2 instruments (see lines 2–5 in Table 1 for more infor-
mation on these instruments and their products). Note that
some aerosol components (e.g., OA, sulfate, nitrate) are very
general chemical indicators and much less specific than the
gas-phase chemistry they are trying to predict. These aerosol
components are nonetheless directly comparable to aerosol
chemical components simulated in CTMs.

Note that the four aerosol instruments in Fig. 4 measure
different aerosol properties. For instance, AMS and SAGA
measure bulk concentrations of chemical sub-components
(e.g., sulfate), whereas PALMS classifies individual particles
into several size-resolved types, including mineral dust, BB
and several non-BB types that have varying amounts of in-
ternally mixed sulfate, organic and nitrate.

The PS-AMTs in Fig. 4 show expected chemical features.

– The BB PS-AMTs (i.e., BBAg. and BBWild.) record
high BB particle concentrations from PALMS in
Fig. 4a; high nitrate (Nit.), ammonium (Amm.), calcium
(Ca.) and potassium (K) concentrations from SAGA in
Fig. 4b; high OA (i.e., > 0.8) from AMS; and high BC
mass fractions from SP2 in Fig. 4c, in agreement with
many other studies (e.g., Cubison et al., 2011; Heco-
bian et al., 2011; Jolleys et al., 2015; Guo et al., 2020).
The BB PS-AMTs also record higher AMS ammonium
and nitrate, compared to Bio. and PollDust PS-AMTs in
Fig. 4c. This is due to ammonium nitrate forming in fires
by neutralization of freshly formed nitric acid from NOx
oxidation with an excess of primary ammonia (e.g., Guo
et al., 2020).

– The Bio. PS-AMTs record higher non-BB organic-rich
particles from PALMS in Fig. 4a, higher SAGA sulfate
concentrations in Fig. 4b, and smaller nitrate and am-
monium (i.e., relatively acidic) and higher sulfate par-
ticle concentrations (from, e.g., coal plants) from AMS
in Fig. 4c, compared to the BB PS-AMTs. As such, the
Bio. PS-AMTs in this study are typical of the SEUS re-
gion (e.g., Kim et al., 2015, and Hu, 2015). When using
positive matrix factorization (Ulbrich et al., 2009) on
the AMS measurements, most of the organic aerosols
in the Bio. PS-AMTs are composed of biogenic SOA.
The Bio. PS-AMTs also record significantly lower BC
concentrations from the SP2 as well as BC-to-OA ra-
tios from the AMS and SP2 in Fig. 4c, compared to the
BB and PollDust PS-AMTs, in accordance with, e.g.,
Hodzic et al. (2020).

– The PollDust PS-AMTs record, as expected, high dust
concentration from PALMS in Fig. 4a and high calcium
(Ca) and magnesium (Mg) from SAGA in Fig. 4b. In
addition, the PollDust PS-AMTs also include BB from
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Figure 4. (a) Average PALMS normalized volume concentration per PS-AMT. PALMS normalization uses the sum of BB particles, sulfate-,
organic- and nitrate-rich particles from non-BB sources, mineral dust, sulfate–organic–nitrate (SON) particles without a dominant sub-
component, and sea salt (the latter two PALMS aerosol types are not shown and constitute the remainder). (b) Averaged and normalized
SAGA mass concentrations per PS-AMT; normalization uses the sum of all the SAGA components in the x axis; Cl: chloride; Br: bromide;
Nit.: nitrate; Sul.: sulfate; C2O4: oxalate; Na: sodium; Amm.: ammonium; K: potassium; Mg: magnesium; Ca: calcium. (c) Normalized
mass fractions of AMS sulfate, ammonium, nitrate, OA, SP2 BC, and ratio of SP2 BC and AMS OA per PS-AMT. The AMS inorganic mass
fraction of sulfate, ammonium and nitrate is normalized to the sum of sulfate, ammonium and nitrate. The AMS and SP2 total non-refractory
(NR) mass fraction of OA and BC is normalized to the sum of OA, BC, sulfate, ammonium and nitrate. In each blue box, the red horizontal
line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The black whiskers
extend to the most extreme data points not considered outliers, and the outliers are plotted individually using red points. PS-AMTs marine
and urban are not analyzed due to their limited number of data points (N = 9 urban and N = 7 marine PS-AMTs).

PALMS in Fig. 4a and possibly a minor sea salt com-
ponent (i.e., high sodium, Na, and chloride, Cl) from
SAGA in Fig. 4b as well as relatively high sulfate from
SAGA and AMS in Fig. 4c. A compositional picture
of the PollDust PS-AMTs from PALMS in Sect. A2.3
shows dust predominately in the coarse mode but also

an accumulation mode that contains a variety of particle
types, all of which contain sulfate and organic material.

The analysis in Fig. 4 confirms that the gas-phase-derived
PS-AMTs indeed have distinct aerosol chemical properties.
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Therefore, we explore whether these PS-AMTs can be de-
rived using only aerosol optical properties.

3.2 Determine most useful and well-separated aerosol
optical properties

As described in Sect. 2.2, we need to test if the PS-AMTs
from Sect. 3.1 exhibit distinct aerosol optical properties. This
is an essential step to optimize the final prediction of AMTs
using aerosol optical properties (DO-AMTs).

We start with the 16 aerosol optical parameters in Table 2
(i.e., EAE, SSA, dSSA, AAE and AC at different combi-
nations of 450, 550 and 700 nm and RRI at 532 nm). Sec-
tion A2.1 illustrates the ranges of these 16 aerosol optical pa-
rameters, classified by PS-AMTs. Given that many of these
parameters have similar properties, we select 6 out of these
16 aerosol optical parameters to simplify the analysis and
presentation of results. To do that, we first look at the per-
centage of points unambiguously retrieved or steady (i.e.,
points that are well separated from other clusters and, hence,
remain in their initial clusters) when using different combi-
nations of 2 out of 16 aerosol optical parameters across all
four PS-AMTs. We first select parameters AAE between 450
and 550 nm and RRI at 532 nm as they form the only combi-
nation of two parameters to achieve> 65 % steady points for
all four PS-AMTs (see Fig. A5). The rest of the six optical
parameters are either chosen at 550 nm (i.e., closest wave-
length to 532 nm) or between 450 and 550 nm. As a result,
the six parameters we choose for the remainder of this study
are dSSA 450–550 nm, RRI 532 nm, EAE 450–550 nm, AAE
450–550 nm, SSA 550 nm and AC at 550 nm. Among these
parameters, the usefulness of parameters dSSA 450–550 nm,
EAE 450–550 nm, SSA 550 nm and AC at 550 nm only be-
comes apparent in a 3-D parameter space (see Fig. A6 and its
orange boxes, which record > 65 % steady points for many
combinations of three parameters among these six selected
aerosol optical parameters).

Figure 5 illustrates the range of these six aerosol optical
properties for each PS-AMT. Fine particles (i.e., BBWild.,
BBAg. and Bio. PS-AMTs with higher EAE values) show
mostly well-separated variability in RRI, AAE and dSSA.
Coarse particles (i.e., PollDust PS-AMT with lower EAE val-
ues) are optically distinctive from the other PS-AMTs, par-
ticularly showing lower RRI, higher AAE and higher dSSA.
In agreement with Selimovic et al. (2019, 2020) in Missoula,
MT, we seem to also observe separate optical signatures and
more specifically different AAE ranges for BBAg. and BB-
Wild. PS-AMTs during SEAC4RS.

The aerosol optical properties of the PollDust PS-AMTs
in this study differ from the ones of the pure dust AMT in
Russel et al. (2014). The pure dust in Russel et al. (2014)
is based on AERONET measurements in various dusty re-
gions of the world. In this study, PollDust PS-AMTs show
a median EAE of ∼ 1.3 between 450 and 550 nm and a me-
dian RRI of ∼ 1.4 at 532 nm in Fig. 5, compared to ∼ 0 be-

tween 491 and 864 nm and 1.53 at 670 nm for AERONET-
based pure dust in Russel et al. (2014). We show that the
higher PollDust PS-AMT EAE values in our study are due to
the presence of accumulation-mode non-dust aerosols, which
constitute a significant contribution to the total number and
volume concentration of particles (see Fig. A7 for a com-
positional picture of PollDust PS-AMT). Similarly, we also
suggest that the low PollDust PS-AMT RRI values are due
to its non-dust accumulation mode, which is generally more
hygroscopic than pure dust and may have a larger contribu-
tion to the PollDust total growth factor. We refer the reader
to Fig. A4 for a closer look at RRI values in the case of Poll-
Dust PS-AMTs from the PI-Neph and DASH-SP instruments
separately.

Figure 6 shows steady values (i.e., fraction of cases of a
given type that are correctly identified) for combinations of
two, three and four optical parameters out of the six selected
aerosol optical parameters in Fig. 5 and four AMTs (i.e.,
BBAg., BBWild., Bio. and PollDust). Moving forward, we
select the 16 combinations of optical parameters highlighted
by grey boxes and black dots in Fig. 6, as they show > 65 %
steady points for PS-AMTs BBAg., BBWild., Bio. and Poll-
Dust. These combinations are numbered in grey at the top of
Fig. 6.

Let us note that for some cases, the fraction of steady
points seems to decrease when adding classifying variables.
These cases were investigated and are mostly due to fewer
data points that are non-steady when adding classifying pa-
rameters, out of an already small total number of data points
(e.g., a combination of EAE, dSSA, AAE and RRI shows
< 65 % steady points for BBAg. PS-AMT, compared to >
65 % steady points for a combination of EAE, AAE and RRI;
this is due to four more steady points (N = 18) when using a
combination of three parameters, compared to four parame-
ters (N = 14), out of a total of N = 26 cases).

Moreover, we suggest that higher aerosol loadings within
the air masses allow for more accurate identification by op-
tical properties, due to higher accuracy of the aerosol opti-
cal properties themselves. For example, we have seen an in-
crease from ∼ 80 % to 100 % steady data points in the BB-
Wild. PS-AMT when using EAE, AAE and RRI when ex-
tinction coefficients increased from 30–40 to 60–70 Mm−1

(number of data points between N = 11 and N = 20).

3.3 Define optical-based class definitions and derive
optical-based air mass types (DO-Classes and
DO-AMTs)

Next, we derive AMTs (DO-AMTs) followed by a compar-
ison between DO-AMTs and the initial PS-AMTs to test
the ability of aerosol optical properties alone to capture PS-
AMTs.

As described in Sect. 2.2, to derive DO-AMTs using the
SCMC method, we need (i) a combination of useful and
well-separated optical properties (e.g., EAE, AAE and RRI
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Figure 5. Optical characterization of PS-AMTs using the LARGE, PI-Neph and DASH-SP instruments (see Table 1). In each blue box,
the red horizontal line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The black whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using red points.
(a) AAE: absorption Ångström exponent; (b) AC: absorption coefficient; (c) dSSA: difference in single scattering albedo; (d) SSA: single
scattering albedo; (e) EAE: extinction Ångström exponent; (f) RRI: real refractive index. Numbers in the title correspond to the number of
points behind each box–whisker plot for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs.

Figure 6. Percentage of steady points (i.e., fraction of cases of a given type that are correctly identified) in panel (b) when using different
combinations of aerosol optical parameters in panel (a) for each PS-AMT. Grey boxes and black points depict combinations of optical
parameters showing > 65 % steady points for PS-AMTs BBAg., BBWild., Bio. and PollDust. RRI: real refractive index; AAE: absorption
Ångström exponent; AC: absorption coefficient; dSSA: difference in single scattering albedo; SSA: single scattering albedo; EAE: extinction
Ångström exponent.

https://doi.org/10.5194/acp-22-3713-2022 Atmos. Chem. Phys., 22, 3713–3742, 2022



3724 M. S. F. Kacenelenbogen et al.: Bridging aerosol chemistry and physics

or combination no. 4 in Fig. 6), (ii) a set of defined classes
of reference (i.e., a training dataset that we call DO-Class)
and (iii) the computation of the Mahalanobis distance be-
tween each observation we want to classify in a test dataset
and each of the clusters from the training dataset.

We introduce Table 3, which records the number of data
points behind each step in our study.

The first line of Table 3 shows the number of data points
per PS-AMT (see Fig. 3). Then, lines 2, 3 and 4 of Table 3
show the valid number of AAE, RRI and a combination of
EAE, AAE and RRI data points. Line 5 of Table 3 shows the
steady number of data points per PS-AMT in the case of a
combination of EAE, AAE and RRI (see Fig. 6). To create
the training dataset DO-Class (line 7 in Table 3), we select
the steady portion of half (every other sample) of the entire
set of valid data points (line 6 in Table 3). The test dataset
that we want to classify as DO-AMTs is the other half of the
entire set of valid data points (line 8 in Table 3). This DO-
AMT dataset is made of steady and non-steady data points.

Figure 7 illustrates the separability of the DO-Class in the
3-D space made of aerosol optical parameters EAE, AAE and
RRI. The regions of the DO-Class are described by colored
ellipses representing the mean, variance, and covariance of
the DO-Class training set. It also shows that most of the DO-
Classes represent the original source-based PS-AMTs (rep-
resented by colored triangles in Fig. 7). However, let us note
that a distinct portion of the Bio. PS-AMTs (green triangles)
seems to not be represented by the Bio. DO-Class (green el-
lipse). These Bio. PS-AMTs show higher AAE and lower
EAE values and mostly fall into the PollDust DO-Class in-
stead (red ellipse).

Line 9 in Table 3 shows the number of DO-AMTs (cor-
rectly and incorrectly) classified as BBAg., BBWild., Bio.
or PollDust AMTs using the combination of EAE, AAE and
RRI as an example, the SCMC method, and the DO-Class
reference clusters. Most points from the test dataset were as-
signed an AMT (see N = 381 assigned DO-AMTs on line 9,
compared to N = 8 unknown on line 10 of Table 3). Un-
classified/unknown DO-AMTs are those where the 3-D data
point is outside the 99 % probability surface for all four DO-
Classes.

3.4 Compare optical-based and source-based air mass
types (DO- vs. PS-AMTs)

Once we have derived DO-AMTs from optical properties
(i.e., inferred our wolf based on its tracks in Fig. 1), we need
to assess how many of the DO-AMTs agree with those orig-
inally assigned as PS-AMTs. Line 11 in Table 3 shows the
number of prescribed PS-AMTs in each category when only
looking at the test dataset to derive DO-AMTs on line 8 of
Table 3 (N = 389). Line 12 in Table 3 shows the number of
DO-AMTs that are identical to PS-AMTs. Lines 13 and 14
show the same result but as a percentage of the respectively
derived DO-AMTs or prescribed PS-AMTs in the same cat-

Figure 7. DO-Class definition (solid and dashed ellipses colored
by AMTs defining boundaries of the DO-Class clusters; DO-Class
data points are not plotted) and prescribed source-based PS-AMTs
(triangles colored by AMTs). A total of 75 % of the DO-Classes are
contained in the solid ellipses, and 50 % of the DO-Classes are con-
tained in the dashed ellipses. RRI: real refractive index; AAE: ab-
sorption Ångström exponent; EAE: extinction Ångström exponent.
Panels (a)–(c) illustrate PS-AMT and DO-Class in the respective
2-D spaces made of AAE-RRI, EAE-AAE and EAE-RRI.

egory. In Table 3, we find 77 % BBAg., 79 % BBWild., 73 %
Bio. and 81 % PollDust PS-AMTs are correctly reflected in
the DO-AMTs. This result can also be seen for combination
no. 4 in Fig. 8 (i.e., EAE, AAE and RRI).

Figure 8 illustrates the percentage of identical DO-AMTs
to PS-AMTs when using each of the 16 combinations of op-
tical parameters illustrated by black squares in the table of
Fig. 8. These combinations are the same as the ones in grey
at the top of Fig. 6. This percentage, like line 14 in Table 3,
is computed as the number of DO-AMTs that agree with
those originally assigned as PS-AMTs, compared to the total
number of prescribed PS-AMTs in each category in our test
dataset (e.g., line 11 in Table 3).

According to Fig. 8, the entire 16 combinations of aerosol
optical properties listed in the Table of Fig. 8 as black squares
seem to capture both the Bio. and BBWild. PS-AMTs (>∼
60 % identical DO-AMT and PS-AMTs in green and grey
solid lines in Fig. 8). We remind the reader that these PS-
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Table 3. Number of data points per AMT behind each step in our study. PS-AMTs marine and urban are not analyzed due to their limited
number of data points (N = 9 urban andN = 7 marine PS-AMTs). EAE: extinction Ångström exponent; AAE: aerosol absorption exponent;
RRI: real refractive index.

Number of data BBAg. BBWild. Bio. PollDust Total Major steps (see Fig. 1)

1 PS-AMTs 31 382 646 46 1105 (1) Pre-specify source-based PS-
AMTs (see colored points in Fig. 3)

2 Valid AAE (Fig. 5a) 31 382 641 46 1100

3 Valid RRI (Fig. 5f) 26 137 590 33 786 (2) Determine most useful and well-

4 Valid EAE, AAE and RRI 26 137 585 33 781 separated aerosol optical properties
observations (no. 4 in Fig. 6)

5 Steady points∗ 18 101 460 25 604

6 To define DO-Class 391 (3) Define optical-based classes,

7 DO-Class∗ 8 52 238 13 311 DO-Class; use steady portion of
first ∼ half of observations

8 To derive DO-AMTs 389 (4) Derive optical-based AMTs,

9 Known DO-AMTs∗ 32 55 217 77 381 DO-AMTs; apply SCMC method,

10 Unknown DO-AMTs∗ 8 using DO-Class, on second ∼ half
of observations

11 PS-AMTs from dataset in l8 13 68 292 16 389

12 DO-AMTs similar to PS-AMTs∗ 10 54 213 13 290 (5) Compare DO-AMTs

13 DO-AMTs similar to PS-AMTs as 31 98 98 17 – and PS-AMTs
a % of assigned DO-AMTs (l9)∗

14 DO-AMTs similar to PS-AMTs as 77 79 73 81 –
a % of PS-AMTs (l11)∗

∗ In the case of combination no. 4 in Fig. 6, i.e., EAE, AAE and RRI.

Figure 8. Identical DO-AMTs and PS-AMTs as a percentage of prescribed PS-AMTs in each category when using the different combinations
of optical parameters listed in the table to the right (black squares show combination on each line) and for the four PS-AMTs BBAg. (salmon),
BBWild. (grey), Bio. (green) and PollDust (red). Black horizontal dashed lines show 60 % and 70 % identical DO-AMT and PS-AMTs.
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AMTs are mostly based on gas measurements (see Fig. 2)
and are dominated by different aerosol species (see Fig. 4).

On the other hand, fewer combinations of aerosol opti-
cal parameters seem to adequately capture the BBAg. and
PollDust PS-AMTs. Further analysis shows that, on aver-
age, most DO-AMTs assigned to the BBAg. and PollDust
categories are, in fact, misclassified and fail to capture the
Bio. PS-AMTs. As shown earlier in Fig. 7, we suggest these
DO-AMTs fail to capture the Bio. PS-AMTs because the
Bio. DO-Class might not be entirely representative of the
Bio. PS-AMTs (see green triangles outside of the green el-
lipses in Fig. 7).

Note that three combinations of aerosol optical parame-
ters, namely no. 4 (EAE, AAE and RRI), no. 12 (EAE, RRI,
AC and dSSA) and no. 13 (EAE, AAE, RRI and AC) in
Fig. 8, seem to capture all four PS-AMTs particularly well
(>∼ 70 % identical DO-AMTs and PS-AMTs). Let us men-
tion that results linked to the use of the absorption coeffi-
cient, AC, an extensive property that is dependent on aerosol
loading, is likely to be unique to this study and might not be
representative of any other field campaign.

4 Discussion

We suggest that a similar study should be performed using
data from additional airborne field campaigns which have the
necessary, or equivalent, gas-phase measurements to derive
source-based AMTs and many of the critical optical proper-
ties to extract optical-based AMTs. First, this would provide
more robust statistics – e.g., particular attention should be
given to revisit the BB from agricultural fires and polluted
dust AMTs in this study. Second, this would provide more
AMTs/sub-AMTs to analyze – e.g., urban and marine AMTs
should be visited during CAMP2EX (Clouds, Aerosol and
Monsoon Processes Philippines Experiment) or KORUS-AQ
(An International Cooperative Air Quality Field Study in Ko-
rea), and other types of BB and at different aging stages
should be visited during FIREX-AQ (Fire Influence on Re-
gional to Global Environments and Air Quality). Finally, this
would also help assess if these chemical and optical signa-
tures are reproducible from one year to another.

In this study, we obtained in situ aerosol optical signatures.
Another essential step should be to examine optical signa-
tures from a space-based passive remote sensor(s), which de-
rive total column effective ambient aerosol optical properties
(instead of properties measured at the altitude of the aircraft
in this study). One way to answer this question would be to
compare the defined optical-based classes (DO-Classes) sig-
natures using collocated airborne in situ aerosol optical prop-
erties and total column aerosol optical properties measured
or inferred by sun photometry (e.g., airborne 4STAR, Spec-
trometers for Sky-Scanning Sun-Tracking Atmospheric Re-
search, Dunagan et al., 2013; or ground-based AERONET).
This DO-Class database could then be used as an optical-

based training dataset to enable widespread derivation of
optical-based AMTs (DO-AMTs) using existing and future
orbital and suborbital remote sensing instruments and net-
works.

The space mission addressing the designated observable
Aerosols, Cloud, Convection and Precipitation (ACCP) from
the NASA decadal survey (National Academies of Sciences,
Engineering, and Medicine, 2019) is currently designing its
suborbital (airborne and ground-based) component to ad-
dress science questions that cannot be addressed from space
(e.g., bridging satellite-inferred aerosol optical properties
and aerosol speciation). This study illustrates how essential it
is to explore existing airborne datasets to bridge chemical and
optical signatures of different AMTs before the implemen-
tation of future spaceborne missions and their correspond-
ing suborbital field campaign(s) – e.g., upcoming space-
borne polarimeters SPEXone (Hasekamp et al., 2019) and
Hyper-Angular Rainbow Polarimeter (HARP-2) on board the
NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)
(Werdell et al., 2019) and the multi-viewing multi-channel
multi-polarization imager (3MI) (Fougnie et al., 2018) to
be launched in the next 3 years or the next generation of
Earth Observing System (EOS) satellites addressing NASA’s
ACCP.

Most of the six optical properties in this study (i.e., extinc-
tion Ångström exponent, single scattering albedo, difference
of single scattering albedo, absorption coefficient, absorption
Ångström exponent and real part of the refractive index) are
routinely derived by in situ and remote sensing instrumenta-
tion/networks (see Table 4). Some optical properties are more
likely to present a higher uncertainty when measured from
suborbital field campaigns and/ or from satellites. The real
part of the refractive index, for example, although generally
more uncertain, is highly desirable in many combinations of
optical parameters to capture both the BB from wildfires and
biogenic AMTs in this study. We strongly suggest future air-
borne campaigns consider including in situ measurements of
AAE and RRI (very few of the campaigns to date flew PI-
Neph and/or DASH-SP instruments), and a special attention
should be given to deriving these parameters accurately from
space. Our analysis has the advantage of providing alternate
combinations of optical parameters when one optical param-
eter is either not available or too uncertain.

Ultimately, this technique and its results has the poten-
tial to provide a much broader observational aerosol dataset
to evaluate global transport models than is currently avail-
able. Current satellite-derived AMTs seem to marginally help
models. One way to assess models would be to directly com-
pare satellite-derived AMTs to AMTs derived from mod-
eled optical properties (which are, in turn, computed from
modeled chemical composition) using the same classifica-
tion method (e.g., Taylor et al., 2015; Dawson et al., 2017;
Nowottnick et al., 2015; Meskhidze et al., 2021). However,
it would be difficult to define the main source of errors in
the case of a disagreement between model- and observation-
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Table 4. Frequency at which the six aerosol optical parameters in our study are routinely derived from aircraft and current passive satellite
sensors and importance of these optical parameters in our study. RRI: real refractive index; AAE: absorption Ångström exponent; AC:
absorption coefficient; dSSA: difference in single scattering albedo; SSA: single scattering albedo; EAE: extinction Ångström exponent.

Aerosol optical parameter Routinely observed Routinely observed Importance
from aircraft from satellites in this study

Extinction Ångström exponent, EAE High High High

Single scattering albedo, SSA Medium Medium High

Difference in SSA, dSSA Medium Medium High

Absorption coefficient, AC Medium Low High

Aerosol absorption exponent, AAE Medium Medium High

Real refractive index, RRI Low Low High

based AMTs. Potential causes of such a disagreement could
be a combination of observation and method-specific errors
or model-specific errors (e.g., the assumed model size dis-
tribution, dry refractive index, growth factor per species,
mass extinction efficiency per species, estimated mass per
species, RH, transport, chemical processing, emissions and
other physiochemical variables). Let us emphasize that the
technique and results in this study, alone, will not be able to
fully explain any discrepancies between model and observa-
tions. However, we suggest that the use of near-simultaneous
gas-phase, chemical and optical instruments on the same air-
craft restrict the causes of a disagreement between model-
and observation-based AMTs to mostly model-specific er-
rors. Moreover, as the AMTs in this study are less ambigu-
ously defined (e.g., to each AMT corresponds an averaged
distribution of aerosol chemical composition), we suggest
that this may allow the assessment (and, by extension, im-
provement) of a few aerosol processes simulated in CTMs.

5 Conclusions

One desire of our scientific community is to ultimately
translate the space-based total atmospheric column effective
AMTs such as biomass burning, dust, urban industrial, and
polluted marine into chemical species with defined emis-
sion source inventories and formation/aging chemistry such
as sulfate, BC, OA, SOA, nitrate, dust, or sea salt to bet-
ter improve models. Fully achieving that goal might not be
feasible, and progress can only be incremental. This study
constitutes a first step towards the goal of translating the
space-based total atmospheric column effective aerosol op-
tical properties and derived optical-based AMTs into source-
based AMTs.

Current satellite-derived AMTs inferred by various tech-
niques are useful to provide spatial context to support other
observations of aerosols and clouds or evaluate other aerosol
type classifications. However, these satellite-derived AMTs
are ambiguously defined and might often be misclassified.

The AMTs in this study are defined, characterized and
derived using gas-phase, chemical and optical instruments
on the same aircraft. This reduces errors in measure-
ments/retrievals due to spatiotemporal colocation and ambi-
guities in the selection of the AMT training dataset. We also
specifically investigate the strengths and weaknesses of var-
ious aerosol optical properties used as tools to define AMTs
and how much these optical properties can capture dominant
aerosol speciation.

We first define AMTs using mostly airborne gas-phase
measurements during SEAC4RS. We find distinct optical sig-
natures for biomass burning (from agricultural/prescribed or
wildfires), biogenic and dust-influence AMTs (marine and
urban AMTs show too few data points to analyze). Use-
ful aerosol optical properties to characterize these signa-
tures are the extinction Ångström exponent between 450–
550 nm, the single scattering albedo at 550 nm, the difference
of single scattering albedo in two wavelengths between 450–
550 nm, the absorption coefficient at 550 nm, the absorption
Ångström exponent between 450–550 nm and the real part
of the refractive index at 532 nm. We then use these aerosol
optical properties, prescribe a well-separated AMT training
dataset, and use the pre-specified clustering and Mahalanobis
classification method to derive optical-based AMTs during
SEAC4RS. We find that by using any of 16 combinations of
these six optical parameters, over 65 % of two AMTs (i.e.,
optical-based wildfire biomass burning and biogenic) agree
with their source-based analog. We find that four AMTs
(i.e., biogenic, BB from wildfires, BB from agricultural fires,
and polluted dust), when prescribed using mostly airborne in
situ gas measurements, can be successfully extracted from
at least three combinations of airborne in situ aerosol opti-
cal properties over the US during SEAC4RS, such that more
than 70 % of optical observations are typed consistently with
source-based analog. However, we find that misclassifica-
tions are not evenly distributed across the classes, and specif-
ically the optically based classifications for BB from agri-
cultural fires and polluted dust include a large percentage of
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misclassifications that limit the usefulness of results relating
to those classes.

Appendix A

A1 Additional information on methods

A1.1 Method to cloud-screen, filter and humidify
airborne observations

This section describes the cloud-screening, filtering, humid-
ification and colocation involved in the computation of the
final set of 16 optical parameters (i.e., EAE, dSSA and AAE
between 450–550, 550–700 and 450–700 nm; AC and SSA at
450, 550 and 700 nm; and the RRI at 532 nm) in this study.

The LARGE TSI nephelometer and PSAP instruments
operate under dry conditions. The only measurement pro-
vided at ambient conditions is the EC at 532 nm. In this
work, we need LARGE EC and SC at 450, 550 and
700 nm at ambient conditions. To do that, we use the
parameter fRH550_RH20to80 at 550 nm provided by the
LARGE f(RH) system (different from the TSI or PSAP in-
struments) and an exponential curve to obtain the impact
of hygroscopic growth on the aerosol light scattering co-
efficient, i.e., the scattering enhancement factor f(RH) at
450, 550 and 700 nm. Ambient SC at 550 nm, for exam-
ple, is computed as the product of dry SC at 550 nm and
f(RH) at 550 nm. We filter out any values of LARGE dry
SC at 450 nm≤ 10 Mm−1 and LARGE ambient SSAC at
863 nm≤ 0.7.

DASH-SP provides measurements of RRIDASH−SP_dry,
information on the particle hygroscopicity, κDASH−SP_dry,
and the particle diameter, DpDASH−SP_dry, in dry condi-
tions. We compute DASH-SP RRI in ambient conditions,
RRIDASH−SP_ambient, using RRIDASH−SP_dry, κDASH−SP_dry,
and the ambient relative humidity and temperature measure-
ments, RHHSKP and THSKP, provided by the AIMMS-20
(Aircraft-Integrated Meteorological Measurement System)
or 3D-winds instruments. First, we vary the growth factor,
GFvar, from 1.02 to 1.5 by increments of 0.01 and compute
the particle hygroscopicity, κvar, for given RHHSKP, THSKP
and DpDASH−SP_dry measurements as follows:

κvar =
(

GFvar
3
− 1

)
× (1− κa)/κa, (A1)

where

– κa =
(
RHHSKP/100 %

)
/exp

(
Camb/

(
GFvar×

DpDASH−SP_dry
))

– Camb =
(
4× σsa×Mw

)
/
(
R× THSKP× ρw

)
– σsa = 0.0761− 1.55× 1e− 4×

(
THSKP− 273

)
;

– Mw = 18.01528/1000 kg mol−1

– R = 8.3144598

– ρw = 1000 kg m−3.

We select the growth factor, GFvar, that provides the clos-
est κvar value to the κDASH−SP_dry measurement. We call this
growth factor GFselect. Finally, we compute the ambient RRI,
RRIDASH−SP_ambient, using RRIDASH−SP_dry and GFselect ob-
tained in the previous steps and Eq. (5) of Mallet et al. (2003)
(based on Hänel, 1976) as follows:

RRIDASH−SP_ambient = RRIw +
(
RRIDASH−SP_dry

−RRIw)× (GFselect)−3, (A2)

where RRIw = 1.33. Let us note that Aldhaif et al. (2018)
demonstrate the limitations of using the volume-weighted
mixing rule approach above, especially in the presence of
OA.

The PI-Neph provides measurements of dry phase func-
tion (P11) and the second element of the scattering phase ma-
trix (P12) at three wavelengths over an angular range span-
ning > 170◦. These measurements are fed into the GRASP
(Dubovik et al., 2014) algorithm to obtain retrieved values
of spectral complex refractive index, a parameterized size
distribution and derived optical properties like scattering co-
efficients. In this work we utilize these optical properties
provided by PI-Neph in dry conditions: the SC at 532 nm,
SCPI−Neph_dry; the dry size distribution, dNdlnrPI−Neph_dry;
and the refractive index, RIPI−Neph_dry. First, we compute the
target ambient SC at 532 nm, SCPI−Neph_target, as the prod-
uct of SCPI−Neph_dry and LARGE f(RH) measurements at
550 nm. Second, we compute the ambient SC at 532 nm,
SCPI−Neph_ambient, corresponding to each GFvar from 1 to 1.5
by increments of 0.01 using (i) a Mie code (Mishchenko
et al., 2002) and, as input to the Mie code, (ii) the am-
bient size distribution and corresponding radii, computed
from dNdlnrPI−Neph_dry and GFvar, (iii) the ambient refrac-
tive index computed from RIPI−Neph_dry and GFvar (see
Eq. A2) and a prescribed geometric standard deviation (i.e.,
∼ 1.12, which results in similar computed and provided
SCPI−Neph_dry values when using the same Mie code and ini-
tial parameters dNdlnrPI−Neph_dry and RIPI−Neph_dry). Third,
we select GFvar (we call this growth factor GFselect) and cor-
responding RRIPI−Neph_ambient that record the minimum dif-
ference between SCPI−Neph_ambient and SCPI−Neph_target.

We compute ambient AMS and SP2 mass concentrations
using the parameter stdPT-to-AMB_Conversion_AMS-60s
reported with the AMS data. SP2 BC standard concentra-
tion (referred to as refractory black carbon, and experimen-
tally equivalent to elemental carbon at the 15 % level; Pet-
zold et al., 2013; Kondo et al., 2011; Perring et al., 2017),
originally in ng m−3, is converted into µg m−3 and scaled
upwards, on a flight-by-flight basis, to represent the entire
accumulation mode (on average by 1.14). The AMS sulfate,
ammonium and nitrate are normalized to the sum of sulfate,
ammonium and nitrate. The AMS OA and SP2 BC are nor-
malized to the sum of OA, BC, sulfate, ammonium and ni-
trate. In the case of SAGA, bromide and chloride are set to
zero if under the detection limit of 0.0107 and 0.0391 µg m3.
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In the case of PALMS, we use volume-weighted products
(Froyd et al., 2019). In this study, PALMS particle classes
include mineral dust, sea salt, biomass burning and sulfate–
organic–nitrate mixtures (SON). The SON class was further
refined into organic-rich, sulfate-rich and nitrate-rich parti-
cle types, plus a remainder of SON particles that did not
exhibit a dominant chemical sub-component. To define the
marine and polluted dust AMTs, PALMS composition was
combined with aerosol size distribution data from LARGE to
yield integrated volume fractions of mineral dust and sea salt
particle types from D = 0.1− 5 µm based on the method of
Froyd et al. (2019). The average AMT chemical composition
is determined as a raw number fraction of particles observed
by PALMS.

A1.2 Method to collocate airborne observations

All the airborne observations are cloud-screened using wing-
mounted cloud probes. Table A1 defines three datasets used
in this study with their associated number of data points,
called AIRBO1, AIRBO2 and AIRBO3, and their combi-
nation, AIRBO. In all four datasets, the LARGE data are
first collocated to housekeeping (HSKP) data (i.e., select
same start_utc in seconds) and humidified/ filtered (see
Sect. A1.1).

In the AIRBO1 dataset, we compute the mean HSKP and
LARGE values in a ±30 s range centered on each collocated
AMS–PALMS–SP2 start_time (i.e., the 1 min merged file).
We then record LARGE averaged values if (i) the average
is made of at least 20 points and (ii) the standard devia-
tion of the LARGE EAE is below 30 %. In the AIRBO2
dataset, we compute the mean HSKP and LARGE values
between each DASH-SP start_utc and end_utc. We record
HSKP, humidified LARGE and DASH-SP values if the fol-
lowing four parameters are below 30 %: (i) the standard
deviation of the LARGE EAE, (ii) the difference between
κDASH−SP_dry and κvar (Eq. A1), (iii) the standard deviation
of RHHSKP, and (iv) the standard deviation of THSKP. In the
AIRBO3 dataset, we compute the mean HSKP and LARGE
values between each PI-Neph start_utc and end_utc. We
record HSKP, humidified LARGE and PI-Neph values if the
following four parameters are below 30 %: (i) the standard
deviation of the LARGE EAE, (ii) the standard deviation
on scatPI−Neph_dry, (iii) the standard deviation on LARGE
f(RH), and the difference between PI-Neph SCPI−Neph_target
and SCPI−Neph_ambient (see Sect. A1.1). Finally, we col-
locate the HSKP–LARGE–DASH-SP (HSKP–LARGE–PI-
Neph) to the AMS–PALMS–SP2 datasets in the case of
AIRBO2 (AIRBO3). To do that, if there are multiple AMS–
PALMS–SP2 data points between each HSKP–LARGE–
DASH-SP (HSKP–LARGE–PI-Neph) averaged time stamp,
we average all AMS–PALMS–SP2 data between the
HSKP–LARGE–DASH-SP (HSKP–LARGE–PI-Neph) av-
eraged time stamps. If there are no multiple AMS–PALMS–
SP2 data points between the HSKP–LARGE–DASH-SP

(HSKP–LARGE–PI-Neph) averaged time stamps, we se-
lect the closest AMS–PALMS–SP2 data in time to the
HSKP–LARGE–DASH-SP (HSKP–LARGE–PI-Neph) av-
eraged time stamps. The dataset in this study, AIRBO, was
obtained by first selecting common 1 min UTC time stamps
from all three datasets and then arbitrarily selecting, in order
of priority when present, AIRBO2, AIRBO1 and AIRBO3.

A1.3 Method to select most useful and well-separated
aerosol optical properties

This section explains the second step of Fig. 1 in more de-
tails. Figure A1 is a simplified example to illustrate our
method. It shows only two optical parameters (i.e., SSA and
EAE) and three hypothetical PS-AMTs (e.g., pure dust in
red, marine in blue and BB in green) measured by one hypo-
thetical optical instrument in two different environments (de-
fined by different locations and times, Fig. A1a–b vs. A1c–
d). Figure A1a–b shows a smaller hypothetical range of EAE
and SSA for the BB PS-AMT (green cluster), compared to
Fig. A1c–d.

To answer the question of how well these PS-AMTs (i.e.,
red, blue and green clusters in either Fig. A1a or c) are sepa-
rated, we (i) select each data point separately (e.g., yellow
crosses in Fig. A1b and d), (ii) recompute each PS-AMT
cluster with the data point excluded (i.e., different blue PS-
AMT in Fig. A1b and green PS-AMT in Fig. A1d compared
to Fig. A1a and c) and calculate the Mahalanobis distance
(Mahalanobis, 1936; Burton et al., 2012). The Mahalanobis
distance is the distance between the data point in question
(i.e., yellow crosses in Fig. A1b or d) and the position of each
cluster center (i.e., red, blue and green clusters in Fig. A1b or
d), which depends on cluster center, tilt and width in a multi-
parameter space. These distances are called D1, D2 and D3
on either Fig. A1b or d. In the case of the yellow cross in
Fig. A1b, distance D1 is the smallest, and the test point is
reassigned to its original cluster. The test point is by con-
sequence well separated from other clusters and steady. On
the other hand, distance D1 is also the smallest in Fig. A1d,
which means the test point (yellow cross) in Fig. A1d is not
reassigned to its original cluster. The test point is by conse-
quence not well separated from other clusters in this case and
not steady. The steady fraction is the fraction of cases within
each PS-AMT that are correctly identified. Steady fractions
are used to assess separation between PS-AMTs. When in-
cluding additional components (e.g., any other aerosol op-
tical parameter from Table 2 in addition to SSA and EAE
in Fig. A1), the additional number of steady points shows
the component’s relative importance in separating the PS-
AMTs. The yellow points that are steady in Fig. A1 (i.e.,
correctly classified or well separated) are used to define the
most useful and well-separated aerosol optical properties for
each PS-AMT.
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Table A1. Definition of three datasets (AIRBO1, AIRBO2, AIRBO3) and their combination, AIRBO (which is the dataset used in this
study); the airborne instruments involved during SEAC4RS (see Table 1); the co-located parameters (see Table 2 for a definition of EAE,
SSA, dSSA, AC, AAE and RRI); and the number of data points showing valid aerosol optical properties and PS-AMT BBAg., BBWild., Bio.
or PollDust.

Name Instrument Aerosol optical parameters Number of points

AIRBO1 LARGE EAE, SSA, dSSA, AC, AAE 871

AIRBO2 LARGE, EAE, SSA, dSSA, AC, AAE, RRI 716
DASH-SP

AIRBO3 LARGE, EAE, SSA, dSSA, AC, AAE, RRI 176
PI-Neph

AIRBO LARGE, EAE, SSA, dSSA, AC, AAE, RRI 781
(This study) DASH-SP,

PI-Neph

Figure A1. Conceptual/hypothetical illustration of how we quantify separation between different air mass types and select the most useful
and well-separated aerosol optical parameters. It shows three hypothetical PS-AMTs (e.g., dust in red, marine in blue and BB in green)
measured by one hypothetical optical instrument in one environment (a–b) and in another environment (c–d). The EAE and SSA values in
this illustration are based on AERONET observations (Russell et al., 2014) and are representative of typical pure dust, marine, and BB total
column remote-sensing-inferred ground-based EAE and SSA values. Note that it only shows two dimensions even though some calculations
of Mahalanobis distances (e.g., D1, D2, D3) will be made using more dimensions in this study.

A2 Additional information on results

A2.1 Aerosol optical parameters classified by PS-AMT

This section describes the ranges of the 16 aerosol optical
parameters (i.e., EAE, SSA, dSSA, AAE and AC at different

combinations of 450, 550 and 700 nm and RRI at 532 nm
from Table 2), classified by PS-AMTs in our study.

Note the slightly lower RRI values for DASH-SP com-
pared to PI-Neph (i.e., respectively 1.41 and 1.43 at 532 nm
in Fig. A4) in the case of PollDust PS-AMTs. We explain
this difference in RRI values by different PollDust PS-AMT
growth factor (GF) values. We obtain GF through two meth-
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Figure A2. EAE (450–700 nm, 450–550 nm, 550–700 nm) and AC (450, 550 and 700 nm) per PS-AMT. In each blue box, the red horizontal
line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The black whiskers
extend to the most extreme data points not considered outliers, and the outliers are plotted individually using red points. Let us note that
the LARGE EC measurements at 700 nm experienced issues during the latter half of SEAC4RS (Yohei Shinozuka, personal communication,
2018). AC: absorption coefficient; EAE: extinction Ångström exponent. Numbers in the title correspond to the number of points behind each
box–whisker plot for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs.

Figure A3. SSA (450, 550 and 700 nm) and AAE (450–700 nm, 450–550 nm, 550–700 nm) per PS-AMT. In each blue box, the red horizontal
line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The black whiskers
extend to the most extreme data points not considered outliers, and the outliers are plotted individually using red points. AAE: absorption
Ångström exponent; SSA: single scattering albedo. Numbers in the title correspond to the number of points behind each box–whisker plot
for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs.
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Figure A4. The dSSA (700–450 nm, 550–450 nm, 700–550 nm), RRI (from DASH-SP and PI-Neph), RRI from DASH-SP and RRI from
PI-Neph at 532 nm per PS-AMT. In each blue box, the red horizontal line indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The black whiskers extend to the most extreme data points not considered outliers, and
the outliers are plotted individually using red points. RRI: real refractive index; dSSA: difference in single scattering albedo. Numbers in the
title correspond to the number of points behind each box–whisker plot for the respective BBAg., BBWild., Bio. and PollDust PS-AMTs.

ods: (1) through the values directly measured by DASH-SP
for particles in the size range 0.18<Dpdry < 0.40 µm and
(2) through an iterative procedure matching the output of a
Mie code with dry PI-Neph retrievals and f(RH) measure-
ments made by the LARGE group in parallel (see Sect. A1.1
for more details). We find a respective median PollDust PS-
AMT GF value of ∼ 1.3 and ∼ 1.2 in the case of DASH-SP
and PI-Neph, which we suggest is due to a smaller sampling
size range for DASH-SP, compared to PI-Neph (see Table 1).

A2.2 Most useful and well-separated aerosol optical
properties – 16 parameters

This section describes the percentage of points unambigu-
ously retrieved or steady (i.e., points that are well separated
from other clusters and, hence, reassigned to their initial clus-
ters) when using different combinations of respectively 2 and
3 out of 16 aerosol optical parameters across all four princi-
pal PS-AMTs (i.e., provides more details to Sect. 3.2).

A2.3 Composition of our polluted dust (PollDust)
PS-AMT

Figure A7 shows a compositional picture of the PollDust PS-
AMTs from PALMS. The accumulation mode is a mixture
of particle types, all of which contain sulfate and organic
material. Coarse-mode dust particles account for most of the
aerosol volume, whereas a non-dust accumulation mode con-
tributes most to the total number concentration of particles.
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Figure A5. Percentage of steady points (i.e., fraction of cases of a given type that are correctly identified; see Sects. 2.2 and A1.3 for more
info) in panel (a) when using different combinations of two aerosol optical parameters in panel (b) for each PS-AMT. The grey box and
black points are a combination of optical parameters showing > 65 % steady points for PS-AMTs BBAg., BBWild., Bio. and PollDust. RRI:
real refractive index; AAE: absorption Ångström exponent; AC: absorption coefficient; dSSA: difference in single scattering albedo; SSA:
single scattering albedo; EAE: extinction Ångström exponent.

Figure A6. Percentage of steady points (i.e., fraction of cases of a given type that are correctly identified; see Sects. 2.2 and A1.3 for more
info) in panel (a) when using different combinations of three aerosol optical parameters in panel (b) for each PS-AMT. Black points are
combinations of optical parameters showing > 65 % steady points for PS-AMTs BBAg., BBWild., Bio. and PollDust. RRI: real refractive
index; AAE: absorption Ångström exponent; AC: absorption coefficient; dSSA: difference in single scattering albedo; SSA: single scattering
albedo; EAE: extinction Ångström exponent. Horizontal orange boxes show the six aerosol optical parameters that we have selected in this
study.
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Figure A7. PALMS particle classes are mapped to the total number (a) and volume (b) size distribution from LARGE based on the method
of Froyd et al. (2019). Data include flight segments representative of the polluted dust PS-AMT.

Appendix B: Abbreviations and acronyms

3MI Multi-viewing Multi-channel Multi-polarization imager
4STAR Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research
AAC Absorption Ångström coefficient
AAE Absorption Ångström exponent
AAOD Aerosol absorption optical depth
AC Absorption coefficient
ACCP Aerosols, Cloud, Convection and Precipitation
AERONET AErosol RObotic NETwork
AIMMS-20 Aircraft-Integrated Meteorological Measurement System
Amm. Ammonium
AMS Aerosol mass spectroscopy
AMT Air mass aerosol types
AOD Aerosol optical depth
APS TSI aerodynamic particle sizer
BB Biomass burning air mass aerosol types
BBAg. Biomass burning agricultural air mass aerosol types
BBWild. Biomass burning wildfire air mass aerosol types
BC Black carbon
Bio. Biogenic air mass aerosol types
Br. Bromide
C2O4 Oxalate
Ca. Calcium
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CAMP2EX Clouds, Aerosol and Monsoon Processes Philippines Experiment
Cl Chloride
CO Carbon monoxide
CTM Chemical transport models
DACOM Differential absorption carbon monoxide monitor
DASH-SP Differential aerosol sizing and hygroscopicity spectrometer probe
DO-Classes Defined optical-based classes
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DO-AMTs Optical-based air mass aerosol types
Dp Particle diameter
dNdlnr Particle size distribution
dSSA Difference in SSA at two wavelengths
dSSAC Difference in SSAC at two wavelengths
EAC Extinction Ångström coefficient
EAE Extinction Ångström exponent
EC Extinction coefficient
EOS Earth Observing System
FIREX-AQ Fire Influence on Regional to Global Environments and Air Quality
GEOS-Chem Goddard Earth Observing System model of atmospheric chemistry
GF Growth factor
GRASP Generalized Retrieval of Atmosphere and Surface Properties
HARP2 Hyper-Angular Rainbow Polarimeter
HSKP Housekeeping dataset
K Potassium
κ Particle hygroscopicity
KORUS-AQ An International Cooperative Air Quality Field Study in Korea
LARGE NASA Langley Aerosol Research Group Experiment TSI nephelometer and particle

soot absorption photometer (PSAP) instruments
Mg Magnesium
MODIS Moderate Resolution Imaging Spectroradiometer
Na Sodium
Nit. Nitrate
NO2 Nitrogen dioxide
NOyO3 NOAA nitrogen oxides and ozone
OA Organic aerosol
PACE NASA Plankton, Aerosol, Cloud, ocean Ecosystem
PALMS Particle analysis by laser mass spectrometry
PI-Neph Polarized Imaging Nephelometer
PM2.5 Particulate matter concentration with an aerodynamic diameter smaller than 2.5 µm
POLDER Polarization and Directionality of Earth’s Reflectances
PollDust Polluted dust air mass aerosol types
PS-AMTs Prescribed source-based air mass aerosol types
PTR-MS High-temperature proton-transfer-reaction mass spectrometer
RFari Radiative forcing due to aerosol–radiation interactions
RH Relative humidity
RI Complex refractive index
RRI Real part of the refractive index
SAGA Soluble Acidic Gases and Aerosol
SC Scattering coefficient
SCMC Pre-specified clustering and Mahalanobis classification method
SEAC4RS Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by

Regional Surveys
SEUS Southeastern US
SOA Secondary organic aerosol
SON Sulfate–organic–nitrate
SP2 NOAA single particle soot photometer
SPEXone Spectropolarimeter for Planetary Exploration orbital
SSA Single scattering albedo
SSAC Single scattering albedo coefficient
Sul. Sulfate
T Temperature
TD-LIF Thermal dissociation and laser-induced fluorescence
US EPA United Stated (of America) Environmental Protection Agency
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