

Supplement of

OH-initiated atmospheric degradation of hydroxyalkyl hydroperoxides: mechanism, kinetics, and structure–activity relationship

Long Chen et al.

Correspondence to: Yu Huang (huangyu@ieecas.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Contents:

Table S1 Y//X (Y = M06-2X, CCSD(T), X = 6-311+G(2df,2p), ma-TZVP) calculated energy barrier ($\Delta E_a^{\#}$, $\Delta G_a^{\#}$) for OH + HHPs reactions based on the M06-2X/6-311+G(2df,2p) optimized geometries (kcal mol⁻¹)

Table S2 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway involved in the initial reaction of HOCH₂OOH with OH radical computed at different temperatures

Table S3 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway involved in the initial reaction of HOCH(CH₃)OOH with OH radical computed at different temperatures

Table S4 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway involved in the initial reaction of HOC(CH₃)₂OOH with OH radical computed at different temperatures

Table S5 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of HO₂ radical reactions with HOCH₂OO (R31), HOCH(CH₃)OO (R32) and HO(CH₃)₂COO radicals (R33) computed at different temperatures

Table S6 The relative free energy and Boltzmann populations (w_i) of the conformation of HOCH₂OO radical at the M06-2X/6-311+G(2df,2p) level of theory

Table S7 The relative free energy and Boltzmann populations (w_i) of the conformation of HOCH(CH₃)OO radical at the M06-2X/6-311+G(2df,2p) level of theory

Table S8 The relative free energy and Boltzmann populations (w_i) of the conformation of HO(CH₃)₂COO radical at the M06-2X/6-311+G(2df,2p) level of theory

Table S9 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HOCH₂OO radical isomerization computed at different temperatures

Table S10 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HOCH(CH₃)OO radical isomerization computed at different temperatures

Table S11 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HO(CH₃)₂COO radical isomerization computed at different temperatures

Table S12 Rate coefficients of the dominant pathways of the fragmentation of HOCH₂O \cdot (R41), HOCH(CH₃)O \cdot (R45) and HO(CH₃)₂CO \cdot (R51) computed at different temperatures

Figure S1. PES ($\Delta E_a^{\#}$) for the OH-initiated reactions of HOCH₂OOH from the CH₂OO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S2. PES ($\Delta E_a^{\#}$) for the OH-initiated reactions of HOCH(CH₃)OOH from the *anti*-CH₃CHOO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S3. PES ($\Delta E_a^{\#}$) for the OH-initiated reactions of HOC(CH₃)₂OOH from the (CH₃)₂COO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S4. PES $(\Delta G_a^{\#})$ for the OH-initiated reactions of HOCH(CH₃)OOH from the *syn*-CH₃CHOO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S5. PES $(\Delta E_a^{\#})$ for the OH-initiated reactions of HOCH(CH₃)OOH from the *syn*-CH₃CHOO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S6. Geometries of all the stationary points for the initial reaction of $HOCH_2OOH$ with OH radical optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S7. Geometries of all the stationary points for the initial reaction of $HOCH(CH_3)OOH$ with OH radical optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S8. Geometries of all the stationary points for the initial reaction of $HOC(CH_3)_2OOH$ with OH radical optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S9. Plots of the rate coefficients of every elementary pathway versus temperature in the initial reaction of HOCH₂OOH with OH radical

Figure 10. Plots of the rate coefficients of every elementary pathway versus temperature in the initial reaction of HOCH(CH₃)OOH with OH radical

Figure S11. Plots of the rate coefficients of every elementary pathway versus temperature in the initial reaction of $HOC(CH_3)_2OOH$ with OH radical

Figure S12. Plots of the rate coefficients of R31, R32 and R33 versus temperature

Figure S13. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the isomerization of HOCH₃CHOO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory

Figure S14. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the isomerization of HO(CH₃)₂COO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory

Enters	CCSD(T)/6-3	311+G(2df,2p)	ma-TZVP	
Entry	$\Delta {E_a}^{\#}$	$\Delta {G_a}^{\#}$	$\Delta {E_a}^{\#}$	$\Delta {G_a}^{\#}$
HOCH ₂ OOH + OH				
$R1(O_1-H_1)$	6.0	6.4	6.1	6.4
R2(C ₁ -H ₃)	4.4	5.6	4.6	5.8
R3(C ₁ -H ₄)	4.8	4.5	5.3	5.4
R4(O ₃ -H ₂)	1.1	2.1	0.5	1.5
$HOCH(CH_3)OOH + OH$				
R5(O ₁ -H ₁)	6.5	7.1	6.5	7.2
R6(C ₁ -H ₃)	0.5	1.4	1.3	2.2
R7-1(C ₂ -H ₄)	5.2	6.5	5.6	6.9
R7-2(C ₂ -H ₅)	6.1	6.9	6.5	7.4
R7-3(C ₂ -H ₆)	5.7	6.4	6.7	7.4
R8(O ₃ -H ₂)	0.7	2.0	0.7	1.7
$HOC(CH_3)_2OOH + OH$				
R9(O ₁ -H ₁)	6.4	7.0	6.7	7.4
R10-1(C ₂ -H ₃)	5.2	5.9	5.1	5.8
R10-2(C ₂ -H ₄)	5.1	6.0	5.8	6.6
R10-3(C ₂ -H ₅)	5.2	6.1	5.8	6.8
R11-1(C ₃ -H ₆)	5.9	6.4	6.5	7.0
R11-2(C ₃ -H ₇)	5.1	5.8	6.3	6.9
R11-3(C ₃ -H ₈)	5.9	7.1	5.8	6.0
R12(O ₃ -H ₂)	2.7	2.8	2.5	2.7

Table S1 Y//X (Y = M06-2X, CCSD(T), X = 6-311+G(2df,2p), ma-TZVP) calculated energy barrier ($\Delta E_a^{\#}$, $\Delta G_a^{\#}$) for OH + HHPs reactions based on the M06-2X/6-311+G(2df,2p) optimized geometries (kcal mol⁻¹)

	2	1		1	
T/K	$k_{\mathrm{R1(O1-H1)}}$	k _{R2(C1-H3)}	k _{R3(C1-H4)}	k _{R4(O3-H2)}	k_{tot}
273	2.9×10^{-13}	1.4×10^{-12}	2.2×10^{-12}	4.5×10^{-11}	4.9×10^{-11}
280	2.3×10^{-13}	1.2×10^{-12}	2.1×10^{-12}	3.6×10^{-11}	3.0×10^{-11}
298	1.8×10^{-13}	9.9×10^{-13}	2.0×10^{-12}	2.9×10^{-11}	3.3 ×10 ⁻¹¹
300	1.5×10^{-13}	8.6×10^{-13}	1.9×10^{-12}	2.4×10^{-11}	2.7×10^{-11}
320	1.1×10^{-13}	6.7×10^{-13}	1.8×10^{-12}	1.7×10^{-11}	2.0×10^{-11}
340	8.6×10^{-14}	5.5×10^{-13}	1.8×10^{-12}	1.3×10^{-11}	1.6×10^{-11}
360	7.2×10^{-14}	4.6×10^{-13}	1.7×10^{-12}	1.0×10^{-11}	1.3×10^{-11}
380	6.2×10^{-14}	4.1×10^{-13}	1.7×10^{-12}	8.2×10^{-12}	1.0×10^{-11}
400	5.6×10^{-14}	3.6×10^{-13}	1.7×10^{-12}	6.8×10^{-12}	8.9×10^{-12}

Table S2 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway involved in the initial reaction of HOCH₂OOH with OH radical computed at different temperatures

	5,	1	1	
T/K	k _{R5(O1-H1)}	$\overline{k_{\mathrm{R6(C1-H3)}}}$	k _{R7-1(C2-H4)}	k _{R7-2(C2-H5)}
273	3.8×10^{-13}	1.1 × 10 ⁻¹²	5.8×10^{-13}	6.6×10^{-13}
280	2.9×10^{-13}	1.0×10^{-12}	5.3×10^{-13}	5.5×10^{-13}
298	2.3×10^{-13}	9.5×10^{-13}	4.7×10^{-13}	4.8×10^{-13}
300	1.9 × 10 ⁻¹³	9.0×10^{-13}	4.2×10^{-13}	4.2×10^{-13}
320	1.3 × 10 ⁻¹³	8.3×10^{-13}	3.8×10^{-13}	3.5×10^{-13}
340	1.0×10^{-13}	7.7×10^{-13}	3.3×10^{-13}	3.1 × 10 ⁻¹³
360	8.2×10^{-14}	7.4×10^{-13}	3.2×10^{-13}	2.8×10^{-13}
380	7.0×10^{-14}	7.1 ×10 ⁻¹³	2.9×10^{-13}	2.7×10^{-13}
400	6.2×10^{-14}	6.9 ×10 ⁻¹³	2.8×10^{-13}	2.6×10^{-13}
T/K	k _{R7-3(C2-H6)}		k _{R8(O3-H2)}	$k'_{ m tot}$
273	7.3×10^{-13}	i	4.2×10^{-11}	4.5×10^{-11}
280	6.1×10^{-13}	i	3.4×10^{-11}	3.7×10^{-11}
298	5.2×10^{-13}	1	2.8×10^{-11}	3.0×10^{-11}
300	4.7×10^{-13}	1	2.3×10^{-11}	2.5×10^{-11}
320	3.9×10^{-13}	1	1.7×10^{-11}	1.9 ×10 ⁻¹¹
340	3.4×10^{-13}	i	1.3 × 10 ⁻¹¹	1.4×10^{-11}
360	3.1×10^{-13}	i	9.8×10^{-12}	1.2×10^{-11}
380	2.9×10^{-13}	i	7.9×10^{-12}	9.5×10^{-12}
400	2.8×10^{-13}	i	6.6×10^{-12}	8.1×10^{-12}

Table S3 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway involved in the initial reaction of HOCH(CH₃)OOH with OH radical computed at different temperatures

T/K	k _{R9(O1-H1)}	k _{R10-1(C2-H3)}	k _{R10-2(C2-H}	(4)	<i>k</i> _{R10-3(C2-H5)}
273	2.5×10^{-13}	4.6×10^{-13}	9.7 ×10 ⁻¹	13	8.9×10^{-13}
280	1.9×10^{-13}	3.7×10^{-13}	9.4 ×10 ⁻¹	13	7.4×10^{-13}
298	1.5×10^{-13}	3.1×10^{-13}	8.2 ×10 ⁻¹	13	6.4 ×10 ⁻¹³
300	1.2×10^{-13}	2.6×10^{-13}	7.1 ×10 ⁻	13	5.6×10^{-13}
320	8.5×10^{-14}	2.0×10^{-13}	5.6 ×10 ⁻	13	4.5×10^{-13}
340	6.4×10^{-14}	1.6×10^{-13}	4.6 ×10 ⁻	13	3.8×10^{-13}
360	5.2×10^{-14}	1.3×10^{-13}	4.0 ×10 ⁻	13	3.4×10^{-13}
380	4.4×10^{-14}	1.1×10^{-13}	3.6 ×10 ⁻	13	3.1 × 10 ⁻¹³
400	3.8×10^{-14}	1.0×10^{-13}	3.2 × 10 ⁻¹	13	2.8×10^{-13}
T/K	k _{R11-1(C3-H6)}	k _{R11-2(C3-H7)}	k _{R11-3(C3-H8)}	<i>k</i> _{R12(O3-H2)}	$k''_{\rm tot}$
273	4.9×10^{-13}	8.3×10^{-13}	5.3×10^{-13}	2.5×10^{-11}	2.9×10^{-11}
280	4.1 × 10 ⁻¹³	6.9 × 10 ⁻¹³	4.0×10^{-13}	1.8 ×10 ⁻¹¹	2.1×10^{-11}
298	3.5×10^{-13}	5.9×10^{-13}	3.2×10^{-13}	1.3 ×10 ⁻¹¹	1.6×10^{-11}
300	3.1 × 10 ⁻¹³	5.2×10^{-13}	2.6×10^{-13}	9.9 ×10 ⁻¹²	1.3×10^{-11}
320	2.5×10^{-13}	4.2×10^{-13}	1.8×10^{-13}	6.0 × 10 ⁻¹²	8.2×10^{-12}
340	2.1×10^{-13}	3.6×10^{-13}	1.3×10^{-13}	4.0×10^{-12}	5.7×10^{-12}
360	1.9 ×10 ⁻¹³	3.3×10^{-13}	1.0×10^{-13}	2.7×10^{-12}	4.3×10^{-12}
380	1.8×10^{-13}	2.9×10^{-13}	8.3×10^{-14}	2.0×10^{-12}	3.4×10^{-12}
400	1.6×10^{-13}	2.7×10^{-13}	6.9 ×10 ⁻¹⁴	1.5×10^{-12}	2.8×10^{-12}

Table S4 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of every elementary pathway involved in the initial reaction of HOC(CH₃)₂OOH with OH radical computed at different temperatures

			-
T/K	<i>k</i> _{R31}	$k_{ m R32}$	k _{R33}
273	3.1×10^{-11}	9.1×10^{-11}	1.5×10^{-10}
280	2.3×10^{-11}	6.4×10^{-11}	1.0×10^{-10}
298	$1.7 imes 10^{-11}$	4.6×10^{-11}	7.4×10^{-11}
300	1.3×10^{-11}	3.4×10^{-11}	5.3×10^{-11}
320	8.1×10^{-12}	2.0×10^{-11}	3.0×10^{-11}
340	5.4×10^{-12}	1.2×10^{-11}	1.8×10^{-11}
360	3.8×10^{-12}	8.3×10^{-12}	1.2×10^{-11}
380	2.8×10^{-12}	5.8×10^{-12}	8.3×10^{-12}
400	2.1×10^{-12}	4.2×10^{-12}	5.9×10^{-12}

Table S5 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of HO₂ radical reactions with HOCH₂OO (R31), HOCH(CH₃)OO (R32) and HO(CH₃)₂COO radicals (R33) computed at different temperatures

2	-(··, F)	je na se
Conformer	$\Delta G(\text{kcal mol}^{-1})$	Wi
HOCH ₂ OO-a	0.000	46.39%
HOCH ₂ OO-b	0.001	46.31%
HOCH ₂ OO-c	1.623	2.99%
HOCH ₂ OO-d	1.406	4.32%

Table S6 The relative free energy and Boltzmann populations (w_i) of the conformation of HOCH₂OO radical at the M06-2X/6-311+G(2df,2p) level of theory

()/		1/ 5
Conformer	$\Delta G(\text{kcal mol}^{-1})$	Wi
HOCH(CH ₃)OO-a	0.000	80.13%
HOCH(CH ₃)OO-b	0.942	16.33%
HOCH(CH ₃)OO-c	2.218	1.89%
HOCH(CH ₃)OO-d	2.299	1.65%

Table S7 The relative free energy and Boltzmann populations (*w*_i) of the conformation of HOCH(CH₃)OO radical at the M06-2X/6-311+G(2df,2p) level of theory

(572	()	1/ 5
Conformer	$\Delta G(\text{kcal mol}^{-1})$	w_{i}
HO(CH ₃) ₂ COO-a	0.000	88.04%
HO(CH ₃) ₂ COO-b	1.334	9.25%
HO(CH ₃) ₂ COO-c	2.062	2.71%

Table S8 The relative free energy and Boltzmann populations (w_i) of the conformation of HO(CH₃)₂COO radical at the M06-2X/6-311+G(2df,2p) level of theory

T/K	k _{IRC-TST} (TS22-a)	k _{IRC-TST} (TS22-b1)	$k_{\text{IRC-TST}}(\text{TS22-b2})$	k _{MC-TST}
273	1.9×10^{-17}	2.1×10^{-17}	6.6×10^{-20}	1.8×10^{-17}
280	9.5×10^{-17}	1.0×10^{-16}	3.8×10^{-19}	9.1 × 10 ⁻¹⁷
298	4.6×10^{-16}	4.8×10^{-16}	2.1×10^{-18}	4.4×10^{-16}
300	2.2×10^{-15}	2.3×10^{-15}	1.1×10^{-17}	2.0×10^{-15}
320	4.3×10^{-14}	4.4×10^{-14}	2.7×10^{-16}	4.1×10^{-14}
340	7.6×10^{-13}	7.7×10^{-13}	6.0×10^{-15}	7.1×10^{-13}
360	1.2×10^{-11}	1.2×10^{-11}	1.1×10^{-13}	1.1×10^{-11}
380	1.5×10^{-10}	1.5×10^{-10}	1.8×10^{-12}	1.4×10^{-10}
400	1.6×10^{-09}	1.6×10^{-09}	2.4×10^{-11}	1.5×10^{-09}

Table S9 The single-conformer rate coefficients ($k_{IRC-TST}$) and multi-conformer rate coefficients (k_{MC-TST}) of HOCH₂OO radical isomerization computed at different temperatures

T/K	k _{IRC-TST} (TS23-a)	k _{IRC-TST} (TS23-b)	$k_{\text{IRC-TST}}(\text{TS23-c1})$	$k_{\text{IRC-TST}}(\text{TS23-c2})$	k _{MC-TST}
273	8.0×10^{-18}	8.3 ×10 ⁻¹⁴	3.3×10^{-18}	1.8×10^{-13}	1.7×10^{-14}
280	4.3 × 10 ⁻¹⁷	3.5 × 10 ⁻¹³	1.5×10^{-17}	7.9×10^{-13}	7.2×10^{-14}
298	2.3×10^{-16}	1.4×10^{-12}	6.9 ×10 ⁻¹⁷	3.3×10^{-12}	2.9×10^{-13}
300	1.2×10^{-15}	5.1 ×10 ⁻¹²	3.1×10^{-16}	1.3×10^{-11}	1.1 ×10 ⁻¹²
320	2.6×10^{-14}	5.8 ×10 ⁻¹¹	6.1 ×10 ⁻¹⁵	1.5×10^{-10}	1.2×10^{-11}
340	5.2 × 10 ⁻¹³	5.5 ×10 ⁻¹⁰	1.1 ×10 ⁻¹³	1.6 ×10 ⁻⁹	1.2×10^{-10}
360	8.6 ×10 ⁻¹²	4.5 ×10 ⁻⁰⁹	1.8 ×10 ⁻¹²	1.3 ×10 ⁻⁸	9.8 ×10 ⁻¹⁰
380	1.2×10^{-10}	3.2×10^{-08}	2.5 ×10 ⁻¹¹	9.7 ×10 ⁻⁸	7.1 ×10 ⁻⁹
400	1.3 ×10 ⁻⁹	2.0×10^{-7}	3.0 ×10 ⁻¹⁰	6.3 ×10 ⁻⁷	4.6×10^{-8}

Table S10 The single-conformer rate coefficients ($k_{\text{IRC-TST}}$) and multi-conformer rate coefficients ($k_{\text{MC-TST}}$) of HOCH(CH₃)OO radical isomerization computed at different temperatures

T/K	k _{IRC-TST} (TS24-a)	$k_{\text{IRC-TST}}(\text{TS24-b1})$	k _{IRC-TST} (TS24-b2)	k _{IRC-TST} (TS24-c)	k _{MC-TST}
273	1.4 ×10 ⁻¹³	1.2×10^{-13}	2.0×10^{-14}	1.6×10^{-12}	1.8×10^{-13}
280	6.1 ×10 ⁻¹³	5.7 ×10 ⁻¹³	9.0×10^{-14}	6.2×10^{-12}	7.7×10^{-13}
298	2.5×10^{-12}	2.4×10^{-12}	3.9×10^{-13}	2.3×10^{-11}	3.0 ×10 ⁻¹²
300	9.2×10^{-12}	9.6 ×10 ⁻¹²	1.5×10^{-12}	8.0×10^{-11}	1.1×10^{-11}
320	1.1×10^{-10}	1.2×10^{-10}	2.0 ×10 ⁻¹¹	8.3×10^{-10}	1.3×10^{-10}
340	1.1 ×10 ⁻⁹	1.3 ×10 ⁻⁹	2.2×10^{-10}	7.2 ×10 ⁻⁹	1.3 ×10 ⁻⁹
360	8.7×10^{-9}	1.1×10^{-8}	1.9 ×10 ⁻⁹	5.3 ×10 ⁻⁸	1.0×10^{-8}
380	6.3 ×10 ⁻⁸	8.3 ×10 ⁻⁸	1.5 ×10 ⁻⁸	3.5 ×10 ⁻⁷	7.4×10^{-8}
400	4.1 ×10 ⁻⁷	5.4 ×10 ⁻⁷	1.0×10^{-7}	2.1 ×10 ⁻⁶	4.7×10^{-7}

Table S11 The single-conformer rate coefficients ($k_{\text{IRC-TST}}$) and multi-conformer rate coefficients ($k_{\text{MC-TST}}$) of HO(CH₃)₂COO radical isomerization computed at different temperatures

	3 1 1	. 1	. 1
T/K	$k_{\rm R41}$ (cm ³ molecule ⁻¹ s ⁻¹)	$k_{\rm R45} ({\rm s}^{-1})$	$k_{\rm R51} ({\rm s}^{-1})$
273	$4.3 imes 10^{-18}$	2.0×10^{6}	2.6×10^6
280	$5.0 imes 10^{-18}$	2.9×10^{6}	3.8×10^6
298	$7.6\times10^{\text{-18}}$	7.3×10^{6}	9.5×10^6
300	7.9×10^{-18}	8.1×10^{6}	$1.0 imes 10^7$
320	1.2×10^{-17}	1.9×10^{7}	2.5×10^{7}
340	1.8×10^{-17}	4.4×10^{7}	5.6×10^7
360	$2.6 imes 10^{-17}$	9.0×10^7	1.1×10^8
380	3.7×10^{-17}	1.7×10^8	2.2×10^8
400	5.1×10^{-17}	3.1×10^{8}	3.8×10^8

Table S12 Rate coefficients of the dominant pathways of the fragmentation of $HOCH_2O \cdot (R41)$, $HOCH(CH_3)O \cdot (R45)$ and $HO(CH_3)_2CO \cdot (R51)$ computed at different temperatures

Figure S1. PES ($\Delta E_a^{\#}$) for the OH-initiated reactions of HOCH₂OOH from the CH₂OO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S2. PES ($\Delta E_a^{\#}$) for the OH-initiated reactions of HOCH(CH₃)OOH from the *anti*-CH₃CHOO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S3. PES ($\Delta E_a^{\#}$) for the OH-initiated reactions of HOC(CH₃)₂OOH from the (CH₃)₂COO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S4. PES $(\Delta G_a^{\#})$ for the OH-initiated reactions of HOCH(CH₃)OOH from the *syn*-CH₃CHOO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S5. PES ($\Delta E_a^{\#}$) for the OH-initiated reactions of HOCH(CH₃)OOH from the *syn*-CH₃CHOO + H₂O reaction predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory (a and b represent the pre-reactive and post-reactive complexes)

Figure S6. Geometries of all the stationary points for the initial reaction of $HOCH_2OOH$ with OH radical optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S7. Geometries of all the stationary points for the initial reaction of $HOCH(CH_3)OOH$ with OH radical optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S8. Geometries of all the stationary points for the initial reaction of $HOC(CH_3)_2OOH$ with OH radical optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S9. Plots of the rate coefficients of every elementary pathway versus temperature in the initial reaction of HOCH₂OOH with OH radical

Figure 10. Plots of the rate coefficients of every elementary pathway versus temperature in the initial reaction of HOCH(CH₃)OOH with OH radical

Figure S11. Plots of the rate coefficients of every elementary pathway versus temperature in the initial reaction of $HOC(CH_3)_2OOH$ with OH radical

Figure S12. Plots of the rate coefficients of R31, R32 and R33 versus temperature

Figure S13. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the isomerization of HOCH₃CHOO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory

Figure S14. PES ($\Delta G_a^{\#}$ and $\Delta E_a^{\#}$, in italics) for the isomerization of HO(CH₃)₂COO radical predicted at the M06-2X/ma-TZVP//M06-2X/6-311+G(2df,2p) level of theory