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Abstract. Annual burned areas in the United States have increased 2-fold during the past decades. With more
large fires resulting in more emissions of fine particulate matter, an accurate prediction of fire emissions is critical
for quantifying the impacts of fires on air quality, human health, and climate. This study aims to construct a ma-
chine learning (ML) model with game-theory interpretation to predict monthly fire emissions over the contiguous
US (CONUS) and to understand the controlling factors of fire emissions. The optimized ML model is used to
diagnose the process-based models in the Fire Modeling Intercomparison Project (FireMIP) to inform future de-
velopment. Results show promising performance for the ML model, Community Land Model (CLM), and Joint
UK Land Environment Simulator-Interactive Fire And Emission Algorithm For Natural Environments (JULES-
INFERNO) in reproducing the spatial distributions, seasonality, and interannual variability of fire emissions over
the CONUS. Regional analysis shows that only the ML model and CLM simulate the realistic interannual vari-
ability of fire emissions for most of the subregions (r > 0.95 for ML and r = 0.14∼ 0.70 for CLM), except for
Mediterranean California, where all the models perform poorly (r = 0.74 for ML and r < 0.30 for the FireMIP
models). Regarding seasonality, most models capture the peak emission in July over the western US. However,
all models except for the ML model fail to reproduce the bimodal peaks in July and October over Mediterranean
California, which may be explained by the smaller wind speeds of the atmospheric forcing data during Santa
Ana wind events and limitations in model parameterizations for capturing the effects of Santa Ana winds on
fire activity. Furthermore, most models struggle to capture the spring peak in emissions in the southeastern US,
probably due to underrepresentation of human effects and the influences of winter dryness on fires in the models.
As for extreme events, both the ML model and CLM successfully reproduce the frequency map of extreme emis-
sion occurrence but overestimate the number of months with extremely large fire emissions. Comparing the fire
PM2.5 emissions from the ML model with process-based fire models highlights their strengths and uncertainties
for regional analysis and prediction and provides useful insights into future directions for model improvements.
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1 Introduction

Large fires have increased across the United States over the
past 2 decades, especially in the western US. While the to-
tal area burned in 2020 increased by 51 % compared to the
10-year average for 2010–2019, the total number of fires in
2020 is smaller than the 10-year average. This indicates the
contribution of larger and more powerful fires to the growing
burned areas (NIFC, 2020). Large fires can directly lead to
property damage and pose a threat to human lives (Thomas et
al., 2017). Meanwhile, fine particulate matter (PM2.5, parti-
cles with an aerodynamic diameter smaller than and equal to
2.5 µm) emitted from fires not only have negative impacts on
human health but also affect climate and ecosystems (John-
ston et al., 2012; Ward et al., 2012; Rap et al., 2013; Kaulfus
et al., 2017; Liu et al., 2018; Wang et al., 2018; Stowell et al.,
2019). Driven by stronger fire heating and with higher injec-
tion height, aerosols emitted from large fires can be trans-
ported to broader area and stay in the atmosphere longer.
Given the increasing trend of fire emissions, fire smoke may
become the predominant source of PM2.5 in the US in the
future (Yue et al., 2013; Liu et al., 2016; Ford et al., 2018).
Thus, an accurate prediction of fire emissions is imperative
for investigating the impacts of historical and future fires on
air quality, human health, and climate.

One of the widely used methods for predicting fire emis-
sion is process-based fire parameterization. These process-
based models generally employ universal functions depict-
ing non-linear relationships between fires and the input vari-
ables and apply the same functions to all grid cells in a
model (Pechony and Shindell, 2009; Thonicke et al., 2010).
In addition, the parameters of the process-based model are
usually determined by empirical or statistical functions, as-
suming that the same parameters apply to all the regions
or regions with limited fire observations (Crevoisier et al.,
2007; Parisien et al., 2016). Recently, Zou et al. (2019) de-
veloped the Region-Specific ecosystem feedback Fire (RES-
Fire) model that includes region- and PFT-specific fire pa-
rameterizations in subregions over the globe. Their model
shows improved spatial distributions and temporal variations
in fire activities compared to the CLM fire model. Process-
based models are usually included in the dynamic global veg-
etation models (DGVMs) to simulate fire dynamics, vegeta-
tion dynamics, and biogeochemistry driven by atmospheric
forcing and socio-economic data (Li et al., 2013; Knorr et
al., 2016). Fire emissions, including trace gases and aerosols,
are calculated from the simulated fire carbon emissions and
the emission factors, with the former computed as the prod-
uct of the burned area, fuel load, and combustion complete-
ness. The process-based models in DGVM coupled with
other components of Earth system models can be used to as-
sess the impacts of environmental factors on fires and the
feedback between fire emissions, land processes, and cli-
mate (Kloster et al., 2010). In 2014, the Fire Model Inter-
comparison Project (FireMIP) was initiated to compare nine

DGVMs that include fire modules to better understand the
performances of the global fire models (Rabin et al., 2017).
FireMIP enables comprehensive evaluation and comparison
across various process-based models and provides a dataset
of long-term fire simulations for regional and global analysis
(Li et al., 2019a; Hantson et al., 2020).

Besides process-based fire models, data-driven statistical
models are also commonly used to estimate fire activities us-
ing relationships between fires and predictor variables. Mul-
tiple linear regression (MLR) is a popular simple statistical
method used for fire modeling (Spracklen et al., 2009; Mor-
ton et al., 2013; Urbieta et al., 2015; Williams et al., 2019).
MLR can achieve a good performance, but it fails to cap-
ture the non-linear relationships between fires and predic-
tors, and it is sensitive to the collinearity and combinations of
predictors (Littell et al., 2009). Unlike MLR, machine learn-
ing (ML) is a novel tool for advancing fire modeling, given
its strengths in resolving the complex relationships between
the target and predictor variables. Different ML approaches
have been used to estimate fire occurrence, burned areas, or
emissions at various timescales and spatial scales (Cortez
and Morais, 2007; Aldersley et al., 2011; Dillon et al., 2011;
Birch et al., 2015; Kane et al., 2015; Coffield et al., 2019;
Wang and Wang, 2020). Even though ML models generally
achieve higher accuracy than simple statistical models, their
decision processes are often inscrutable and hence lack inter-
pretability. The development of explainable ML represents
major advances for scientific applications beyond predictions
(Gunning, 2019; Arrieta et al., 2020). For example, Wang et
al. (2021a) used the extreme gradient boosting (XGBoost)
algorithm and Shapley additive explanation (SHAP) to pre-
dict wildfire-burned area and revealed the relationships be-
tween burned areas and predictor variables. As process-based
and data-driven models have their own advantages and weak-
nesses, as listed in Table 1, comparing these models and as-
sessing their uncertainties in historical simulations and future
projections are important. Yue et al. (2013) applied an MLR
and a parameterization method to estimate burned areas in
ecoregions of the western US and found that both models ex-
plained ∼ 50 % of the variance in the observed burned areas.
Although they compared the burned areas estimated by the
two methods and quantified their uncertainties in fire projec-
tions, both methods are only driven by meteorology while the
effects of fuels and human activities are not considered.

The FireMIP dataset provides long-term simulations of
multiple DGVMs with fire modules, allowing comparisons
between process-based and data-driven models, with all
models considering all the potential factors influencing fires,
including climate, weather, vegetation, and human activities.
This study aims to develop an ML model with game theory
interpretation for fire emission prediction and to understand
controls of fire emissions. The ML model and SHAP are then
used to reveal the important factors controlling fire emis-
sions and diagnosis of the process-based FireMIP models.
The ML model predicts the monthly PM2.5 emissions from
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Table 1. Advantages and limitations of different types of fire models.

Representative method Advantages Limitations

Data-driven model Multiple linear regression
(MLR)

1. Computationally efficient
2. Simple model
3. It is easy to interpret

1. It cannot capture the non-
linear relationships between
fires and predictors
2. It assumes that the predictor
variables are independent
3. It is sensitive to outliers

Machine learning method (e.g.,
neural network, decision tree)

1. Computationally cheap com-
pared to process-based models
2. The performance improves
when more training data are in-
cluded
3. It can easily handle multi-
dimensional data

1. It requires a lot of training
data
2. It is relatively hard to inter-
pret
3. The interactions between
fires and vegetation or
atmosphere cannot be updated
to the model

Process-based model Dynamic global vegetation
model (DGVM)

1. Physics-driven
2. The simulations can include
feedbacks between fires and cli-
mate or vegetation

1. Computationally expensive
2. The same parameterization
may not be applied to all re-
gions
3. It only parameterizes the
known processes or phenomena

fires during 2000–2020 at a spatial resolution of 0.25◦×0.25◦

over the contiguous US (CONUS). It uses the XGBoost al-
gorithm and incorporates various predictors, including local
and large-scale meteorology, land surface characteristics, and
socioeconomic variables, which are common input variables
also used by the FireMIP models while some are specifically
related to fire activities in the CONUS. We acknowledge that
different input variables between the ML and FireMIP mod-
els might cause additional uncertainty for comparison. This
study aims to construct an ML model that predicts fire emis-
sions over the CONUS and utilizes the ML model and SHAP
to reveal the important factors contributing to fire emissions
that might not be fully represented in the process-based mod-
els. In this context, the ML model and FireMIP models are
optimized using different data or predictors at various scales,
which enables us to use the ML to diagnose the performance
of FireMIP models over the CONUS through the compar-
isons of their performances and variable importance from the
ML model. We evaluate and compare the predicted fire emis-
sions from the ML and FireMIP models against the GFED
fire emission product, focusing on spatial distributions, sea-
sonality, and interannual variability over selected regions in
the CONUS. Additionally, the ML model and the SHAP im-
portance are used to identify the important drivers of fire
emissions in different regions and compare them with the
corresponding parameterizations in the process-based mod-
els. Lastly, we compare the process-based and ML model
performances in simulating extremely large fire emissions,

including the spatial distributions of frequency and two case
studies.

2 Data

2.1 Fire-induced PM2.5 emission data

Monthly fire PM2.5 emission data are obtained from the
Global Fire Emissions Database (GFED). GFED version 4
provides monthly burned area at 0.25◦ spatial resolution from
1997 to present, based on a combination of the MODIS
burned area product with active fire data from the Tropi-
cal Rainfall Measuring Mission (TRMM), Visible and In-
frared Scanner (VIRS), and Along-Track Scanning Radiome-
ter (ATSR) family of sensors (Giglio et al., 2013). The GFED
fire PM2.5 emissions are estimated by combining the burned
area boosted by small fires (Randerson et al., 2012) and the
emission factors based on Akagi et al. (2011) with a revised
version of the Carnegie-Ames-Stanford Approach (CASA)
biogeochemical model that estimates fuel loads and com-
bustion completeness for each monthly time step (van der
Werf et al., 2017). The emission factors are dependent on the
fire types, including savanna, boreal forest, temperate forest,
tropical forest, and agriculture (van der Werf et al., 2017).
We use the GFED fire PM2.5 emission as the target variable
in the machine learning model development and for model
evaluation.

To reduce spatial heterogeneity and help model learning,
we apply the inverse distance weighting (IDW) (Bartier and
Keller, 1996; Shepard, 1968) to interpolate the monthly grid-
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ded fire PM2.5 emission at 0.25◦× 0.25◦. The IDW method
determines the value at a grid cell as the weighted average
of the surrounding values within a search distance, with the
weights proportional to the inverse of the distance raised to
the power value p. Here we choose a value of 1 for p and a
search distance of 35 km for IDW processing. Note that the
total fire-emitted PM2.5 within a search distance after IDW
processing is constrained to be the same as the original data.
In this study, we only include grids with more than 8 months
of fire emissions larger than zero (in a total of 250 months),
encompassing 90 % of the total fire emissions and ensuring
sufficient data for the XGBoost model training. The interpo-
lated fire emission is normalized based on its 21-year mean
and standard deviation for each grid to reduce the skewness
and improve data symmetry.

2.2 Predictor variables

We develop an empirical model at 0.25◦× 0.25◦ grid res-
olution driven by various predictor variables at a monthly
scale from January 2000 to October 2020. Given the fact
that the datasets have different spatial resolutions, all the
predictor variables are resampled to the spatial resolution of
0.25◦×0.25◦ by linear interpolation. The predictor variables
used in the model along with their original spatial and tempo-
ral resolutions are included in Table 2. Most variables were
also used in Wang et al. (2021a) for developing an ML model
of fire-burned area over the contiguous US.

2.2.1 Local meteorology

The same as the local meteorological predictors used in
Wang et al. (2021a), we include monthly data of mean sur-
face temperature, relative humidity (RH) at 2 m, daily pre-
cipitation, zonal (U ) and meridional (V ) components of
wind at 10 m from the North American Regional Reanalysis
(NARR) (Mesinger et al., 2006), and 1000 h dead fuel mois-
ture (FM1000), energy release component (ERC), and va-
por pressure deficit (VPD) from the gridMET dataset (Abat-
zoglou and Kolden, 2013; Coffield et al., 2019). Drought is
a natural phenomenon that influences fires through ignition
efficiency, fuel availability, and fuel moisture. Thus, we in-
clude the monthly standardized precipitation evapotranspi-
ration index (SPEI), a multiscalar drought index based on
climatic data (Vicente-Serrano et al., 2010). Given that light-
ning is one of the major ignition sources of fires and makes
up approximately 75 % of burned areas in western US (Pyne,
1984; Stephens, 2005), in this study, we add the cloud-to-
ground (CG) lightning flash density from Severe Weather
Data Inventory (SWDI) based on the National Lightning
Detection Network (NLDN) (Cummins and Murphy, 2009;
NOAA, 2006). The daily number of CG lightning flashes is
summarized in 0.1◦ tiles, and we aggregate the daily data to
a monthly scale.

2.2.2 Large-scale meteorological patterns

Large-scale meteorological patterns at a synoptic scale have
been linked to large fire events (Crimmins, 2006; Trouet et
al., 2009; Zhong et al., 2020; Dong et al., 2021). Further-
more, it has been shown that including predictors of large-
scale meteorological patterns conducive to wildfires signif-
icantly improves the prediction of burned areas over the
CONUS (Wang et al., 2021a). Thus, we follow the methods
developed by Wang et al. (2021a) using the singular value
decomposition (SVD) method to construct predictors repre-
senting the synoptic patterns driving fire emission variability.
Note that the only difference between Wang et al. (2021a)
and this study is that they used wildfire-burned-area data
and we use fire emissions to construct the SVDs. Three re-
gions where large fires periodically occur are selected for
constructing SVDs: northern California, the southern Rocky
Mountains, and the southeastern US, as defined in Wang et
al. (2021a). For each region, we calculate the daily mean fire
PM2.5 emissions over the region and compute the day-to-day
correlations between the regional mean fire PM2.5 emissions
and the five gridded daily meteorological variables (surface
temperature, 2 m RH, U wind and V wind at 850 hPa, and
geopotential height at 500 hPa) for all 1◦×1◦ grid cells within
the large-scale domain, giving a correlation map for each me-
teorological variable. The correlation maps are then used to
derive the SVD modes representing the large-scale meteo-
rological patterns related to fires. Finally, we compute the
monthly standard deviation of the daily SVD time series for
the first two SVD modes, representing the month-to-month
variations of synoptic fluctuations and atmospheric instabil-
ity. The detailed methods and discussions about the SVDs
are provided in Wang et al. (2021a). Overall, the identified
SVDs for the three regions are similar to the SVDs in Wang et
al. (2021a) calculated using wildfire-burned areas (Figs. S1–
S3 in the Supplement).

2.2.3 Land surface properties

We use the same set of variables in the burned-area model
that represent the effects of fuel and land surface states on fire
emissions, including evapotranspiration (ET), surface soil
moisture, land types, and topography (Wang et al., 2021a).
Monthly mean ET, vegetation fraction, and surface soil mois-
ture are obtained from the North American Land Data As-
similation System (NLDAS-2) (Xia et al., 2012). Land cover
data of the LAI classification scheme are obtained from
the Terra and Aqua combined MODIS Land Cover Climate
Modeling Grid (CMG) version 6 data (Friedl, 2015). Since
the land cover data are at yearly intervals from 2001 to 2020,
we use the land cover data of 2001 for 2000. Topography
data of slope and elevation are obtained from Amatulli et
al. (2018).

Besides the above-mentioned variables that were also used
in Wang et al. (2021a), in this study, we consider the effect
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Table 2. Predictor variables used in the ML model.

Variables Abbreviation Categories Temporal Spatial Data source References
resolution resolution

Monthly mean surface
temperature

temp Local meteorology Monthly 32 km North American Reanalysis (NARR) Mesinger et al.
(2006)

Monthly mean relative
humidity

RH Local meteorology Monthly 32 km North American Reanalysis (NARR) Mesinger et al.
(2006)

Monthly mean of daily
precipitation

precip Local meteorology Monthly 32 km North American Reanalysis (NARR) Mesinger et al.
(2006)

Monthly mean zonal
component of wind speed

U Local meteorology Monthly 32 km North American Reanalysis (NARR) Mesinger et al.
(2006)

Monthly mean meridional
component of wind speed

V Local meteorology Monthly 32 km North American Reanalysis (NARR) Mesinger et al.
(2006)

Monthly standardized precipi-
tation evapotranspiration index

SPEI Local meteorology Monthly 0.5◦× 0.5◦ SPEI Vicente-Serrano et
al. (2010)

Monthly mean 1000 h dead fuel
moisture

FM1000 Local meteorology Daily 4 km gridMET Abatzoglou (2013)

Monthly mean energy release
component

ERC Local meteorology Daily 4 km gridMET Abatzoglou (2013)

Monthly mean vapor pressure
deficit

VPD Local meteorology Daily 4 km gridMET Abatzoglou (2013)

Monthly lightning flashes
density

lightning Local meteorology Daily 0.1◦× 0.1◦ SWDI/NLDN NOAA (2006);
Cummins and
Murphy (2009)

Monthly standard deviation of
daily SVDs for northern
California

SVD1_NCA
and
SVD2_NCA

Large-scale meteoro-
logical patterns

Monthly Regional North American Reanalysis (NARR) Wang et al. (2021a)

Monthly standard deviation of
daily SVDs for the southern
Rocky Mountains

SVD1_SRM
and
SVD2_SRM

Large-scale meteoro-
logical patterns

Monthly Regional North American Reanalysis (NARR) Wang et al. (2021a)

Monthly standard deviation of
daily SVDs for the southeastern
US (with 2-month lag)

SVD1_SElag2
and
SVD2_SElag2

Large-scale meteoro-
logical patterns

Monthly Regional North American Reanalysis (NARR) Wang et al. (2021a)

Monthly mean evapotran-
spiration

ET Land surface properties Monthly 0.25◦× 0.25◦ North American Land Data Assimila-
tion System (NLDAS-2)

Xia et al. (2012)

Monthly mean surface
soil moisture

soilm Land surface properties Monthly 0.25◦× 0.25◦ Global Land Data Assimilation System
(GLDAS-2)

Xia et al. (2012)

Monthly mean vegetation
fraction

Veg_frac Land surface properties Monthly 0.25◦× 0.25◦ Global Land Data Assimilation System
(GLDAS-2)

Xia et al. (2012)

Monthly mean leaf area index LAI Land surface properties 8 d 500 m MODerate resolution Imaging Spectro-
radiometer (MODIS); LAI classifica-
tion scheme

Myneni et al.
(2015)

Monthly fuel load/normalized
fuel load

fuel_load/
fuel_load_nor

Land surface properties Monthly 0.9◦× 1.25◦ Community Land Model (CLM) Lawrence et al.
(2019)

Land cover percentage p_ Land surface properties Yearly 0.05◦× 0.05◦ MODerate resolution Imaging Spectro-
radiometer (MODIS); LAI classifica-
tion scheme

Friedl (2015)

Median topography (slope and
elevation)

Slope and
elevation

Land surface properties Not
change
by time

100 km Amatulli et al.
(2018)

Gross domestic product GDP Socioeconomic and co-
ordinate variables

Yearly 0.083333◦ Kummu et al.
(2018)

Population density Pop Socioeconomic and co-
ordinate variables

Yearly 0.5◦ Gridded Population of the World data
collection (GPW v4)

CIESIN–Columbia
University (2017)
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of fuel load on fire emissions, since fuel load is critical to
fire emissions through its controls on fuel consumption and
burned areas (Parks et al., 2012; Liu and Wimberly, 2015).
As there are limited observations of fuel load, we use LAI to
approximate the canopy bulk density, which is an important
crown characteristic to predict crown fire spread, and vege-
tation fraction to represent the existing amount of vegetation
(Keane et al., 2005). LAI is taken from MODerate resolu-
tion Imaging Spectroradiometer (MODIS) instruments (My-
neni et al., 2015), and vegetation fraction is obtained from
the NLDAS-2. As LAI may not fully represent the available
biomass, we also include fuel load simulated by the Com-
munity Land Model (CLM). Monthly fuel load data from
2000 to 2015 are obtained from a simulation by CLM ver-
sion 5 with biogeochemistry and prognostic crop, driven by
atmospheric forcing from GSWP3v1 (Lawrence et al., 2019).
The fuel load after 2015 is taken from a simulation under
the SSP3 (shared socioeconomic pathways) scenario. CLM
fuel load is validated by comparing with the fuel-measured
fuel load from the global fuel consumption database (van der
Werf et al., 2017; van Leeuwen et al., 2014), as shown in
Fig. S4. The CLM-simulated fuel load is generally consis-
tent with the measured fuel load for different vegetation types
across the CONUS based on the limited measurements. Ad-
ditionally, we include normalized fuel load as a predictor to
capture the effects of temporal variation in fuel load, as the
influence of fuel load on fire emissions is mainly attributed to
its spatial variation rather than the temporal variation (Lass-
lop and Kloster, 2015).

2.2.4 Socioeconomic variables

We use population density and gross domestic product
(GDP) per capita to represent human effects on wildfires.
The population density data are obtained from the Gridded
Population of the World (GPW V4) data collection for the
years 2000, 2010, 2015, and 2020, with a spatial resolution
of 30 arcsec (CIESIN, 2017). The populations in other years
are linearly interpolated between the abovementioned four
years. The GDP per capita is taken from a gridded global
dataset for 2000–2015 with a spatial resolution of 5 arcmin
(Kummu et al., 2018). For the GDP after 2015, we use the
data of 2015.

3 Description of fire emission models

3.1 Process-based fire emission models

The Fire Model Intercomparison Project (FireMIP) in-
cludes a set of common fire modeling experiments from
nine DGVMs driven by the same forcing data, allow-
ing a better understanding of global fire models (Rabin
et al., 2017). The FireMIP dataset provides global grid-
ded burned area fraction and fire emissions, including car-
bon and 33 species of trace gases and aerosols over 1700–

2012. Nine DGVMs with different fire modules are in-
cluded in FireMIP, including Community Land Model ver-
sion 4.5 (CLM4.5) with the CLM5 fire module, Canadian
Terrestrial Ecosystem Model (CTEM), Jena Scheme for
Biosphere-Atmosphere Coupling in Hamburg with Spread
and InTensity fire model (JSBACH-SPITFIRE; hereafter re-
ferred to as JSBACH), Joint UK Land Environment Simula-
tor with Interactive Fire And Emission Algorithm For Nat-
ural Environments (JULES-INFERNO; hereafter referred to
as JULES), Lund-Potsdam-Jena General Ecosystem Simula-
tor with Global FIRe Model (LPJ-GUESS-GlobFIRM; here-
after referred to as LPJ-Glob), LPJ-GUESS with SIMple
FIRE model and Blaze-Induced Land-Atmosphere Flux Es-
timator (LPJ-GUESS-SIMFIRE-BLAZE; hereafter referred
to as LPJ-SIM), LPJ-GUESS with SPITFIRE model (LPJ-
GUESS-SPITFIRE; hereafter referred to as LPJ-SPI), MC2,
and Organizing Carbon Hydrology In Dynamic Ecosystems
with SPITFIRE model (ORCHIDEE-SPITFIRE; hereafter
referred to as ORCHIDEE) (Rabin et al., 2017).

The nine DGVMs in FireMIP are driven by the CRU-
NCEP v5.3.2 atmospheric forcing data with a spatial res-
olution of 0.5◦ and a 6-hourly temporal resolution (Wei et
al., 2014; Rabin et al., 2017). Other forcing data, includ-
ing annual global atmospheric CO2 concentration, land use
and land cover, and population density from 1700 to 2012,
are taken from various data sources (Klein Goldewijk et al.,
2010; Hurtt et al., 2011; Le Quéré et al., 2014). Monthly
cloud-to-ground lightning frequency with a resolution of
0.5◦× 0.5◦ over 1901–2012 is calculated based on the ob-
served relationship between present-day lightning and con-
vective available potential energy (CAPE) anomalies (Pfeif-
fer et al., 2013). Fire emissions in FireMIP are calculated
considering the fire carbon emissions and vegetation charac-
teristics based on the plant functional type (PFT) from the
FireMIP historical transient control run (SF1). SF1 breaks
the simulation period into three phases: the spin-up phase
in 1700, the transient phase in 1701–1900, and the tran-
sient phase in 1901–2012 (see the detailed descriptions and
model settings in Rabin et al., 2017; Li et al., 2019a; Hantsan
et al., 2020). In the 1901–2012 transient phase, the models
are driven by time-varying atmospheric forcing, CO2 con-
centration, land use and land cover change (LULCC), pop-
ulation density, and lightning data. Note that the MC2 and
CTEM runs start from 1901 and 1861, while the rest of the
models start from 1700. As the spatial resolutions of the
FireMIP models are different, the regridded model outputs
with 1◦× 1◦ resolution obtained from Li et al. (2019b) are
used to compare with the GFED data and the ML model.

3.2 ML-based approach: an extreme gradient boosting
(XGBoost) model

The extreme gradient boosting (XGBoost) is a decision-tree-
based ensemble machine learning method using the gradient-
boosting approach (Chen and Guestrin, 2016). The XGBoost
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model builds multiple decision trees that are added subse-
quently and learn the errors of the previous tree to reduce
the loss and obtain the best prediction. Unlike the Gradi-
ent Boosting Machine (GBM) that also uses the gradient-
boosting approach, XGBoost utilizes a more regularized
model formalization to prevent over-fitting and improve the
computational efficiency. The formula for the prediction at
step t and grid location i can be defined as follows:

ŷti =

t∑
k=1

fk (xi)= ŷ
(t−1)
i + ft (xi), (1)

where ft (xi) is the tree model at step t , ŷti and ŷ(t−1)
i are the

predictions at steps t and t−1, and xi represents the predictor
variables. The parameters of the model ft (xi) are selected by
optimizing the objective function that measures how well the
model fits the training data:

Objt =
n∑
i=1

Lt +�t , (2)

which is composed of the loss function Lt and the regulariz-
ing term �t in each step. Lt is defined as l(yi ŷt−1

i + ft (xi))
and �t is defined as γ T + 1

2λ‖ω‖
2, where γ is the regular-

ization term which penalizes the number of leaves in the tree
T and λ is the regularization term which penalizes ω, the
weights of different leaves.

We use grid search to choose the set of suitable hyper-
parameters and achieve the best ML model performance.
Grid search is a tuning technique for computing the opti-
mal values of hyperparameters considering a range of num-
bers with a given increment. The parameter set that yields the
best fivefold cross-validation score is selected as the final set
of hyper-parameters. The considered hyper-parameters, their
search domains, and the final values are denoted in Table S1.

The 10-fold cross-validation (CV) technique is applied
to evaluate the model and avoid overfitting. First, we ran-
domly divide the fire emission dataset (2000–2020 over the
CONUS) into 10 equally sized splits. Then, we train the
model with nine splits of the data and use the trained model
to predict fire emissions for the remaining one split. This
process is repeated 10 times for each split. Finally, the pre-
dictions are evaluated by grids and regions using root mean
square error (RMSE), correlation coefficient (R), and the in-
dex of agreement (IoA). The IoA represents the ratio of the
mean square error and the potential error, and the value closer
to 1 indicates better agreement.

3.3 Shapley additive explanation (SHAP)

We utilize SHAP to identify the relative importance of the
predictor variables. SHAP is a novel approach to resolve and
explain variable importance based on game theory (Lund-
berg and Lee, 2017). Within the scope of game theory, the
goal is a prediction for a single observation. Each predictor

variable is referred to as a “player” in this game and con-
tributes to the goal (“payout”). For each predictor, the SHAP
variable importance measures the marginal contribution con-
sidering all possible combinations of the predictor variables.
The marginal contribution is calculated by comparing the
differences between the model fit fx (S ∪ {i}), including the
predictor i and another model fit fx (S) without predictor i.
When there is more than one predictor i, the marginal con-
tribution also depends on the interactions with other predic-
tors. Thus, the calculation repeats considering the whole set
of the predictors. The final contribution φi of predictor i is
the weighted average of all marginal contributions:

φi =
∑

S⊆F\{i}

|S| ! (F − |S| − 1) !
F !

[
fx (S ∪ {i})− fx(S)

]
, (3)

where F is the total number of features, S is the subset
of predictors from all predictors except for predictor i, and
|S|!(F−|S|−1)!

F !
is the weighting factor counting the number of

permutations of the subset S. fx (S) is the expected output
given the predictors’ subset S.

[
fx (S ∪ {i})− fx(S)

]
is the

difference made by predictor i.
Compared to the commonly used feature importance, such

as gain, or split count, SHAP is more consistent and faith-
ful to the model (Lundberg et al., 2019). More importantly,
SHAP provides local importance that measures the variable
importance for each sample, while most of the feature im-
portance metrics only have global importance that measures
variable contributions limited to the entire dataset. The global
importance by SHAP is the average of the absolute SHAP
values for each predictor, providing an overall picture of
the predominant variables controlling fire emissions in the
CONUS. The local importance will be used to identify the
important predictors for large fire events in the ML model
and diagnose the deficiency of the process-based models.

4 Results

4.1 XGBoost model performance and variable
importance

Table 3 shows the whole CONUS and regional model perfor-
mance, including RMSE, IoA, and correlation. The model
performs well at the grid level over the CONUS, with an
RMSE of 0.16 g m−2 and an IoA of 0.84. Figure 1a shows
the map of correlation between the observed and predicted
monthly fire emission time series for each grid over the
CONUS. Overall, the results indicate the ML model can re-
produce the interannual variability of fire emissions at 0.25◦

resolution over the CONUS, with a mean correlation of 0.58
and more than 70 % of the grids having correlations larger
than 0.4. To better assess model performance in different re-
gions, Table 3 summarizes the model performance for several
selected regions: (1) western forest area, (2) Mediterranean
California, (3) the southwestern US, and (4) the southeast-
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ern US (color boxes in Fig. 1a). The regions where fires fre-
quently occur are selected by the similarity of ecoregions,
vegetation types, and fire regimes. Figure 1b–e show the time
series of observed and predicted fire PM2.5 emissions av-
eraged over several regions. Generally, the ML model re-
produces the interannual variability of fire emissions for
the selected regions (r = 0.84–0.98). Among these regions,
Mediterranean California has the smallest correlation coef-
ficient and largest RMSE compared to other regions, which
can be explained by the fact that fires in this region interact
with multiple factors, including human activity, complex ter-
rain, and Santa Ana winds (Syphard et al., 2008; Yue et al.,
2014). The interactions between fires and these factors pose
uncertainties and challenges in fire prediction over this re-
gion. It is also worth noting that the ML model captures the
large fire events in September 2020 in Oregon and Califor-
nia but underestimates the peak values by ∼ 30 % (Fig. 1b
and c). In addition, we also test the ML model’s ability to
provide accurate predictions on unseen data (i.e., generaliza-
tion) by using data from 2000 to 2019 as a training set and
data from 2020 as a testing set. As shown in Fig. S5, the ML
model can reproduce the spatial patterns of fire emissions
well but underestimates the emissions of the peak in Septem-
ber 2020. The results are within our expectations because the
ML model generally fails to make accurate predictions for
the data outside of the training domain or has large uncertain-
ties in extrapolation (Tsubaki and Mizoguchi, 2020; Hooker,
2004). Since 2020 features the largest fire emissions in the
study period, we conducted another test using 2000–2017
and 2019–2020 to train the ML model and test on the data
of 2018. We selected 2018 because 2018 had the largest fires
on record before 2020. The ML successfully reproduces the
temporal variability of fire emissions (r = 0.92) and captures
the peak in August 2018, as well as the spatial distributions
of fire emissions (r = 0.52).

To improve understanding of the ML prediction, we uti-
lize the SHAP method to quantify the contributions of each
predictor variable to the prediction and identify the key con-
tributing factors of fire PM2.5 emission. SHAP importance
is chosen because it provides not only global importance but
also local importance that helps understand which variables
have larger contributions to specific events or regions. Here,
we first demonstrate the global importance that considers all
the samples. Figure 2 shows the 20 most important variables
for the model ranked by the absolute mean SHAP values.
The SHAP value for a feature indicates its contribution to
the prediction, so larger absolute mean SHAP values indicate
larger contributions to the fire emissions. Among the top 10
variables, seven of them are local meteorological variables,
indicating local meteorology is the predominant control of
fire emissions, as these variables control fire activity directly
(Liu and Wimberly, 2015; Abatzoglou et al., 2016; Wang
et al., 2021a). Besides local meteorology, the predictors of
large-scale meteorology (SVD1_SElag2 and SVD2_SElag2)
are identified as the 8th and 10th important variables, show-

ing that meteorology is important not only at the local scale
but also at the synoptic scale (Trouet et al., 2009; Pollina et
al., 2013; Dong et al., 2021). Finally, in addition to meteo-
rology, fuel load is identified as the fifth important variable
in the model, as fuel load affects emission through control-
ling burned area and fuel consumption (Seiler and Crutzen,
1980). Considering the important variables in different re-
gions, the selected regions in the western US (western for-
est area, Mediterranean California, and the southwestern US)
generally share the common top 10 variables (Fig. S6). Over
the western US, predictors controlling fuel dryness and fuel
amount, including RH, fuel moisture (FM1000), ERC, veg-
etation fraction, and fuel load, contribute more to fire emis-
sions. On the other hand, large-scale meteorological patterns
(SVDs_SElag2) are more important for fire emissions in the
southeastern US.

As the dominant drivers differ for different temporal
scales, we aggregate the monthly SHAP values to obtain an-
nual and seasonal time series of SHAP values for each vari-
able. The annual and seasonal time series are the averaged
SHAP values over the study period for each year and month,
respectively. Figure S7 shows the mean |SHAP| values at
seasonal and interannual timescales for the CONUS. Consid-
ering both the mean |SHAP| and larger correlations (r > 0.5)
between the annual and seasonal time series of SHAP and
mean fire emissions, temperature, VPD, RH, and ERC are the
dominant variables controlling the seasonal variation in fire
emissions. These factors have relatively stronger seasonality
than other variables (e.g., VPD is usually higher in the sum-
mer). On the other hand, large-scale circulation patterns, in-
cluding SVD1_SElag2, SVD2_SElag2, and SVD1_RM, are
important variables controlling both the seasonal and inter-
annual variability of fire emissions, while SVD2_RM and
SVD2_NCA mainly control interannual variability. Some
identified large-scale meteorology has significant seasonality
(e.g., SVD1_SElag2 and SVD2_SElag2 are predominant in
spring and SVD1_RM is strongest in summer), and most of
them have interannual variability, as shown in Fig. 8. Over-
all, the SHAP analysis shows different dominant predictors
for fire emissions at various timescales.

4.2 General comparison between GFED, ML, and
FireMIP models

This section compares the performance of the ML and
FireMIP models benchmarked against observations from
GFED, and the evaluations are based on spatial distributions,
seasonality, and interannual variability of fire PM2.5 emis-
sions. Since the spatial resolutions of the GFED data, ML
models, and FireMIP models are different, they are all re-
gridded to 1◦× 1◦ using bilinear interpolation. Note that the
simulation period of FireMIP models ends in 2012, so we use
the overlapping period of 2000–2012 for comparison and ex-
clude the MC2 model because its simulation ends in 2008.
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Table 3. The ML model performance for different regions: western forest area, Mediterranean California, the southwestern US, and the
southeastern US.

Western Mediterranean Southwestern Southeastern Whole US
forest area California US US

Grid scale (individual grid)

RMSE (km2) 0.29 0.32 0.10 0.02 0.16
Correlation (r) 0.79 0.51 0.76 0.84 0.76
IoA 0.86 0.60 0.85 0.90 0.84
Percentage of grids with 68 47 52 80 74
correlation > 0.4 (%)

Regional scale (summation over the region)

RMSE (km2) 37.80 13.94 2.76 3.37 49.98
Correlation (r) 0.98 0.81 0.94 0.97 0.97
IoA 0.98 0.81 0.95 0.98 0.97

Figure 1. (a) The map of temporal correlation between observed and predicted fire PM2.5 emission for each grid. Time series of observed
(black) and predicted (red) fire PM2.5 emission average across (b) western forest area (red box in panel a), (c) Mediterranean California
(blue box), (d) the southwestern US (dusty box), and (e) the southeastern US (pink box).

4.2.1 Spatial distributions of fire PM2.5 emissions and
sensitivities to RH and temperature

Figure 3 compares the observed and simulated spatial distri-
butions of long-term mean monthly fire PM2.5 emissions av-
eraged over 2000–2012. Among the models, the ML model,
CLM, and JULES have better performance in reproducing
the spatial distributions of fire emissions over the CONUS,
with a correlation coefficient of 0.83, 0.52, and 0.40, respec-
tively. The ML model shows the best agreement with GFED,
though it overestimates fire emissions over northern Califor-
nia. Both CLM and JULES simulate more PM2.5 emissions
over the southeastern US, and JULES overestimates fire

emissions in northern California. Some other models, such
as CTEM, JSBACH, and LPJ-SIP, tend to overestimate fire
emissions over the central US (e.g., Great Plains and Texas).
LPJ-SIM captures the hotspots of fire emissions over the
western US and southeastern US, but it simulates much more
PM2.5 emissions over the Rocky Mountains and northeast-
ern US. In terms of the total amount of PM2.5 emissions, all
models except ORCHIDEE-SPITFIRE overestimate PM2.5
emissions (8.33–79.49 Tg), compared to the GFED estimate
of 4.98 Tg during 2000–2012 over the CONUS (Table 4).

The overestimations in some models may be explained by
the sensitivities of fire emissions to individual meteorologi-
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Table 4. The model performance for the ML model and FireMIP models.

ML model CLM CTEM JSBACH LPJ-SPI LPJ-Glob LPJ-SIM ORCHIDEE JULES

Total amounts of fire PM2.5 emissions (Tg= 1012 g) (GFED: 4.89 Tg)

Total fire PM2.5 emissions over 8.33 16.54 41.50 19.92 16.23 79.49 35.38 2.43 33.43
2000–2012 (Tg)

Correlation of interannual–seasonal variability for the CONUS

Correlation (interannual–seasonal) 0.87/0.98 0.71/0.92 0.28/0.87 0.15/0.89 0.15/0.92 0.02/− 0.23/0.65 0.03/0.91 0.55/0.93

Correlation of interannual–seasonal variability for the selected regions

Western forest area 0.93/0.98 0.70/0.93 0.33/0.88 0.21/0.88 0.38/0.79 0.51/− 0.46/0.98 0.05/0.94 0.60/0.92
Mediterranean California 0.72/0.97 −0.01/0.87 0.05/0.94 −0.30/0.89 −0.07/0.90 −0.14/− −0.19/0.83 0.25/0.13 −0.21/0.87
Southwestern US 0.95/0.99 0.14/0.85 −0.26/0.62 −0.28/0.45 0.34/0.42 0.30/− 0.40/0.94 0.45/0.72 −0.07/0.69
Southeastern US 0.96/0.99 0.57/−0.27 −0.16/0.09 0.72/−0.14 0.08/0.35 0.39/− 0.18/0.68 0.16/0.13 0.36/0.01

Figure 2. Top 20 variables for the model based on the mean abso-
lute SHAP value with the 95 % confidence intervals.

cal variables. Figure 4 shows the slopes for the dependence of
annual mean fire PM2.5 emissions on annual mean RH from
the CRUNCEP atmospheric forcing data for GFED and the
10 models based on linear regression. Since the ML model
uses NARR meteorology as predictors, we also include sen-
sitivities of the fire emissions predicted by the ML model to
the NARR meteorology (Fig. 4b). Almost all models cap-
ture the negative dependence of PM2.5 emissions on RH over
the western US (r =−0.06∼ 0.84), but the sensitivities in
the models are much stronger (steeper negative slope) than
in GFED. For temperature, positive sensitivity is shown over
the western US in GFED (Fig. 5), with the largest slope in
northern California. The sensitivities to temperature in mod-
els agree with the observed sensitivities (r =−0.06∼ 0.64),
but some models show much stronger sensitivities over the
western, central, and southeastern US. Generally, the spatial
distributions of the long-term mean fire emissions shown in
Fig. 3 match well with the spatial distributions of sensitiv-
ities to RH or temperature, suggesting an important role of
the sensitivities in the model biases of predicting fire emis-
sions. However, the correspondence of large fire emissions

to the sensitivities to RH or temperature shows regional dif-
ferences. For instance, in the western US, the stronger sensi-
tivities to both RH and temperature correspond to the over-
estimations in this region for most models, including the
ML model, CLM, CTEM, JSBACH, JULES, LPJ-SIM, and
LPJ-SPI (Figs. 4 and 5). On the other hand, over the cen-
tral US, larger PM2.5 emissions simulated by CTEM and
JSBACH only correspond to stronger sensitivity to temper-
ature (Fig. 5). Similar to the central US, in the southeast-
ern US, the overestimations in CLM and JULES only cor-
relate with stronger sensitivity to temperature (Fig. 5). Re-
gional differences in the correspondences between the pre-
dicted fire emissions and their sensitivity to meteorology can
be explained by several factors. For the western US, the over-
estimations of fire emissions correspond to stronger sensitiv-
ities to both RH and temperature, given that fire activities
are sensitive to fuel aridity that is controlled by temperature
and fuel moisture (Abatzoglou and Williams, 2016; Holden
et al., 2018). As for the southeastern US, fuels in this region
typically burn at higher RH, and the interannual RH variation
(standard deviation) is smaller (Balch et al., 2017; Brey et al.,
2018). With higher RH values and less variation in RH, the
fire emissions in the southeastern US show weaker sensitiv-
ity to RH than to temperature in observation (Table S2). The
above analysis shows that the overestimation of fire emis-
sions in the models may be attributed to the stronger sensi-
tivities to meteorology. However, fire activities are controlled
by meteorology and other factors such as vegetation and hu-
mans, so the analysis of fire emission sensitivity to meteorol-
ogy only provides a potential explanation of the overestima-
tion of fire emissions in the models (Forkel et al., 2019).

4.2.2 Seasonality and interannual variability over the
CONUS

In addition to evaluating spatial distributions, it is also impor-
tant to compare the models’ ability to reproduce the temporal
variability of fire emissions. As the models may systemati-
cally over- or underestimate fire emissions, we normalize the
emissions by the mean and standard deviation and focus only
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Figure 3. Spatial distributions of the monthly mean fire PM2.5 emission (g m−2 per month) over 2000–2012.

Figure 4. Spatial distributions of the linear regression slope for the dependence of annual mean fire PM2.5 emissions on annual mean RH.
Only the grids with slopes that are statistically significant (p < 0.05) are shown.
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Figure 5. Spatial distributions of the linear regression slope for the dependence of annual mean fire PM2.5 emissions on annual mean
temperature. Only the grids with slopes that are statistically significant (p < 0.05) are shown.

on its temporal variability. Figure 6a shows the seasonality
of normalized fire PM2.5 emission over the CONUS. Most
models capture the seasonality of fire emission successfully
(r > 0.85), except LPJ-SIM, which simulates peak emission
in August–October (r = 0.65). Among the models, the ML
model has the highest correlation coefficient between pre-
diction and observation from GFED (r = 0.98) and success-
fully reproduces the peak in August. The seasonal peaks sim-
ulated by the FireMIP models are broader and flatter than the
peak in GFED, with an early peak in June–July continuing to
September (Fig. 6a).

In terms of interannual variability (Fig. 6b), the ML model,
CLM, and JULES perform better than other models, with
larger correlation coefficient between simulated and ob-
served fire PM2.5 emissions (r = 0.87, 0.71, and 0.55 for
ML, CLM, and JULES, respectively; Table 4). Other mod-
els have relatively poor performance in capturing the interan-
nual variability. The interannual variability of fire emissions
shows several peaks in 2002, 2007, and 2012 (black line in
Fig. 6b), when the western US contributes 76 % of the total
emissions to the peaks in these years. Almost all models ex-
cept ORCHIDEE capture the peak in 2012. However, most
models miss the peaks in 2002 and 2007. Among all models,
the LPJ-Glob model simulates the peaks in the two years,
while ML, JULES, and CLM only capture the largest emis-
sion in 2007 (Fig. 6b).

Figure 6. (a) Seasonality and (b) interannual variability of the nor-
malized averaged fire PM2.5 emission from the GFED (black line),
ML model (red line), and FireMIP models (color lines). The fire
PM2.5 emissions are first averaged over the CONUS and normal-
ized by the monthly (annual) mean and standard deviation for sea-
sonality (interannual variability) plots.
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4.2.3 Seasonality and interannual variability by regions

As the temporal variability of fire activities varies by region,
we compare the performance between GFED and the ML and
FireMIP models by the regions defined in Sec. 4.1. Figure 7
shows the seasonality and interannual variability of normal-
ized fire PM2.5 emission over western forest area, Mediter-
ranean California, the southwestern US, and the southeast-
ern US. All models generally capture the seasonality of the
western forest area peaking in summer, with correlation co-
efficients larger than 0.8 (Table 4). Even though the FireMIP
models generally reproduce the peaks in summer, the pre-
dicted peaks are broad and flat, indicating a relatively longer
fire season starting in June and ending in September (Fig. 7a).
When looking at the interannual variability, we find that the
ML model has the best performance with a correlation co-
efficient of 0.93, and it successfully captures the largest fire
emission in 2007. CLM, JULES, and LGJ-Glob perform bet-
ter than the rest of the models (r = 0.70, 0.60, and 0.51 for
CLM, JULES, and LPJ-Glob, respectively; Table 4), but all
of them still miss the peaks in 2007 and overestimate fire
emissions in 2001 and 2003 (Fig. 7b). The emission peak
in 2007 is mainly attributed to the large fires in Idaho, which
were associated with synoptic weather patterns characterized
by positive geopotential height and temperature anomalies
over the Pacific Coast and western US (Zhong et al., 2020).
Consistent with prior findings, SHAP importance shows that
in the ML model SVD predictors (SVD_NCA and SVD_RM
in July and August 2007, Fig. 8a) are the dominant factors of
fire emissions in 2007 (contribute 27 % and 28 % for July and
August 2007, respectively), which are characterized by high
pressure, low RH, and northeasterly winds over the west-
ern US (Figs. S1 and S2). Thus, the underestimation of peak
emission in 2007 may be explained by the fact that the influ-
ences of large-scale meteorology on fire activity are not fully
considered in the FireMIP models, which are point models
driven only by local atmospheric forcing.

In Mediterranean California, the seasonality of fire emis-
sions shows a bimodal pattern, peaking in August and Oc-
tober. The peak in October is mainly due to the extremely
large fires associated with Santa Ana winds in 2003 and
2007 (Keeley et al., 2009; Yue et al., 2014). The ML model
simulates a flatter peak from July to October, while all the
FireMIP models except ORCHIDEE capture the first emis-
sion peak in summer but fail to simulate the large fire emis-
sion in October (Fig. 7c). The underestimation associated
with the Santa Ana winds is also shown in the interannual
time series in Fig. 7d. Several models, including LPJ-Glob,
CTEM, LPJ-SPI, and JULES, capture the peak in 2007, but
only the ML model predicts both peaks in 2003 and 2007
even though the peak in 2003 is underestimated. Accord-
ing to the SHAP importance from the ML model, the peak
emissions in October 2003 and October 2007 are mainly con-
tributed by the SVD predictors and ERC (SVD2_NCA and
SVD1_RM together contribute 20 % to the fire emissions for

October 2003 and SVDs_SElag2 and SVD2_RM together
contribute 31 % to the fire emissions for October 2007) and
ERC (15 % and 18 % for October 2003 and 2007, respec-
tively) (Fig. 8b). The results indicate that the ML model cap-
tures the effect of synoptic weather patterns on fire activity by
including the SVD predictors. Even though the wind speed
is included in simulating fire spread in the FireMIP models,
the spatial resolutions of the models and/or the atmospheric
forcing data may not be fine enough to resolve the strength-
ened offshore winds through the complex terrain, and subse-
quently, they may not capture the effects of Santa Ana winds
on fires well. As shown in Fig. S8, the wind speeds from
NARR are significantly larger than from CRUNCEP for the
strong wind days (daily wind speed> 4.5 m s−1) over south-
western California (32.6–34.8◦ N, 116–119◦W) during Oc-
tober 2000–2012 as well as during October 2003 and 2007
(Table S3). The results indicate the lower wind speeds in the
CRUNCEP atmospheric forcing used in FireMIP may par-
tially explain the model biases for the events associated with
Santa Ana winds. Besides the abovementioned shortfall, all
the models have problems reproducing the interannual vari-
ability of the fire emissions over Mediterranean California,
with very low correlations (r < 0.25) for the FireMIP models
and a relatively low correlation (r = 0.72) for the ML model
(Table 4; Fig. 7d). The poor performance for this region may
be due to the complex relations between fires and multiple
factors, including meteorology, complex terrain, fuel, and
human, which may not be fully represented in the models
(Mann et al., 2016; Radeloff et al., 2018).

Both the ML model and LPJ-SIM successfully reproduce
the seasonality of fire emission in the southwestern US peak-
ing in June (r = 0.99 and 0.94 for ML and LPJ-SIM, re-
spectively), while other models simulate relatively smooth
seasonality (Fig. 7e and Table 4). The ML model, LPJ-SIM,
and ORCHIDEE have better performance for the interannual
variability, with correlation coefficients of 0.95, 0.40, and
0.45, respectively (Table 4). However, most FireMIP mod-
els show larger variability in fire emissions than the GFED,
and they all fail to capture the extremely large fire emission
in 2011 (Fig. 7f). The peak fire emission in 2011 over the
southwestern US was caused by extremely low atmospheric
moisture along with moderately high temperature, leading to
record-breaking VPD and wildfire activities (Williams et al.,
2015). To explain why the FireMIP models fail to capture the
peak of 2011, we compare the VPD calculated from CRUN-
CEP data and the VPD data from gridMET used in the ML
model. As Fig. S9 shows, CRUNCEP shows smaller posi-
tive anomalies of VPD over the southwestern US in summer
2011, while gridMET data demonstrate a significantly larger
VPD anomaly. The biases in CRUNCEP data may partially
explain the underestimations in all FireMIP models.

For the southeastern US, the seasonal cycle of fire PM2.5
emissions displays a bimodal pattern, peaking in spring
(March–April) and fall (September and October) (Fig. 7g).
Most models fail to reproduce the bimodal fire emissions,
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Figure 7. Seasonality and interannual variability of the fire PM2.5 emission from the GFED (black line), ML model (red line), and FireMIP
models (color lines) for (a, b) western forest area, (c, d) Mediterranean California, (e, f) the southwestern US, and (g, h) the southeastern
US.

but the ML model, LPJ-SIM, and LPJ-SPI can capture the
bimodal pattern. Although LPJ-SIM and LPJ-SPI predict the
bimodal peaks, the first peak simulated by LPJ-SIM shows a
1-month delay, and the second peak simulated by LPJ-SIM
and LPJ-SPI is 1 month early and 1 month late, respectively
(Fig. 7g). In addition, the ML model, CLM, and JSBACH
reproduce the interannual variability of fire PM2.5 emissions
relatively well (r = 0.96, 0.57, and 0.72 for the ML model,
CLM, and JSBACH, respectively) (Table 4 and Fig. 7h). In-
terestingly, CLM and JSBACH can capture several peaks in
2007, 2010, and 2011, but they do not simulate seasonality
correctly, which may be explained by the fact that the under-
estimation in spring is compensated for by the overestimation
in summer related to abnormal dryness or drought.

4.3 Performance in modeling extreme events

Fire activity in the US is becoming more hazardous, partic-
ularly over the western US, due to more frequent hotter and
drier conditions as climate continues to warm (Williams et
al., 2019). Thus, it is necessary to assess whether the ML
model and process-based models can capture the extreme
events in terms of their magnitude, frequency, timing, and

location, which is essential to future projection and adapta-
tion. As CLM performs relatively well among the FireMIP
models, we select CLM for comparison with the ML model
at 1◦× 1◦ resolution, focusing on the spatial patterns of ex-
treme event frequency and two case studies with extremely
large fire emissions.

4.3.1 Frequency of extreme event occurrence

Figure 9 shows the frequency maps of months with large fire
emissions during 2000–2012 for GFED, the ML model, and
CLM. Large fire emission is defined as monthly fire PM2.5
emissions greater than the 95th percentile of fire PM2.5 emis-
sion considering all the grids over the CONUS in 2000–2012.
GFED shows hotspots with a higher frequency over northern
California, the Pacific Northwest, and the southeastern US,
with total counts ranging from 15 to 105 (Fig. 9a). The ML
model captures the spatial patterns (r = 0.74), but it over-
estimates the number of months by a factor of 2 to 3 com-
pared to GFED, especially over the western US (Fig. 9b).
The spatial patterns of large fire emission occurrence sim-
ulated by CLM are generally consistent with the observed
distribution by GFED (r = 0.35). However, it overestimates
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Figure 8. Time series of the average SHAP values (bar) and pre-
dicted normalized fire PM2.5 emission (line) for (a) western forest
area from 2006 to 2008, (b) Mediterranean California from 2003 to
2007, and (c) the southeastern US from 2008 to 2009. The SHAP
values indicate the contribution of the predictors to the prediction
of normalized fire emission.

the frequency, particularly over Idaho and the northeastern
US, and simulates more significant numbers of months with
extreme events over large spatial extents, maybe due to its
coarse spatial resolution (Fig. 9c).

4.3.2 Case studies

To evaluate how well the models simulate the large fire emis-
sions, we compare model performance for the two recent
cases reported to be the largest fire events during 2000–2012,
including the fires in the southern US in 2011 and western
US in 2012. During 2011, a severe drought leading to large
wildfires was observed over the southern US, including Ari-
zona, New Mexico, and Texas (NOAA, 2012; Wang et al.,
2015). Figure 10 shows the maps of annual mean fire PM2.5
emissions over the southern US from GFED, the ML model,
and CLM. GFED shows the largest fire emissions close to
the border of Arizona and New Mexico in conjunction with
other small hotspots over New Mexico, Texas, and Louisiana
(Fig. 10a). The ML model overall reproduces the spatial dis-
tributions of the fire emissions (r = 0.96) and captures the
largest fire emission in Arizona and New Mexico in 2011
(Fig. 10b). However, CLM does not capture the hotspots ob-
served in GFED over Arizona and New Mexico but simu-
lates larger fire emissions in Louisiana instead (Fig. 10c). In

terms of the time series, the ML model reproduces the tem-
poral variability of fire emissions and successfully captures
the peak of total fire PM2.5 emissions in June 2011 (r = 0.98;
Fig. 10d and e). Although CLM simulates the peak in June,
it overestimates fire emissions in the following months by a
factor of 4 (r = 0.52; Fig. 10d and e).

In 2012, the western US experienced several major wild-
fires (NOAA, 2013). The warm and dry conditions led to
large wildfires in California, Oregon, New Mexico, and Col-
orado (Fig. 11). Both the ML model and CLM capture the
hotspots with large fire emissions (Fig. 11b and c) and have
correlation coefficients of 0.56 and 0.37, respectively. How-
ever, the ML model tends to overestimate fire emissions, es-
pecially in areas surrounding the grids with extremely large
fire emissions (Fig. 11b). CLM misses some large fire emis-
sions in Colorado and New Mexico and underestimates the
larger fire emissions in several hotspots (Fig. 11a), which
may be explained by its coarse resolution. The time series
of normalized fire PM2.5 emissions in 2012 show one peak
in August. The ML model captures the peak and presents a
high correlation between the simulated and observed normal-
ized and total fire PM2.5 emissions (r = 0.98). CLM captures
the peak in August but overestimates emissions in September
and October (r = 0.84; Fig. 11d and e). To test model gen-
eralization, we train the model using data of 2000–2009 and
2013–2020 and test on 2010–2012 and compare the ML per-
formance with CLM (Figs. S10–S11). The ML model perfor-
mance is as good as the 10-fold cross-validation, demonstrat-
ing that the ML model performs well on predicting unseen
data.

5 Discussion and conclusions

This study provides the first assessment to evaluate the per-
formance of data-driven and process-based models in pre-
dicting fire PM2.5 emissions over the CONUS. We first
demonstrate that the developed ML model performs well in
predicting monthly fire PM2.5 emissions nationwide at grid
cells of 0.25◦× 0.25◦ resolution from 2000 to 2020, with an
RMSE of 0.16 g m−2 and IoA of 0.84. The ML model out-
performs prior statistical models predicting fire activities at
similar spatial and temporal scales (Carvalho et al., 2008;
Bedia et al., 2014). Considering the performance at a re-
gional scale, the ML model reproduces the interannual vari-
ability of fire emissions for the selected regions, with corre-
lation coefficients ranging from 0.84 to 0.98. Therefore, the
ML model has a promising performance in predicting fire
emission over the CONUS at a relatively fine spatial resolu-
tion. Compared to the wildfire-burned-area model in Wang
et al. (2021a), the fire emission model in this study shows
slight degradations in capturing the interannual variability of
fire emission at grid level (e.g., percentage of grids with cor-
relations larger than 0.4). This may be explained by the fact
that the fire emission model may not effectively resolve the
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Figure 9. Spatial distributions of number of months with large fire emissions (> 95th percentiles of fire PM2.5 emission over all the grids in
2000–2012) for (a) GFED, (b) the ML model, and (c) CLM.

Figure 10. Top panel: spatial distributions of the annual mean fire PM2.5 emission in 2011 for (a) GFED, (b) the ML model, and (c) CLM.
Bottom panel: time series of the (d) total fire PM2.5 emissions and (e) normalized fire PM2.5 emission over the southern US domain during
2011.

relationships between fires and predictors when more grids
with less fire occurrence are included (i.e., more zeros or
unburned grids) without reliable information about ignition.
As a side note, both burned area and emission ML models
have relatively poor performance over Mediterranean Cali-
fornia, indicating the challenges in modeling fire activities in
this region where the terrain and land use are complex. The
SHAP variable importance shows that meteorology at both
local and synoptic scales as well as fuel loads are impor-
tant variables controlling fire emissions over the CONUS.
Regional analysis of predictors indicates that fuel dryness
such as fuel moisture and energy release component (ERC)
and fuel load are important for predicting fire emissions in
the western US, while large-scale meteorological patterns
(SVDs_SElag2) contribute more to fire emissions in south-
eastern US.

We then compare the simulated fire PM2.5 emissions from
the ML model and FireMIP models against GFED from
2000 to 2012 at the spatial resolution of 1◦× 1◦. The ML

model, CLM, and JULES reproduce the spatial distribu-
tion more reasonably than the rest of the FireMIP models
(r = 0.83, 0.52, and 0.40 for the ML, CLM, and JULES, re-
spectively). Both CLM and JULES simulate more fire PM2.5
emissions over the southeastern US, which can be explained
by several reasons. First, it has been shown that the satellite-
observed burned areas in the southeastern US are much
smaller than the burned areas estimated from the ground-
based fire records, which might have resulted from the small
prescribed and agricultural fires (Hu et al., 2016; Nowell et
al., 2018). In addition, large differences exist among differ-
ent satellite-estimated fire PM2.5 emissions in the southeast-
ern US (Li et al., 2019a). As a consequence, these studies
highlighted uncertainties about the GFED-estimated burned
area and emission over the southeastern US. Second, crop-
land fires are one of the predominant fire types in this re-
gion. Among the FireMIP models, CLM is the only model
that simulates cropland fires (Li et al., 2013). For JULES,
even though it does not simulate cropland fires, it treats crop-
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Figure 11. Top panel: spatial distributions of the annual mean fire PM2.5 emission in 2012 for (a) GFED, (b) ML model, and (c) CLM.
Bottom panel: time series of the (d) total fire PM2.5 emissions and (e) normalized fire PM2.5 emission over the western US domain during
2012.

lands as natural grasslands. The emission factors of grass-
lands and croplands used in the FireMIP models are larger
than in GFED4s, thereby causing larger fire PM2.5 emissions
in the southeastern US in CLM and JULES (van der Werf
et al., 2017; Li et al., 2019a). Furthermore, Li et al. (2019a)
noted that CLM4.5 simulates higher fuel loads in croplands
than the CASA model used by GFED4s, leading to higher
fire carbon emissions estimated by CLM than by GFED. It
is worth noting that the ML model incorporates fuel load
simulated by CLM4.5, but it predicts fire emissions closer
to GFED4s, indicating a smaller sensitivity of fire emission
to fuel load in the ML model. Lastly, the overestimation of
fire PM2.5 emissions can also be explained by the sensitiv-
ity to meteorology. The spatial distributions of the long-term
mean fire emissions shown in Fig. 3 correlate with the spatial
distributions of sensitivities to RH and/or temperature, with
regional differences. For the western US, large fire emissions
are associated with stronger sensitivities to both RH and tem-
perature in the ML and most FireMIP models. For the cen-
tral and southeastern US, overestimation of fire PM2.5 emis-
sions only corresponds to stronger sensitivity to temperature
in some FireMIP models.

Besides comparing model performance aggregated over
the CONUS, we analyze the model performance for sev-
eral regions, including the western forest area, Mediterranean
California, the southwestern US, and the southeastern US.
For the western forest area, the ML model performs well in
capturing both seasonality and interannual variability of fire
PM2.5 emissions, with correlation coefficients of 0.98 and
0.96, respectively. In contrast, the FireMIP models gener-
ally reproduce the seasonality well but do not simulate the
interannual variability well, especially underestimating the

peak in 2007, which related to large-scale meteorological
patterns favorable for fires in the Pacific Northwest (Zhong et
al., 2020). For Mediterranean California, all FireMIP models
only capture the first peak in August but fail to simulate the
second peak in October, which is caused by large fires related
to Santa Ana winds in 2003 and 2007. Such lack of peak
emission is also shown in the interannual variability, as all
FireMIP models show limited ability to simulate the peaks in
these two years. By contrast, the ML model successfully pre-
dicts the bimodal seasonality and the large fire emissions re-
lated to the Santa Ana winds in 2003 and 2007. The underes-
timation of the peak in the FireMIP models may be attributed
to the underrepresentation of the effects of large-scale mete-
orology in the two regions, as the ML model and SHAP im-
portance show that SVD predictors have larger contributions
to the fire emissions in both events. The results of the two
regions in the western US suggest that fire parameterization
in the FireMIP models could be improved by including the
effects of regional and large-scale meteorology (e.g., Santa
Ana winds) on fire activity (Yue et al., 2014). Modeling the
effect of Santa Ana winds on wildfires may be particularly
challenging as the offshore Santa Ana winds exhibit vari-
ability related to both synoptic-scale pressure anomaly over
the Great Basin and local thermodynamic forcing associated
with strong desert–ocean temperature gradient (Hughes and
Hall, 2010).

As for the southwestern US, the ML model and LPJ-SIM
estimate the peak in June (r = 0.99 and 0.94 for ML and
LPJ-SIM, respectively), which highly agrees with the GFED
observation. Interestingly, most FireMIP models fail to cap-
ture the extremely large fire emission in the 2011 summer
mainly due to the low biases of VPD anomalies in CRUN-
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CEP (Tang et al., 2017). Unlike the southwestern US, the
seasonality of the southeastern US has peaks in March–April
and September–October. The two peaks of fire emissions cor-
respond to wildfires (March–April and September), cropland
fires (February–March and August–October), and prescribed
fires (February–April and October) that include burnings for
pest controls and land cleaning (Knapp et al., 2009; Lin et al.,
2014). Most models fail to reproduce the bimodal fire emis-
sions, but the ML model, LPJ-SIM, and LPJ-SPI can cap-
ture the bimodal pattern. Even though the seasonality of fires
over this region is not simulated accurately, the CLM and
JSBACH reproduce the interannual variability of fire PM2.5
emissions and predict the peaks well. The FireMIP models’
shortfall in reproducing the bimodal seasonality can be ex-
plained by two reasons. First, the relationships between hu-
mans and fire spread implemented in the process-based mod-
els may not be realistic compared to the observed relation-
ships. Parisien et al. (2016) demonstrated the large spatial
variability of human impacts on burned areas in North Amer-
ica, which is not well represented in the FireMIP models (Li
et al., 2019a). Second, drier conditions in winter would pro-
mote fires in springtime (Wear and Greis, 2013; Wang et al.,
2021a), which may not be directly considered in the FireMIP
models but are incorporated as SVD predictors in the ML
model. Overall, the representations of the effects of human
and large-scale meteorology on fires may explain why the
models simulate the seasonality incorrectly in the southeast-
ern US. In addition to the comparison of general model per-
formance, we also compare the ability of the data-driven and
processed-based models in predicting extremely large fire
emissions. Both ML and CLM models reproduce the spa-
tial pattern of extreme fire events and reasonably simulate
the historical events of large fires in the southwestern and
western US.

It is known that different fire emission inventories have
their uncertainties, and prior studies have compared fire
emission inventories over the globe or the CONUS (Urban-
ski et al., 2018; Liu et al., 2020). The GFED fire emissions
used in this study are known to underestimate the fire emis-
sion peak in springtime over the southeastern US, which may
be explained by the fact that other products such as FINN
or QFED capture more small fire activity compared to the
GFED approach (Koplitz et al., 2018; Carter et al., 2020).
Although FINN can capture more small fires, it underesti-
mates the intensity of large fires for some cases, which has
been attributed to the cloud coverage on daily-scale detection
(Paton-Walsh et al., 2012). QFED and GFAS, which estimate
emissions using fire radiative power (FRP) from satellites,
are also more sensitive to small fires than GFED. However,
QFED tends to estimate much larger emissions than other
products, which can be explained by the fact that the emis-
sion coefficients used to obtain emissions are constrained
by MODIS AOD and the uncertainties within FRP (Pan et
al., 2020). Despite the known discrepancy between GFED
and other data products, the GFED data still show bimodal

peaks in spring and fall over the southeastern US, while most
FireMIP models fail to reproduce the first peak (Fig. 7g). For
the western US, GFED and FINN are generally consistent re-
garding the magnitude and variability of fire emissions (Ur-
banski et al., 2018). As stated above, different fire emission
inventories have uncertainties. Future works are required to
include other fire emission datasets for model evaluation.

To summarize, we utilize the ML model with SHAP im-
portance to diagnose the fire emissions simulated by process-
based models and attributed model biases to several factors.
First, the sensitivities of fire emissions to meteorology in the
models are stronger than those observed, leading to over-
estimations. Second, the large-scale meteorological patterns
conducive to fires are not fully considered in the process-
based models, which are important contributors of large fire
emissions in the western US and southeastern US. Third, the
spatial resolutions of models and/or the atmospheric forcing
they used may be too coarse to resolve the effects of regional
weather phenomena such as Santa Ana winds. Fourth, biases
in the atmospheric forcing data may result in biases of fire
emission predictions. Last but not least, human activities are
a critical component shaping fire regimes, but the human ef-
fects on fire activities in the FireMIP models may not reflect
the human–fire relationships in the real world. This is also
an issue in the ML model as the human-related predictors
in the ML model may be too simple to represent the hu-
man influences. The underrepresentation of human effects
in both types of models may cause additional uncertainties
in projecting future fire activities and their impacts on cli-
mate. By training the ML model using the GFED emissions,
the ML model is able to better explain fire emissions in the
US, which makes it a useful tool for diagnosing processes
or relationships that may be missing or not well represented
in the process-based models to guide future development for
improving their performance. Besides its use in diagnosing
process-based models, the ML model with SHAP provides
a different and novel approach to simulate fire emissions
more accurately and identify the important predictor vari-
ables. While the ML model generally has higher accuracy
than the FireMIP models, the feedbacks between fire emis-
sions and climate are not included, which could potentially
affect the reliability of ML-based models in fire emission
prediction under future climate change scenarios (Zou et al.,
2020). Lastly, due to limited training data, the ML model
cannot predict fires in regions with longer fire return inter-
vals, posing additional uncertainties in their use for making
future projections.
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first author.
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