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Sect. S1. Definitions of MB, NMB, RMSE and IOA

The statistical measures used in this study are mean bias (MB), normalized mean bias (NMB),
root mean squared error (RMSE) and index of agreement (IOA). The MB, NMB, RMSE and IOA
are calculated as:
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Where P; represents the simulated data and O; represents the observed data. N means the

number of data pairs. O is the mean of observations.

Sect. S2. The enhanced DMAS O3 due to Hetgouna With three f values (cases F_half, F, and
F double) is shown in Fig. S13, the enhancements in hazy days were about two times those in
clean days. Choosing the three f wvalues (= 0.04x(1+SR/100), 0.08%(1+SR/100), and
0.10x(1+SR/100), respectively) enhanced ~1 ppb, ~1.5 ppb and ~2 ppb of DMAS O3 in clean days,
respectively; and ~2-2.5 ppb, ~3—4 ppb and ~4-5 ppb of DMAS8 O3 in hazy days, respectively.
The DMAS8 O3 enhancement in the haze aggravating process was slightly increased by ~0.5 ppb
for the smaller f of 0.04x(1+SR/100), and was increased by ~1 ppb for the larger f of

0.10x(1+SR/100).
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Fig. S1 Comparison of 95-site-averaged simulations (default and revised emissions for the base
case) and observations of hourly PM 5, O3 and NO; in the North China Plain during Oct.11-30 of
2018.
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Fig. S2 Comparison of simulated (Base and 6S cases) and observed hourly concentrations of
xylenes (XYL), toluene (TOL), benzene (BENZ), PMo and SO, at the BUCT site during
Oct.11-31 of 2018.
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Fig S3 Nitrate enhancements due to each of the six potential HONO sources at the BUCT site
during Oct.11-31 of 2018.
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Fig S4 Diurnal comparison of 95-site-averaged simulated (Base and 6S cases) and observed NO»
(a) and PM3 5 (b) in the North China Plain during Oct.11-31 of 2018.
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Fig.S5 Surface-averaged (a—d) and zonal-averaged (e-h) DMAS O3 enhancements due to the six
potential HONO sources in the North China Plain during the study period (Oct.11-31, 2018) and
the three haze aggravating periods (Oct.12—14, Oct. 19-21 and Oct.24-25) (The dashed line
denotes the latitude of the BUCT site).
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Fig.S6 Comparison of simulated (Base and 6S cases) and observed hourly concentrations of
HONO (a) and NO; (b) at the IAP site during Dec.08-12 of 2016, and comparison of simulated
(Base and 6S were in this study, ORI and REV were from Zhang et al. (2021)) and observed
vertical HONO profiles during nighttime (19:00-05:59) of Dec.09-12, 2016 (The observations
were obtained from Meng et al. (2020), the right panel were modified from Fig.1c in Zhang et al.
(2021) for comparison).
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Fig.S7 The 95-NCP-site-averaged relationship between surface PMas and photolysis frequencies
of NO2, HONO and HNO3 for the 6S cases during Oct.11-31, 2018.
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Fig S8 Daytime-averaged enhancements of major Oz production/loss rates caused by Photnirate

with four Jnitrae/Juno3 Tatios (1, 7, 30 and 120) during a typical haze aggravating process (Oct.19—

21) and clean days (Oct.27-29).
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Fig.S9 The 95-NCP-site-averaged nitrate concentration for the base case and the nitrate
enhancements induced by the six potential HONO sources (a), the nitrate variations with four

Jnitrate/JHNO3 Tatios (1, 7, 30 and 120) (b) and corresponding relative changes compared with the



base case (c¢) during Oct.11-31 of 2018.
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Fig.S10 Comparison of vertical-averaged HNOs production rates at 95 NCP sites for

the base case and four cases with different Jnitrate/Jnnos ratios (1,7,30 and 120) during
the study period.

“:| Base [ ] Jnratelunos=™1 ] Jnitratelhnos™7 L] Jritrate/unos=30 ] Jriraternos=120)

Levit [ (a) Oct.19 | (b) Oct.20 g— (c)Oct21
Levio [T O [ |

L | — 5] — I |

Levs O ] ]

Lev7 EI 1] E— \ \

levs Q] [ E— \ |

levs EfE] ] E— | |

Leva [ ] | [

tevd MO 0 | \

lev> [T I | [

et [ 0] (

0 4 8 12 0 4 8 12 0 4 8 12

Lev11
Lev10 % (d) Oct.27 (e) Oct.28 % (f) Oct.29

Levd

Lev8 [ 1l B

Lev7 [ [l [

Levé [ [ ]

Levs [0 [ |

Lev4 | [ |

Lev3 [] [ ]

Lev2

Lev1 % % %

0 4 8 12 0 4 8 12 0 4 8 12

Nitrate (ug m=)

Fig.S11 The 95-NCP-site-averaged changes of nitrate with four Jniwae/Junos ratios (1, 7, 30 and
120) compared with the base case during a typical haze aggravating process of Oct.19-21 (a—c)

and a clean period of Oct.27-29 (d—f) of 2018.
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Fig.S12 The relative contributions of the six potential HONO sources and the reaction of OH with
NO to surface HONO concentrations for the 6S case at the BUCT site (a), 95 monitoring sites (b)
and in the whole region (c). Note the Jnitrate/Juno3 ratio was 120 here, while the Jniwae/Jrno3 was 30

in Fig.3.
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Fig.S13 The 95-NCP-site-averaged DMAS O3 enhancement induced by the NO; heterogeneous
reaction with three f values during a typical haze aggravating process of Oct.19-21 (a—) and a

clean period of Oct.27-29 (d—f) of 2018.
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