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S1 Derivation for cation–anion viscosity contribution weighting

This section further describes the cation–anion contribution treatment introduced in Section 2.3 of the main text. For multi-ion

mixtures, a special weighting must be derived to be fully consistent with all potential cation–anion pairings and such that there

is no double counting of the contributions of a specific ion when paired up with the various anions. This can be accomplished

by treating the aqueous solution as a mixture of (dissolved) charge-neutral cation–anion pairs, with each cation combined with5

each anion proportionally to the charge-weighted ion amounts involved in the solution overall. That is, we can think of the ions

present in the solution as being the result of dissolving various possible electrolyte components (initially). The goal here is

to provide a means of quantifying a “fair” share of each possible electrolyte component (as a binary, charge-balanced cation–

anion unit) in a clearly defined manner. Consider the total of positive charges in the aqueous electrolyte mixture,
∑Jc

c=1nc · zc,

which is equivalent in magnitude to the total of negative charges,
∑Ja

a=1na · |za|, for an overall charge-neutral solution. We can10

define the charge fraction ψa as the absolute amount of charge contributed by anion a relative to the sum of absolute charge

contributions from all negative charges present (or alternatively, relative to the sum of all positive ones) in the mixture,

ψa =
na · |za|∑Ja

a′=1na′ · |za′ |
, (S1)

and introduce a cation–anion pair contribution weighting term,

τ ′c,a =
nc
νc,el

·ψa. (S2)15

τ ′c,a represents the fractional amount of the hypothetical, neutral electrolyte component el consisting of cation c and anion

a, where νc,el is the stoichiometric number of cations in a formula unit of this electrolyte. Note that there is only one such

cation–anion combination per specific type of cation and anion. In Eqs. (17 – 18), xc can be understood as the molar amount

of cation c in solution, normalized by the total molar amount of all species. Therefore, it is clear that either using an absolute,

mole-based scaling (τ ′c,a) or a relative mole-fraction-based scaling (τc,a, Eq. 18) offer a description of the amounts of each20

“input” electrolyte component contributing ions to a solution (or unit amount of solution). The prime notation is removed in

Eqs. (17 – 18) to indicate that mole-fraction-based scaling is used.

To illustrate the utility and consistency of this approach, consider an example mixture containing 2 mol NaCl, 9 molMgSO4,

and 3 mol NaBr in water. If all these electrolytes completely dissociate (as is assumed by AIOMFAC), the resulting solution

composition can be written as 5 mol Na+, 2 mol Cl−, 9 mol Mg2+, 9 mol SO2−
4 , and 3 mol Br− in solution. From these two25

cations and three anions, the following six charge-neutral cation–anion pairs can be formed: NaCl, MgSO4, NaBr, MgCl2,

Na2SO4, and MgBr2.
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When describing the viscosity contributions from cation–anions pairs using Eq. (14), in order to avoid excessive weight

being attributed to a certain ion pair, we advocate that one should strive for an unbiased representation of the solution by

means of accounting for all possible contributions from cation–anion pairs in a charge-equivalent manner of weighting. As a30

counter-example, an excessive, unbalanced weighting would likely occur if one were to pair, e.g., all Mg2+ with all SO2−
4

present, thereby giving a relatively high weight to the cMg2+,SO2−
4

parameter (Eq. 14) in the mixture viscosity calculation.

This may bias this model prediction toward the viscosity of aqueous MgSO4 (at the same ionic strength) and the resulting

value may be substantially different from a viscosity calculation involving a different choice of cation–anion pairing, such as

if we had first combined all Na+ with SO2−
4 and only the remainder of sulfate with magnesium. Hence, the specific sequence35

of pairing the cations with the anions into hypothetical electrolyte components will lead to different viscosity predictions

by the model (if several options are possible), making the prediction dependent on seemingly arbitrary choices and thereby

ambiguous. Such ambiguity can be circumvented by introducing our τ ′c,a-based weighting, in which a fractional amount of

each cation is combined with a fractional amount of each anion, proportional to the charge-weighted amounts of the anions

and the stoichiometry of the electrolyte unit formed.40

In our example, Na+ is paired with all anions (Cl−, SO2+
4 , Br−) in such a way that the largest fractional amount of Na+ is

paired with SO2+
4 , the second-largest amount is paired with Br−, and the smallest amount is paired with Cl−. We can calculate

the exact proportions for Na+ by computing the charge-based fractions for each counter-ion (anion) using Eq. (S1). Here,

ψCl− =
nCl− · |zCl− |∑

Jc
nc · zc

=
2 · |−1|

(5 · 1)+ (9 · 2)
=

2

23
(S3)

ψBr− =
nBr− · |zBr− |∑

Jc
nc · zc

=
3 · |−1|

(5 · 1)+ (9 · 2)
=

3

23
(S4)45

ψSO2−
4

=
nSO2−

4
· |zSO2−

4
|∑

Jc
nc · zc

=
9 · |−2|

(5 · 1)+ (9 · 2)
=

18

23
, (S5)

while for each of the Na+–anion pairs, Eq. (S2) yields

τ ′Na+,Cl− =
nNa+

νNa+,NaCl
·ψCl− =

5 mol

1
· 2

23
=

10

23
mol (S6)

τ ′Na+,Br− =
nNa+

νNa+,NaBr
·ψBr− =

5 mol

1
· 3

23
=

15

23
mol (S7)

τ ′
Na+,SO2−

4
=

nNa+

νNa+,Na2SO4

·ψSO2−
4

=
5 mol

2
· 18
23

=
45

23
mol. (S8)50

The τ ′c,a value can be calculated for the other five potential charge-neutral cation–anion pairs, yielding τ ′
Mg2+,SO2−

4

=

162
23 mol, τ ′Na+,Br− = 15

23 mol, τ ′
Na+,SO2−

4

= 45
23 mol, τ ′Mg2+,Cl− = 18

23 mol, and τ ′Mg2+,Br− = 27
23 mol. These values add up

in a way that is stoichiometrically consistent, e.g., extracting the Na+ amount from these hypothetical electrolyte component

amounts yields τ ′Na+,Br− + τ ′Na+,Cl− + 2 ·τ ′
Na+,SO2−

4

= 15+10+90
23 mol = 5 mol Na+. In our implementation of this approach,

the normalized, mole-fraction-based version of τc,a is used directly in Eq. (16).55
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S2 Computational efficiency of organic–inorganic mixing approaches

We tested the speed of the three mixing approaches, finding that the ZSR-style mixing approach takes approximately five to

six times longer than aquelec or aquorg. Results are shown in Tables S1 and S2.

Table S1. Time elapsed for multi-run simulations of the AIOMFAC-VISC mixing approaches. Each trial consisted of 200,000 runs. See also

Table S2.

Trial aquelec aquorg ZSR

1 5.02 s 5.08 s 27.89 s

2 4.39 s 4.38 s 27.45 s

3 4.36 s 4.28 s 23.09 s

4 4.45 s 4.33 s 23.84 s

5 4.33 s 4.33 s 21.66 s

Table S2. Mean run time for a test casea for each AIOMFAC-VISC mixing approach using a single CPU coreb. See also Table S1.

Trial aquelec aquorg ZSR

1 25.08 µs 25.39 µs 139.45 µs

2 21.95 µs 21.88 µs 137.27 µs

3 21.80 µs 21.41 µs 115.47 µs

4 22.27 µs 21.64 µs 119.22 µs

5 21.64 µs 21.64 µs 108.28 µs

a The test case was 1:1 sucrose–Ca(NO3)2 at aw = 0.625; see Fig. 11a.
b Processor: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

S3 Additional ternary and quaternary aqueous electrolyte mixtures

Figures S1 to S5 show additional data for ternary and quaternary aqueous electrolyte mixtures. See Table 4 for information on60

each data set.

S4 Cation–anion parameter substitutions

When data are unavailable for certain cation–anion interactions, substitute values are used for the related parameters; see Table

S3.
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Table S3. Cation–anion pair substitutions in Table 7.

Missing Pair Replacement Pair

Ca2+,Br− Ca2+,Cl−

Mg2+,Br− Mg2+,Cl−

Ca2+,SO2−
4 Mg2+,SO2−

4

Li+,HSO−
4 Li+,Cl−

K+,HSO−
4 K+,Cl−

NH+
4 ,HSO−

4 NH+
4 ,Cl

−

Ca2+,HSO−
4 Ca2+,Cl−

Mg2+,HSO−
4 Mg2+,Cl−

NH+
4 , I

− NH+
4 ,Cl

−

Ca2+, I− Ca2+,Cl−

Mg2+, I− Mg2+,Cl−

Li+,CO2−
3 Na+,CO2−

3

Ca2+,CO2−
3 Mg2+,SO2−

4

NH+
4 ,CO

2−
3 K+,CO2−

3

Mg2+,CO2−
3 Mg2+,SO2−

4

Li+,HCO−
3 Na+,HCO−

3

Ca2+,HCO−
3 Ca2+,NO−

3

NH+
4 ,HCO−

3 K+,HCO−
3

Mg2+,HCO−
3 Mg2+,NO−

3

Ca2+,OH− Ca2+,Cl−

NH+
4 ,OH− K+,OH−

Mg2+,OH− Mg2+,Cl−

Li+, IO−
3 Li+,NO−

3

K+, IO−
3 K+,NO−

3

Na+, IO−
3 Na+,NO−

3

Ca2+, IO−
3 Ca2+,NO−

3

NH+
4 , IO

−
3 NH+

4 ,NO−
3

Mg2+, IO−
3 Mg2+,NO−

3

S5 Comparison of AIOMFAC-VISC when fitted with all data or only binary data65

Figure S6 shows that some ternary and quaternary mixture predictions improve when these data are included in the fit, but

mostly the results are similar. This suggests that viscosity measurements at higher concentrations, whether binary or multi-ion
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mixtures, would be the most useful additions to the currently available measurements. Fortunately, droplet-based measurement

techniques can probe concentration ranges outside of the bulk range.

S6 Additional binary aqueous electrolyte curves70

Figures S7 – S10 show zoomed-in versions of Figs. 5 – 8. Figure S11 demonstrates the ability of the AIOMFAC-VISC model

to capture a local viscosity minimum when only fitted to a single electrolyte. Figure S12 shows AIOMFAC-predicted wa-

ter activity versus mass fraction of water for the binary aqueous nitrate solutions shown in Fig. 9. Figure S13 shows how

AIOMFAC-VISC and the bulk measurements used to fit our model compare to droplet-based measurements from Power et al.

(2013), which were not used to fit our model because they were not available in tabulated form. Note that the bulk measure-75

ments in Fig. S13 (aggregated by Laliberté (2007)) have significant spread between 293 and 298 K.

The scatter among similar measurement points is one reason for the inclusion of a 2 % uncertainty in viscosity applied to all

bulk measurements. This is demonstrated by Fig. S14, which shows measurements and AIOMFAC-VISC predicted viscosities

for temperatures between 268.15 K and 328.15 K.

S7 Additional aqueous organic–inorganic viscosity predictions80

Richards et al. (2020b) included viscosity data for 1:1 organic–inorganic mixtures using a measurement technique described

in Richards et al. (2020a). AIOMFAC-VISC predictions using the three mixing approaches described in Sect. 3.4 are shown in

Figs. S15 and S16.

S8 Mixed α-pinene SOA + ammonium sulfate aerosol components

The aerosol system discussed in Sect. 5 and featured in Figs. 12–14 is defined in Table S4.85
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Table S4. Components for α-pinene SOA : ammonium sulfate containing aerosol with OIR = 1. Surrogate components for α-pinene oxidation

by ozone are derived from MCM, and their fixed dry amounts are given in molm−3 in the particulate matter (PM) phase.

Name (MCM) O:C M (gmol−1) PM conc. (molm−3) SMILES

C107OOH 0.4 200.231 6.56×10−11 O=CCC1CC(OO)(C(=O)C)C1(C)C

PINONIC 0.3 184.232 3.71×10−11 OC(=O)CC1CC(C(=O)C)C1(C)C

C97OOH 0.44 188.22 7.55×10−10 OCC1CC(OO)(C(=O)C)C1(C)C

C108OOH 0.5 216.231 2.52×10−8 O=CCC(CC(=O)C(=O)C)C(C)(C)OO

C89CO2H 0.33 170.206 6.03×10−12 O=CCC1CC(C(=O)O)C1(C)C

PINIC 0.444 186.205 2.41×10−9 OC(=O)CC1CC(C(=O)O)C1(C)C

C921OOH 0.56 204.22 2.76×10−9 OCC(=O)C1(OO)CC(CO)C1(C)C

C109OOH 0.4 200.231 4.72×10−12 OOCC(=O)C1CC(CC=O)C1(C)C

C812OOH 0.625 190.194 2.53×10−9 OCC1CC(OO)(C(=O)O)C1(C)C

HOPINONIC 0.4 200.232 6.98×10−10 OCC(=O)C1CC(CC(=O)O)C1(C)C

C811OH 0.375 158.094 2.68×10−11 OCC1CC(C(=O)O)C1(C)C

C813OOH 0.75 206.193 9.89×10−10 OCC(CC(=O)C(=O)O)C(C)(C)OO

ALDOL dimer 0.375 368.421 1.80×10−10 CC(=O)C(=O)CC(C(C=O)=CCC1CC(C(O)=O)C1(C)C)C(C)(C)OO

ESTER dimer 0.375 368.421 7.20×10−10 CC1(C)C(CC1C(O)=O)CC(=O)OCC(=O)C2CC(CC(O)=O)C2(C)C

(NH4)2SO4 NA 132.14 5.89×10−8 O=S([O-])([O-])=O.[NH4+].[NH4+]

The molar concentrations of the components in the PM phase (“PM conc.”) are defined such that OIR = 1. However, under true atmospheric conditions, semi-volatile

component concentrations would be expected to change, which would impact OIR. This table is adapted from Gervasi et al. (2020).
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(a) (b)

(c) (d)

Figure S1. Comparison of AIOMFAC-VISC and the Laliberté model for ternary and quaternary aqueous electrolyte mixtures:(a) NaCl

and NH4NO3 (Nowlan et al., 1980); (b) NaCl and Ca(NO3)2 (Nowlan et al., 1980); (c) LiBr and LiI (Iyoki et al., 1993); (c) LiCl and

LiNO3 (Iyoki et al., 1993). Top panel: viscosity versus mass fraction of water with 2 % error in viscosity included for all measurements.

The Laliberté model does not offer predictions for LiBr or LiI, so the Laliberté model is not shown for (c). Middle panel: mass fractions of

mixture input components. Bottom panel: mole fractions of ions in dry mixture.
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(a) (b)

(c) (d)

Figure S2. Comparison of AIOMFAC-VISC and the Laliberté model for ternary aqueous electrolyte mixtures: (a) KCl and NaCl (Goldsack

and Franchetto, 1977); (b) KCl and CaCl2 (Zhang et al., 1997); (c) KCl and NaCl (Nowlan et al., 1980); (d) KCl and NaCl (Fabuss et al.,

1969). Top panel: viscosity versus mass fraction of water with 2 % error in viscosity included for all measurements. Middle panel: mass

fractions of mixture input components. Bottom panel: mole fractions of ions in dry mixture.
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(a) (b)

(c) (d)

Figure S3. Comparison of AIOMFAC-VISC and the Laliberté model for ternary aqueous electrolyte mixtures: (a) NaCl and MgSO4

(Nowlan et al., 1980); (b) NaCl and Na2SO4 (Nowlan et al., 1980); (c) NaCl and MgSO4 (Fabuss et al., 1969); (d) NaCl, MgCl2, MgSO4,

and KCl (Fabuss et al., 1969). Top panel: viscosity versus mass fraction of water with 2 % error in viscosity included for all measurements.

Middle panel: mass fractions of mixture input components. Bottom panel: mole fractions of ions in dry mixture.
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(a) (b)

(c) (d)

Figure S4. Comparison of AIOMFAC-VISC and the Laliberté model for ternary aqueous electrolyte mixture data from Goldsack and

Franchetto (1977): (a) (NH4)2SO4 and KCl; (b) KBr and NaCl; (c) (NH4)SO4 and Na2SO4; (d) HCl, KCl and NaCl. Top panel:

viscosity versus mass fraction of water with 2 % error in viscosity included for all measurements. Middle panel: mass fractions of mixture

input components. Bottom panel: mole fractions of ions in dry mixture.
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(a) (b)

Figure S5. Comparison of AIOMFAC-VISC and the Laliberté model for ternary aqueous electrolyte mixture data aggregated by Laliberté

(2007): (a) Na2CO3 and NaHCO3; (b) Na2CO3 and NaOH.
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Figure S6. Comparison of the model–measurement error of AIOMFAC-VISC when using parameters fitted to only binary data (blue) versus

to all available data (red): (a) mean bias error, (b) mean absolute error, (c) root mean square error, and (d) custom objective function value

used to fit AIOMFAC-VISC. See Table 4 for information on number of data points, the ranges of temperature, concentration, and viscosity

for each data set. η◦ denotes unit viscosity (1 Pa s). See also Fig. 1.
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Figure S7. Comparison of the Laliberté model, AIOMFAC-VISC, and viscosity measurements versus mass fraction of water corresponding

to Fig. 5. See also caption to Fig. 4.
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Figure S8. Comparison of the Laliberté model, AIOMFAC-VISC, and viscosity measurements versus mass fraction of water corresponding

to Fig. 6. See also caption to Fig. 4.
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Figure S9. Comparison of the Laliberté model, AIOMFAC-VISC, and viscosity measurements versus mass fraction of water corresponding

to Fig. 7. See also caption to Fig. 4.
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Figure S10. Comparison of the Laliberté model, AIOMFAC-VISC, and viscosity measurements versus mass fraction of water corresponding

to Fig. 8. See also caption to Fig. 4.
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Figure S11. Comparison of the Laliberté model, AIOMFAC-VISC, and viscosity measurements versus mass fraction of water for NH4Cl at

298 K when only binary NH4Cl at 298 K was used to fit the model. Compare to result of simultaneous fit shown in Fig. 2d.
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(c) NaNO3

Figure S12. Mass fraction of water versus AIOMFAC-predicted water activity for binary aqueous nitrate solutions. Panels correspond to

those of Fig. 9.
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Figure S13. AIOMFAC-predicted viscosity for binary NaCl (blue solid curves) and bulk measurements (black dots) overlaid on droplet-

based measurements (red diamonds) and ADDEM model prediction (red dashed curve) from the inset of Fig. 3a in Power et al. (2013). Power

et al. (2013) state that their measurements were completed at “room temperature” but do not otherwise specify the precise temperature, so

we have included bulk measurements from 293 to 298 K and AIOMFAC-VISC model curves for 293 and 298 K as upper and lower bounds,

respectively.
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Figure S14. Viscosity measurements aggregated by Laliberté (2007) for a selection of binary aqueous solutions at several temperatures

between 268.15 and 323.15 K: (a) LiCl; (b) NaNO3; (c) KBr; (d) K2SO4. 2 % viscosity error bars are included to account for scatter

among similar measurement points. Solid lines are AIOMFAC-VISC predictions.
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Figure S15. Viscosity predictions for aerosol surrogate mixtures containing gluconic acid and divalent salts at varying water activity, aw

(RH), with a prescribed organic-to-inorganic dry mass ratio (OIR). Three mixing models – aquelec, aquorg, and ZSR – are shown alongside

the viscosity measurements. Model sensitivity, defined by the impact of a ±2 % change in aerosol water content, is shown by the dashed

curves. Shaded regions show the potential viscosity prediction error introduced by a ±5% error in the (estimated) glass transition temperature

of the organic component. AIOMFAC-VISC predictions are also included for the binary aqueous sucrose and aqueous salt systems, which

correspond to the organic and inorganic subsystems used in each mixing model (see Section 3.4). Model–measurement deviations for the

organic–salt mixtures are likely due to a phase transition, such as gel formation.
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Figure S16. Viscosity predictions for aerosol surrogate mixtures containing organic compounds and divalent ions/salts at varying water

activity, aw (RH), with a prescribed organic-to-inorganic dry mass ratio (OIR). See also caption to Fig. S15.
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