

Supplement of

Atmospheric measurements at Mt. Tai – Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer

Chaoyang Xue et al.

Correspondence to: Chaoyang Xue (chaoyang.xue@cnrs-orleans.fr, 86chaoyang.xue@gmail.com) and Yujing Mu (yjmu@rcees.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

Figure S1: Photos taken around the summit station (Photo copyright: Chaoyang Xue). The polluted layer is visible in photos (A),
(B), and (C). (D): The Jade Emperor Peak at sunset; (E): A overlooking view of Tai'an city (south of the summit station) at night.
F: Clouds at the summit level (southeast of the summit station)
Figure S2: Diurnal profiles of (A): temperature (T), (B): pressure (P), and (C): the atmospheric relative humidity (RH) observed at
the summit of Mt. Tai
Figure S3: Diurnal variations of (A): HONO, (B): PM _{2.5} , and (C): NO ₂ observed at the summit station in winter, spring, and summer.
Figure S4: Comparison of night-time $(18:00 - 5:00)$ average (A): SO ₂ , (B): O ₃ , (C): CO, and (D): PM _{2.5} observed at the foot station
(Left axis in blue) and summit station (Right axis in orange) during the same period from 9th to 31st July
Figure S5: Windrose plots of the measurement in (A): winter, (B): spring, and (C): summer
Figure S6: OH concentrations (red line) used in this study and corresponding $HONO_{pss}$ and P_{un} (red lines). Black lines represent OH
level reduced by 30% and corresponding $HONO_{pss}$ and P_{un} . Blue lines represent OH level enlarged by 30% and corresponding
HONO _{pss} and P _{un}
Figure S7: (A): The measured particulate nitrate, pNO_3 (with unit converted from $\mu g m^{-3}$ to $ppbv$) by the filter method and the
measured NO_z (ppbv), and (B): their correlations from 12^{th} June to 12^{th} July. Caused by variable molar masses, NO_z species can be
only specified in mixing ratios (ppbv)
Figure S8: Relative contribution of P(OH) _{HONO_net} to P(OH) _{sum} at the foot and the summit stations

Figure S1: Photos taken around the summit station (Photo copyright: Chaoyang Xue). The polluted layer is visible in photos (A), (B), and (C). (D): The Jade Emperor Peak at sunset; (E): A overlooking view of Tai'an city (south of the summit station) at night. F: Clouds at the summit level (southeast of the summit station).

Figure S2: Diurnal profiles of (A): temperature (T), (B): pressure (P), and (C): the atmospheric relative humidity (RH) observed at the summit of Mt. Tai.

Figure S3: Diurnal variations of (A): HONO, (B): PM_{2.5}, and (C): NO₂ observed at the summit station in winter, spring, and summer.

Figure S4: Comparison of night-time (18:00 – 5:00) average (A): SO₂, (B): O₃, (C): CO, and (D): PM_{2.5} observed at the foot station (Left axis in blue) and summit station (Right axis in orange) during the same period from 9th to 31st July.

Figure S5: Windrose plots of the measurement in (A): winter, (B): spring, and (C): summer.

Figure S6: Estimated OH concentrations (red line) used in this study and corresponding $HONO_{pss}$ and P_{un} (red lines). Black lines represent OH level reduced by 30% and corresponding $HONO_{pss}$ and P_{un} . Blue lines represent OH level enlarged by 30% and corresponding $HONO_{pss}$ and P_{un} .

Figure S7: (A): The measured particulate nitrate, pNO₃ (with unit converted from μ g m⁻³ to ppbv) by the filter method and the measured NO_z (ppbv), and (B): their correlations from 12th June to 12th July. Caused by variable molar masses, NO_z species can be only specified in mixing ratios (ppbv).

Figure S8: Relative contribution of P(OH)_{HONO_net} to P(OH)_{sum} at the foot and the summit stations.