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Abstract. Vanillin (VL), a phenolic aromatic carbonyl abundant in biomass burning emissions, forms triplet
excited states (3VL∗) under simulated sunlight leading to aqueous secondary organic aerosol (aqSOA) forma-
tion. Nitrate and ammonium are among the main components of biomass burning aerosols and cloud or fog
water. Under atmospherically relevant cloud and fog conditions, solutions composed of either VL only or VL
with ammonium nitrate were subjected to simulated sunlight irradiation to compare aqSOA formation via the
direct photosensitized oxidation of VL in the absence and presence of ammonium nitrate. The reactions were
characterized by examining the VL decay kinetics, product compositions, and light absorbance changes. Both
conditions generated oligomers, functionalized monomers, and oxygenated ring-opening products, and ammo-
nium nitrate promoted functionalization and nitration, likely due to its photolysis products ( qOH, qNO2, and
NO−2 or HONO). Moreover, a potential imidazole derivative observed in the presence of ammonium nitrate
suggested that ammonium participated in the reactions. The majority of the most abundant products from both
conditions were potential brown carbon (BrC) chromophores. The effects of oxygen (O2), pH, and reactants con-
centration and molar ratios on the reactions were also explored. Our findings show that O2 plays an essential role
in the reactions, and oligomer formation was enhanced at pH<4. Also, functionalization was dominant at low
VL concentrations, whereas oligomerization was favored at high VL concentrations. Furthermore, oligomers and
hydroxylated products were detected from the oxidation of guaiacol (a non-carbonyl phenol) via VL photosensi-
tized reactions. Last, potential aqSOA formation pathways via the direct photosensitized oxidation of VL in the
absence and presence of ammonium nitrate were proposed. This study indicates that the direct photosensitized
oxidation of VL may be an important aqSOA source in areas influenced by biomass burning and underscores the
importance of nitrate in the aqueous-phase processing of aromatic carbonyls.
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1 Introduction

Aqueous reactions can be an important source of secondary
organic aerosols (SOAs; Blando and Turpin, 2000; Volka-
mer et al., 2009; Lim et al., 2010; Ervens et al., 2011; Huang
et al., 2011; Lee et al., 2011; Smith et al., 2014), such as
highly oxygenated and low-volatility organics (Hoffmann et
al., 2018; Liu et al., 2019), which may affect aerosol optical
properties due to contributions to brown carbon (BrC; Gi-
lardoni et al., 2016). BrC refers to organic aerosols that ab-
sorb radiation efficiently in the near-ultraviolet (UV) and vis-
ible regions (Laskin et al., 2015). The formation of aqueous
SOA (aqSOA) via photochemical reactions involves oxida-
tion, with the hydroxyl radical ( qOH) usually considered as
being the primary oxidant (Herrmann et al., 2010; Smith et
al., 2014). The significance of photosensitized chemistry in
atmospheric aerosols has recently been reviewed (George et
al., 2015). For instance, triplet excited states of organic com-
pounds (3C∗) from the irradiation of light-absorbing organ-
ics such as non-phenolic aromatic carbonyls (Canonica et al.,
1995; Anastasio et al., 1997; Vione et al., 2006; Smith et al.,
2014) have been reported to oxidize phenols at higher rates
and with greater aqSOA yields compared to qOH (Sun et al.,
2010; Smith et al., 2014; Yu et al., 2014; Smith et al., 2016).
Aside from being an oxidant, 3C∗ can also be a precursor
of singlet oxygen (1O2), superoxide (O

q−
2 ) or hydroperoxyl

( qHO2) radicals, and qOH (via HO q
2 /O

q−
2 formation) upon

reactions with O2 and substrates (e.g., phenols; George et al.,
2018). The 3C∗ concentration in typical fog water has been
estimated to be >25 times than that of qOH, making 3C∗ the
primary photo-oxidant for biomass burning phenolic com-
pounds (Kaur and Anastasio, 2018; Kaur et al., 2019). Recent
works on triplet-driven oxidation of phenols have mainly fo-
cused on changes in physicochemical properties (e.g., light
absorption) and aqSOA yield (e.g., Smith et al., 2014, 2015,
2016), with few reports on reaction pathways and products
(e.g., Yu et al., 2014; Chen et al., 2020; Jiang et al., 2021).

Inorganic salts such as ammonium nitrate are major com-
ponents of aerosols and cloud or fog water. In cloud and fog
water, the concentrations of inorganic nitrate can vary from
50 to >1000 µM, with higher levels typically noted under
polluted conditions (Munger et al., 1983; Collett et al., 1998;
Zhang and Anastasio, 2003; Li et al., 2011; Giulianelli et al.,
2014; Bianco et al., 2020). Upon photolysis (Vione et al.,
2006; Herrmann, 2007; Scharko et al., 2014), inorganic ni-
trate in cloud and fog water can contribute to BrC (Minero et
al., 2007) and aqSOA formation (Huang et al., 2018; Klodt
et al., 2019; Zhang et al., 2021) by generating qOH and qNO2
(also a nitrating agent). For example, the aqSOA yields from
the photo-oxidation of phenolic carbonyls in ammonium ni-
trate are twice as high as that in ammonium sulfate solu-
tion (Huang et al., 2018). Nitration is a significant process
in the formation of light-absorbing organics or BrC in the at-
mosphere (Jacobson, 1999; Kahnt et al., 2013; Mohr et al.,
2013; Laskin et al., 2015; Teich et al., 2017; Li et al., 2020).

Moreover, nitrate photolysis has been proposed to be a poten-
tially important process for SO2 oxidation and SOA forma-
tion via the generation of qOH, qNO2, and N(III) within par-
ticles (Gen et al., 2019a, b; Zhang et al., 2020, 2021, 2022),
and it can also potentially change the morphology of atmo-
spheric viscous particles (Liang et al., 2021). Furthermore,
ammonium (NH+4 ) can react with carbonyls, producing light-
absorbing compounds and highly oxygenated oligomers, and
catalyze different reactions (De Haan et al., 2009, 2011; Noz-
ière et al., 2009, 2010, 2018; Shapiro et al., 2009; Yu et al.,
2011; Lee et al., 2013; Powelson et al., 2014; Gen et al.,
2018; Mabato et al., 2019). Therefore, 3C∗ and inorganic ni-
trate can contribute to aqSOA and BrC formation.

Biomass burning (BB) is a significant atmospheric source
of both phenolic and non-phenolic aromatic carbonyls
(Rogge et al., 1998; Nolte et al., 2001; Schauer et al., 2001;
Bond et al., 2004). Upon exposure to sunlight, aromatic car-
bonyls are excited to their triplet excited states, which can
initiate oxidation leading to aqSOA formation (e.g., Smith et
al., 2014; 2015, 2016). An example is vanillin (VL; Henry’s
law constant of 4.56×105 M atm−1; Yaws, 1994), a phenolic
aromatic carbonyl that has been used as a model compound
for methoxyphenols, which are abundant in BB emissions
(Li et al., 2014; Pang et al., 2019a). The aqueous qOH oxi-
dation and direct photodegradation of VL have been shown
to yield low-volatility products, although these findings were
based on 254 nm irradiation (Li et al., 2014). Photodegra-
dation kinetics and aqSOA yields have been reported for di-
rect VL photodegradation under simulated sunlight (Smith et
al., 2016), with oxygenated aliphatic-like compounds (high
H :C, ≥ 1.5 and low O :C, ≤ 0.5 ratios) noted as being
the most likely products (Loisel et al., 2021). Additionally,
aqueous-phase reactions of phenols with reactive nitrogen
species have been proposed to be a significant source of
nitrophenols and SOA (Grosjean, 1985; Kitanovski et al.,
2014; Kroflič et al., 2015, 2021; Pang et al., 2019a; Yang et
al., 2021). For instance, nitrite-mediated VL photo-oxidation
can generate nitrophenols, and the reactions are influenced
by nitrite /VL molar ratios, pH, and the presence of qOH
scavengers (Pang et al., 2019a). Nitrate and ammonium are
also among the main biomass burning aerosol components
(Xiao et al., 2020; Zielinski et al., 2020). As BB aerosols
are typically internally mixed with other aerosol components
(Zielinski et al., 2020), VL may coexist with ammonium ni-
trate in BB aerosols. The direct photosensitized oxidation of
VL in the absence and presence of ammonium nitrate may
then reveal insights into the atmospheric processing of BB
aerosols. Moreover, the 3C∗ of non-phenolic aromatic car-
bonyls (e.g., 3,4-dimethoxybenzaldehyde – DMB; a non-
phenolic aromatic carbonyl; Smith et al., 2014; Yu et al.,
2014; Jiang et al., 2021) and phenolic aromatic carbonyls
(e.g., acetosyringone and VL; Smith et al., 2016) have been
shown to oxidize phenols, but the reaction products from the
latter are unknown.
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Previous works on aqSOA formation via triplet-mediated
oxidation are mostly based on reactions between phenols and
a non-phenolic aromatic carbonyl as triplet precursor (e.g.,
Smith et al., 2014; Yu et al., 2014; Jiang et al., 2021). Also,
studies examining the effects of inorganic nitrate on aqSOA
formation and properties remain limited. The present study
aimed to evaluate aqSOA formation via the direct photosen-
sitized oxidation of a triplet precursor (VL) alone. Further-
more, aqSOA formation via the direct photosensitized oxi-
dation of VL in the presence of ammonium nitrate was also
examined. Accordingly, the main goals of this study are (1) to
compare aqSOA formation in cloud and fog water via the di-
rect photosensitized oxidation of VL in the absence and pres-
ence of ammonium nitrate; (2) to evaluate the influences of
O2, solution pH, and reactants concentration and molar ratios
on the reactions; (3) to investigate the participation of am-
monium in the direct photosensitized oxidation of VL in the
presence of ammonium nitrate; and (4) to examine aqSOA
formation from the oxidation of guaiacol, a non-carbonyl
phenol, via photosensitized reactions of VL. To achieve these
goals, solutions composed of either VL only or VL in the
presence of ammonium nitrate were subjected to simulated
sunlight irradiation under atmospherically relevant cloud and
fog conditions. Solutions composed of VL in the presence of
sodium nitrate were also examined for comparison with the
presence of ammonium nitrate. The reactions were charac-
terized based on VL decay kinetics, detected products, and
light absorbance changes. Finally, we proposed aqSOA for-
mation pathways via the direct photosensitized oxidation of
VL in the absence and presence of ammonium nitrate. This
work presents a comprehensive comparison of aqSOA for-
mation from the direct photosensitized oxidation of VL in
the absence and presence of ammonium nitrate.

2 Methods

2.1 Aqueous-phase photo-oxidation experiments

Photo-oxidation experiments were performed in a custom-
built quartz photo reactor. The solutions (initial volume of
500 mL) were continuously mixed throughout the experi-
ments using a magnetic stirrer. The solutions were bubbled
with synthetic air or nitrogen (N2;> 99.995 %; 0.5 dm3/min)
for 30 min before irradiation to achieve air- or N2-saturated
conditions, respectively, and the bubbling was continued
throughout the reactions (Du et al., 2011; Chen et al., 2020).
The aim of the air-saturated experiments was to enable the
generation of secondary oxidants (1O2, O

q−
2 /

qHO2, andqOH) from 3VL∗ as O2 is present. Conversely, the N2-
saturated experiments would inhibit the formation of these
secondary oxidants, which can lead to 3VL∗-driven reac-
tions (Chen et al., 2020). Comparison of results of air- and
N2-saturated experiments can yield information on the reac-
tion pathways that require O2 involved in the direct photo-
sensitized oxidation of VL. In this study, the reactions can

generate 3VL∗ and secondary oxidants (1O2, O
q−

2 /
qHO2,

and qOH) but not ozone; hence, we focused on reactions
involving the former. Solutions were irradiated through the
quartz window of the reactor using a xenon lamp (model
6258; ozone-free xenon lamp; 300 W; Newport) equipped
with a longpass filter (20CGA 305 nm cut-on filter; New-
port) to eliminate light below 300 nm. Cooling fans posi-
tioned around the photo reactor and lamp housing main-
tained reaction temperatures at 27± 2 °C. The averaged ini-
tial photon flux in the reactor from 300 to 380 nm, mea-
sured using a chemical actinometer (2-nitrobenzaldehyde),
was 2.6× 1015 photons cm−2 s−1 nm−1 (Fig. S1). Although
the concentration of VL in cloud or fog water has been es-
timated to be <0.01 mM (Anastasio et al., 1997), a higher
VL concentration (0.1 mM) was used in this study to guar-
antee sufficient signals for product identification (Vione et
al., 2019). The chosen ammonium nitrate (AN) or sodium
nitrate (SN) concentration (1 mM) was based on values ob-
served in cloud and fog water (Munger et al., 1983; Collett
et al., 1998; Zhang and Anastasio, 2003; Li et al., 2011;
Giulianelli et al., 2014; Bianco et al., 2020). It should be
noted that this study is not intending to identify the concen-
trations of ammonium nitrate that would affect the kinetics
but to examine the effect of ammonium nitrate on aqSOA
formation from the direct photosensitized oxidation of VL.
Moreover, the photo-oxidation of guaiacol (GUA; 0.1 mM),
a non-carbonyl phenol, in the presence of VL (0.1 mM) was
studied. The GUA experiments allowed us to examine aq-
SOA formation from the oxidation of phenols by 3VL∗. Sam-
ples (10 mL) were collected hourly for a total of 6 h for
offline chemical and optical analyses. VL (and GUA) de-
cay kinetics measurements (calibration curves for VL and
GUA standard solutions; Fig. S2), product characterization,
small organic acids measurements, and absorbance measure-
ments were conducted using ultra-high-performance liquid
chromatography (UHPLC) with a photodiode array detector
(UHPLC-PDA), a UHPLC coupled with quadrupole time-of-
flight mass spectrometry (UHPLC-qToF-MS) equipped with
an electrospray ionization (ESI) source and operated in the
positive ion mode (the negative ion mode signals were too
low for our analyses), ion chromatography (IC), and UV-
Vis spectrophotometry, respectively. Each experiment was
repeated independently at least 3 times, and measurements
were done in triplicate. The reported decay rate constants and
absorbance enhancement are the average of the results from
triplicate experiments, and the corresponding errors repre-
sent 1 standard deviation. The mass spectra are based on
the average of results from duplicate experiments. The Sup-
plement (Sects. S1 to S6) provides details on the materials
and analytical procedures. The pseudo-first-order rate con-
stant (k’) for VL decay was determined using the following
equation (Huang et al., 2018):

ln([VL]t/[VL]0) = −k′t, (1)
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where [VL]t and [VL]0 are the concentrations of VL at time
t and 0, respectively. Replacing VL with GUA in Eq. (1) en-
abled the calculation of the GUA decay rate constant. The
decay rate constants were normalized to the photon flux
measured for each experiment through dividing k′ by the
measured 2-nitrobenzaldehyde (2NB) decay rate constant,
j (2NB) (see Sect. S6 for more details).

2.2 Calculation of normalized abundance of products

Comparisons of peak abundance in mass spectrometry have
been used in many recent studies (e.g., Lee et al., 2014;
Romonosky et al., 2017; Wang et al., 2017; Fleming et al.,
2018; Song et al., 2018; Klodt et al., 2019; Ning et al., 2019)
to show the relative importance of different types of com-
pounds (Wang et al., 2021). However, ionization efficiency
may greatly vary for different classes of compounds (Ke-
barle, 2000; Schmidt et al., 2006; Leito et al., 2008; Perry
et al., 2008; Kruve et al., 2014), and so uncertainties may
arise from comparisons of peak areas among compounds. In
this work, we assumed equal ionization efficiency of differ-
ent compounds, which is commonly used to estimate O :C
ratios of SOA (e.g., Bateman et al., 2012; Lin et al., 2012;
Laskin et al., 2014; De Haan et al., 2019) to calculate their
normalized abundance. The normalized abundance of a prod-
uct, [P] (unitless), was calculated as follows:

[P] =
AP, t

AVL, t

q [VL]t
[VL]0

, (2)

where AP, t and AVL, t are the extracted ion chromatogram
(EIC) peak areas of the product P and VL from UHPLC-
qToF-MS analyses at time t , respectively. [VL]t and [VL]0
are the VL concentrations (µM) determined using UHPLC-
PDA at time t and 0, respectively. Here, we relied on the di-
rect quantification of [VL] using UHPLC-PDA (see Fig. S2
for the VL calibration curve). We emphasize that the nor-
malized abundance of products in this study is a semi-
quantitative analysis intended to provide an overview of how
the signal intensities changed under different experimental
conditions but not to quantify the absolute concentration
of products. Also, as it is based on comparisons of peak
abundance from UHPLC-qToF-MS analyses, the normalized
abundance of products in this study is associated with intrin-
sic uncertainties due to the variability in ionization efficien-
cies for various compounds. Moreover, the major products
detected in this study are probably those with high concen-
tration or high ionization efficiency in the positive ESI mode.
The use of relative abundance (product peaks are normalized
to the highest peak; e.g., Lee et al., 2014; Romonosky et al.,
2017; Fleming et al., 2018; Klodt et al., 2019) would yield
the same major products reported. Typical fragmentation be-
havior observed in MS/MS spectra for individual functional
groups from Holčapek et al. (2010) are outlined in Table S1.

3 Results and discussion

3.1 Kinetics, mass spectrometric, and absorbance
changes analyses during the direct photosensitized
oxidation of VL in the aqueous phase

For clarity purposes, the reactions involving reactive species
referred to in the following discussions are provided in Ta-
ble 1. Table 2 summarizes the reaction conditions, initial VL
(and GUA) decay rate constants, normalized abundance of
products, and average carbon oxidation state (〈OSc〉) of the
50 most abundant products. In general, the 50 most abundant
products contributed more than half of the total normalized
abundance of products and can facilitate the discussions of
reaction pathways and calculation of the 〈OSc〉.

As shown in Fig. S3, VL underwent oxidation both di-
rectly and in the presence of ammonium (and sodium) ni-
trate upon simulated sunlight illumination. VL absorbs light
and is promoted to its excited singlet state (1VL∗) and then
undergoes inter-system crossing (ISC) to the excited triplet
state, 3VL∗. In principle, 3VL∗ can oxidize ground-state VL
(type I photosensitized reactions) via H atom abstraction or
electron transfer, and form O

q−
2 or HO q

2 in the presence of
O2 (George et al., 2018), or react with O2 (type II photo-
sensitized reactions) to yield 1O2 via energy transfer or O

q−
2

via electron transfer (Lee et al., 1987; Foote et al., 1991).
The disproportionation of HO q

2 /O
q−

2 (Anastasio et al., 1997)
form hydrogen peroxide (H2O2), which is a photolytic source
of qOH. Overall, air-saturated conditions, in which O2 is
present, enable the generation of secondary oxidants (1O2,
O
q−

2 /
qHO2, and qOH) from 3VL∗. However, as discussed

later, we found that the direct photosensitized oxidation of
VL under air-saturated conditions in this study is mainly gov-
erned by 3VL∗. Moreover, qOH, qNO2, and NO−2 /HNO2,
i.e., N(III), generated via nitrate photolysis (Reactions 1–3;
Table 1), can also oxidize or nitrate VL. In this work, the di-
rect photosensitized oxidation of VL in the absence (VL-only
experiments) and presence of ammonium nitrate are referred
to as VL∗ and VL+AN, respectively.

3.1.1 VL photo-oxidation under N2 and air-saturated
conditions

As previously stated, the air-saturated experiments can en-
able the generation of secondary oxidants (1O2, O

q−
2 /

qHO2,
and qOH) from 3VL∗ as O2 is present. In contrast, the N2-
saturated experiments would inhibit the formation of these
secondary oxidants from 3VL∗, facilitating 3VL∗-driven re-
actions (Chen et al., 2020). Moreover, Chen et al. (2020) re-
ported that, for experiments conducted under three saturated
gases (air, O2, and N2), the rate constant for 4-ethylguaiacol
(a non-carbonyl phenol) loss by 3DMB∗ decreased in the
order of air>N2>O2. The higher rate constant under N2-
saturated conditions compared to that under O2-saturated
conditions indicates that 3DMB∗ is a more important con-
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Table 1. List of reactions involving reactive species relevant to this study.

No. Reactions References

1 NO−3 + hv→ qNO2+O−; φ = 0.01 Vione et al. (2006); Benedict et al. (2017)
2 O−+H3O+↔ qOH+H2O
3 NO−3 + hv→ NO−2 +O(3P); φ = 0.011

4 NO−2 +
qOH→ qNO2+OH−(k = 1.0× 1010 M−1 s−1) Mack and Bolton (1999); Pang et al. (2019a)

5 O
q−

2 +NO−2 + 2H+→ qNO2+H2O2 Vione et al. (2001); Pang et al. (2019a)

6 NO−2 + hv→ qNO+O−;φOH,300 = 6.7(±0.9)% Fischer and Warneck (1996); Mack and
Bolton (1999); Pang et al. (2019a)

7 qNO+O2↔
qONOO Goldstein and Czapski (1995);

8 qONOO+ qNO→ ONOONO Pang et al. (2019a)
9 ONOONO→ 2 qNO2

10 HNO2+
qOH→ qNO2+H2O (k = 2.6× 109 M−1 s−1) Kim et al. (2014); Pang et al. (2019a)

tributor than 1O2 for 4-ethylguaiacol degradation. The high-
est rate constant noted under air-saturated conditions was at-
tributed to the presence of O2, resulting in a synergistic ef-
fect of 1O2 and 3C∗. The differences in air-saturated and N2-
saturated experiments can then be used to infer the role of re-
action pathways that require O2 in the direct photosensitized
oxidation of VL. The photosensitized oxidation of VL under
both N2- and air-saturated conditions (Fig. S3a) were car-
ried out at pH 4, which is representative of moderately acidic
aerosol and cloud pH values (Pye et al., 2020). No signifi-
cant VL loss was observed for dark experiments. The oxida-
tion of ground-state VL by 3VL∗ via H atom abstraction or
electron transfer can form phenoxy (which is in resonance
with a carbon-centered cyclohexadienyl radical that has a
longer lifetime) and ketyl radicals (Neumann et al., 1986a, b;
Anastasio et al., 1997). The coupling of phenoxy radicals or
phenoxy and cyclohexadienyl radicals can form oligomers,
as observed for both air-saturated and N2-saturated experi-
ments (see discussions later). The VL decay rate constant for
VL∗ under air-saturated conditions was 4 times higher than
under N2-saturated conditions (Table 2). As mentioned ear-
lier, secondary oxidants (1O2, O

q−
2 /

qHO2, and qOH) can be
generated from 3VL∗ when O2 is present (under air-saturated
conditions). However, the direct photosensitized oxidation of
VL in this study is likely governed by 3VL∗, and these sec-
ondary oxidants have only minor participation. For instance,
1O2 is also a potential oxidant for phenols (Herrmann et al.,
2010; Minella et al., 2011; Smith et al., 2014), but 1O2 re-
acts much faster (by ∼ 60 times) with phenolate ions than
neutral phenols (Tratnyek and Hoigne, 1991; Canonica et al.,
1995; McNally et al., 2005). Under the pH values (pH 2.5
to 4) considered in this study, the amount of phenolate ion
is negligible (pKa of VL= 7.9), so the reaction between VL
and 1O2 should be slow. Interestingly, however, both 3C∗ and
1O2 have been shown to be important in the photo-oxidation
of 4-ethylguaiacol (pKa = 10.3) by 3DMB∗ (solution with

pH of ∼ 3; Chen et al., 2020). Furthermore, while the irra-
diation of other phenolic compounds can produce H2O2, a
precursor for qOH (Anastasio et al., 1997), the amount of
H2O2 is small. Based on this, only trace amounts of H2O2
were likely generated from VL∗ (Li et al., 2014) under air-
saturated conditions, suggesting that the contribution fromqOH was minor. Overall, these suggest that the direct photo-
sensitized oxidation of VL in this study is mainly driven by
3VL∗.

Contrastingly, the minimal decay of VL under N2-
saturated conditions can be attributed to the phenoxy (which
is in resonance with a carbon-centered cyclohexadienyl radi-
cal that has a longer lifetime) and ketyl radicals formed upon
oxidation of ground-state VL by 3VL∗ decaying via back-
hydrogen transfer to regenerate VL (Lathioor et al., 1999). A
possible explanation for this is the involvement of O2 in the
secondary steps of VL decay. For instance, a major fate of the
ketyl radical is a reaction with O2 (Anastasio et al., 1997). In
the absence of O2, radical formation occurs, but the forward
reaction of ketyl radical and O2 is blocked, leading to the
regeneration of VL, as suggested by the minimal VL decay.
Aside from potential inhibition of secondary oxidants gener-
ation (Chen et al., 2020), N2 purging may have also hindered
the secondary steps for VL decay.

The VL decay rate constant for VL+AN under air-
saturated conditions was also higher (6.6 times) than un-
der N2-saturated conditions, possibly due to reactions facil-
itated by nitrate photolysis products that may have been en-
hanced in the presence of O2 (Vione et al., 2005; Kim et al.,
2014; Pang et al., 2019a). As shown later, more N-containing
species were observed for VL+AN under air-saturated con-
ditions than under N2-saturated conditions. An example is
enhanced VL nitration likely from increased qNO2 forma-
tion, such as from the reaction of qOH and O

q−
2 with NO−2

(Reactions 4 and 5, respectively; Table 1) or the autoxida-
tion of qNO from NO−2 photolysis (Reactions 6–9; Table 1)

https://doi.org/10.5194/acp-22-273-2022 Atmos. Chem. Phys., 22, 273–293, 2022



278 B. R. Go et al.: Aqueous SOA formation from the direct photosensitized oxidation of vanillin

Table 2. Reaction conditions, initial VL (and GUA) decay rate constants, normalized abundance of products, and average carbon oxidation
state (〈OSc〉) in each experiment. Except where noted, the reaction systems consisted of VL (0.1 mM), GUA (0.1 mM), AN (1 mM), and SN
(1 mM) under air-saturated conditions after 6 h of simulated sunlight irradiation. Analyses were performed using UHPLC-qToF-MS equipped
with an ESI source and operated in the positive ion mode.

Exp pH Reaction Initial VL (and GUA) Ratio of Normalized Normalized 〈OSc〉
e

no. conditions decay rate constants 50 most abundance abundance of (OSc of VL is
(min−1)b abundant of productsd N-containing −0.25; OSc of

products to compoundsd GUA is −0.57)
total productsc

A1 2.5 VL∗ 2.0× 10−2
± 5.8× 10−5 0.59 1.7± 0.16 NA −0.05

A2 VL+AN 1.7× 10−2
± 7.3× 10−4 0.63 1.4± 0.19 5.3× 10−2

−0.04

A3 3 VL∗ 1.5× 10−2
± 4.2× 10−4 0.53 1.9± 0.33 NA −0.04

A4 VL+AN 1.5× 10−2
± 2.3× 10−4 0.56 1.9± 0.30 3.6× 10−2

−0.05

A5 4 VL∗ 1.2× 10−2
± 5.9× 10−4 0.58 0.26± 0.42 NA −0.16

A6 VL∗ 3.2× 10−3
± 1.1× 10−3 0.96 4.7× 10−2 NA −0.24

(N2 saturated) ±0.0027

A7 VL+AN 1.2× 10−2
± 8.8× 10−4 0.53 0.37± 0.38 1.7× 10−2

−0.13

A8 VL+AN 1.9× 10−3
± 9.2× 10−5 0.89 0.12± 6.3× 10−3

−0.21
(N2 saturated) 0.0095

A9 VL+SN 1.3× 10−2
± 3.5× 10−4 0.51 0.42± 0.33 1.7× 10−2

−0.07

A10 VL∗ (0.01 mM)a NA 0.90 0.37± 0.018 NA −0.07

A11 VL (0.01 mM) NA 0.77 0.40± 0.074 8.6× 10−3 0.12
+AN (0.01 mM)

A12 VL (0.01 mM) NA 0.42 0.45± 0.025 1.2× 10−2
−0.06

+AN

A13 GUA only 6.2× 10−3
± 2.5× 10−4 0.77 NA NA −0.28

A14 GUA+VL GUA is 1.4× 10−2
± 4.0× 10−4 0.60 2.2± 0.47 NA −0.27

VL is 4.3× 10−3
± 2.2× 10−4

a Irradiation time for VL∗ (0.01 mM, A10) was 3 h. b The data fitting was performed in the initial linear region. Each value is the average of results from triplicate experiments. Errors
represent 1 standard deviation. Kinetic measurements were not performed for experiments marked with NA (not available). c Ratio of the normalized abundance of the 50 most
abundant products to that of total products, except for direct GUA photodegradation and GUA+VL (A13 and A14), whose ratios are based on the absolute signals of products. d The
normalized abundance of products was calculated using Eq. (2). The samples for experiments without nitrate (marked with NA) were not analyzed for N-containing compounds. For
the GUA experiments, the normalized abundance of products was calculated only for GUA+VL as the GUA signal from the UHPLC-qToF-MS in the positive ion mode was weak,
which may introduce large uncertainties during normalization. e

〈OSc〉 of the 50 most abundant products.

in aqueous solutions (Pang et al., 2019a). Nevertheless, the
comparable decay rate constants for VL∗ and VL+AN im-
ply that 3VL∗ chemistry still dominates, even at 1 : 10 mo-
lar ratio of VL /AN. This can be attributed to the much
higher molar absorptivity of VL compared to that of nitrate
(Fig. S1) and the high VL concentration (0.1 mM) used in
this study. The quantification of the oxidants in our reaction
systems is not explored here and requires additional work. In
essence, the N2-saturated experiments suggest that the sec-
ondary steps for VL decay via 3VL∗ may require O2 to pro-
ceed. Nonetheless, further study on the impact of O2 on the
reactive intermediates involved is required to understand the
exact mechanisms occurring under air-saturated conditions.

The products from VL∗ under N2-saturated conditions
were mainly oligomers (e.g., C16H14O4; Fig. 1a), consis-
tent with triplet-mediated oxidation forming higher molec-
ular weight products, with less fragmentation relative to ox-
idation by qOH (Yu et al., 2014; Chen et al., 2020). A three-
fold increase in the normalized abundance of products was
noted upon addition of AN (VL+AN under N2-saturated
conditions; Fig. 1b), and in addition to oligomers, func-
tionalized monomers (e.g., C8H6O5) and N-containing com-
pounds (e.g., C8H9NO3; no. 3 in Table S2) were also ob-
served, which is in agreement with qOH-initiated oxida-
tion yielding more functionalized/oxygenated products com-
pared to triplet-mediated oxidation (Yu et al., 2014; Chen
et al., 2020). Oligomers, functionalized monomers (e.g.,

Atmos. Chem. Phys., 22, 273–293, 2022 https://doi.org/10.5194/acp-22-273-2022



B. R. Go et al.: Aqueous SOA formation from the direct photosensitized oxidation of vanillin 279

demethylated VL; Fig. S4), and N-containing compounds
(e.g., C16H10N2O9; no. 4 in Table S2; for VL+AN) had
higher normalized abundance under air-saturated conditions
(Fig. 1c, d), which are attributable to efficient 3VL∗-initiated
oxidation and enhanced VL nitration in the presence of O2.
For both VL∗ and VL+AN under air-saturated conditions,
the most abundant product was C10H10O5 (no. 5 in Table S2),
which is a substituted VL. Irradiation of VL by a 254 nm
lamp has also been reported to lead to VL dimerization
and functionalization via ring-retaining pathways, as well as
small oxygenates formation, but only when qOH from H2O2
were involved (Li et al., 2014). In this work, small organic
acids (e.g., formic acid) were observed from both VL∗ and
VL+AN under air-saturated conditions (Fig. S5) due to sim-
ulated sunlight that could access the 308 nm VL band (Smith
et al., 2016). Interestingly, we observed a potential imidazole
derivative (C5H5N3O2; no. 6 in Table S2) from VL+AN
under air-saturated conditions (Fig. 1d), which may have
formed from reactions induced by ammonium. This com-
pound was not observed in a parallel experiment in which
AN was replaced with SN (Fig. S6a; see Sect. 3.1.3 for the
discussion).

The potential aqSOA formation pathways via the direct
photosensitized oxidation of VL in the absence and pres-
ence of AN in this study are summarized in Fig. 2. At pH
4, 3VL∗-initiated reactions yielded oligomeric species such
as C16H12O6 and C22H22O6. Earlier works on phenolic aq-
SOA formation have reported that oligomers can form via
the coupling of phenoxy radicals or phenoxy and cyclohexa-
dienyl radicals (Sun et al., 2010; Yu et al., 2014; Vione et
al., 2019). In this work, phenoxy radicals (in resonance with
a carbon-centered cyclohexadienyl radical) can be generated
from several processes, such as the oxidation of ground-state
VL by 3VL∗ via H atom abstraction or electron transfer cou-
pled with proton transfer from the phenoxyl radical cation or
from solvent water (Neumann et al., 1986a, b; Anastasio et
al., 1997) and photoinduced O–H bond breaking (Berto et al.,
2016). Also, similar reactions can be initiated by qOH (Ge-
lencsér et al., 2003; Hoffer et al., 2004; Chang and Thomp-
son, 2010; Sun et al., 2010), which, in this study, can be gen-
erated from the reaction between 3VL∗ and O2, as well as
nitrate photolysis. Trace amounts of H2O2 could be formed
during VL photodegradation (Li et al., 2014), similar to the
case of other phenolic compounds (Anastasio et al., 1997).
In addition, ring-opening products (Fig. S5) from fragmen-
tation in both VL∗ and VL+AN may have reacted with VL
or dissolved ammonia to generate C10H10O5 (no. 5 in Ta-
ble S2; Pang et al., 2019b) or a potential imidazole derivative
(C5H5N3O2; no. 6 in Table S2), respectively. Moreover, ni-
trate photolysis products promoted functionalization and ni-
tration (e.g., C16H10N2O9; no. 4 in Table S2).

The molecular transformation of VL upon photosensitized
oxidation was examined using the van Krevelen diagrams
(Fig. S7). For all experiments (A1–14; Table 2) in this study,
the O :C and H :C ratios of the products were similar to

those observed from the aging of other phenolic compounds
(Yu et al., 2014) and BB aerosols (Qi et al., 2019). Under
N2-saturated conditions, oligomers with O :C ratios ≤ 0.6
were dominant in VL∗, while smaller molecules (nc ≤ 8)
with higher O :C ratios (up to 0.8) were also observed for
VL+AN. In contrast, more products with higher O :C ra-
tios (≥ 0.6) were noted under air-saturated conditions for
both VL∗ and VL+AN. For experiments A5 to A8, H :C
ratios were mostly around 1.0, and double bond equivalent
(DBE) values were typically (58 % of the 50 most abundant
products)>7, indicating that the products were mainly ox-
idized aromatic compounds (Xie et al., 2020). Compounds
with H :C≤ 1.0 and O :C≤ 0.5 are common for aromatic
species, while compounds with H :C≥ 1.5 and O :C≤ 0.5
are typical for more aliphatic species (Mazzoleni et al.,
2012; Kourtchev et al., 2014; Jiang et al., 2021). In contrast,
Loisel et al. (2021) reported mainly oxygenated aliphatic-like
compounds from the direct irradiation of VL (0.1 mM), at-
tributable to their use of ESI in the negative ion mode, which
has higher sensitivity for detecting compounds such as car-
boxylic acids (Holčapek et al., 2010; Liigand et al., 2017)
and the solid-phase extraction (SPE) procedure causing the
loss of some oligomers (LeClair et al., 2012; Zhao et al.,
2013; Bianco et al., 2019). Among experiments A5 to A8,
VL+AN under air-saturated conditions (A7) had the high-
est normalized abundance of products and 〈OSc〉, probably
due to the combined influence of 3VL∗ and enhanced VL
nitration in the presence of O2. Our measured 〈OSc〉 for all
experiments range from −0.28 to +0.12, while other studies
on phenolic aqSOA formation reported 〈OSc〉 ranging from
−0.14 to +0.47 (Sun et al., 2010) and 0.04 to 0.74 (Yu et
al., 2014). The 〈OSc〉 in this study were likely lower estimates
since we excluded contributions from ring-opening products,
which may have higher OSc values, as these products are not
detectable in the positive ion mode. In brief, more oxidized
aqSOA and higher normalized abundance of products, such
as high O :C ratio oligomers and functionalized monomers,
were noted under air-saturated conditions due to efficient
VL oxidation by 3VL∗ in the presence of O2. Compared to
N2-saturated conditions, the higher normalized abundance
of N-containing products under air-saturated conditions for
VL+AN (at pH 4) suggests a potential enhancement of VL
nitration in the presence of O2.

Illumination of phenolic aromatic carbonyls with high mo-
lar absorptivities (ελmax;∼ 8 to 22×103 M−1 cm−1) leads to
an overall loss of light absorption, but increased absorbance
at longer wavelengths (>350 nm), where the carbonyls did
not initially absorb light (Smith et al., 2016). Figure 3a illus-
trates the changes in total absorbance from 350 to 550 nm of
VL∗ and VL+AN under N2- and air-saturated conditions.
The absorption spectra of VL∗ under air- and N2-saturated
conditions (pH 4) at different time intervals are shown in
Fig. S8. For both VL∗ and VL+AN, evident absorbance
enhancement was observed under air-saturated conditions,
while the absorbance changes under N2-saturated conditions

https://doi.org/10.5194/acp-22-273-2022 Atmos. Chem. Phys., 22, 273–293, 2022



280 B. R. Go et al.: Aqueous SOA formation from the direct photosensitized oxidation of vanillin

Figure 1. Reconstructed mass spectra of assigned peaks from (a) VL∗ pH 4 (N2 saturated; A6), (b) VL+AN pH 4 (N2 saturated; A8),
(c) VL∗ pH 4 (air saturated; A5), (d) VL+AN pH 4 (air saturated; A7), (e) VL∗ pH 3 (air saturated; A3), (f) VL+AN pH 3 (air satu-
rated; A4), (g) VL∗ pH 2.5 (air saturated; A1), and (h) VL+AN pH 2.5 (air saturated; A2) after 6 h of simulated sunlight irradiation. The
normalized abundance of products was calculated using Eq. (2). The 50 most abundant products contributed more than half of the total
normalized abundance of products, and they were identified as monomers (blue), dimers (green), trimers (red), and tetramers (orange). Gray
peaks denote peaks with low abundance or an unassigned formula. Examples of high-intensity peaks were labeled with the corresponding
neutral formulas. Note the different scales on the y axes.

were minimal, consistent with the VL decay trends. Dimers
and functionalized products have been shown to contribute
to chromophore formation for the aqueous photo-oxidation
of guaiacyl acetone (another aromatic phenolic carbonyl) by
3DMB∗ (Jiang et al., 2021). Based on this, the higher nor-
malized abundance of oligomers, which have large, conju-
gated π electron systems (Chang and Thompson, 2010), and
hydroxylated products (Li et al., 2014; Zhao et al., 2015) ob-
served under air-saturated conditions have contributed to the

absorbance enhancement. However, it is worth noting that
the products detected may not have contributed significantly
to the total products formed and, hence, may not be the pri-
mary contributors to the absorbance enhancement. As men-
tioned earlier, the major products detected in this study are
probably those with high concentration or high ionization ef-
ficiency in the positive ESI mode. In other words, the ab-
sorbance enhancement may not necessarily correlate directly
with the products detected.
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Figure 2. Potential aqSOA formation pathways via the direct photosensitized oxidation of VL in the absence (VL∗) and presence of am-
monium nitrate (VL+AN) at pH 4 and pH<4 under air-saturated conditions. Product structures were proposed based on the molecular
formulas, double bond equivalent (DBE) values, and MS /MS fragmentation patterns. The structures presented were the major products
detected using UHPLC-qToF-MS in positive ESI mode. The highlighted structures are the most abundant product for each condition.

Correlating speciated chromophores with absorbance
changes may be useful in demonstrating how aqSOA influ-
ence the Earth’s radiative balance and identifying chemical
reactions that can affect the overall light absorption by aq-
SOA. This can be accomplished by using liquid chromatog-
raphy (LC) coupled with photodiode array (PDA) detec-
tor and high-resolution mass spectrometry (HRMS; LC/P-
DA/HRMS platform; e.g., Lin et al., 2017; Jiang et al.,
2021; Misovich et al., 2021). In our experiments, VL (and
GUA) concentration measurements, product characteriza-
tion, and absorbance measurements were performed using
UHPLC-PDA, UHPLC-qToF-MS, and UV-Vis spectropho-
tometry, respectively. A similar approach is then possible
using the current methods in this work by matching the re-
tention time (RT) of the products detected using UHPLC-
ToF-MS with that in the PDA. However, the concentration
of the chromophores in this study is below the detection
limit of the PDA, based on the lack of distinct PDA sig-
nals from the products. Absorbance increase at >350 nm
has also been reported for the photosensitized oxidation of
phenol and 4-phenoxyphenol (De Laurentiis et al., 2013a,
b) and direct photolysis of tyrosine and 4-phenoxyphenol
(Bianco et al., 2014) in which dimers have been identified
as initial substrates. The continuous absorbance enhance-
ment throughout 6 h of irradiation correlated with the ob-
servation of oligomers and nitrated compounds after irra-
diation. However, the increasing concentration of small or-
ganic acids (Fig. S5) throughout the experiments suggests
that fragmentation, which results in the decomposition of ini-
tially formed oligomers and formation of smaller oxygenated

products (Huang et al., 2018), is important at longer irradi-
ation times. Overall, these trends establish that compared to
N2-saturated conditions, VL oxidation by 3VL∗ under air-
saturated conditions (O2 is present) enabled the efficient for-
mation of light-absorbing compounds from both VL∗ and
VL+AN.

3.1.2 VL photo-oxidation under varying pH conditions

The reactions of 3C∗ (Smith et al., 2014, 2015, 2016), aro-
matic photonitration by nitrate (Machado and Boule, 1995;
Dzengel et al., 1999; Vione et al., 2005; Minero et al., 2007),
and N(III)-mediated VL photo-oxidation (Pang et al., 2019a)
have been demonstrated to be pH dependent. In this study,
the effect of pH on the direct photosensitized oxidation of
VL was investigated over the pH range of 2.5 to 4, which is
within typical cloud pH values (2–7; Pye et al., 2020). The
decay rate constants for both VL∗ and VL+AN increased
by 1.6 and 1.4 times, respectively, as pH decreased from 4 to
2.5 (Table 2). These differences in the decay rate constants
are small but statistically significant (p<0.05). The pKa for
the 3VL∗ has been reported to be 4.0 (Smith et al., 2016). As
there is a greater fraction of 3VL∗ that are protonated at pH
2.5 (0.96) than at pH 4 (0.50), it is possible that the pH depen-
dence of the VL decay rate constants observed in this study
is due to 3VL∗ being more reactive in its protonated form.
Smith et al. (2016) also observed a pH dependence for the
direct photodegradation of VL (0.005 mM; rate constants at
pH≤ 3 are ∼ 2 times lower than at pH≥ 5) which has been
attributed to the sensitivity of the excimer of VL (i.e., the
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Figure 3. (a–c) Increase in light absorption under different experimental conditions for direct photosensitized oxidation of VL in the absence
(VL∗) and presence of ammonium nitrate (VL+AN). (a) VL∗ and VL+AN at pH 4 under N2− (A6 and A8) and air-saturated (A5 and A7)
conditions. Direct photosensitized oxidation of VL in the presence of sodium nitrate (VL+SN) at pH 4 under air-saturated conditions (A9).
(b) Effect of pH on VL∗ and VL+AN at pH 2.5 (A1 and A2), 3 (A3 and A4), and 4 (A5 and A7) under air-saturated conditions. (c) Increase
in light absorption during direct GUA photodegradation (A13) and the oxidation of GUA via photosensitized reactions of VL (GUA+VL;
A14) at pH 4 under air-saturated conditions after 6 h of simulated sunlight irradiation. Error bars represent 1 standard deviation; most error
bars are smaller than the markers.

charge–transfer complex formed between an excited state VL
molecule and a separate ground state VL molecule; Birks,
1973; Turro et al., 2010) to acid–base chemistry. The oppo-
site trend observed in this study for 0.1 mM VL may be due to
the reactivities of the protonated and neutral forms of 3VL∗

being dependent on VL concentration (Smith et al., 2016).
The quantum yield for direct VL photodegradation is higher
at pH 5 than at pH 2 for 0.005 mM VL, but they are not statis-
tically different for 0.03 mM VL (Smith et al., 2016). As pH
decreases, the higher reactivity of 3VL∗ and sensitivity of the
excimer of VL to acid–base chemistry may have led to faster
VL photo-oxidation. Similar to pH 4 experiments, compara-
ble decay rate constants between VL∗ and VL+AN were
also noted at pH<4, again suggesting the predominant role
of 3VL∗ chemistry compared to nitrate, likely due to the high
VL concentration (0.1 mM) used in this study.

As pH decreased, the normalized abundance of products,
particularly oligomers and functionalized monomers, was
higher for both VL∗ and VL+AN, consistent with 3VL∗

potentially being more reactive in its protonated form. The

most abundant products observed were a substituted VL
(C10H10O5; no. 5 in Table S2) and VL dimer (C16H14O6;
no. 7 in Table S2) at pH 4 and pH<4, respectively (Fig. 1c–
h). Furthermore, a tetramer (C31H24O11) was observed only
in VL∗ at pH 2.5. For VL+AN, the normalized abundance
of N-containing compounds was also higher at lower pH
(Table 2), likely due to increased qOH and qNO2 forma-
tion, which may be caused by the dependence of N(III)
(NO−2 +HONO) speciation on solution acidity (Pang et al.,
2019a). At pH 3.3, half of N(III) exists as HONO (Fis-
cher and Warneck, 1996; Pang et al., 2019a), which has a
higher quantum yield for qOH formation than that of NO−2
in the near-UV region (Arakaki et al., 1999; Kim et al.,
2014). Also, NO−2 /HONO can generate qNO2 via oxida-
tion by qOH (Reactions 4 and 10; Table 1; Pang et al.,
2019a). At pH<4, 3VL∗ likely have higher reactivity, as sug-
gested by the increased normalized abundance of oligomers
(e.g., C16H14O6; no. 7 in Table S2; C31H24O11) and N-
containing compounds (e.g., C16H10N2O9; no. 4 in Table S2;
C13H14N2O10; Fig. 2). The most abundant product at pH<4,
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C16H14O6 (no. 7 in Table S2) is likely a C–O coupled dimer.
In previous studies on phenolic aqSOA formation, the gen-
eration of phenolic dimers has been proposed to occur via
C–C or C–O coupling of phenoxy radicals (Sun et al., 2010;
Yu et al., 2014; Huang et al., 2018; Chen et al., 2020; Miso-
vich et al., 2021). Similarly, functionalized monomers, such
as C7H6O3 (demethylated VL; no. 8 in Table S2) and hydrox-
ylated products (e.g., C8H8O4; no. 9 in Table S2), also had
increased normalized abundance for both VL∗ and VL+AN.
The formation of C7H6O3 (no. 8 in Table S2), which varies
from the structure of VL by CH2, can be explained by qOH
addition at the carbon containing the methoxy group, suc-
ceeded by the elimination of a methoxy radical ( qOCH3; Yee
et al., 2013). This reaction has also been postulated for theqOH oxidation of syringol (2,6-dimethoxyphenol; Yee et al.,
2013) and transformation of DMB in a system composed of
guaiacyl acetone and 3DMB∗ (Misovich et al., 2021). The
potential imidazole derivative (C5H5N3O2; no. 6 in Table S2)
was observed only at pH 4, following the pH dependence
of ammonium speciation (pKa = 9.25). Imidazole formation
requires the nucleophilic attack of ammonia on the carbonyl
group (Yu et al., 2011), and at pH 4, the concentration of
dissolved ammonia in VL+AN was about 10 or 30 times
higher than that at pH 3 or pH 2.5, respectively. For the pH
values considered in this study, the O :C and H :C ratios in
VL∗ and VL+AN had no significant differences (Figs. S7c–
d and S9), but molecules with higher O :C ratios (>0.6) were
more abundant at pH<4. In addition, the 〈OSc〉 at pH<4 for
both VL∗ and VL+AN were higher than that at pH 4, con-
sistent with higher 〈OSc〉 observed at pH 5 compared to pH
7 for the qOH-mediated photo-oxidation of syringol (Sun et
al., 2010). Essentially, the higher reactivity of 3VL∗ and pre-
dominance of HONO over nitrite at lower pH may have re-
sulted in higher normalized abundance of products mainly
composed of oligomers and functionalized monomers.

Higher absorbance enhancement for both VL∗ and
VL+AN (Fig. 3b) was observed as pH increased. To de-
termine whether the pH dependence is due to the acid–base
chemistry of the products or of the reactions, the changes in
the UV-Vis absorption spectra of the aqSOA formed from
VL∗ at pH 4 and 2.5 were measured over a range of pH con-
ditions from 1.5 to 10.5 (Fig. S10). For both cases, the in-
tensity of absorption at longer wavelengths significantly in-
creased as the pH of the solutions was raised. Moreover, the
changes in the UV-Vis absorption spectra for the two solu-
tions of varying pH are comparable, suggesting that the ob-
served pH dependence is rooted in the acid–base chemistry
of the reactions involving 3VL∗ or the excimer of VL (Smith
et al., 2016), as discussed earlier.

3.1.3 Participation of ammonium in the direct
photosensitized oxidation of VL in the presence of
AN

Ammonium salts are an important constituent of atmospheric
aerosols particles (Jimenez et al., 2009), and reactions be-
tween dicarbonyls (e.g., glyoxal) and ammonia or primary
amines form BrC (De Haan et al., 2009, 2011; Nozière et al.,
2009; Shapiro et al., 2009; Lee et al., 2013; Powelson et al.,
2014; Gen et al., 2018; Mabato et al., 2019). Imidazole and
imidazole derivatives are the major products of glyoxal and
ammonium sulfate reactions at pH 4 (Galloway et al., 2009;
Yu et al., 2011; Sedehi et al., 2013; Gen et al., 2018; Mabato
et al., 2019). Here, we compared VL+AN and VL+SN at
pH 4 under air-saturated conditions to confirm the participa-
tion of ammonium in the photosensitized oxidation of VL.
The presence of ammonium did not appear to influence the
kinetics of VL decay and light absorbance changes based
on VL+AN and VL+SN, thus having no statistically sig-
nificant difference (p>0.05) with respect to VL decay rate
constants (Table 2) and yielding comparable absorbance en-
hancement (Fig. 3a), respectively. However, it is important
to note that this may not be the case for lower concentrations
of VL. As previously stated, the reactions in this study were
dominated by 3VL∗ chemistry, likely due to the higher mo-
lar absorptivity of VL than that of nitrate and the high VL
concentration used. Similarly, the normalized abundance of
products was comparable in both experiments (A7 and A9;
Table 2), with C10H10O5 (no. 5 in Table S2) as the most
abundant product (Figs. 1d and S6a), but in VL+SN, there
was a significant amount of a VL dimer (C15H12O8; no. 10 in
Table S2). The normalized abundance of N-containing com-
pounds was also similar for VL+AN and VL+SN, but the
detected N-containing compounds were distinct. Aside from
the potential imidazole derivative (C5H5N3O2; no. 6 in Ta-
ble S2), C8H9NO3 (no. 3 in Table S2), possibly an aminophe-
nol, was also observed from VL+AN – but only under N2-
saturated conditions (Fig. 1b), probably due to further ox-
idation by 3VL∗. Relative to VL+AN, the products from
VL+SN had higher O :C ratios (e.g., C7H4N2O7; no. 11
in Table S2), OSc, and 〈OSc〉 values (Table 2). In summary,
while the VL decay kinetics and absorbance enhancement
for VL+AN and VL+SN were similar, the product analy-
sis supports the participation of ammonium in the aqueous-
phase reactions.

3.1.4 Distribution of potential BrC compounds

Figure S11 plots the DBE values vs. number of carbons
(nC; Lin et al., 2018) for the 50 most abundant products
from pH 4 experiments under air-saturated conditions, along
with reference to DBE values corresponding to fullerene-like
hydrocarbons (Lobodin et al., 2012), cata-condensed poly-
cyclic aromatic hydrocarbons (PAHs; Siegmann and Sattler,
2000), and linear conjugated polyenes with a general for-
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mula CxHx+2. As light absorption by BrC requires uninter-
rupted conjugation across a significant part of the molecu-
lar structure, compounds with DBE / nC ratios (shaded area
in Fig. S11) greater than that of linear conjugated polyenes
are potential BrC compounds (Lin et al., 2018). Based on
this criterion and the observed absorbance enhancement at
>350 nm (Fig. 3), the majority of the 50 most abundant prod-
ucts from pH 4 experiments under air-saturated conditions
were potential BrC chromophores composed of monomers
and oligomers up to tetramers. However, as ESI-detected
compounds in BB organic aerosols has been reported to be
mainly molecules with nc<25 (Lin et al., 2018), there may
be higher oligomers that were not detected in our reaction
systems.

3.2 Effect of reactants concentration and molar ratios on
the direct photosensitized oxidation of VL in the
aqueous phase

To examine the influence of VL and AN concentration and
their molar ratios on the direct photosensitized oxidation of
VL, we also characterized the reaction products from lower
[VL] (0.01 mM VL∗; A10; Table 2), lower [VL] and equal
molar ratio of VL /AN (0.01 mM VL+ 0.01 mM AN; A11;
Table 2), and lower [VL] and 1 : 100 molar ratio of VL /AN
(0.01 mM VL+ 1 mM AN; A12; Table 2) at pH 4. The nor-
malized abundance of products from low [VL] experiments
(A10–A12; Table 2) were up to 1.4 times higher than that
of high [VL] experiments (A5 and A7; Table 2). Neverthe-
less, the major products for both low and high [VL] exper-
iments were functionalized monomers (Figs. 1c and d and
S12a–c) such as C8H6O4 (no. 12 in Table S2) and C10H10O5
(no. 5 in Table S2). For both VL∗ and VL+AN, the contri-
bution of <200m/z to the normalized abundance of prod-
ucts was higher at low [VL] than at high [VL], while the
opposite was observed for >300 m/z (Fig. S12d). This in-
dicates that functionalization was favored at low [VL], as
supported by the higher 〈OSc〉, while oligomerization was
the dominant pathway at high [VL], consistent with more
oligomers or polymeric products reported from high phenols
concentration (e.g., 0.1 to 3 mM; Li et al., 2014; Slikboer
et al., 2015; Ye et al., 2019). As the formation mechanism
of dimers and higher oligomers during aqueous-phase reac-
tions of phenolic compounds involves the coupling of phe-
noxy radicals (Kobayashi and Higashimura, 2003; Sun et al.,
2010), the enhanced oligomerization at high [VL] can be at-
tributed to an increased concentration of phenoxy radicals
(in resonance with a carbon-centered cyclohexadienyl radi-
cal) at high [VL], promoting radical–radical polymerization
(Sun et al., 2010; Li et al., 2014). At low [VL], the contribu-
tion of <200 m/z to the normalized abundance of products
was higher for 1 : 1 than 1 : 100 VL /AN molar ratio, sug-
gesting the prevalence of functionalization for the former.
In addition, 1 : 1 VL /AN (A11; Table 2) had higher 〈OSc〉

than 1 : 100 VL /AN (A12; Table 2), indicating the forma-

tion of more oxidized products but fewer N-containing com-
pounds compared to the latter. A possible explanation is that
at 1 : 1 VL /AN, VL may compete with NO−2 for qOH (from
nitrate or nitrite photolysis; Reaction 4; Table 1) and indi-
rectly reduce qNO2. Similarly, hydroxylation has been sug-
gested to be a more important pathway for 1 : 1 VL / nitrite
than in 1 : 10 VL / nitrite (Pang et al., 2019a). Fragmenta-
tion, which leads to the decomposition of previously formed
oligomers and generation of small, oxygenated products such
as organic acids (Huang et al., 2018) may also occur for the
low [VL] experiments. However, its importance would likely
be observed at longer irradiation times, similar to the high
[VL] experiments.

3.3 Oxidation of guaiacol by photosensitized reactions
of VL

The oxidation of phenols by 3C∗ has been mainly stud-
ied using non-phenolic aromatic carbonyls (Anastasio et al.,
1997; Smith et al., 2014, 2015; Yu et al., 2014; Chen et al.,
2020) and aromatic ketones (Canonica et al., 2000) as triplet
precursors. Recently, 3VL∗ has been shown to oxidize sy-
ringol (Smith et al., 2016), a non-carbonyl phenol, although
the reaction products remain unknown. In this section, we
discussed the photo-oxidation of guaiacol (GUA), a non-
carbonyl phenol that is also a lignocellulosic BB pollutant
(Kroflič et al., 2015), in the presence of VL (GUA+VL).
The dark experiments did not show any substantial loss of
VL or GUA (Fig. S3c). Due to its poor light absorption in the
solar range, GUA is not an effective photosensitizer (Smith
et al., 2014; Yu et al., 2014). Accordingly, direct GUA pho-
todegradation resulted in minimal decay, which plateaued af-
ter ∼ 3 h. In the presence of VL, the GUA decay rate con-
stant was 2.2 times higher due to the oxidation of GUA by
3VL∗. The decay rate constant of VL in GUA+VL (A14;
Table 2) was 3 times slower than that of VL∗ (A5; Table 2),
which may be due to competition between ground-state VL
and GUA for reactions with 3VL∗ or the increased conver-
sion of 3VL∗ back to the ground state through the oxidation
of GUA (Anastasio et al., 1997; Smith et al., 2014).

For GUA experiments, the normalized abundance of prod-
ucts was calculated only for GUA+VL (2.2; Table 2) as
the GUA signal from the UHPLC-qToF-MS in the posi-
tive ion mode was weak, which may introduce large un-
certainties during normalization. Nonetheless, the number
of products detected from these experiments (178 and 844
for direct GUA photodegradation and GUA+VL, respec-
tively) corroborates the kinetics results. The major products
(Fig. 4a) from direct GUA photodegradation were C14H14O4
(no. 13 in Table S2), a typical GUA dimer, and C21H20O6
(no. 14 in Table S2), a trimer which likely originated from
photoinduced O–H bond breaking (Berto et al., 2016). In
general, higher absolute signal intensities were noted for
oligomers (e.g., C14H14O4 and C21H20O6; nos. 13 and 14
in Table S2, respectively) and hydroxylated products (e.g.,
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Figure 4. (a) Reconstructed mass spectra of assigned peaks from the direct GUA photodegradation (A13) and oxidation of GUA via pho-
tosensitized reactions of VL (GUA+VL; A14) at pH 4 under air-saturated conditions after 6 h of simulated sunlight irradiation. The y axis
is the absolute signal area of the products. Examples of high-intensity peaks were labeled with the corresponding neutral formulas. The
formulas in red text correspond to products observed only from GUA+VL. (b, c) Van Krevelen diagrams of the 50 most abundant products
from the (b) direct photodegradation of GUA (A13) and (c) GUA+VL (A14) at pH 4 under air-saturated conditions after 6 h of simulated
sunlight irradiation. The color bar denotes the absolute signal area. The gray dashed lines indicate the carbon oxidation state values (e.g.,
OSc =−1, 0, and 1).

C7H8O4) in GUA+VL, similar to those observed from
GUA oxidation by 3DMB∗ or qOH (from H2O2 photolysis;
Yu et al., 2014; Jiang et al., 2021). Also, a potential GUA
tetramer (C28H26O8; no. 15 in Table S2) was observed only
in GUA+VL, consistent with more efficient oligomer for-
mation from the triplet-mediated oxidation of phenols rela-
tive to direct photodegradation (Yu et al., 2014). The prod-
ucts from the direct GUA photodegradation and GUA+VL
had mostly similar OSc values (−0.5 to 0.5; Fig. 4b, c),
falling into the criterion of biomass burning organic aerosol
(BBOA) and semivolatile oxygenated organic aerosol (SV-
OOA; Kroll et al., 2011). The corresponding absorbance
changes for the GUA experiments (Fig. 3c) were consis-
tent with the observed VL and GUA decay trends and de-
tected products. While minimal absorbance changes, which
also plateaued after ∼ 3 h, were observed for direct GUA
photodegradation, significant and continuous absorbance en-
hancement was noted for GUA+VL. Compared to direct
GUA photodegradation, GUA oxidation by photosensitized

reactions of VL occurred rapidly and yielded higher absolute
signal intensities for oligomers and hydroxylated products,
which likely contributed to the pronounced absorbance en-
hancement.

4 Conclusions and atmospheric implications

In this study, the direct photosensitized oxidation of VL in
the absence and presence of AN under atmospherically rele-
vant cloud and fog conditions have been shown to generate
aqSOA composed of oligomers, functionalized monomers,
oxygenated ring-opening products, and nitrated compounds
(from VL+AN). The oligomers from these reaction systems
may be rather recalcitrant to fragmentation, based on their
high normalized abundance, even at the longest irradiation
time used in this study. Nonetheless, the increasing concen-
tration of small organic acids over time implies that fragmen-
tation becomes important at extended irradiation times. The
reactions were observed to be influenced by O2, pH, and re-
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actants concentration and molar ratios. Our results suggest
that O2 could be required for the secondary steps in VL decay
(e.g., the reaction of ketyl radical and O2) via 3VL∗ to pro-
ceed. Compared to N2-saturated conditions, 3VL∗-initiated
reactions under air-saturated conditions (O2 is present) pro-
ceeded rapidly, promoted the formation of more oxidized
aqSOA, and generated products (e.g., oligomers, function-
alized monomers, and N-containing compounds) with higher
normalized abundance which exhibited stronger light absorp-
tion. For pH 4 experiments, the presence of both O2 and ni-
trate resulted in the highest normalized abundance of prod-
ucts (including N-containing compounds) and 〈OSc〉, which
is attributed to O2 promoting VL nitration. Nevertheless,
further work on the effect of O2 on the reactive intermedi-
ates involved in the reactions is necessary to elucidate the
mechanisms of direct photosensitized oxidation of VL un-
der air-saturated conditions. Additionally, the formation of
oligomers from the direct photosensitized oxidation of VL
was promoted at low pH (<4). Low VL concentration fa-
vored functionalization, while oligomerization prevailed at
high VL concentration, consistent with past works (Li et al.,
2014; Slikboer et al., 2015; Ye et al., 2019). Hydroxylation
was observed to be important at equal molar ratios of VL
and nitrate, likely due to VL competing with nitrite for qOH.
Furthermore, the GUA experiments indicate that, in mixed
biomass burning aerosols, triplet excited states of phenolic
aromatic carbonyls can oxidize phenols, forming oligomers
and hydroxylated products. Aromatic carbonyls and nitro-
phenols have been reported to be the most significant classes
of BrC in cloud water heavily affected by biomass burning
in the North China Plain (Desyaterik et al., 2013). Corre-
spondingly, the most abundant products from our reaction
systems (pH 4 and air-saturated solutions) are mainly poten-
tial BrC chromophores. These suggest that aqSOA generated
in cloud and fog water from the oxidation of biomass burning
aerosols via direct photosensitized reactions and nitrate pho-
tolysis products can impact aerosol optical properties and ra-
diative forcing, particularly for areas where biomass burning
is intensive.

Ammonium (and sodium) nitrate was not found to sub-
stantially affect the VL decay rate constants, likely due to the
much higher molar absorptivity of VL than nitrate and high
VL concentration used in this work. However, the presence
of ammonium (and sodium) nitrate promoted functionaliza-
tion and nitration, indicating the significance of nitrate pho-
tolysis for aqSOA formation from biomass-burning-derived
compounds. This work demonstrates that nitration, which
is an important process for producing light-absorbing or-
ganics or BrC (Jacobson, 1999; Kahnt et al., 2013; Mohr
et al., 2013; Laskin et al., 2015; Teich et al., 2017; Li et
al., 2020), can also affect the aqueous-phase processing of
triplet-generating aromatics. In addition, a potential imida-
zole derivative observed from VL+AN at pH 4 reveals that
ammonium participates in aqSOA formation from the photo-
oxidation of phenolic aromatic carbonyls. This observation

also suggests that the photosensitized oxidation of phenolic
aromatic carbonyls in the presence of AN could be a source
of imidazoles in the aqueous phase. It is important to under-
stand the source of imidazoles due to their possible effects on
human health, their photosensitizing potential, and their ef-
fect on aerosol optical properties as BrC compounds (Teich
et al., 2016).

A recent work (Ma et al., 2021) mimicking phenol ox-
idation by 3DMB∗ (a non-phenolic aromatic carbonyl) in
more concentrated conditions of aerosol particles containing
high AN concentration (0.5 M) increased the photodegrada-
tion rate constant for guaiacyl acetone (an aromatic phenolic
carbonyl with high Henry’s law constant; 1.2×106 M atm−1;
McFall et al., 2020) by >20 times, which was ascribed
to qOH formation from nitrate photolysis (Brezonik and
Fulkerson-Brekken, 1998; Chu and Anastasio, 2003). The
same study also estimated that reactions of phenols with high
Henry’s law constants (106 to 109 M atm−1) can be impor-
tant for SOA formation in aerosol particles, with mechanisms
mainly governed by 3C∗ and 1O2 (Ma et al., 2021). Likewise,
Zhou et al. (2019) reported that the direct photodegradation
of acetosyringone was faster by about 6 times in the pres-
ence of 2 M NaClO4. However, the opposite was noted for
the photodegradation of VL in sodium sulfate or sodium ni-
trate, which would occur slower (∼ 2 times slower in 0.5 M
sodium sulfate and ∼ 10 times slower in 0.124 M sodium ni-
trate) in aerosol particles relative to dilute aqueous phase in
clouds (Loisel et al., 2021), implying that the nature of inor-
ganic ions may have an essential role in the photodegradation
of organic compounds in the aqueous phase.

The concentrations of VL and nitrate can be significantly
higher in aqueous aerosol particles than what we have used
to mimic cloud and fog water. As a major component of
aerosols, nitrate can have concentrations as high as sulfate
(Huang et al., 2014). More studies should then explore the
direct photosensitized oxidation of other biomass-burning-
derived phenolic aromatic carbonyls, particularly those with
high molar absorption coefficients. Based on our findings,
the presence of nitrate should be considered for examining
aqSOA formation from these reactions. The influences of re-
action conditions should also be investigated to better un-
derstand the oxidation pathways. As aerosols comprise more
complex mixtures of organic and inorganic compounds, it is
worthwhile to explore the impacts of other potential aerosol
constituents on aqSOA formation and photo-oxidation stud-
ies. This can also be beneficial for understanding the inter-
play among different reactions during photo-oxidation. Con-
sidering that biomass burning emissions are expected to in-
crease continuously, further studies on these aqSOA forma-
tion pathways are strongly suggested.
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author.
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