

Supplement of

Technical note: Dispersion of cooking-generated aerosols from an urban street canyon

Shang Gao et al.

Correspondence to: Chak K. Chan (chak.k.chan@cityu.edu.hk) and Keith Ngan (keith.ngan@cityu.edu.hk)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material

Figure S-1. As in Fig. 8, but for isolated kitchens and deep frying.

θ	τ_{coag}/T_c	τ_{depo}/T_c
0°	3141	0.4
90°	1529	0.5

Table S-1. Aerosol timescales for 0° and 90° .

Figure S-2. As in Fig. 9, but for Case NG-B.

Figure S-3. As in Fig. 9, but for case CO-B.

Figure S-4. Vertical profiles of the mean number concentration for emission scenario NG-B and all aerosol processes for the default emission spectrum (ALL); displacement to large scales by a factor of 2 (ALL-LD); and displacement to small scales by a factor of 0.5 (ALL-SD).

Figure S-5. Relative difference fields for NG-B: (a) displacement to small scales, SD; (b) default emission spectrum; (c) displacement to large scales, LD.