Supplement of Atmos. Chem. Phys., 22, 2703–2726, 2022
https://doi.org/10.5194/acp-22-2703-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Supplement of

Technical note: Dispersion of cooking-generated aerosols from an urban street canyon

Shang Gao et al.

Correspondence to: Chak K. Chan (chak.k.chan@cityu.edu.hk) and Keith Ngan (keith.ngan@cityu.edu.hk)

The copyright of individual parts of the supplement might differ from the article licence.
Figure S-1. As in Fig. 8, but for isolated kitchens and deep frying.

<table>
<thead>
<tr>
<th>θ</th>
<th>τ_{coag}/T_c</th>
<th>τ_{depo}/T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>3141</td>
<td>0.4</td>
</tr>
<tr>
<td>90°</td>
<td>1529</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table S-1. Aerosol timescales for 0° and 90°.
Figure S-2. As in Fig. 9, but for Case NG-B.
Figure S-3. As in Fig. 9, but for case CO-B.

Figure S-4. Vertical profiles of the mean number concentration for emission scenario NG-B and all aerosol processes for the default emission spectrum (ALL); displacement to large scales by a factor of 2 (ALL-LD); and displacement to small scales by a factor of 0.5 (ALL-SD).
Figure S-5. Relative difference fields for NG-B: (a) displacement to small scales, SD; (b) default emission spectrum; (c) displacement to large scales, LD.