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Abstract. On-road vehicle emissions are a major contributor to significant atmospheric pollution in populous
metropolitan areas. We developed an hourly link-level emissions inventory of vehicular pollutants using two
land-use machine learning methods based on road traffic monitoring datasets in the Beijing–Tianjin–Hebei
(BTH) region. The results indicate that a land-use random forest (LURF) model is more capable of predict-
ing traffic profiles than other machine learning models on most occasions in this study. The inventories under
three different traffic scenarios depict a significant temporal and spatial variability in vehicle emissions. NOx ,
fine particulate matter (PM2.5), and black carbon (BC) emissions from heavy-duty trucks (HDTs) generally have
a higher emission intensity on the highways connecting to regional ports. The model found a general reduction
in light-duty passenger vehicles when traffic restrictions were implemented but a much more spatially heteroge-
neous impact on HDTs, with some road links experiencing up to 40 % increases in the HDT traffic volume. This
study demonstrates the power of machine learning approaches to generate data-driven and high-resolution emis-
sion inventories, thereby providing a platform to realize the near-real-time process of establishing high-resolution
vehicle emission inventories for policy makers to engage in sophisticated traffic management.

1 Introduction

Rapid social and economic growth in China has driven the
development of road transportation systems and mobility ser-
vices over the past few decades. This macrotrend also aligns
with the faster pace of urban expansion and agglomeration,
creating higher travel activities that are not only caused by
urban commuting but also by intercity connections. Conse-
quently, on-road transportation systems have resulted in sub-
stantial challenges regarding traffic congestion, carbon emis-

sions, air pollution, and land-use issues (Uherek et al., 2010;
Waddell, 2002; Chapman, 2007). To address traffic-related
air pollution issues, previous studies have developed link-
level emission inventories for metropolitan areas or their ur-
ban cores. Notably, more studies have recognized the consid-
erable environmental impact of nonlocally registered vehi-
cles, especially nonlocal heavy-duty diesel trucks (HDDTs)
used for regional freight purposes. For example, nonlocal
HDDTs are estimated to contribute nearly 30 %–40 % of the
total on-road emissions of nitrogen oxides (NOx) and fine
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particulate matter (PM2.5), which is greater than the contribu-
tion of the 5 million local passenger cars (Wang et al., 2011;
Yang et al., 2019a). Undoubtedly, for transportation hubs,
such as Beijing, we see a clear need to support policymaking
by enlarging road emission inventories to the multiprovince
level in order to improve the management of transportation
emissions.

The technological evolution of intelligent transportation
systems has facilitated emission inventories for megacities.
For example, Gately et al. (2017) applied speed data from
mobile phones and vehicles gathered using GPS (global po-
sitioning system) to map the emission fluxes from vehicles
in the Greater Boston region. In addition to such trajectory
data (Sun et al., 2018), open-access traffic congestion in-
dexes could also be derived from navigation companies or
municipal government agencies to dynamically estimate road
speeds. For traffic volume and fleet mix, radio frequency
identification (RFID) and traffic cameras are capable of re-
porting detailed vehicle counts using license plate numbers
(Zhang et al., 2018). These real-world traffic datasets are use-
ful for elucidating temporal and spatial variations in traffic
emissions. However, we are still confronted with a few chal-
lenges with respect to constructing multiprovince, link-level
emission inventories utilizing methods that are applicable to
smaller research domains. First, the annual averaged daily
traffic (AADT) data, for example, which could be assessed
from the US Federal Highway Administration, typically use
the traffic profiles of a select portion of a roadway system
(i.e., “sample panel”) to represent the “full extent” of the
system. Second, simple assumptions and empirical adjust-
ments of vehicle kilometers traveled (VKT) are often used to
downscale state-level or national-level AADT profiles to traf-
fic patterns of specific counties (Gately et al., 2015). Both of
these factors could result in estimates of the spatial variations
in traffic volume that may not represent real-world patterns.
Furthermore, the AADT datasets are updated every year ac-
cording to the annual submission from all states. Therefore,
the AADT datasets could support the average analysis of sea-
sonal or day-of-the-week variations (McDonald et al., 2014)
but are limited to reflecting emissions in a quasi-dynamic
fashion (e.g., hourly).

Traffic demand modeling is a useful complement to mea-
surements and simple empirical downscaling, and it has been
utilized to assist in the development of emission inventories
(Gately et al., 2017; Zhang et al., 2018). However, trans-
portation simulation methods are often time-consuming. The
machine learning method represents a faster complementary
approach to estimating traffic flows in a particular context
compared with full traffic demand modeling, and it is also
more able to adapt to local conditions than simpler empirical
approaches.

The research domain of this study, the Beijing–Tianjin–
Hebei (BTH) region (see Fig. S1), geographically covers
three provincial-level administrative regions with a total land
area of 217 000 km2. As the national political center, the

BTH region has developed the busiest freight system in
northern China but has also suffered from the worst air qual-
ity since the 2000s. We utilized hourly traffic profiles, in-
cluding volume, speed, and fleet mix obtained from the gov-
ernmental intercity highway monitoring network, to pioneer
land-use machine learning methods for developing link-level
emission inventories. The methodology can potentially be
used to map traffic characteristics on a larger scale (at the
national level) or to deal with real-time urban traffic data
streams that need to overcome the challenges of computa-
tional accuracy and efficiency.

2 Methodology and data

2.1 Research domain and emission calculation

The government traffic monitoring datasets mainly cover
main intercity highways, such as expressways, national high-
ways, and provincial highways. Notably, we did not include
urban sections or minor roads in the research domain because
the traffic profiles of these roads were administered by local
governmental agencies. The network of intercity main roads
in the BTH region has a total length of 50 660 km, including
18 824 km of expressways, 8989 km of national highways,
and 22 847 km of provincial highways (see the definition of
road types in Table S1). There were 22.38 million regis-
tered vehicles (motorcycles excluded) in the entire region as
of 2017, with an average annual growth rate of 7 % since
2013. In addition, freight trucks for the mass transportation
of coal and steel from other provinces pass through the BTH
region in very large numbers because this region accounts
for approximately one-quarter of the total steel production in
China.

The emissions of primary vehicular pollutants (carbon
monoxide, CO; total hydrocarbon, THC; nitrogen oxide,
NOx ; fine particulate matter, PM2.5; and black carbon, BC)
were calculated using a high-resolution method in a temporal
and spatial framework. A link-level emission inventory mod-
eling framework, called EMBEV-Link (Link-level Emission
factor Model for the BEijing Vehicle fleet), was used to com-
plete the emission calculation (Yang et al., 2019a). For each
road link, hourly emissions are the product of the traffic vol-
ume, link length, and speed-dependent emission factors (see
Eq. 1).

Eh, j, l =
∑

t
EFc, j (v)×TVc, h, l×Ll, (1)

where Eh, j, l is the total emission of pollutant j on road link
l at hour h, in units of grams per hour (g h−1); EFc, j (v) is
the average emission factor of pollutant j for vehicle cate-
gory c at speed v, in units of grams per kilometer (g km−1);
TVc, h, j is the traffic volume of vehicle category c on road
link l at hour h, in units of vehicles per hour; and Ll is
the length of road link l, in units of kilometers (km). Ac-
cording to the resolution of traffic mix data, six vehicle
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categories were defined, namely light-duty passenger vehi-
cles (LDPVs), medium-duty passenger vehicles (MDPVs),
heavy-duty passenger vehicles (HDPVs), light-duty trucks
(LDTs), and heavy-duty trucks (HDTs) (see Table S2). In
contrast to the city-scale emission inventories, we did not
separate the traffic volume of transit buses and taxis from
the HDPVs and LDPVs, respectively. Additionally, motor-
cycles were not included because it was difficult to observe
them on these intercity highways. For each vehicle category,
speed-dependent emission factors were developed based on
the EMBEV model. The EMBEV model embodied the de-
tailed fleet configurations based on vehicle registration data,
which were developed based on thousands of in-lab dy-
namometer tests and hundreds of on-road tests (Zhang et al.,
2014). Since 2015, this model has become the archetype of
the official National Emission Inventory Guidebook in China
(Wu et al., 2016, 2017). Based on the EMBEV model, this
study updated the BTH emission database, taking full ac-
count of the differentiated vehicle emission characteristics of
Beijing, Tianjin, and Hebei. The main influencing factors in-
clude the implementation timetable of vehicle emission stan-
dards, the fuel quality, the intensity of in-use vehicle super-
vision, and the proportion of high-emission vehicles, among
others. Figure S2 shows the fleet-average emission factors of
CO, NOx , and BC for LDPVs and HDTs estimated by the up-
dated EMBEV model in Beijing, Tianjin, and Hebei. As the
traffic monitoring stations cannot obtain the emission stan-
dard information of the vehicle, the proportions of vehicles
with a specific emission standard and the vehicle age/mileage
(used to estimate mileage deterioration of emissions) were
assumed to be consistent with the default fleet composition
data in the EMBEV model. We also made adjustments based
on the restriction policy, such as HDTs older than the China
III standard are not allowed to drive within the Fifth Ring
Road in Beijing. Figure S3 presents speed-dependent emis-
sion factors modified by different regions representing the
traffic configurations (e.g., fuel type, emission standard, and
vehicle size) and operating conditions (e.g., fuel quality) esti-
mated for the calendar year of 2017. Evaporative THC emis-
sions were not included in the current EMBEV-Link model
because we were limited to spatially specifying the evapora-
tive off-network emissions.

2.2 Traffic scenarios under various transportation
management schemes

Three traffic scenarios were generated as inputs to the
EMBEV-Link model in order to observe the impact of ma-
jor transportation management schemes: scenario Weekday
(S1), which represented the average traffic patterns during
weekdays (Monday to Friday) with regular driving patterns;
scenario Weekend (S2), which represented the average traffic
patterns on weekends (Saturday and Sunday), possibly with
more leisure travel; and, scenario Restriction (S3), which
represented the traffic patterns under special restrictions.

The Chinese government has launched comprehensive action
to alleviate air pollution during serious pollution episodes.
For the on-road sector, transportation restrictions are imple-
mented on polluted days when the PM2.5 concentrations or
air quality index (AQI) are forecasted to be higher than cer-
tain thresholds. As one of the most polluted regions in China,
the BTH region has implemented a package of traffic control
measures, especially during winter, which has the worst me-
teorological conditions for pollution dispersion. In this study,
the Restriction scenario (S3) estimated the real-world traffic
patterns during a special week, from 4 to 8 November 2017,
that experienced serious haze pollution. More extensive bans
than usual were adopted during the abovementioned week,
and coal-related freight trucks and high-emission vehicles
(e.g., gasoline cars in compliance with pre-China II stan-
dards) were restricted from many roads in the BTH region;
thus, the traffic composition (especially with respect to the
configuration of the emission standard) would be adjusted
accordingly in S3. In contrast to the averaged diurnal patterns
in S1 and S2, hourly emissions were continuously estimated
throughout the period with traffic restrictions.

2.3 Generating dynamic traffic profiles based on
land-use machine learning models

2.3.1 Data collection

The input data for model development in this study mainly
included traffic data and land-use data. An overview of the
data used to train the land-use machine learning models is
given in Table S3 and detailed below.

Traffic data

The Chinese Ministry of Transport has established nation-
wide networks to monitor intercity traffic conditions (Yang
et al., 2019a; Zhang et al., 2018). Twenty-four-hour diur-
nal traffic profiles, including the volume, speed, and fleet
mix, were obtained from 848 intercity highway sites in the
BTH region (see Fig. S1). The hourly traffic profiles of a
whole week (20 to 27 of the month) were collected in Jan-
uary, April, July, and November in 2017 in order to represent
the average scenarios (S1 and S2). For S3, we further col-
lected the hourly profiles from a special week (specifically,
5 and 6 November) that experienced traffic restrictions. Fig-
ure S4 shows the distribution of the annual average daily traf-
fic profiles used to train the models in order to establish their
capability to predict the spatial distribution of these traffic
profiles. Notably, the monitoring data of the traffic volume
could not separate the LDPVs and MDPVs from the light- to
medium-duty passenger vehicles (LMDPVs) on the whole.
Therefore, we assembled two categories when predicting the
traffic volume and separated the predicted traffic volume val-
ues according to the estimated total vehicle activity (i.e., reg-
istered population× annual VKT).
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Land-use data

As land-use machine learning models have rarely been used
to develop traffic emission inventories, we selected candidate
spatial predictors based on previous research on air pollu-
tion concentration predictors (Hoek et al., 2008; Lee et al.,
2017). Many of these predictors, such as the population den-
sity, road density, and distance from transportation facilities
(e.g., airports and transit stations), are expected to affect traf-
fic activities as well. The potential predictor variables were
divided into two groups: (1) variables representing a point
value and (2) variables representing the cumulative values of
an area (buffer variables). The buffer variables were repre-
sented as a density value (standardized by the buffer area). In
total, 139 spatial predictor variables (see Table S3) regard-
ing the land-use data were calculated, considering the data
availability. Gong et al. (2019) transferred the global train-
ing sample set developed in 2015 at a 30 m resolution to
map 10 m resolution global land cover in 2017, which was
assigned into each buffer to calculate the land-use variables.
Next, we utilized the points of interest (POIs) mined from the
Amap API to calculate the POI density in every buffer and
the distance variables (Gaode Map, 2017). The population
density in the buffer was extracted from WorldPop, which
estimates the number of people per pixel (ppp) and people
per hectare (pph) and adjusts the national totals to match the
UN population division with a spatial resolution of 100 m
(WorldPop, https://www.worldpop.org/; School of Geogra-
phy and Environmental Science, 2015). The China Digi-
tal Road-network Map (CDRM) data developed by NavInfo
were used in this study. The road information included the
location (latitude and longitude), administration, number of
lanes, and designated speed limit of the monitoring sites. We
categorized the intercity traffic monitoring sites by road type
(e.g., expressways, national-level highways, and provincial-
level highways) and, thus, calculated the road density in each
buffer.

2.3.2 Development and validation of the machine
learning models

In order to find the most capable model for this study, five
machine learning models commonly used in the environment
or transport fields were selected based on a comprehensive
literature review; they were then developed to estimate the
spatial distributions of link-level traffic volume, speed, and
fleet mix for the research domain. These models are land-
use random forest (LURF), gradient-boosted decision trees
(GBDT), support vector regression (SVR), Gaussian process
regression (GPR), and linear regression (LR). LURF mod-
els are often implemented in prediction analyses (e.g., spa-
tial distribution of pollutant concentrations) because of their
increased accuracy and resistance to multicollinearity and
complex interaction problems compared with linear regres-
sion (Hastie et al., 2009; Brokamp et al., 2018). GPR is a

flexible nonparametric Bayesian model that has been suc-
cessfully applied to predict traffic characteristics (e.g., traf-
fic congestion by Liu et al., 2013, and traffic volume by Xie
et al., 2010) with state-of-the-art results. GBDT models have
also been well adopted for traffic prediction in various stud-
ies due to their ability to continuously reduce error during
the execution of each iteration (Xia and Chen, 2017; Yang
et al., 2017, 2019b; Li and Bai, 2016). The SVR method
showed great competence over other traditional algorithms
while dealing with nonlinear, high-dimensional, and small-
sample problems (Li and Xu, 2021). LR is a fundamental
and popular algorithm in the field of traffic flow prediction,
which can establish a statistical relationship between depen-
dent variables and independent variables (Alam et al., 2019;
Boukerche and Wang, 2020). The detailed advantages and
disadvantages of each model are summarized in Table S4.

In this study, in the process of model development, we
used the annual daily average traffic profiles (i.e., traffic vol-
ume by category and speed) as the observed responses of the
models, and the land-use datasets (detailed in Sect. 2.3.1)
were used as model input. We conducted a general 10-fold
cross-validation to evaluate the model performance. The en-
tire dataset, including the hourly traffic datasets and the
land-use datasets, was randomly split into 10 groups, with
each group containing ∼ 10 % of the data. In each cross-
validation, nine groups of data were employed as training
sets to fit the models and make predictions on the remaining
group. This process was repeated 10 times until every group
was predicted. The Pearson r , root-mean-square prediction
error (RMSE), and mean absolute prediction error (MAPE)
between the model predictions and observations were calcu-
lated to evaluate the model performance.

The validation results indicated that the LURF model is
the most capable of estimating the traffic characteristics (see
Sect. 3.1); hence, more specific hourly LURF models were
developed. The relative importance of the predictors from
the trained LURF model shows their prediction ability. For
each predictor, we permuted its values across every obser-
vation in the dataset and measured the increase in the mean
standard error (MSE) per permutation. While repeating this
process for each predictor, a metric stores the increase in
the MSE due to the permutation of out-of-bag observations
across each input predictor averaged over all trees in the for-
est and divided by the standard deviation taken over the trees.
The larger this value, the more important the predictor should
be. The metric stores the strength of the relationships be-
tween the predictors and projections to indicate the relative
importance of relationships between various predictors.

3 Results and discussion

3.1 The results of the traffic prediction

Table 1 illustrates the Pearson r used to evaluate the model
performance with respect to predicting the daily averaged

Atmos. Chem. Phys., 22, 1939–1950, 2022 https://doi.org/10.5194/acp-22-1939-2022

https://www.worldpop.org/


X. Wu et al.: High-resolution mapping of regional traffic emissions using land-use machine learning models 1943

Table 1. The cross-validated mean Pearson r values of the traffic
prediction by selected machine learning models.

Traffic profiles LURF GBDT SVR GPR LR

LMDPV 0.79 0.81 0.65 0.62 0.48
HDPV 0.61 0.54 0.51 0.46 0.3
LDT 0.62 0.55 0.44 0.49 0.17
MDT 0.64 0.6 0.48 0.47 0.26
HDT 0.65 0.58 0.56 0.58 0.5
Speed 0.75 0.74 0.7 0.71 0.55

traffic parameters based on the constructed machine learn-
ing models. The overall predictive performance (Pearson’s
r , RMSE, and MAPE) is summarized in Table S5. Model
performance was assessed using a 10-fold cross-validation.
First, the LURF models consistently derive higher correla-
tion coefficients between the predicted and observed traffic
profiles than almost all of the other models. The Pearson r

values range from 0.62 (LDTs) to 0.79 (LMDPVs) for the
LURF models, which are higher than the corresponding cor-
relation coefficients for the other four models. The r values
of GBDT for LMDPVs are slightly better than those using
LURF (0.81 vs. 0.79). Furthermore, the RMSE values of
the category-resolved traffic volume values using the LURF
models are significantly lower than those for the other mod-
els. The RMSE values of GBDT and SVR for HDT traffic
simulations are also relatively low. With respect to the MAPE
value, the performance of LURF, GBDT, and SVR is com-
parable and is better than that for GPR and LR. In general,
LURF shows the best performance in the simulation of all
traffic profiles, while the performance of GBDT and SVR
for individual indicators (such as traffic flow of LMDPVs
and HDTs) is also acceptable. Therefore, the LURF model
is more capable of predicting traffic profiles than other mod-
els on most occasions in this study and will be used in the
following simulations.

We further developed a specific LURF model for each
hour to predict the hourly averaged traffic profiles under dif-
ferent scenarios. We ranked the variable importance in the
training process, utilizing the method above to construct a
variable importance measure, and then averaged the hourly
ranks for each variable to the final importance index listed
in Table S6. Table S6 illustrates the top 10 most important
variables for all land-use predictors in our LURF models un-
der S1. In general, in addition to the road location (province,
city, and county), the most important input variables for pre-
dicting traffic volume are primarily related to road informa-
tion, such as the road type, road density, number of lanes,
and designated speed. Especially for HDTs and speed sim-
ulations, the top 10 most important variables are almost all
related to road information. The effects of land cover and
POI information on estimating traffic characteristics are rel-
atively less important than the role of road information. For

passenger fleets (LMDPVs and HDPVs) and light-duty and
medium-duty trucks (LDTs and MDTs, respectively), some
important inputs related to the land-use datasets (e.g., pop-
ulation and POI information) are indicated by the analysis.
Notably, these important land-use variables often represent
large buffers (e.g., 2000 to 5000 m). This effect is because
intercity monitoring sites are typically located far away from
urban areas, where POI information is more densely avail-
able.

3.2 Traffic activity characteristics of road networks
under various scenarios

In contrast to urban weekday–weekend patterns (Yang et
al., 2019a), higher traffic activity is estimated on week-
ends (S2; 931 million vehicle kilometers) than on weekdays
(S1; 841 million vehicle kilometers). This implies that more
leisure trips on weekends could be captured by intercity high-
way monitoring data (see Fig. S5). The lower traffic activity
on weekdays is mainly observed in Hebei Province (63 %);
among all vehicle categories, LDPVs account for ∼ 70 % of
the total reduced VKT, followed by HDTs (16 %) and LDTs
(10 %).

We annualized the allocation of the total traffic activity by
vehicle category in the BTH region by aggregating the daily
patterns under S1 and S2 (see Fig. S6). Among all of the
fleets, LDPVs account for the largest proportion of the total
annual traffic activity (64 %), followed by HDTs (18 %) and
LDTs (9 %). For HDTs, the fractions of the total traffic activ-
ity decrease from Hebei (20 %) to Tianjin (18 %) and, thus,
to Beijing (11 %). This is likely due to two major reasons:
(1) the passenger traffic activity of LDPVs is denser in Bei-
jing than in Hebei and (2) many HDTs are restricted within
the Sixth Ring Road in Beijing, which could also decrease
the freight activity outside of the restricted area (Yang et al.,
2019a). Table S7 illustrates the allocation of traffic activity
by vehicle category and road type. For freight transportation,
more than 50 % of HDT traffic activity is estimated to occur
on expressways. In Tianjin and Hebei, HDTs more frequently
travel on expressways than LDTs, in order to improve effi-
ciency.

In terms of temporal variations, the rush hour phe-
nomenon, shown as an increase in the traffic activity, oc-
curred from 08:00 to 10:00 GMT+ 8 and from 15:00 to
17:00 GMT+ 8 on weekdays (S1). Compared with the rush
hour effect within urban areas in Beijing (e.g., which peaks at
07:00 GMT+ 8) (Yang et al., 2019a), the morning rush hours
occur later for these intercity highways, whereas evening
rush hours are earlier. Similar trends are observed on week-
ends (S2), with higher traffic activity reflecting more casual
intercity trips (see Fig. S5). In contrast, the diurnal fluctua-
tions in the average speeds depict quite similar characteristics
between weekdays and weekends (see Fig. S7) because the
level of congestion for intercity highways (even during rush
hours) is not comparable to urban areas. It should be noted
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Figure 1. Estimated traffic volume reductions of LDPVs and HDTs under restricted traffic conditions (S3) compared with normal weekdays
(S1).

that the speed in Beijing is obviously lower than that in Tian-
jin and Hebei, mainly due to the congestion that occurs in
Beijing as a result of its larger travel demands.

The traffic activity in S3, which included special policy in-
terventions, was clearly reduced in the BTH region: the daily
traffic activity was decreased by 23 % compared with that
of normal weekdays. Traffic reductions were also heteroge-
neous among the various vehicle categories and different re-
gions. As Fig. 1 shows, LDPVs display uniform reductions
of approximately 25 % on all of the intercity highways in
the BTH region; only 4 % of roads are identified as having
increased LDPV volume. For HDTs, reduced traffic could
also be observed in Beijing and on the expressways and na-
tional highways in Tianjin, but a certain number of provin-
cial highways in Tianjin (∼ 20 %) as well as expressways
(∼ 30 %), national highways (∼ 15 %), and provincial high-
ways (∼ 20 %) in Hebei showed increased flow. Four subre-
gions with significantly increased HDT volume (more than
50 %) are indicated in Fig. 1. Subregions 1–3 represent the
roads heading to several large ports (the ports of Qingdao,
Tianjin, and Qinhuangdao for subregions 1–3, respectively),
and subregion 4 represents the areas near the boundary of
the BTH region. These differences in traffic volume between
LDPVs and HDTs indicate that the restrictions could uni-
formly reduce the travel demand across the region for pas-
senger travel. In contrast, decreases in HDT traffic volume
are expected in areas with the stricter enforcement of traf-
fic restrictions (i.e., Beijing and the highways and national
roads in Tianjin). The traffic restrictions were more effec-
tive in Beijing, resulting in a 29 % decrease among all vehi-
cle fleets, especially for HDTs (a 52 % decrease) and MDTs
(a 42 % decrease). In Hebei, such traffic restrictions could
result in HDTs taking detours, as the operators and drivers
of HDTs even conducted their business on restrictive days.

The decrease in the total traffic activity in Hebei was primar-
ily due to LMDPVs, and the traffic activities of MDTs and
HDTs were only 5 % and 14 % lower than those on normal
weekdays (S1).

3.3 Temporal and spatial characteristics of traffic
emissions

The total daily emissions for the intercity highways in the
BTH region are estimated to be 1443 t for CO, 152.3 t for
THC, 1158 t for NOx , 37.30 t for PM2.5, and 18.73 t for BC
on weekdays (S1; see Fig. 2 and provincial-level total emis-
sions and emission intensity in Fig. S8). On weekends (S2),
the total daily emissions are estimated to increase by approx-
imately 10 % for all pollutants due to increased traffic ac-
tivity. Comprehensive traffic restrictions under S3 triggered
decreased vehicle emissions (e.g., 33 %–38 % for CO and
THC, 23 % for NOx , and 15 %–17 % for PM2.5 and BC)
over the entire domain relative to S1. For LDPVs traveling
on the highways, greater reductions in CO and THC result
from the lower traffic volume due to traffic restrictions, es-
pecially in Tianjin and Hebei. In these areas, the controls on
vehicles are behind those in Beijing; therefore, restrictions on
pre-China II gasoline cars could result in a larger reduction.
Diesel trucks contribute significantly to the emission reduc-
tions of NOx , PM2.5, and BC, and their lower reduction per-
centages compared with CO and THC are related to smaller
decreases in the HDT traffic volume in Tianjin and Hebei.

The major temporal difference in the diurnal patterns be-
tween S1 and S2 lies in the higher emissions during the
weekend rush hours. Thus, we refer to the weekday sce-
nario (S1) to elucidate the temporal and spatial emission
patterns (see Figs. 2 and 3). The emission peaks of CO
and THC during the morning (09:00 to 10:00 GMT+ 8) and
evening (16:00 to 17:00 GMT+ 8) rush hours, which are ap-
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Figure 2. Estimated hourly emissions by vehicle category under S1.

parently associated with diurnal fluctuations in the passen-
ger travel demand, are shown in Fig. S5. As Fig. 4a and
b visualize, the CO emission intensity close to urban ar-
eas is significantly higher than that in outlying areas during
both peak and off-peak periods. The highest hourly emis-
sions of CO and THC, which are more associated with pas-
senger traffic activity, were estimated during the morning
rush hour (10:00 GMT+ 8); these emissions were approxi-
mately 40 %–50 % higher than their 24 h averages. The emis-
sion allocations show high resemblance between CO and
THC; specifically, LDPVs dominate the contributions, and
the proportions in Beijing and Tianjin are higher than those
in Hebei. This increase is because the Beijing and Tianjin
metropolitan areas have a higher density with respect to the
residential population (indicated by pop_5000m), business
units (indicated by POI_office_5000m), and urban lands (in-
dicated by urbanland_5000m) than Hebei; these variables
have been identified as the most important variables for traf-
fic activity predictions of LDPVs using LURF modeling (see
Table S6).

Diesel fleets are responsible for much greater shares of on-
road NOx , PM2.5, and BC emissions than CO and THC emis-
sions. Consequently, distinctive traffic behaviors of diesel

fleets will result in disparate temporal and spatial emission
patterns compared with those for CO and THC. First, we
have observed that the total emissions of NOx , PM2.5, and
BC during the night (00:00 to 04:00 GMT+ 8; Fig. 2) are
closer to the emissions during the daytime, but the nighttime–
daytime differences in the emission patterns are less than
those of CO and THC. This finding is because a considerable
portion of long-haul freight trucks in China are operated by
two drivers, who could work in shifts and also travel during
nighttime. Second, the NOx , PM2.5, and BC emission con-
tributions of HDTs in Tianjin and Hebei are approximately
10 % higher than those in Beijing. Additionally, the higher
percentages of total NOx , PM2.5, and BC emissions from
HDPVs (tourist and intercity coaches) in Beijing are higher
than those in Tianjin and Hebei. The comparison results in-
dicated higher passenger travel demand in Beijing due to its
attraction of tourists and lower freight transportation activity
due to truck restrictions.

The emission maps discern the Port of Tianjin, the largest
port in northern China with an annual freight handling
amount of 466× 106 t in 2018, as a significant hotspot. A
large amount of HDTs flood into the port (i.e., subregion 2
in Fig. 1), leading to significantly higher emissions on ad-
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Figure 3. Link-based emission intensity of CO (a, b) and NOx (c, d) during a midnight hour (00:00 GMT+ 8) and a rush hour
(10:00 GMT+ 8).

jacent highways throughout the day (Fig. 3c, d). The daily
variation in the NOx emission intensity in the port area is
more obvious than that in Tianjin and the BTH region, with
a peak period from 07:00 to 18:00 GMT+ 8. The hourly
average NOx emission intensity of the Port of Tianjin is
1.87± 0.42 kg km−1 h−1, which is 47 % and 123 % higher
than the average levels of Tianjin and the BTH region, re-
spectively (see Fig. S9).

3.4 Discussion

3.4.1 An efficient protocol for dynamically modeling
hourly based, link-level emissions

This study provides a universal analytical method for a high-
resolution vehicle inventory at a regional scale, especially for
regions including many cities that suffering from the diffi-
culty of addressing traffic data at a high spatial resolution.
Figure 4 shows the hourly variations in the traffic activities
of LDPVs and HDTs as well as total vehicle emissions by re-
gion during a special week when traffic restrictions were im-

plemented (specifically, on 5 and 6 November 2017). From
2 to 5 November, the traffic activity resembles that during a
normal week (e.g., 20 to 27 April 2017; see Fig. S10). When
traffic restrictions were implemented on 5 and 6 Novem-
ber, we observed a ∼ 20 % reduction in the VKT for LD-
PVs and HDTs, a ∼ 30 % reduction in CO emissions, and
a ∼ 20 % reduction in NOx emissions, which resembled S1
and S3 because of traffic restrictions. Therefore, the high effi-
ciency of the calculation based on the LURF model provides
a platform to realize the near-real-time process of establish-
ing high-resolution vehicle emission inventories, and it can
dynamically support the further evaluation of environmen-
tal benefits from traffic policies and management measures.
However, the spatiotemporal dependencies are not as clearly
modeled in machine learning as they are in general linear
model frameworks, and future work could derive methods
for optimizing the predictors used in machine learning mod-
els to improve the accuracy of the prediction.
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Figure 4. Hourly VKT for LDPVs and HDTs (a, b) as well as vehicle emissions of CO and BC (c, d) by region from 2 to 9 November 2017.

3.4.2 Comparison of the best machine learning method
against the standard empirical bottom-up
approach

Addressing the spatial characteristics of traffic profiles based
on limited datasets is a significant challenge for establish-
ing high-resolution emission inventories of on-road vehicles.
To overcome this barrier, the allocation of the VKT based
on road information has been the most typical way of estab-
lishing simplified bottom-up inventories in previous studies.
Zheng et al. (2014) allocated the VKT of each county based
on the same weighting factors, considering the vehicle cat-
egory and road type. Gately et al. used the same allocation
of the total VKT, considering the differences in weighting
factors according to the road type but without distinguishing
the vehicle category. This section compared the differences
between the abovementioned empirical methods and the ma-
chine learning method obtained in this study: M1 denotes
the best machine learning method (i.e., LURF) in this study,
and M2 denotes the allocation method based on the standard

empirical bottom-up approach. The VKT of M2 was allo-
cated based on a combination of the methods from Zheng
and Gately (according to Eq. 2).

VKTM2
l, vc = VKTM1

vc ×
TVl, vc ·RLl, vc∑

lTVl, vc ·RLl, vc
, (2)

where VKTM1
vc is the total VKT of vehicle category vc of the

BTH region calculated in M1; VKTM2
l, vc is the allocated VKT

on road link l of vehicle category vc in M2; TVl, vc is the pre-
allocated traffic volume based on its road type and location
on road (Yang et al., 2019a) link l of vehicle category vc; and
RLl, vc is the length of road link l. CO and NOx are discussed,
as they represent emissions with gasoline and diesel features,
respectively.

As Fig. 5 illustrates, compared with M1, M2 tends to un-
derestimate the CO emissions on the provincial highways
close to urban areas (80 % of the provincial highway links
are underestimated) and overestimates the expressways and
national highways in remote rural areas, especially in Beijing
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Figure 5. Comparison of the LURF method with the standard empirical bottom-up approach. M1 denotes the emission inventory based
on the best machine learning method (LURF) in this study, and M2 denotes the emission inventory based on standard empirical bottom-up
approach.

and Hebei (77 % and 62 % of the expressways are overesti-
mated, respectively). This miscalculation is due to the fact
that we tend to preallocate volume values according to the
road rank for remote rural areas without monitoring traffic
data; this means that expressways and national highways will
be allocated a higher traffic volume than provincial roads.
For NOx , we observe a similar misestimation in the emis-
sion distribution of CO: approximately 70 % of provincial
highway links are underestimated, and ∼ 70 % and 60 % of
expressways and national highways are overestimated. The
long-tailed distributions of the relative difference of CO and
NOx are illustrated in Fig. S11. Overall, the differences be-
tween the two methods are not extreme because 79 % and
82 % of the road links’ respective relative differences for CO
and NOx are within ±50 %. The analysis indicates that we
may use the simplified M2 without land-use data, although
we would need to pay attention to the uncertainty in the
project-level emission calculations (e.g., port-related areas).

Temporal and spatial patterns of air pollutant emissions
from on-road vehicles are of substantial interest because of
the associated potential public health impact. The population
exposure to vehicular pollutants is greatest in areas with high
vehicle usage and population density (Marshall et al., 2005).
Air quality simulation models with fine-grained input from
high-resolution vehicle emission inventories will be valuable
for evaluating the potential health benefits from vehicle emis-

sion control measures (Ke et al., 2017). However, we are
limited to estimates of detailed link-level emissions for ur-
ban areas in Tianjin and Hebei due to the data availability
(e.g., traffic volume of urban local roads). Currently, as noted
in Sect. 1, there are already link-level emission inventories
in large cities with traffic datasets from the ITS (Intelligent
Transportation System), but a strengthening of the portability
of the analytical method is still needed. This study highlights
a promising path to smart management of traffic emissions
in various regions and cities by combining advanced data-
driven techniques and multisource ITS datasets, which will
provide policymakers with a better understanding of how air
quality impacts regional and local transportation activities.

4 Conclusions

This paper developed an hourly link-level emissions inven-
tory of vehicular pollutants using land-use machine learning
methods based on the datasets of road traffic monitoring in
the BTH region of China under three traffic scenarios. The
methodology can potentially be used to map traffic character-
istics on a larger scale or to deal with real-time urban traffic
data streams that need to overcome the challenges of compu-
tational accuracy and efficiency. The major findings can be
summarized as follows:
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1. The land-use random forest (LURF) model is more ca-
pable of predicting traffic profiles than other models on
most occasions in this research.

2. The most important input variables for predicting traffic
volume values are primarily related to road information,
such as the road type, road density, number of lanes, and
designated speed.

3. Higher traffic activity is estimated on weekends than on
weekdays, and the traffic activity of S3, which included
special policy interventions, was reduced by 23 % com-
pared with that of normal weekdays.

4. The model finds a general reduction in light-duty pas-
senger vehicles when traffic restrictions were imple-
mented but a much more spatially heterogeneous impact
on heavy-duty trucks (HDTs).
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