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Abstract. Lung-deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle
toxicity instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained
either by direct measurements or by calculation based on the empirical lung deposition model and measurements
of particle size distribution. However, the LDSA or size distribution measurements are neither compulsory nor
regulated by the government. As a result, LDSA data are often scarce spatially and temporally. In light of this,
we developed a novel statistical model, named the input-adaptive mixed-effects (IAME) model, to estimate
LDSA based on other already existing measurements of air pollutant variables and meteorological conditions.
During the measurement period in 2017–2018, we retrieved LDSA data measured by Pegasor AQ Urban and
other variables at a street canyon (SC, average LDSA= 19.7± 11.3 µm2 cm−3) site and an urban background
(UB, average LDSA= 11.2± 7.1 µm2 cm−3) site in Helsinki, Finland. For the continuous estimation of LDSA,
the IAME model was automatised to select the best combination of input variables, including a maximum of
three fixed effect variables and three time indictors as random effect variables. Altogether, 696 submodels were
generated and ranked by the coefficient of determination (R2), mean absolute error (MAE) and centred root-
mean-square difference (cRMSD) in order. At the SC site, the LDSA concentrations were best estimated by
mass concentration of particle of diameters smaller than 2.5 µm (PM2.5), total particle number concentration
(PNC) and black carbon (BC), all of which are closely connected with the vehicular emissions. At the UB site,
the LDSA concentrations were found to be correlated with PM2.5, BC and carbon monoxide (CO). The accuracy
of the overall model was better at the SC site (R2

= 0.80, MAE= 3.7 µm2 cm−3) than at the UB site (R2
=

0.77, MAE= 2.3 µm2 cm−3), plausibly because the LDSA source was more tightly controlled by the close-
by vehicular emission source. The results also demonstrated that the additional adjustment by taking random
effects into account improved the sensitivity and the accuracy of the fixed effect model. Due to its adaptive input

Published by Copernicus Publications on behalf of the European Geosciences Union.



1862 P. L. Fung et al.: Input-adaptive linear mixed-effects model for estimating alveolar LDSA

selection and inclusion of random effects, IAME could fill up missing data or even serve as a network of virtual
sensors to complement the measurements at reference stations.

1 Introduction

Particulate matter is one of the key components determin-
ing urban air pollution. Particulate matter can be described
by a combination of varying concentration (number, surface
area and mass) and chemical composition. The mass con-
centrations of particulate matter are dominated by large par-
ticles, whereas the number concentrations are governed by
submicron particles (particle diameter (dp)< 1 µm), partic-
ularly ultrafine particles (UFPs, dp< 0.1 µm) (e.g. Petäjä et
al., 2007; Rönkkö et al., 2017; Zhou et al., 2020). Particu-
late matter of varying sizes, carrying various harmful sub-
stances, has been known for having a major contribution to
adverse health effects (Dockery et al., 1993; Oberdörster,
2012; Shiraiwa et al., 2017), in particular for respiratory sys-
tems. A particle could be deposited in lung airways upon in-
halation (Oberdörster et al., 2005) through three main mech-
anisms: inertial impaction, gravitational sedimentation and
Brownian diffusion. An airborne particle might be inhaled
either through nasal or oral passage and enter the respira-
tory tract. Coarser particles are usually partly deposited in
the head airway by the inertial impaction mechanism because
they cannot follow the air streamline. Some finer particles
are deposited in the tracheobronchial region, mainly through
gravitational sedimentation while some are removed by mu-
cociliary clearance (Gupta and Xie, 2018). The remaining
submicron particles diffuse by Brownian motion and pen-
etrate deeply into the alveolar region, which is considered
to be the most vulnerable section in lungs because removal
mechanisms might be insufficient (Gupta and Xie, 2018).
The surface area of inhaled particulate matter could also act
as a transport vector for many bacteria and viruses (Liu et
al., 2018a), and therefore, besides commonly monitored par-
ticulate matter number concentration and mass concentra-
tion, the surface area of a particle is also an important fac-
tor when considering the harmfulness of particulate matter
(Duffin et al., 2002). In particular, the total surface area of
particles which are deposited in alveolar section of human
lungs, known as lung-deposited surface area (LDSA), is of
the greatest concern because in vitro nanoparticle toxicity
has been demonstrated to be better explained when the lung
burden was expressed as total particle surface area instead of
atmospheric particulate matter mass (e.g. Brown et al., 2001;
Oberdörster, 2012; Schmid and Stoeger, 2016).

LDSA can be considered as an intermediary parameter be-
tween particle mass and particle number concentration as it
cannot be simply inferred from either of those parameters.
Moreover, due to the various deposition efficiency with re-
spect to particle sizes, the quantification of LDSA is not sim-

ple. Conventionally, LDSA concentrations can be retrieved
by (1) derivation from particle size distribution with a depo-
sition model or (2) direct measurements.

By fitting experimental lung deposition data on human be-
ings, empirical deposition models are developed with the
use of the lung deposition model modified by Yeh and
Schum (1980). Examples include the International Com-
mission on Radiological Protection (ICRP) Human Res-
piratory Tract Model (ICRP, 1994), the National Council
on Radiation Protection and Measurements (NCRP) model
(NCRP, 1997) and multiple path particle dosimetry (MPPD)
model (Anjilvel and Asgharian, 1995). Different conceptual
particle deposition models vary primarily with respect to
lung morphometry and mathematical modelling techniques
rather than by using different deposition equations. The three
whole-lung deposition models define regions of the human
lungs (head airway, tracheobronchial and alveolar) for any
combination of particle size and breathing pattern (Hofmann,
2009). Among all models, single-path models, such as ICRP
model, are often used over multi-path models due to their
simplicity and their applicability to an average path without
requiring detailed knowledge of the branching structure of
lungs. Due to a higher potential health risk, LDSA in the
alveolar region is often of greatest concern and it can be cal-
culated by summing up the products of the surface concen-
tration across particle size spectrum and their corresponding
deposition efficiency based on the selected deposition model.

Apart from numerical computation method, LDSA could
also be measured by accredited instruments. Diffusion charg-
ing based technique is a common approach where particles
are charged with a unipolar corona charger (Fissan et al.,
2006). This method enables measurement of ultrafine par-
ticles and, more specifically, the LDSA concentration with
good accuracy (Todea et al., 2015) and stable performance in
long-term measurements (Rostedt et al., 2014). A nanoparti-
cle surface area monitor (NSAM) has been used for decades
(e.g. Asbach et al., 2009; Hama et al., 2017; Kiriya et al.,
2017; Hennig et al., 2018), and several other instruments and
sensors, including DiSCmini, Testo Inc. (e.g. Eeftens et al.,
2016; Habre et al., 2018) and Partector, Naneos Ltd. (e.g.
Cheristanidis et al., 2020), and Pegasor AQ Urban, Pega-
sor Oy (e.g. Kuuluvainen et al., 2018; Kuula et al., 2020),
using similar measuring techniques, were developed later on.
Using these instruments in campaigns and continuous mea-
surements, LDSA concentrations in the alveolar region and
size distribution measurements in various environments have
been reported across the globe in the past decade (Table 1).
When comparing LDSA concentrations measured by differ-
ent instruments, the instruments’ limitations should be con-
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sidered in experimental LDSA studies, which will be further
discussed in Sect. 2.2.

Although each of these methods is capable of measuring
aerosol surface area concentrations, the corresponding un-
certainties and cost hinder the widespread use in monitoring
networks (Asbach et al., 2017). Even though the instruments
are available, data can often be missing due to instruments
maintenance and data corruption. Kuula et al. (2020) demon-
strated high correlations of measured LDSA concentrations
with black carbon (BC) and nitrogen oxide (NOx) in traf-
fic environments. Traffic activities have been observed to be
significant source contribution to the LDSA concentrations
(Järvinen et al., 2015). A clear correlation was also found be-
tween the emission factors of exhaust plume BC and LDSA
in on-road studies for city buses (e.g. Järvinen et al., 2019).
These highly correlated relationships provide good grounds
for estimating LDSA concentrations and short-term trends by
the other pollutants measured at the same site with the use
of a data-mining-based approach as statistical models. These
statistical models can eventually turn into virtual sensors of
LDSA after being validated even under the circumstances
of no actual instrumental LDSA measurements. Due to the
health effects LDSA has demonstrated, it is of great impor-
tance to researchers that continuous measurements of LDSA
are available with the help of these virtual sensors via statis-
tical models. A similar approach for sensor virtualisation of
BC measurement has been studied in Fung et al. (2020).

A data-mining-based approach exploits statistical or ma-
chine learning techniques to detect patterns between predic-
tors and dependent variables in the time series data. They
do not demand in-depth understanding of air pollutant dy-
namics, but evaluation by experts is still required to deter-
mine whether the models work properly. Simple yet appre-
hensible models, such as multiple linear regression (MLR,
e.g. Fernández-Guisuraga et al., 2016) and generalised ad-
ditive models (GAMs, e.g. Chen et al., 2019), are com-
monly utilised as white-box models in air pollutant proxy
studies. Furthermore, more sophisticated machine learning
black-box models, such as artificial neural networks (ANNs,
e.g. Cabaneros et al., 2019; Zaidan et al., 2019; Fung et al.,
2021a), nonlinear autoregressive network with exogenous in-
puts (NARX, e.g. Zaidan et al., 2020) and support vector
regression (SVR, e.g. Fung et al., 2021b), have been inten-
sively investigated in recent years. They work better in terms
of accuracy; however, they provide limited transparency and
accountability regarding the outcomes (Rudin, 2019; Fung et
al., 2021b).

Apart from model structures, the criteria of selecting vari-
ables in multipollutant datasets for model development have
received considerable attention over the years, and a large
number of methods have been proposed (Miller, 2002). Tra-
ditional methods, like stepwise procedures, which are a com-
bination of forward selection and backward elimination (e.g.
Liu et al., 2018b; Chen et al., 2019), can be unstable be-
cause they use a restricted search through the space of poten-

tial models, which eventually causes the inherent problem of
multiple hypothesis testing (Breiman, 1996; Faraway, 2014).
Another approach named regularisation has emerged as a
successful method to reduce the data dimension in an auto-
mated way, yet it deals poorly with multi-collinear variables,
for example, least absolute shrinkage and selection operator
(LASSO, e.g. Fung et al., 2021b; Šimić et al., 2020), ridge
regression (e.g. Chen et al., 2019) and ELASTINET (e.g.
Chen et al., 2019). Criterion-based procedures, which choose
the best predictor variables according to some criteria (coeffi-
cient of determination, residual, etc.), are sensitive to outliers
and influential points but involve a wider search and compare
models in a preferable manner. Examples are best subset re-
gression (e.g. Chen et al., 2019), input-adaptive proxy (IAP,
e.g. Fung et al., 2020, 2021b), etc. Hastie et al. (2020) com-
pared some of the models using the three approaches and
concluded that no single feature selection method uniformly
outweighs the others. Despite the extensive research of fea-
ture selection methods, the inclusion of random effects to-
gether with the fixed effects as a linear mixed-effects (LME)
model has received relatively little attention (e.g. Mikkonen
et al., 2020; Tong et al., 2020) in air pollution research, let
alone LDSA study in particular. This inclusion of random
effects could acknowledge a possible effect coming from a
factor where specific and fixed values are not of interest.

In this study, we combine the use of criterion-based feature
selection method and the inclusion of random effects, and
develop a novel input-adaptive mixed-effects (IAME) model
to estimate alveolar LDSA concentrations, which is the first
study of this context to our best knowledge. The description
of LDSA measurements and the techniques of IAME model
are outlined in Sects. 2 and 3, respectively. Section 4 presents
the characteristics of alveolar LDSA, including its seasonal
variability, weekend effect and diurnal pattern, in four types
of environments. We also aim to investigate the correlation
with other air pollutants. In Sect. 5, we evaluate the perfor-
mance of the IAME proxy (LDSAIAME) with the measured
alveolar LDSA by Pegasor AQ Urban (LDSAPegasor), ICRP
lung-deposition-model-derived LDSA (LDSAICRP) and an-
other modelled alveolar LDSA by IAP (LDSAIAP) as well as
the benefits and implication of this alveolar LDSA model as
virtual sensors. It should be noted that this study discusses
LDSA in the alveolar region unless stated otherwise.

2 Measurement description

2.1 Measurement sites

We retrieved aerosol, gaseous and meteorological data from
two types of measurement sites, i.e. street canyon (SC, 2017–
2018) and urban background (UB, 2017–May 2018), in the
Helsinki metropolitan area (HMA) described in more detail
below. Data from detached housing (DH, 2017) and regional
background (RB, 2017) sites were also included in the study
to provide comparison and data from the background concen-
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Table 1. Ambient LDSA of the alveolar region (in µm2 cm−3, corrected to two significant figures) reported in the last decade in chronological
order of the measurement start. TS and RA represent traffic sites and residential areas, respectively. For the other acronyms, please see the
methods section.

Location Site description Average
(mean,
unless
stated
otherwise)

Uncertainties
(SD,
unless stated
otherwise)

Period/season Instruments Study

Ruhr, Germany UB Median= 36 IQR= 21 Mar 2009–Dec 2014 NSAM Hennig et al.
(2018)

Basel, Geneva,
Lugano, Wald,
Switzerland

RB+UB+TS 32 IQR= 25 Jan 2011–Dec 2012 DiSCmini Eeftens et al.
(2016)

Lisbon, Portugal City centre
with heavy
traffic

35–89 4–8 Apr–May 2011 NSAM Albuquerque et
al. (2012)

Cassino, Italy UB 88–240 – Oct 2011–Mar 2012 NSAM Buonanno et al.

RB 69 (2012)

Barcelona, Spain UB with traffic
influence

37 26 Nov 2011–May 2013 NSAM Reche et al.
(2015)

Helsinki, Finland TS 65–94 – Feb 2012 ELPI, NSAM Kuuluvainen et

RA 15–31 al. (2016)

Athens, Greece TS 65 21
4.8

Jul 2012 Partector Aerotrak
9000

Cheristanidis et
al. (2020)

Leicester, UK UB with traffic 30 25 Nov 2013–May 2015 NSAM Hama et al.

influence 23 14 Warm months (2017)

38 33 Cold months

Los Angeles, USA Airport 47 27 Nov–Dec 2014 and
May–Jul 2015

DiSCmini Habre et al.
(2018)

Fukuoka, Japan UB 127 62 Apr 2015–Mar 2016 NSAM Kiriya et al.
(2017)

Helsinki, Finland TS 60 (ground level) Nov 2016 Partector, Kuuluvainen et

36–40 (below rooftop) ELPI, DiSCmini, al. (2018)

16–26 (above rooftop) Pegasor AQ Urban

Helsinki, Finland SC 22 14 Feb 2017–Jan 2018 Pegasor AQ Urban Kuula et al.

UB 9.4 6.9 (2020)

DH 12 10

Delhi, India TS 330 130 Nov–Dec 2018 ELPI Salo et al.
(2021a)

Salerno, Italy UB 79 48 Nov 2018–May 2019 NanoTracer Pacitto et al.

Rome, Italy TS 110 57 (2020)

Parma, Italy RB 17 10
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trations. Situated on a relatively flat land at the coast of Gulf
of Finland, HMA has a land area of 715 km2 and population
of about 1.13 million inhabitants. Helsinki can be classified
as having a continental or marine climate depending on the
air flows and the pressure system. Figure S1 and Table S1 in
the Supplement show the detailed site description.

Street canyon (SC) site. The Mäkelänkatu urban supersite
is operated by the Helsinki Region Environmental Services
Authority (HSY, Kuuluvainen et al., 2018). The station is lo-
cated 3 km from the city centre in a street canyon in the im-
mediate vicinity of one of the main roads leading to down-
town Helsinki. The street, with a speed limit of 50 km h−1,
consists of six lanes and two tramlines. The annual mean traf-
fic volume in 2018 per workday was 28 100 vehicles, 11 %
of which were recorded as the heavy-duty vehicles. The traf-
fic loads are especially high during rush hours at 08:00 and
17:00 LT (Fig. S2). The street canyon of width of 42 m is
surrounded by rows of buildings 17 m high, which weaken
the dispersion process of the direct vehicular emissions. All
the inlets for the measuring devices are positioned approxi-
mately at a height of 4 m from the ground level.

Urban background (UB) site. The Station for Measuring
Ecosystem-Atmosphere Relations III (SMEAR III, Järvi et
al., 2009) in Kumpula, situated on a rocky hill 26 m above sea
level, is about 4 km northeast of the centre of Helsinki. The
surroundings of this urban background station are hetero-
geneous, constituting of residential buildings, small roads,
parking lots, patchy forest and low vegetation from differ-
ent directions. One main road (45 000 vehicles per workday)
is located at a distance of 150 m east of the site. Trace gases
and meteorological conditions are measured at heights of 4
and 32 m, respectively, at a triangular lattice tower, while
aerosol measurements are conducted inside a container ap-
proximately 4 m above the ground. The site is co-operated by
Finnish Meteorological Institute (FMI) and the University of
Helsinki (UHEL).

Detached housing (DH) site. Three measurement stations,
Rekola (DH1), Itä-Hakkila (DH2) and Hiekkaharju (DH3),
were chosen since they represent a suburban residential area
surrounded by detached houses. These sites are mainly af-
fected by the wood combustion emissions from residential
activities, especially in cold weather conditions. Emissions
from traffic sources also account for a small portion of the
whole pollution. It is estimated that 90 % of the households
burn wood to warm up houses and saunas, less than 2 % of
which use wood burning as the main heating source in de-
tached houses in HMA (Hellén et al., 2017).

Regional background (RB) site. The RB site is located
about 23 km away from the Helsinki city centre in Luukki,
surrounded by a wooded outdoor recreational area right at
the edge of the greater Helsinki golf course. The measuring
station is in an open place away from busy traffic routes and
large point sources. As a result, this site can represent back-
ground concentration levels outside the urban area without
any main local sources.

2.2 Instruments

LDSA measurements. The sensor unit and the core of the Pe-
gasor AQ Urban are practically another instrument called a
Pegasor Particle Sensor M (PPS-M) sensor (Pegasor Oy, Fin-
land), originally designed for automotive exhaust emission
measurements (e.g. Maricq, 2013; Amanatidis et al., 2017).
The operation of the sensor is based on diffusion charging of
particles and the measurement of electric current without the
collection of particles. The diffusion charging of particles is
carried out by a corona-ionised flow that is mixed with the
ambient sample air in an ejector diluter inside the sensor.
The performance of the Pegasor PPS-M sensors for long-
term ambient measurements has been improved after they
were tested in Helsinki (Järvinen et al., 2015) and Beijing
(Dal Maso et al., 2016). The suggestions have been consid-
ered for the design of the current form of the Pegasor AQ
Urban in this study.

The Pegasor AQ Urban (dimensions:
320 mm× 250 mm× 1000 mm), which consists of a weath-
erproof cover, clean air supply and the above-mentioned
Pegasor PPS-M sensor, has been designed such that its
response to LDSA is not to be subjected to meteorological
fluctuation for outdoor operation. The sampling lines and the
sensor unit are heated to 40 ◦C above the ambient tempera-
ture to (1) dry the aerosol sample, (2) prevent interference
from humidity and (3) prevent any water condensation inside
the sensor. Kuuluvainen et al. (2016) used two Pegasor AQ
Urban devices during a 2-week period at an urban street
canyon and an urban background measurement station in
Helsinki, Finland, whereas Kuula et al. (2019) later used
the instruments in a 3-month campaign at the same urban
street canyon station. These studies demonstrated that the
output signal of the Pegasor AQ Urban correlated well
with other devices measuring LDSA concentrations such
as the Partector and DiSCmini. Kuula et al. (2020) further
validated the accuracy and stability of Pegasor AQ Urban at
the street canyon station by comparing the measured values
of 1 full year with differential mobility particle sizer (DMPS)
reference instruments (R2

= 0.90, RMSE= 4.1 µm2 cm−3).
The internal precision of Pegasor AQ Urban is ±3 %, but
this was not tested prior the campaign. The instrument is
optimised to measure the alveolar LDSA concentrations of
particles in the ∼ 10–400 nm size range. Pegasor AQ Urban
tends to underestimate LDSA of particles larger than about
400 nm. In typical urban environments, most of the particles
from local combustion sources are in the size below the
threshold (Asbach et al., 2009; Kuuluvainen et al., 2016;
Pirjola et al., 2017), generated vastly by anthropogenic
sources such as vehicular exhaust emissions (Karjalainen et
al., 2016) and residential wood combustion (Tissari, 2008),
which typically produce large amounts of small particles.
However, the impact of larger particles (> 400 nm) on
alveolar LDSA might be significant, for example, in HMA
during PM2.5 long-range-transport episodes or when there
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are many particles from very low-quality residential burning
in detached housing areas (Pirjola et al., 2017). The regional
background source in very polluted regions (e.g. Delhi,
Salo et al., 2021a; mining environments, Salo et al., 2021b)
could be another reason for the significant impact of larger
particles. This limitation of Pegasor AQ Urban should be
considered when it comes to data analysis in Sects. 4 and 5.

Aerosol measurements. A DMPS in combination of a dif-
ferential mobility analyser (DMA) and a condensation parti-
cle counter (CPC) measure aerosol size distribution (Kulka-
rni et al., 2011). A Vienna DMA and Airmodus A20 CPC
(measurements of particle size range 6–800 nm) were used
at the SC site, while a twin DMPS (Hauke-type DMA and
TSI model 3025 CPC and Hauke-type DMA, and TSI Model
3010 CPC, merged particle size range of 3–1000 nm) was
used at the UB site. Both instruments make use of the
bipolar charging of aerosol particles, followed by classifi-
cation of particles into size classes according to their elec-
trical equivalent mobility. In addition to particle size distri-
bution, total particle number concentration (PNC, in cm−3)
was calculated by summation. Particle mass concentrations
with a diameter less than 2.5 µm (PM2.5, in µg m−3) and
less than 10 µm (PM10, in µg m−3) were measured contin-
uously with the ambient particulate monitor TEOM 1405 at
the SC site and TEOM 1405-D at the UB site. Black car-
bon (BC, in µg m−3) mass concentration was measured by
a multi-angle absorption photometer (MAAP) Thermo Sci-
entific 5012 with a PM1 inlet. The measured absorbance
was converted to BC mass concentration by using a fixed
6.6 m2 g−1 mass absorption coefficient at a wavelength of
637 nm. PM2.5, PM10 and BC were recorded in µg m−3.

Ancillary measurements. Trace gas concentrations (in
ppb), including nitric oxide (NO), nitrogen dioxide (NO2),
their combined nitrogen oxide (NOx), ozone (O3) and car-
bon monoxide (CO), were determined with a suite of gas
analysers. In addition, supporting meteorological variables,
including air temperature (Temp), relative humidity (RH), air
pressure (P ), wind speed (WS), wind direction (WD) and
photosynthetically active radiation (PAR), were measured at
SC and UB. Figure S3 shows the meteorological conditions
during the measurement period. A list of collected variables
is shown in Table S2.

3 Method

3.1 Data pre-processing

The collected data were quality checked by the correspond-
ing operating organisation (HSY, FMI and UHEL). No ad-
ditional pre-processing was done for general analysis. For
proxy development, outliers due to potential measurement
errors were detected (SC: 0.73 %; UB: 0.99 % overall) by
using the interquartile range (IQR) rule, which is applica-
ble for non-Gaussian distribution sample. We calculated the
cutoff for outliers as 2 times the IQR, subtracted this cutoff

from the 25th percentile and added it to the 75th percentile to
give the actual limits on the data. We applied a natural log-
arithm transformation to all the skewed-distributed aerosol
and trace gas measurements in order to keep the distribu-
tion of each parameter following a normal distribution. Since
wind direction is a circular variable, it is resolved into north–
south (WD–N) and east–west (WD–E) vector components by
trigonometric functions.

3.2 Size-fractionated lung-deposited surface area
(LDSAICRP)

Alveolar deposition fraction (DFAL) as a function of parti-
cle size with the unit density is determined with the ICRP
Human Respiratory Tract Model by the following equation
(ICRP, 1994):

DFAL =

(
0.0155
dp

)(
exp

(
−0.416

(
lndp+ 2.84

)2)
+ 19.11exp

(
−0.482

(
lndp− 1.362

)2))
, (1)

where dp is the aerodynamic diameter (µm) of spherical par-
ticles with the unit density (1 g cm−3). The equation is de-
termined in two parts with respect to the two different peaks
in the deposition curve in Fig. 1. The peak near the size of
20 nm can be approximated to represent the Brownian de-
position, whereas the peak between 1 and 2 µm represents
the inertial deposition. From the particle number size dis-
tribution, we calculated the particle surface area distribution
assuming each particle is monodisperse sphere of standard
density at standard conditions. By Eq. (1), a deposition fac-
tor for each particle size bin (26 size bins at SC and 49 at UB)
were calculated. Size-fractionated LDSA was then computed
by multiplying the surface area concentration with DFAL in
the corresponding size class. Total LDSA calculated by the
ICRP lung model (LDSAICRP) can be obtained by summing
up the all the size-fractionated LDSA values (Hinds, 1999).
In this study, the alveolar LDSAICRP was calculated based on
DMPS measurements in SC and UB. Thus, while the alveo-
lar LDSA measured by Pegasor (LDSAPegasor) represents the
∼ 10–400 nm size range, the alveolar LDSAICRP represents
the 6–800 and 3–1000 nm size ranges in SC and UB, respec-
tively.

3.3 Novel IAME model

The IAME model is a combination of IAP and LME models.
IAP was first introduced by Fung et al. (2020) and has been
demonstrated to be reliable and flexible for filling up missing
values by taking input variables adaptively with robust ordi-
nary least-square regression models. IAP has been able to es-
timate BC concentration by other air quality indicators with
a satisfactory performance in two different categorised urban
environments: street canyon (adjusted R2

= 0.86–0.94) and
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Figure 1. Lung deposition factor of a spectrum of particle size
distribution based on the equation (ICRP, 1994). The solid black
line represents the total deposition factor, while the dotted blue,
green and red lines refer to deposition factor in head airway, tra-
cheobronchial and alveolar regions, respectively. Pegasor AQ Urban
measured the alveolar LDSA concentration of particles in the∼ 10–
400 nm size range (dark grey). DMPS at SC and UB were used to
calculate alveolar LDSA in selected size fractions in the 6–800 and
3–1000 nm size ranges, respectively

urban background (adjusted R2
= 0.74–0.91). Some models

outperformed IAP in accuracy performance, but its transpar-
ent model structure and ability to impute missing values still
make it a preferred option as a virtual sensor (Fung et al.,
2021b).

In this study, we primarily stuck to the strength to select
input variables adaptively with the introduction of mixed ef-
fects. The mixed-effects approach is a generalisation of the
linear model that can incorporate both fixed (i.e. causing a
main effect and/or interaction) and random effects (i.e. caus-
ing variance and/or variability in responses), allowing the ac-
count of several sources of variations (Chudnovsky et al.,
2012). As seen in Fig. 2, we picked the direct air pollutant
measurement from the station (variables of high correlation:
PM2.5, BC and NO2 and other supporting variables: PM10,
O3, NOx , NO, CO and PNC) and meteorological data of
higher correlation (Temp, RH, P , PAR, WS, WD–N, WD–
E) as the fixed variables because the air pollutants can indi-
cate the sources of LDSA which largely come from combus-
tion and meteorological data could influence the dispersion
and dilution of LDSA. They are the most direct factors to
the fluctuation of LDSA concentrations. Due to the strong
seasonal variation, weekend effects and diurnal pattern in ur-
ban air pollutant concentrations (Fung et al., 2020), the vari-
ance in responses might depend on the time indicators that

are not the primary cause of the concentration variability, but
they indirectly alter human-induced activities, such as traffic
amounts. To take them into account, we created three hierar-
chical time subgroups (12 months of the year, 7 d of the week
and 24 h of the day) as the inputs of random effect variables.

The regression equation of IAME is similar to the equation
of IAP, except that IAME includes additional intercepts term
for random effects as below:

yi = β0+

p∑
k=1

βikxik +

q∑
j=1

bij + ei, (2)

where yi is the ith estimated LDSA concentration. The first
term on the right β0 indicates the fixed intercept of the equa-
tion. The second term represents the total contribution by the
direct measurement of variable x as fixed effects with a slope
β at each data point i. A maximum of three inputs from the
total 16 fixed variables are selected to from 696 submodels
(Fig. 2). The inputs for random effects are indicated by b as
intercepts of the corresponding three hierarchical subgroups.
A Gaussian error term is indicated by e. The explanation of
Eq. (2) is visualised in Fig. 2.

One of the assumptions of LME models is that the random
effects, together with the error term, have the following prior
distribution:

b ∼N
(

0,σ 2D (θ )
)
, (3)

where D is a q-by-q symmetric and positive semi-definite
matrix, parameterised by a variance component vector θ , q
is the number of variables in the random-effects term, and
σ 2 is the observation error variance. We use an optimiser,
restricted maximum likelihood, commonly known as ReML,
with the value 1× 10−6 as the relative tolerance on gradient
of objective function and 1× 10−12 as absolute tolerance on
step size. The use of ReML over the conventional ML could
produce unbiased estimates of variance and covariance pa-
rameters (Lindstrom and Bates, 1988).

After the submodel formation, the dataset was randomly
divided into five portions. In total, 80 % of the data were
allocated for 4-fold cross validation to remove variance of
accuracy. The results of all the folds were averaged and
the submodels were ranked by several evaluation metrics,
which were further demonstrated in Fig. 2 and described in
Sect. 3.4. Some of the submodels were subject to rejection
under two conditions: (1) strong multi-collinearity among
the fixed parameters (variance inflation factor (VIF)> 5) and
(2) violation of the normality assumption of residuals also
known as heteroscedasticity (fail in Kolmogorov–Smirnov
(K–S) test, p < 0.05). Based on the situation of missing data,
the automatised IAME model would search for the best sub-
model option from the ranking chart. Hence, each data point
might be estimated differently depending on the available
data. The number of data points being estimated by each sub-
model was reported to show their frequency of usage.
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Figure 2. The block diagram of the proxy procedures (top). The blue and orange blocks are explanatory notes to the sections of submodel
formation and cross validation, respectively.

3.4 Evaluation metrics

In order to evaluate the model performance quantitatively, we
used the following metrics:

R2
= 1−

∑N
i=1(yi − ŷi)2∑N
i=1(yi − y)2

(4)

MAE=
1
N

∑N

i=1
|yi − ŷi | (5)

cRMSD=

√
1
N

∑N

i=1
((yi − y)− (ŷi − ỹ))2, (6)

r =

∑N
i=1(yi − y)(ŷi − ỹ)√∑N

i=1(yi − y)2
√∑N

i=1(ŷi − ỹ)2
, (7)

NSD=
SDpredicted

SDreference
=

√
1

N−1
∑N
i=1(ŷi − ỹ)2√

1
N−1

∑N
i=1(yi − y)2

=

√√√√∑N
i=1(ŷi − ỹ)2∑N
i=1(yi − y)2

, (8)
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where yi and ŷi are ith measured data point and estimated
variable by the model, respectively. y and ỹ are the expected
value of the measured and modelled dataset, respectively. N
is the number of complete data input to the model. The co-
efficient of determination (R2) is a measure of how close
the data lie to the fitted regression line. It, however, does
not consider the biases in the estimation. Therefore, we fur-
ther validated the models with mean absolute error (MAE)
and centred root-mean-square difference (cRMSD), where
MAE measures the arithmetic mean of the absolute differ-
ences between the members of each pair, whilst cRMSD
calculates the square root of the average squared difference
between the forecast and the observation pairs. cRMSD is
more sensitive to larger errors than MAE. Furthermore, to-
gether with cRMSD, Pearson correlation coefficient (r) and
normalised standard deviation (NSD) of the modelled dataset
are also studied. r describes the correlation between the mea-
sured and modelled data, whereas NSD measures the relative
spread of the data. Due to their unique mathematical rela-
tionship, the three metrics can be portrayed on Taylor’s dia-
gram, which has been used for submodel selection purpose.
We ranked our submodels first by R2, followed by MAE and
cRMSD. r and NSD serve as additional evidence when we
explain the model performance.

3.5 Two-sample t tests

We assessed the temporal and spatial impact on the IAME
model by comparing the means of absolute differences be-
tween the hourly measured and modelled LDSA in differ-
ent time windows at both stations. Two-sample t tests were
performed on the two populations of absolute differences
above-mentioned to determine whether the difference be-
tween these was statistically significant. A significance level
α of 5 % was chosen as the probability of rejecting the null
hypothesis when it is true, denoted as p.

4 LDSA measurement characterisation

4.1 General characteristics of LDSAPegasor in the
Helsinki metropolitan area

The annual mean alveolar LDSA concentrations at four
station types, SC (2017–2018), UB (2017–May 2018),
DH (2018) and RB (2018), were 19.7± 11.3, 11.2± 7.1,
11.7± 8.6 and 7.6± 5.4 µm2 cm−3, respectively (Table 2).
The DH and RB site were included to give more substantial
interpretation of data because the LDSA concentrations at
RB can be viewed as background measurements and the local
LDSA increments in HMA can be represented by the LDSA
at the hotspot measurement site subtracted by the LDSA at
the RB site. The time series of LDSA concentrations at the
SC and the UB site were presented in Figs. 3 and S4, where
the missing data of LDSA for the whole measurement period
were 3 % and 30 %, respectively. When comparing with the

same site type in other cities around the globe, LDSA con-
centrations detected in HMA were the lowest among the Eu-
ropean cities with reported values. While some literature also
reported LDSA at tracheobronchial region, most just consid-
ered LDSA at alveolar, which is considered to bring the most
harm to human lungs, as shown in Table 1.

The diurnal pattern of LDSA at RB was not observable
on workdays or over weekends (Fig. 4, upper panel). The
relatively low variability can be explained by the scarcity
of human activities. We can then regard the LDSA at RB
as the background concentrations mainly influenced by the
regionally and long-range-transported aerosol and meteoro-
logical variation (see Luoma et al., 2021; Jafar and Harrison,
2021). The concentration at RB was stable throughout the
different hours of day; therefore, the diurnal pattern of LDSA
concentration was apparently indistinguishable between the
measured concentration and the local increments. At the UB
and DH sites, the magnitudes and the patterns of the av-
erage hourly LDSA concentrations during workdays were
comparable, and both showed bimodal curves: one peak at
06:00–09:00 LT, the other at 21:00–23:00 LT. The former had
a larger peak during the morning peak hour because of the ve-
hicular emissions (Timonen et al., 2013; Teinilä et al., 2019),
while the latter had a larger peak in the evening attributed
mainly to the residential burning (Hellén et al., 2017; Helin
et al., 2018; Luoma et al., 2021). Over weekends, the peaks
in the morning were not identifiable and the evening peaks
were amplified due to enhanced human activities. A simi-
lar diurnal variation in residential areas was observed for BC
emitted by residential combustion by Helin et al. (2018). At
the SC site, the morning peak on weekends was not obvious
because of the lack of work-related traffic. It appears that a
similar bimodal curve can be seen during workdays, but the
evening peak was seen during the evening traffic rush hour
around 16:00–18:00 LT. The reason was that the main con-
tributor of LDSA at the SC site was traffic and combustion
processes and the diurnal variability mainly depended on the
citizen’s movement by vehicles in the city. During weekends,
the average hourly LDSA concentrations were the minimum
at 05:00 LT and they increased and remained at a high level
at 17:00 LT until late at night. The level of LDSA concentra-
tions at DH was comparable with that at the UB site. How-
ever, the amplitude of the evening peak was higher than that
of the morning peak both on workdays and weekends due to
elevated residential combustion.

However, the monthly variability of background measure-
ments at the RB site was stronger compared to the diurnal
pattern, and the calculation of local increment was neces-
sary (e.g. Jafar and Harrison, 2021). With no intense point
sources, the variations at RB were probably due to horizon-
tal dispersion and advection of aerosol particles and ver-
tical dilution controlled by the boundary layer dynamics.
Based on the monthly frequencies of backward trajectory
by the NOAA Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model (Rolph et al., 2017, Fig. S5),
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Figure 3. Time series of the selected air pollutant parameters (first to end row: LDSA (µm2 cm−3), BC (µg m−3), NOx (ppb), PM2.5
(µg m−3) and PNC (cm−3)) at the Mäkelänkatu SC site during the measurement period from 1 January 2017 and 31 December 2018.
Each bar represents a period of 2 weeks where the shaded diamond marker is the median and the vertical error bars are the 25th and 75th
percentiles. Seasons are thermally separated.

pollutants could be originating 600 km away from Helsinki
within 24 h in the winter. In the summer, when solar radi-
ation was persistently stronger, the boundary layer became
elevated due to surface heating and associated thermal tur-
bulence. This turbulence would dilute the concentration of
pollutants at the surface. Another plausible reason could be
the higher regional and long-range-transported LDSA in the
summer, as demonstrated by Kuula et al. (2020) and Barreira
et al. (2021). The lower panel in Fig. 4 shows the LDSA local
increments after subtraction of the LDSA concentrations at
the RB site. For instance, the local LDSA increments at DH
are the highest in the winter probably due to local small-scale
wood combustion (and traffic). However, without subtracting
the background concentrations, the LDSA concentrations at
DH were higher in the summer than in the winter (due to
high regional background concentrations in summer), as was
observed also by Kuula et al. (2020). This piece of evidence
can help in the source apportionment. The variations of diur-
nal and seasonal LDSA for all sites are visualised in Fig. S6.

4.2 The connection between LDSA and other
parameters

Alveolar LDSA concentration, as a single number, comprises
particles across the whole particle size spectrum measured
(e.g. Pegasor AQ Urban ∼ 10–400 nm). In HMA, the two lo-
cal main sources of particles contributing to LDSA are ve-
hicular combustion and residential wood combustion emis-
sions. Upon the two combustion processes, particles of dif-

ferent sizes and different gaseous pollutants are emitted. A
study by Lamberg et al. (2011) has shown that the geomet-
ric mean diameter of residential wood combustion is typi-
cally 70–150 nm, whereas Barreira et al. (2021) presented
that the typical particle size for vehicular combustion can be
smaller than 50 nm. By calculating the proportion of LDSA
with respect to different pollutant parameters such as BC,
NOx , PNC (dominated by UFP) and PM2.5, we could iden-
tify the relative contribution of LDSA across the hour of
the day (Fig. S7 for workdays and Fig. S8 for weekends).
Whereas the ratios could partly tell the relative contribu-
tion of LDSA in that certain hour, they are also dependent
on various factors that include the different properties of
each parameter (e.g. the lung deposition factor for LDSA)
and the time-dependent increase in particle size (e.g. new
particle formation) which are not the focus of this paper.
Since vehicular combustion emits smaller particles which el-
evate the LDSA concentration but meanwhile do not substan-
tially influence the value of PM2.5 (e.g. Salo et al., 2021a),
LDSA /PM2.5 had a diurnal pattern similar to the LDSA
concentrations which peaked in the morning rush hour dur-
ing workdays. Conversely, LDSA /BC, LDSA /PNC and
LDSA /NOx had a low ratio value in the morning rush hour.
This can be explained by the fact that vehicular combustion
caused high concentrations of BC, PNC and NOx (Reche
et al., 2015) compared to its contribution to LDSA con-
centration. In other words, the role of regional background
was higher for LDSA compared to those of NOx , BC and
PNC. At the UB site, the average LDSA /BC at all hours

Atmos. Chem. Phys., 22, 1861–1882, 2022 https://doi.org/10.5194/acp-22-1861-2022



P. L. Fung et al.: Input-adaptive linear mixed-effects model for estimating alveolar LDSA 1871

Table 2. Descriptive statistics of alveolar LDSA concentrations (µm2 cm−3) at SC (2017–2018), UB (2017–May 2018), DH1–3 (2018) and
RB (2018) sites. The mean (column 3), standard deviation (SD, column 4), 10th, 25th, 50th, 75th and 90th percentiles (P10, P25, P50, P75
and P90, columns 5–9), geometric mean (Gmean, column 10) and geometric standard deviation (GSD, column 11) of the concentrations are
corrected to one decimal place. The percentage of valid data in the reported measurement period is shown in column 12.

Mean SD P10 P25 P50 P75 P90 Gmean GSD %

SC All 19.7 11.3 8.4 11.7 17.0 24.7 34.4 17.0 1.7 97
Winter 19.4 12.2 7.6 10.7 16.1 24.7 35.3 16.3 1.8 98
Spring 19.6 11.0 8.6 11.8 16.9 24.3 34.2 17.1 1.7 94
Summer 20.8 10.4 10.5 13.5 18.4 25.5 34.2 18.6 1.6 98
Autumn 18.4 11.7 7.1 10.0 15.0 23.8 34.6 15.3 1.8 96
Workdays 21.4 12.3 8.6 12.5 18.8 27.7 37.6 18.4 1.8 97
Weekends 15.9 7.5 8.1 10.7 14.4 19.4 25.2 14.4 1.6 97

UB All 11.2 7.1 4.6 6.4 9.5 14.0 19.6 9.5 1.8 70
Winter 12.4 9.1 4.8 6.3 10.0 15.4 22.5 10.1 1.9 89
Spring 10.4 6.1 4.6 6.2 9.0 12.8 18.3 9.0 1.7 100
Summer 12.8 5.8 6.7 8.5 11.4 15.8 20.7 11.6 1.6 57
Autumn 7.7 4.7 3.2 4.5 6.7 9.7 13.2 6.7 1.7 56
Workdays 11.5 7.3 4.8 6.7 9.7 14.1 20.3 9.8 1.8 70
Weekends 10.4 6.6 4.1 5.8 8.8 13.6 18.3 8.8 1.8 70

DH1–3 All 11.7 8.6 4.2 6.3 9.7 14.5 21.1 9.5 1.9 94
Winter 12.3 10.2 4.1 6.2 9.6 14.8 23.4 9.7 2.0 86
Spring 12.8 8.2 5.3 7.4 10.8 15.9 23.1 10.7 1.8 98
Summer 11.8 5.9 5.7 7.8 10.8 14.5 19.2 10.6 1.6 98
Autumn 10.5 10.2 3.0 4.6 6.8 13.0 22.2 7.5 2.2 95
Workdays 11.8 8.3 4.3 6.4 9.9 14.6 20.8 9.6 1.9 95
Weekends 11.7 9.3 4.0 6.0 9.4 14.3 21.8 9.3 2.0 93

RB All 7.6 5.4 2.4 4.0 6.5 10.2 14.0 6.1 2.0 99
Winter 6.6 6.0 2.2 3.5 5.6 8.3 11.6 5.3 1.9 100
Spring 9.1 6.4 3.5 5.1 7.4 11.0 16.6 7.5 1.9 99
Summer 9.8 4.3 4.7 6.6 9.3 12.5 15.3 8.9 1.6 99
Autumn 4.9 4.1 1.6 2.6 3.9 5.6 8.9 3.8 2.0 99
Workdays 7.7 5.6 2.5 4.1 6.6 10.2 14.1 6.2 2.0 99
Weekends 7.6 5.0 2.4 4.0 6.5 10.1 14.0 6.1 2.0 100

remained at a constant level in the winter, while the variabil-
ity of the ratio was much higher in the summer. The general
LDSA /PNC ratio at UB was steadily 2–3 times higher than
that at all hours in all seasons because the proportion of larger
particles at UB was usually higher than SC. This large vari-
ability again validated the heterogeneity of source of LDSA
at UB.

The integrated alveolar LDSA with a various size ranges
was calculated to explore the correlation of size-fractionated
LDSA and other parameters in our multipollutant dataset.
No single fractionated LDSA correlated well with meteo-
rological parameters at both sites (Fig. 5). Out of all frac-
tions, alveolar LDSA of the whole spectrum (LDSA6–800)
and LDSA250–400, which explained majority of LDSA, cor-
related best with other air pollutants. In general, alveolar
LDSA had a high correlation with BC. BC correlated the best
with LDSA100–250 (r = 0.84), which was in alignment with
the reported values from previous literature (Gramsch et al.,
2014; Ding et al., 2016). As expected, PM2.5 showed bet-

ter correlation with the LDSA of larger particles (r = 0.68–
0.76) because larger particles contribute more to PM2.5 mass
concentration values. In the meantime, PM10 had a fair cor-
relation with all selected size bins. NO2 correlated highly
with LDSA of smaller particles (r = 0.69–0.77), indicating
the dominant role of local traffic exhausts. CO had a higher
correlation with LDSA of 400–800 nm (r = 0.64) since CO
concentrations were more affected by regionally transported
pollutants. O3 had a fair correlation with LDSA of all sec-
tions (r = 0.30–0.43) because the formation of O3 is mostly
secondary and the chemical interactions with pollutants are
more complicated than the other compounds. In general, the
correlations of LDSA with other air pollutant parameters
were higher at the SC site than that at the UB site (Fig. S9).
The high correlations of LDSA with BC, PM2.5 and NO2,
which agreed with the results by Kuula et al. (2020), proved
the possibility of developing a model to estimate LDSA con-
centrations.
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Figure 4. (a) Diurnal cycles of LDSA concentrations (µm2 cm−3) at the SC (red diamond, 2017–2018), UB (blue square, 2017–May 2018),
DH1–3 (black triangle, 2018) and RB sites (green circle, 2018) on workdays and weekends with error bars of 25th and 75th percentiles.
(b) Monthly averages in the year 2018 of local LDSA increments at the SC (red diamond) and DH1–3 (black triangle) sites (LDSA concen-
tration at the hotspot site minus LDSA at the RB site) on workdays and weekends with error bars of 25th and 75th percentiles.

5 Model evaluation

5.1 Submodel diagnostics

Following the evaluation attributes described in Sect. 3.4, Ta-
ble 3 depicts the descriptive statistics of the overall model
evaluation on its testing set. The overall model at the SC site
was able to explain 80 % of the variability of the testing set
of the measured data. The R2 in the winter was 0.86, being
the highest, while the worst R2 was shown in the summer,
i.e. 0.70. The MAE and cRMSD were the smallest during
weekends with R2 not particularly high (R2

= 0.72) proba-
bly because the LDSA concentration itself was relatively low
in that period. The overall performance was generally worse
in UB in terms of R2, except during weekends that R2 is
10 % higher.

For individual submodels, their performance could be seen
on the Taylor diagram in Fig. 6 (Taylor, 2001). Each marker
represents one submodel, the contribution of which to the
outcome of the final model is displayed in various colours.

The submodel performance can be evaluated by the dis-
tance of the submodel marker and the red point, which rep-
resents the reference station, i.e. the perfect model. The lo-
cation of each marker indicates its individual performance
in terms of r (blue contours), cRMSD (green contour) and
NSD (black axis). At the SC site, the narrow distribution
of the submodels on the Taylor diagram gives a clue that
they were very similar in terms of model performance of
LDSA estimation. The five mostly used submodels were con-
centrated within the region where r was 0.85–0.87, cRMSD
was 5.67–5.77 µm2 cm−3 and NSD was 0.75–0.79 (Table 4).
The values of their evaluation metrics were close to each
other where R2 and MAE differed in the narrow range of
10 % (R2

= 0.72–0.74, MAE= 3.8 µm2 cm−3). It infers that
if one metric was prioritised over another, the rank of the
submodels can be greatly different. Although no individual
submodels showed r greater than 0.9, the overall model com-
prising the outcomes by all the submodels remained high
(R2
= 0.80, MAE= 3.8 µm2 cm−3). The best submodel was
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Figure 5. Heatmap showing Pearson correlation coefficient (r , corrected to two significant figures) of LDSA of different particle size
sections (in nm) by ICRP lung deposition model and the other air pollutant parameters at the Mäkelänkatu SC site. Dark red indicates a high
correlation, while pale yellow indicates a low correlation. Parameters with an asterisk represent a natural logarithm. LDSAPegasor represents
the measured LDSA concentrations.

Table 3. The evaluation attributes by IAME model at the SC and UB sites, corrected to two significant figures.

Street canyon Urban background

R2 MAE cRMSD r NSD R2 MAE cRMSD r NSD

All 0.80 3.7 5.6 0.87 0.78 0.77 2.3 3.7 0.86 0.80
Winter 0.86 3.4 5.3 0.92 0.74 0.81 2.5 4.6 0.89 0.68
Spring 0.75 3.9 5.9 0.85 0.79 0.61 2.4 3.3 0.84 0.85
Summer 0.70 4.1 5.9 0.83 0.84 0.61 2.7 3.7 0.79 0.95
Autumn 0.85 3.4 5.4 0.9 0.75 0.85 1.3 2.0 0.91 0.83
Workdays 0.81 4.1 6.1 0.87 0.77 0.75 2.4 3.8 0.86 0.77
Weekends 0.72 3.0 4.3 0.82 0.82 0.8 2.1 3.5 0.85 0.87

also the most used one, which accounted for 81 % of the to-
tal data points, while the two succeeding submodels consti-
tuted another 16 %. This also indicates that the input adap-
tivity function of the suggested method supplemented 19 %
of the estimates, which would be a missing estimate if a
single model with fixed predictor variables was used. Four
out of the five most used submodels contain BC as an in-
put predictor with the combination of the other two air pol-
lutants or meteorological parameters. This was in line with
the high correlation of LDSA with BC (r = 0.84, Fig. S9).
In the event that BC is missing at a certain time stamp, the
submodel without BC as an input could be used. It further
supports the input-adaptive function.

At the UB site, the submodel performance was more scat-
tered on the Taylor diagram (Fig. 6). The five most used sub-
models had varying metrics (r = 0.77–0.92, cRMSD= 2.5–
3.9 µm2 cm−3 and NSD= 0.63–0.89; see Table 5). Although
some showed exceptionally good performance, the overall
model had a slightly worse performance than that in street
canyon. The best submodel estimated 49 % of the total mea-

surement, followed by 17 %. The third and fourth most used
submodels, which formed up to 30 % of the estimates, had
rather moderate performance (R2

= 0.58 and 0.69). Consid-
ering all possible outcomes, the overall model was still able
to explain 77 % of the total variance. Despite the fair linear
correlation with LDSA, CO (r = 0.26) and PNC (r = 0.71)
dominated in the top five used submodels. This could be ex-
plained by the fact that the source of CO can well cover the
missing piece that PNC was unable to account for LDSA.
BC, NOx and meteorological parameters, like RH and WD–
N, were also involved in the final LDSA estimation.

By checking the variance inflation factor (VIF) of all 696
submodels, 4.6 % and 2.2 % were rejected respectively. The
higher rejection rate at SC can be explained by the fact that
some of the predictor variables were highly correlated to
each other and the inclusion of them would result in an infla-
tion of multi-collinearity of the submodel, from which biases
arose. At UB, since the source of LDSA was more varied and
the correlation of LDSA with other pollutants was generally
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Figure 6. Panels (a) and (b) show the scatter plots of modelled LDSA against the measured LDSA at the (a) Mäkelänkatu SC site and
(b) Kumpula UB site. Hues of colours represent the density of points on the figure. Panels (c) and (d) show the Taylor diagrams (Taylor,
2001) at the (c) Mäkelänkatu SC site and (d) Kumpula UB site. Each diamond marker in the Taylor diagrams represents each submodel used
in the final estimation by IAME (solid black dot), compared with the reference data (solid red dot). Hues of colours represent how frequently
the submodel was used.

lower, the probability of the VIF of the individual submodels
exceeding the threshold was lower.

5.2 Temporal difference in comparison with other
models

Figure 7 presents the comparison of measured LDSA
(LDSAPegasor), deposition-model-derived LDSA
(LDSAICRP) and the LDSA modelled by IAP and IAME
(LDSAIAP and LDSAIAME) as a time series plot between
14 and 28 February 2017. This particular time window
was selected because it had the least data gaps for all the
respective instruments at both sites. This figure during this
period can also showcase the difference in magnitudes of the
diurnal shape over workdays and weekends (shaded regions
in Fig. 7). At both sites, both IAP and IAME underesti-
mated the peaks when the change of the measured LDSA
concentration was sudden and relatively large. However, this
limitation did not diminish much of the usefulness of the
models as virtual sensors as the models were still able to
generally catch up with the diurnal cycle of the measured
data. Despite the small difference observed in the figure, the

dotted blue line representing LDSAIAME often stays closer
to the measured LDSA concentration (black line). When we
smoothed out all the estimates at each hour, the ability of
IAME to catch the morning peak on workdays was much
better.

A more generalised diurnal cycle can be found in Fig. 8.
The error bars of the modelled LDSAIAP and LDSAIAME
were consistently smaller than those of LDSAPegasor and
LDSAICRP. This might be due to the model failing to catch
the extreme values, although it managed to catch the gen-
eral diurnal cycle. Since outliers were removed in the pre-
processing stage and the model penalised the extreme val-
ues, the model tended to give a more centralised estimate.
It was a trade-off between the option with better coefficients
of determination but stronger extreme errors and that with
better estimations at tails but derivation of averaged estima-
tion. This circumstance was more apparent on workdays than
weekends. Furthermore, LDSAIAME could follow the diur-
nal cycle of LDSAPegasor much better than LDSAIAP, espe-
cially during the start of the peak hours over workdays at the
SC site where the LDSA concentrations jumped to a high
level. LDSAIAME can explain 80 % and 77 % of the vari-
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Table 4. The five most successful submodels at the SC site. The table shows only the fixed predictors with their coefficient (β, all p < 0.05)
and corresponding standard error (SE). The variance inflation factor (VIF) among the fixed predictors is also shown for the five submodels.
The evaluation attributes of the submodels are shown in columns 6–10. The percentage of the submodel usage and the number of data points
(n) are shown in columns 11 and 12. The natural logarithm is taken for parameters with an asterisk (∗).

Fixed predictors β SE VIF R2 MAE cRMSD r NSD % n

1

∗PM2.5 0.119 0.005 1.54
0.74 3.7 5.7 0.87 0.79 81 2603∗PNC 0.313 0.005 2.89

∗BC 0.223 0.004 2.17

2

∗NOx 0.236 0.005 3.79
0.74 3.8 5.7 0.86 0.77 13 2629∗PNC 0.153 0.005 1.63

∗BC 0.231 0.007 4.90

3

∗PNC −0.044 0.003 1.07
0.74 3.8 5.8 0.86 0.78 4 6622∗BC 0.375 0.004 2.20

WS 0.201 0.004 2.15

4

∗NOx 0.250 0.005 3.09
0.74 3.8 5.7 0.87 0.78 < 1 2596∗PM2.5 0.243 0.004 1.17

∗PNC 0.184 0.005 3.02

5

∗NOx 0.176 0.005 3.51
0.72 3.8 5.8 0.85 0.75 < 1 2713∗PM10 0.070 0.004 1.3

∗BC 0.326 0.006 3.65

Table 5. The five most successful submodels at the UB site. The table shows only the fixed predictors with their coefficient (β, all p < 0.05)
and corresponding SE. The VIF among the fixed predictors is also shown for the five submodels. The evaluation attributes of the submodels
are shown in columns 6–10, corrected to two significant figures. The percentage of the submodel usage and the number of data points (n) are
shown in columns 11 and 12. The natural logarithm is taken for parameters with an asterisk (∗).

Fixed predictors β SE VIF R2 MAE cRMSD r NSD % n

1

∗CO 0.072 0.027 1.72
0.84 1.7 2.5 0.92 0.87 49 941∗PNC 0.400 0.006 2.08

∗BC 2.956 0.007 1.52

2

∗PNC −0.098 0.005 1.09
0.82 1.9 2.9 0.91 0.89 17 6608∗BC 0.398 0.004 1.44

WD-N 0.328 0.006 1.55

3

∗NO2 0.237 0.007 1.88
0.69 2.4 3.4 0.84 0.73 17 941∗CO 0.520 0.024 1.10

∗PNC 0.341 0.010 2.00

4

∗CO 0.009 0.000 1.08
0.58 2.7 3.9 0.77 0.63 11 9757∗PNC 0.348 0.025 1.07

RH 0.590 0.007 1.15

5

∗NOx 0.107 0.006 2.22
0.81 1.9 3.0 0.90 0.85 2 7036∗CO 0.182 0.032 1.72

∗BC 0.455 0.007 2.56

ability of the reference measurements at SC and UB, respec-
tively (Table 6), and compared to LDSAIAP’s 77 % and 66 %,
LDSAIAME performed better in terms of accuracy. In addi-
tion, the slightly smaller MAE and the proximity to 1 NSD
of the LDSAIAME suggested that the mean absolute error
was improved and the spread of the estimation distribution

was closer to the reference measurement by taking random
effects into account.

Furthermore, we assessed the temporal and spatial impact
on the IAME model by comparing the means of absolute dif-
ferences between the hourly LDSAPegasor and LDSAIAME in
different time windows at both stations. A descriptive statis-
tic is presented in Table 7. We used two-sample t tests to
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Table 6. Model evaluation comparison of deposition-model-derived LDSA (LDSAICRP), modelled LDSA by IAP (LDSAIAP) and modelled
LDSA by IAME (LDSAIAME) against reference measurements LDSAPegasor at the SC and UB sites. Parameters with an asterisk represent
the natural logarithm. The evaluation attributes of the three methods are corrected to two significant figures.

Street canyon Urban background

R2 MAE cRMSD r NSD R2 MAE cRMSD r NSD

LDSAICRP 0.72 4.1 6.2 0.88 1.1 0.83 1.8 2.9 0.93 1.1
LDSAIAP 0.77 4.0 6.0 0.85 0.78 0.66 2.8 3.9 0.84 0.81
LDSAIAME 0.80 3.7 5.6 0.87 0.78 0.77 2.3 3.7 0.86 0.80

Figure 7. Time series of measured LDSA (LDSAPegasor, black),
deposition-model-derived LDSA by ICRP (LDSAICRP, red), mod-
elled LDSA by IAP (LDSAIAP, solid blue line) and modelled
LDSA by IAME (LDSAIAME, dotted blue line) during a selected
measurement window between 14 and 28 February 2017. Shaded
regions represent weekends and otherwise workdays.

assess whether the distributions of absolute differences were
statistically significant. At SC, the p values of the t tests at
all selected windows were below 0.05, which demonstrated
that the performance during different seasons, days of week
and hours of day of absolute differences between the mea-
sured and modelled LDSA was significantly different at the
confidence level of 95 %. At the UB site, the difference be-
tween the two selected hour periods was not statistically sig-
nificant. The same applied to the difference between winter
and spring. There was no statistically sufficient evidence to
validate the difference among the rest of the selected time pe-
riod. In other words, with the use of random effects of time
constraint, the overall models still performed differently at
different time windows most of the time. This indicates that
IAME still needs improvement in minimising temporal dif-
ferences.

Figure 8. Diurnal cycles of measured (LDSAPegasor, black),
deposition-model-derived (LDSAICRP, red) and modelled
(LDSAIAP and LDSAIAME, blue) LDSA concentrations with
error bars of 25th and 75th percentiles on (a) workdays and
(b) weekends. LDSAIAP and LDSAIAME can be differentiated by
their markers, with crosses for the former and squares for the latter.

6 Conclusion

In this study, we developed a novel input-adaptive mixed-
effects (IAME) proxy to estimate alveolar LDSA by
other already existing air pollutant variables and me-
teorological conditions in Helsinki metropolitan area.
During the measurement period in 2017–2018, we re-
trieved LDSA measurements measured by Pegasor AQ
Urban (alveolar LDSA in the ∼ 10–400 nm size range)
and other variables in a street canyon (SC, average
LDSA= 19.7± 11.3 µm2 cm−3) site and an urban back-
ground (UB, average LDSA= 11.2± 7.1 µm2 cm−3) site in
Helsinki, Finland. Furthermore, three detached housing sites
(DH, average LDSA= 11.7± 8.6 µm2 cm−3) and a regional
background site (RB, average LDSA= 7.6± 5.4 µm2 cm−3)
were also included as reference and background source esti-
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Table 7. Statistics to show temporal difference. The number of data (n), mean and standard deviation (SD) of absolute error and the corre-
sponding p values of t tests at the selected time windows at both sites.

Street canyon (SC) n Mean SD t test p

Workdays 11 658 4.1 4.8 Workdays vs. weekends 4.13× 10−81

Weekends 5322 3.0 3.2

Winter
Spring
Summer
Autumn

4023
2297
6457
4320

3.4
4.0
4.2
3.4

4.2
4.5
4.4
4.3

Winter vs. spring
Winter vs. summer
Winter vs. autumn
Spring vs. summer
Spring vs. autumn
Summer vs. autumn

3.64× 10−24

5.89× 10−5

7.07× 10−7

6.38× 10−34

1.02× 10−4

2.69× 10−15

04:00–10:00 LT 4953 4.8 5.6 04:00–10:00 LT vs. 2.58× 10−40

16:00–22:00 LT 4981 3.5 3.6 16:00–22:00 LT

Urban background (UB) n Mean SD t test p

Workdays 8473 2.3 2.6 Workdays vs. weekends 5.08× 10−8

Weekends 3852 2.1 2.6

Winter
Spring
Summer
Autumn

2539
1101
1628
812

2.5
1.9
2.6
2.3

3.2
3.1
2.4
2.1

Winter vs. spring
Winter vs. summer
Winter vs. autumn
Spring vs. summer
Spring vs. autumn
Summer vs. autumn

1.96× 10−7

0.39∗

1.90× 10−2

2.75× 10−9

2.20× 10−3

1.40× 10−3

04:00–10:00 LT 3620 2.3 2.7 04:00–10:00 LT vs. 0.86∗

16:00–22:00 LT 3591 2.3 2.7 16:00–22:00 LT

Overall n Mean SD t test p

Street canyon (SC) 11 940 3.9 4.6 SC vs. UB 8.21× 10−246

Urban background (UB) 2.3 2.6 (in same time period)

∗ p > 0.05; the null hypothesis of different distribution is rejected.

mation, respectively. At the SC site, LDSA concentrations
were closely correlated with traffic emission. The ratio to
black carbon (LDSA /BC), to particle number concentra-
tion (LDSA /PNC) and to nitrogen oxide (LDSA /NOx)
had a higher value before the morning peak and it reached
its minimum during the morning peak since the role of re-
gional background was higher for LDSA compared to those
of NOx , BC and PNC. However, the ratio of LDSA to mass
concentration of particles of diameter smaller than 2.5 µm
(LDSA /PM2.5) performed differently since the freshly
emitted vehicular particles were smaller than 50 nm, which
did not contribute much to PM2.5 mass concentration.

For the continuous estimation of LDSA, IAME was au-
tomatised to select the best combination of input variables,
including a maximum of three fixed effect variables and three
time indictors as random effect variables. Altogether, 696
submodels were generated and ranked by the coefficient of
determination (R2), mean absolute error (MAE) and centred
root-mean-square differences (cRMSD) in order. At the SC
site, LDSA concentrations can be best estimated by PM2.5,

PNC and BC, all of which were closely connected with the
vehicular emissions, while they were found correlating with
PM2.5, BC and carbon monoxide (CO) the best at the UB site.
At both sites, PM2.5 also indicated the regionally and long-
range-transported pollutants, which were a significant source
of LDSA concentrations. The accuracy of the overall model
was higher at the SC site (R2

= 0.80, MAE= 3.7 µm2 cm−3)
than at the UB site (R2

= 0.77, MAE= 2.3 µm2 cm−3) plau-
sibly because the LDSA source was more tightly controlled
by the close-by vehicular emission source. This model could
catch the temporal pattern of LDSA; however, the two-
sample t tests of the residuals at all selected time windows
showed that their distributions were different. This indicated
that the model still performed differently at different time
windows. Despite this, the novel IAME model worked bet-
ter in explaining the variability of the measurements than the
previously suggested IAP model as indicted by a higher R2

and lower MAE at both sites. This adjustment, by taking ran-
dom effects into account, improved the sensitivity and the
accuracy of the fixed effect model IAP.
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The models alone cannot replace the need for reference
measurements (Hagler et al., 2018). However, the IAME
proxy could serve as virtual sensors to complement the mea-
surements at reference stations in the event of missing data.
The two measurement sites in this study served as a pilot
of the proxy development, and the next step is to extend the
work to the existing network of several measurement stations
within the Helsinki metropolitan region. With similar config-
urations, we could fill up the voids with the information from
the other stations after conscientious calibration. For exam-
ple, in this paper, the two measurement sites were charac-
terised as a street canyon and urban background. In a differ-
ent setup, we may assume the similarity of the same type of
environment and utilise the measurements as a replacement.
Furthermore, this continuous LDSA estimation could be use-
ful in updating some of the current air quality applications,
for instance, the ENFUSER air quality model, which pro-
vides accurate spatiotemporal estimation for air pollutants in
Helsinki (Johansson et al., 2015).

Data availability. The air quality data and meteorological data are
available from the HSY website (https://www.hsy.fi/avoindata, Uni-
versity of Helsinki, 2022) and through the SmartSMEAR online
tool (https://smear.avaa.csc.fi/, Helsinki Region Environmental Ser-
vices HSY, 2022).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-22-1861-2022-supplement.

Author contributions. PLF performed formal analysis and writ-
ing of the original draft of the manuscript. PLF, MAZ, TP and TH
conceptualised and designed the methodology of this work. MAZ,
ST, MK, TP and TH provided supervision in this research activity.
ES (Pegasor Oy), JVN and AKo (HSY), and HT, JK and AKa (FMI)
provided instruments and data for the campaign. All the co-authors
(MAZ, JVN, ES, HT, AKo, JK, TR, AKa, ST, MK, TP and TH)
reviewed and commented on the manuscript.

Competing interests. Erkka Saukko works at Pegasor Oy, which
is the manufacturer of Pegasor AQ Urban. At least one of the
(co-)authors is a member of the editorial board of Atmospheric
Chemistry and Physics.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors acknowledge the City of
Helsinki for providing traffic count data.

Financial support. This work is supported by the European
Regional Development Fund through the Urban Innovative Action
(project HOPE; Healthy Outdoor Premises for Everyone, project
no. UIA03-240) and Regional Innovations and Experimentations
Fund AIKO, governed by the Helsinki Regional Council (project
HAQT; Helsinki Air Quality Testbed, project no. AIKO014). Grants
are also received from the European Research Council through the
European Union’s Horizon 2020 Research and Innovation Frame-
work Program (grant agreement no. 742206), and ERA-PLANET
(http://www.era-planet.eu, last access: 1 February 2022) and
its transnational project SMURBS (https://www.smurbs.eu, last
access: 1 February 2022) funded under the same programme (grant
agreement no. 689443). The authors wish to express their gratitude
to Academy of Finland for the funding via the Atmosphere and
Climate Competence Center (ACCC) Flagship (project nos. 337549
and 337552) and NanoBioMass (project no. 1307537).

Open-access funding was provided by the Helsinki
University Library.

Review statement. This paper was edited by Manabu Shiraiwa
and reviewed by two anonymous referees.

References

Albuquerque, P. C., Gomes, J. F., and Bordado, J. C.: Assessment
of exposure to airborne ultrafine particles in the urban environ-
ment of Lisbon, Portugal, J. Air Waste Manage., 62, 373–380,
https://doi.org/10.1080/10962247.2012.658957, 2012.

Amanatidis, S., Maricq, M. M., Ntziachristos, L., and Samaras, Z.:
Application of the dual Pegasor Particle Sensor to real-time mea-
surement of motor vehicle exhaust PM, J. Aerosol Sci., 103, 93–
104, https://doi.org/10.1016/j.jaerosci.2016.10.005, 2017.

Anjilvel, S. and Asgharian, B.: A multiple-path model of parti-
cle deposition in the rat lung, Fund. Appl. Toxicol., 28, 41–50,
https://doi.org/10.1006/faat.1995.1144, 1995.

Asbach, C., Fissan, H., Stahlmecke, B., Kuhlbusch, T., and Pui,
D.: Conceptual limitations and extensions of lung-deposited
Nanoparticle Surface Area Monitor (NSAM), J. Nanopart. Res.,
11, 101–109, https://doi.org/10.1007/s11051-008-9479-8, 2009.

Asbach, C., Alexander, C., Clavaguera, S., Dahmann, D., Dozol,
H., Faure, B., Fierz, M., Fontana, L., Iavicoli, I., Kaminski,
H., MacCalman, L., Meyer-Plath, A., Simonow, B., van Ton-
geren, M., and Todea, A. M.: Review of measurement tech-
niques and methods for assessing personal exposure to airborne
nanomaterials in workplaces, Sci. Total Environ., 603, 793–806,
https://doi.org/10.1016/j.scitotenv.2017.03.049, 2017.

Barreira, L. M. F., Helin, A., Aurela, M., Teinilä, K., Friman,
M., Kangas, L., Niemi, J. V., Portin, H., Kousa, A., Pirjola, L.,
Rönkkö, T., Saarikoski, S., and Timonen, H.: In-depth character-
ization of submicron particulate matter inter-annual variations at
a street canyon site in northern Europe, Atmos. Chem. Phys., 21,
6297–6314, https://doi.org/10.5194/acp-21-6297-2021, 2021.

Breiman, L.: Heuristics of instability and stabiliza-
tion in model selection, Ann. Stat., 24, 2350–2383,
https://doi.org/10.1214/aos/1032181158, 1996.

Atmos. Chem. Phys., 22, 1861–1882, 2022 https://doi.org/10.5194/acp-22-1861-2022

https://www.hsy.fi/avoindata
https://smear.avaa.csc.fi/
https://doi.org/10.5194/acp-22-1861-2022-supplement
http://www.era-planet.eu
https://www.smurbs.eu
https://doi.org/10.1080/10962247.2012.658957
https://doi.org/10.1016/j.jaerosci.2016.10.005
https://doi.org/10.1006/faat.1995.1144
https://doi.org/10.1007/s11051-008-9479-8
https://doi.org/10.1016/j.scitotenv.2017.03.049
https://doi.org/10.5194/acp-21-6297-2021
https://doi.org/10.1214/aos/1032181158


P. L. Fung et al.: Input-adaptive linear mixed-effects model for estimating alveolar LDSA 1879

Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., and Don-
aldson, K.: Size-dependent proinflammatory effects of ultrafine
polystyrene particles: a role for surface area and oxidative stress
in the enhanced activity of ultrafines, Toxicol. Appl. Pharm., 175,
191–199, https://doi.org/10.1006/taap.2001.9240, 2001.

Buonanno, G., Marini, S., Morawska, L., and Fuoco, F.
C.: Individual dose and exposure of Italian children to
ultrafine particles, Sci. Total Environ., 438, 271–277,
https://doi.org/10.1016/j.scitotenv.2012.08.074, 2012.

Cabaneros, S. M., Calautit, J. K., and Hughes, B. R.: A re-
view of artificial neural network models for ambient air
pollution prediction, Environ. Modell. Softw., 119, 285–304,
https://doi.org/10.1016/j.envsoft.2019.06.014, 2019.

Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ket-
zel, M., Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U. A.,
Katsouyanni, K., Janssen, N. A. H., Martin, R. V., Samoli, E.,
Schwartz, P. E., Stafoggia, M., Bellander, T., Strak, M., Wolf,
K., Vienneau, D., Vermeulen, R., Brunekreef, B., and Hoek, G.:
A comparison of linear regression, regularization, and machine
learning algorithms to develop Europe-wide spatial models of
fine particles and nitrogen dioxide, Environ. Int., 130, 104934,
https://doi.org/10.1016/j.envint.2019.104934, 2019.

Cheristanidis, S., Grivas, G., and Chaloulakou, A.: Determination
of total and lung-deposited particle surface area concentrations,
in central Athens, Greece, Environ. Monit. Assess., 192, 627,
https://doi.org/10.1007/s10661-020-08569-8, 2020.

Chudnovsky, A. A., Lee, H. J., Kostinski, A., Kotlov, T., and
Koutrakis, P.: Prediction of daily fine particulate mat-
ter concentrations using aerosol optical depth retrievals
from the Geostationary Operational Environmental Satel-
lite (GOES), J. Air Waste Manage., 62, 1022–1031,
https://doi.org/10.1080/10962247.2012.695321, 2012.

Dal Maso, M., Gao, J., Järvinen, A., Li, H., Luo, D., Janka,
K., and Rönkkö, T.: Improving urban air quality measurements
by a diffusion charger based electrical particle sensors-A field
study in Beijing, China, Aerosol Air Qual. Res., 16, 3001–3011,
https://doi.org/10.4209/aaqr.2015.09.0546, 2016.

Ding, A., Huang, X., Nie, W., Sun, J., Kerminen, V. M., Petäjä, T.,
Su, H., Cheng, Y., Yang, X. Q., and Wang, M.: Enhanced haze
pollution by black carbon in megacities in China, Geophys. Res.
Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745,
2016.

Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D.,
Ware, J. H., Fay, M. E., Ferris Jr., B. G., and Speizer,
F. E.: An association between air pollution and mortal-
ity in six US cities, New Engl. J. Med., 329, 1753–1759,
https://doi.org/10.1056/NEJM199312093292401, 1993.

Duffin, R., Tran, C., Clouter, A., Brown, D., MacNee, W.,
Stone, V., and Donaldson, K.: The importance of surface
area and specific reactivity in the acute pulmonary inflamma-
tory response to particles, Ann. Occup. Hyg., 46, 242–245,
https://doi.org/10.1093/annhyg/46.suppl_1.242, 2002.

Eeftens, M., Meier, R., Schindler, C., Aguilera, I., Phuleria, H.,
Ineichen, A., Davey, M., Ducret-Stich, R., Keidel, D., Probst-
Hensch, N., Kunzli, N., and Tsai, M. Y.: Development of land use
regression models for nitrogen dioxide, ultrafine particles, lung
deposited surface area, and four other markers of particulate mat-
ter pollution in the Swiss SAPALDIA regions, Environ. Health,
15, 53, https://doi.org/10.1186/s12940-016-0137-9, 2016.

Faraway, J. J.: Linear models with R, edited by: Chatfield, C., Tan-
ner, M., and Zidek, J., CRC press, ISBN 0-203-50727-4, 2014.

Fernández-Guisuraga, J. M., Castro, A., Alves, C., Calvo, A.,
Alonso-Blanco, E., Blanco-Alegre, C., Rocha, A., and Fraile,
R.: Nitrogen oxides and ozone in Portugal: trends and ozone
estimation in an urban and a rural site, Environ. Sci. Pollut.
R., 23, 17171–17182, https://doi.org/10.1007/s11356-016-6888-
6, 2016.

Fissan, H., Neumann, S., Trampe, A., Pui, D., and Shin, W.:
Rationale and principle of an instrument measuring lung de-
posited nanoparticle surface area, J. Nanopart. Res., 9, 53–59,
https://doi.org/10.1007/s11051-006-9156-8, 2006.

Fung, P. L., Zaidan, M. A., Sillanpaa, S., Kousa, A., Niemi, J.
V., Timonen, H., Kuula, J., Saukko, E., Luoma, K., Petaja,
T., Tarkoma, S., Kulmala, M., and Hussein, T.: Input-Adaptive
Proxy for Black Carbon as a Virtual Sensor, Sensors (Basel), 20,
182, https://doi.org/10.3390/s20010182, 2020.

Fung, P. L., Zaidan, M. A., Surakhi, O., Tarkoma, S., Petäjä, T., and
Hussein, T.: Data imputation in in situ-measured particle size dis-
tributions by means of neural networks, Atmos. Meas. Tech., 14,
5535–5554, https://doi.org/10.5194/amt-14-5535-2021, 2021a.

Fung, P. L., Zaidan, M. A., Timonen, H., Niemi, J. V., Kousa,
A., Kuula, J., Luoma, K., Tarkoma, S., Petäjä, T., Kul-
mala, M., and Hussein, T.: Evaluation of white-box ver-
sus black-box machine learning models in estimating ambi-
ent black carbon concentration, J. Aerosol Sci., 152, 105694,
https://doi.org/10.1016/j.jaerosci.2020.105694, 2021b.

Gramsch, E., Reyes, F., Oyola, P., Rubio, M., López, G., Pérez,
P., and Martínez, R.: Particle size distribution and its rela-
tionship to black carbon in two urban and one rural site
in Santiago de Chile, J. Air Waste Manage., 64, 785–796,
https://doi.org/10.1080/10962247.2014.890141, 2014.

Gupta, R. and Xie, H.: Nanoparticles in daily life: applications,
toxicity and regulations, J. Environ. Pathol. Tox., 37, 209–230,
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009,
2018.

Habre, R., Zhou, H., Eckel, S. P., Enebish, T., Fruin, S., Bastain,
T., Rappaport, E., and Gilliland, F.: Short-term effects of airport-
associated ultrafine particle exposure on lung function and in-
flammation in adults with asthma, Environ. Int., 118, 48–59,
https://doi.org/10.1016/j.envint.2018.05.031, 2018.

Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.:
Air Quality Sensors and Data Adjustment Algorithms: When Is
It No Longer a Measurement?, Environ. Sci. Technol., 52, 5530–
5531, https://doi.org/10.1021/acs.est.8b01826, 2018.

Hama, S. M. L., Ma, N., Cordell, R. L., Kos, G. P. A., Wieden-
sohler, A., and Monks, P. S.: Lung deposited surface area
in Leicester urban background site/UK: Sources and contribu-
tion of new particle formation, Atmos. Envrion., 151, 94–107,
https://doi.org/10.1016/j.atmosenv.2016.12.002, 2017.

Hastie, T., Tibshirani, R., and Tibshirani, R.: Best Subset, For-
ward Stepwise or Lasso? Analysis and Recommendations
Based on Extensive Comparisons, Stat. Sci., 35, 579–592,
https://doi.org/10.1214/19-STS733, 2020.

Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinilä,
K., Backman, J., Aurela, M., Saarikoski, S., Rönkkö,
T., Asmi, E., and Timonen, H.: Characteristics and
source apportionment of black carbon in the Helsinki

https://doi.org/10.5194/acp-22-1861-2022 Atmos. Chem. Phys., 22, 1861–1882, 2022

https://doi.org/10.1006/taap.2001.9240
https://doi.org/10.1016/j.scitotenv.2012.08.074
https://doi.org/10.1016/j.envsoft.2019.06.014
https://doi.org/10.1016/j.envint.2019.104934
https://doi.org/10.1007/s10661-020-08569-8
https://doi.org/10.1080/10962247.2012.695321
https://doi.org/10.4209/aaqr.2015.09.0546
https://doi.org/10.1002/2016GL067745
https://doi.org/10.1056/NEJM199312093292401
https://doi.org/10.1093/annhyg/46.suppl_1.242
https://doi.org/10.1186/s12940-016-0137-9
https://doi.org/10.1007/s11356-016-6888-6
https://doi.org/10.1007/s11356-016-6888-6
https://doi.org/10.1007/s11051-006-9156-8
https://doi.org/10.3390/s20010182
https://doi.org/10.5194/amt-14-5535-2021
https://doi.org/10.1016/j.jaerosci.2020.105694
https://doi.org/10.1080/10962247.2014.890141
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009
https://doi.org/10.1016/j.envint.2018.05.031
https://doi.org/10.1021/acs.est.8b01826
https://doi.org/10.1016/j.atmosenv.2016.12.002
https://doi.org/10.1214/19-STS733


1880 P. L. Fung et al.: Input-adaptive linear mixed-effects model for estimating alveolar LDSA

metropolitan area, Finland, Atmos. Envrion., 190, 87–98,
https://doi.org/10.1016/j.atmosenv.2018.07.022, 2018.

Hellén, H., Kangas, L., Kousa, A., Vestenius, M., Teinilä, K.,
Karppinen, A., Kukkonen, J., and Niemi, J. V.: Evaluation
of the impact of wood combustion on benzo[a]pyrene (BaP)
concentrations; ambient measurements and dispersion model-
ing in Helsinki, Finland, Atmos. Chem. Phys., 17, 3475–3487,
https://doi.org/10.5194/acp-17-3475-2017, 2017.

Helsinki Region Environmental Services HSY: Open data, https://
smear.avaa.csc.fi/, last access: 1 February 2022.

Hennig, F., Quass, U., Hellack, B., Kupper, M., Kuhlbusch,
T. A. J., Stafoggia, M., and Hoffmann, B.: Ultrafine and
Fine Particle Number and Surface Area Concentrations and
Daily Cause-Specific Mortality in the Ruhr Area, Ger-
many, 2009–2014, Environ. Health Persp., 126, 027008,
https://doi.org/10.1289/EHP2054, 2018.

Hinds, W. C.: Aerosol technology: properties, behavior, and mea-
surement of airborne particles, John Wiley & Sons, ISBN 0-471-
19410-7, 1999.

Hofmann, W.: Modelling particle deposition in hu-
man lungs: modelling concepts and comparison
with experimental data, Biomarkers, 14, 59–62,
https://doi.org/10.1080/13547500902965120, 2009.

ICRP: PUBLICATION 66: Human Respiratory Tract Model for Ra-
diological Protection, Pergamon Press, New York, ISSN 0146-
6453, 1994.

Jafar, H. A. and Harrison, R. M.: Spatial and temporal trends in car-
bonaceous aerosols in the United Kingdom, Atmos. Pollut. Res.,
12, 295–305, https://doi.org/10.1016/j.apr.2020.09.009, 2021.

Järvi, L., Hannuniemi, H., Hussein, T., Junninen, H., Aalto, P. P.,
Hillamo, R., Mäkelä, T., Keronen, P., Siivola, E., and Vesala, T.:
The urban measurement station SMEAR III: Continuous mon-
itoring of air pollution and surface–atmosphere interactions in
Helsinki, Finland, Boreal Environ. Res., 19, 86–109, 2009.

Järvinen, A., Kuuluvainen, H., Niemi, J. V., Saari, S., Dal Maso,
M., Pirjola, L., Hillamo, R., Janka, K., Keskinen, J., and
Rönkkö, T.: Monitoring urban air quality with a diffusion charger
based electrical particle sensor, Urban Clim., 14, 441–456,
https://doi.org/10.1016/j.uclim.2014.10.002, 2015.

Järvinen, A., Timonen, H., Karjalainen, P., Bloss, M., Simo-
nen, P., Saarikoski, S., Kuuluvainen, H., Kalliokoski, J., Dal
Maso, M., Niemi, J. V., Keskinen, J., and Rönkkö, T.:
Particle emissions of Euro VI, EEV and retrofitted EEV
city buses in real traffic, Environ. Pollut., 250, 708–716,
https://doi.org/10.1016/j.envpol.2019.04.033, 2019.

Johansson, L., Epitropou, V., Karatzas, K., Karppinen, A., Wan-
ner, L., Vrochidis, S., Bassoukos, A., Kukkonen, J., and Kom-
patsiaris, I.: Fusion of meteorological and air quality data
extracted from the web for personalized environmental in-
formation services, Environ. Modell. Softw., 64, 143–155,
https://doi.org/10.1016/j.envsoft.2014.11.021, 2015.

Karjalainen, P., Timonen, H., Saukko, E., Kuuluvainen, H.,
Saarikoski, S., Aakko-Saksa, P., Murtonen, T., Bloss, M., Dal
Maso, M., Simonen, P., Ahlberg, E., Svenningsson, B., Brune,
W. H., Hillamo, R., Keskinen, J., and Rönkkö, T.: Time-resolved
characterization of primary particle emissions and secondary
particle formation from a modern gasoline passenger car, At-
mos. Chem. Phys., 16, 8559–8570, https://doi.org/10.5194/acp-
16-8559-2016, 2016.

Kiriya, M., Okuda, T., Yamazaki, H., Hatoya, K., Kaneyasu,
N., Uno, I., Nishita, C., Hara, K., Hayashi, M., Funato,
K., Inoue, K., Yamamoto, S., Yoshino, A., and Takami,
A.: Monthly and Diurnal Variation of the Concentrations
of Aerosol Surface Area in Fukuoka, Japan, Measured by
Diffusion Charging Method, Atmosphere (Basel), 8, 114,
https://doi.org/10.3390/atmos8070114, 2017.

Kulkarni, P., Baron, P. A., and Willeke, K. (Eds.): Aerosol mea-
surement: principles, techniques, and applications, John Wiley
& Sons, https://doi.org/10.1002/9781118001684, 2011.

Kuula, J., Kuuluvainen, H., Rönkkö, T., Niemi, J. V., Saukko, E.,
Portin, H., Aurela, M., Saarikoski, S., Rostedt, A., Hillamo,
R., and Timonen, H.: Applicability of Optical and Diffusion
Charging-Based Particulate Matter Sensors to Urban Air Qual-
ity Measurements, Aerosol Air Qual. Res., 19, 1024–1039,
https://doi.org/10.4209/aaqr.2018.04.0143, 2019.

Kuula, J., Kuuluvainen, H., Niemi, J. V., Saukko, E., Portin, H.,
Kousa, A., Aurela, M., Rönkkö, T., and Timonen, H.: Long-
term sensor measurements of lung deposited surface area of
particulate matter emitted from local vehicular and residential
wood combustion sources, Aerosol Sci. Tech., 54, 190–202,
https://doi.org/10.1080/02786826.2019.1668909, 2020.

Kuuluvainen, H., Rönkkö, T., Järvinen, A., Saari, S., Karjalainen, P.,
Lähde, T., Pirjola, L., Niemi, J. V., Hillamo, R., and Keskinen,
J.: Lung deposited surface area size distributions of particulate
matter in different urban areas, Atmos. Envrion., 136, 105–113,
https://doi.org/10.1016/j.atmosenv.2016.04.019, 2016.

Kuuluvainen, H., Poikkimaki, M., Jarvinen, A., Kuula, J., Ir-
jala, M., Dal Maso, M., Keskinen, J., Timonen, H., Niemi, J.
V., and Ronkko, T.: Vertical profiles of lung deposited sur-
face area concentration of particulate matter measured with
a drone in a street canyon, Environ. Pollut., 241, 96–105,
https://doi.org/10.1016/j.envpol.2018.04.100, 2018.

Lamberg, H., Nuutinen, K., Tissari, J., Ruusunen, J., Yli-Pirilä,
P., Sippula, O., Tapanainen, M., Jalava, P., Makkonen, U.,
Teinilä, K., Saarnio, K., Hillamo, R., Hirvonen, M.-R., and
Jokiniemi, J.: Physicochemical characterization of fine particles
from small-scale wood combustion, Atmos. Envrion., 45, 7635–
7643, https://doi.org/10.1016/j.atmosenv.2011.02.072, 2011.

Lindstrom, M. J. and Bates, D. M.: Newton–Raphson and EM
algorithms for linear mixed-effects models for repeated-
measures data, J. Am. Stat. Assoc., 83, 1014–1022,
https://doi.org/10.2307/2290128, 1988.

Liu, H., Zhang, X., Zhang, H., Yao, X., Zhou, M., Wang, J., He,
Z., Zhang, H., Lou, L., Mao, W., Zheng, P., and Hu, B.: Effect
of air pollution on the total bacteria and pathogenic bacteria in
different sizes of particulate matter, Environ. Pollut., 233, 483–
493, https://doi.org/10.1016/j.envpol.2017.10.070, 2018a.

Liu, Y., Wu, J., Yu, D., and Hao, R.: Understanding the pat-
terns and drivers of air pollution on multiple time scales: the
case of northern China, Environ. Manage., 61, 1048–1061,
https://doi.org/10.1007/s00267-018-1026-5, 2018b.

Luoma, K., Niemi, J. V., Aurela, M., Fung, P. L., Helin, A., Hussein,
T., Kangas, L., Kousa, A., Rönkkö, T., Timonen, H., Virkkula, A.,
and Petäjä, T.: Spatiotemporal variation and trends in equivalent
black carbon in the Helsinki metropolitan area in Finland, At-
mos. Chem. Phys., 21, 1173–1189, https://doi.org/10.5194/acp-
21-1173-2021, 2021.

Atmos. Chem. Phys., 22, 1861–1882, 2022 https://doi.org/10.5194/acp-22-1861-2022

https://doi.org/10.1016/j.atmosenv.2018.07.022
https://doi.org/10.5194/acp-17-3475-2017
https://smear.avaa.csc.fi/
https://smear.avaa.csc.fi/
https://doi.org/10.1289/EHP2054
https://doi.org/10.1080/13547500902965120
https://doi.org/10.1016/j.apr.2020.09.009
https://doi.org/10.1016/j.uclim.2014.10.002
https://doi.org/10.1016/j.envpol.2019.04.033
https://doi.org/10.1016/j.envsoft.2014.11.021
https://doi.org/10.5194/acp-16-8559-2016
https://doi.org/10.5194/acp-16-8559-2016
https://doi.org/10.3390/atmos8070114
https://doi.org/10.1002/9781118001684
https://doi.org/10.4209/aaqr.2018.04.0143
https://doi.org/10.1080/02786826.2019.1668909
https://doi.org/10.1016/j.atmosenv.2016.04.019
https://doi.org/10.1016/j.envpol.2018.04.100
https://doi.org/10.1016/j.atmosenv.2011.02.072
https://doi.org/10.2307/2290128
https://doi.org/10.1016/j.envpol.2017.10.070
https://doi.org/10.1007/s00267-018-1026-5
https://doi.org/10.5194/acp-21-1173-2021
https://doi.org/10.5194/acp-21-1173-2021


P. L. Fung et al.: Input-adaptive linear mixed-effects model for estimating alveolar LDSA 1881

Maricq, M. M.: Monitoring Motor Vehicle PM Emis-
sions: An Evaluation of Three Portable Low-Cost
Aerosol Instruments, Aerosol Sci. Tech., 47, 564–573,
https://doi.org/10.1080/02786826.2013.773394, 2013.

Mikkonen, S., Németh, Z., Varga, V., Weidinger, T., Leinonen, V.,
Yli-Juuti, T., and Salma, I.: Decennial time trends and diurnal
patterns of particle number concentrations in a central European
city between 2008 and 2018, Atmos. Chem. Phys., 20, 12247–
12263, https://doi.org/10.5194/acp-20-12247-2020, 2020.

Miller, A.: Subset selection in regression, CRC Press,
https://doi.org/10.1201/9781420035933, 2002.

NCRP: Report No. 125: Deposition, Retention and Dosimetry of
Inhaled Radioactive Substances, National Council on Radiation
Protection and Measurements, ISBN 0-929600-54-1, 1997.

Oberdörster, G.: Nanotoxicology: in vitro-in vivo
dosimetry, Environ. Health Persp., 120, A13,
https://doi.org/10.1289/ehp.1104320, 2012.

Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitz-
patrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai,
D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H., and A
report from the ILSI Research Foundation/Risk Science Institute
Nanomaterial Toxicity Screening Working Group: Principles for
characterizing the potential human health effects from exposure
to nanomaterials: elements of a screening strategy, Part. Fibre
Toxicol., 2, 1–35, https://doi.org/10.1186/1743-8977-2-8, 2005.

Pacitto, A., Stabile, L., Russo, S., and Buonanno, G.: Exposure to
Submicron Particles and Estimation of the Dose Received by
Children in School and Non-School Environments, Atmosphere
(Basel), 11, 485, https://doi.org/10.3390/atmos11050485, 2020.

Petäjä, T., Kerminen, V.-M., Dal Maso, M., Junninen, H., Kopo-
nen, I. K., Hussein, T., Aalto, P. P., Andronopoulos, S., Robin,
D., Hämeri, K., Bartzis, J. G., and Kulmala, M.: Sub-micron at-
mospheric aerosols in the surroundings of Marseille and Athens:
physical characterization and new particle formation, Atmos.
Chem. Phys., 7, 2705–2720, https://doi.org/10.5194/acp-7-2705-
2007, 2007.

Pirjola, L., Niemi, J. V., Saarikoski, S., Aurela, M., Enroth,
J., Carbone, S., Saarnio, K., Kuuluvainen, H., Kousa, A.,
Rönkkö, T., and Hillamo, R.: Physical and chemical char-
acterization of urban winter-time aerosols by mobile mea-
surements in Helsinki, Finland, Atmos. Environ., 158, 60–75,
https://doi.org/10.1016/j.atmosenv.2017.03.028, 2017.

Reche, C., Viana, M., Brines, M., Perez, N., Beddows, D., Alastuey,
A., and Querol, X.: Determinants of aerosol lung-deposited sur-
face area variation in an urban environment, Sci. Total Environ.,
517, 38–47, https://doi.org/10.1016/j.scitotenv.2015.02.049,
2015.

Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Ap-
plications and Display sYstem: READY, Environ. Model. Softw.,
95, 210–228, https://doi.org/10.1016/j.envsoft.2017.06.025,
2017.

Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo,
R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski,
S., Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A.,
Olin, M., Yli-Ojanperä, J., Nousiainen, P., Kousa, A., and
Dal Maso, M.: Traffic is a major source of atmospheric nan-
ocluster aerosol, P. Natl. Acad. Sci. USA, 114, 7549–7554,
https://doi.org/10.1073/pnas.1700830114, 2017.

Rostedt, A., Arffman, A., Janka, K., Yli-Ojanperä, J., and
Keskinen, J.: Characterization and Response Model of the
PPS-M Aerosol Sensor, Aerosol Sci. Tech., 48, 1022–1030,
https://doi.org/10.1080/02786826.2014.951023, 2014.

Rudin, C.: Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead, Nat.
Mach. Intell., 1, 206–215, https://doi.org/10.1038/s42256-019-
0048-x, 2019.

Salo, L., Hyvärinen, A., Jalava, P., Teinilä, K., Hooda, R. K., Datta,
A., Saarikoski, S., Lintusaari, H., Lepistö, T., Martikainen, S.,
Rostedt, A., Sharma, V. P., Rahman, M. H., Subudhi, S., Asmi,
E., Niemi, J. V., Lihavainen, H., Lal, B., Keskinen, J., Kuulu-
vainen, H., Timonen, H., and Rönkkö, T.: The characteristics and
size of lung-depositing particles vary significantly between high
and low pollution traffic environments, Atmos. Environ., 255,
118421, https://doi.org/10.1016/j.atmosenv.2021.118421, 2021a.

Salo, L., Rönkkö, T., Saarikoski, S., Teinilä, K., Kuula, J., Alanen,
J., Arffman, A., Timonen, H., and Keskinen, J.: Concentrations
and Size Distributions of Particle Lung-deposited Surface Area
(LDSA) in an Underground Mine, Aerosol Air Qual. Res., 21,
200660, https://doi.org/10.4209/aaqr.200660, 2021b.

Schmid, O. and Stoeger, T.: Surface area is the biolog-
ically most effective dose metric for acute nanoparti-
cle toxicity in the lung, J. Aerosol Sci., 99, 133–143,
https://doi.org/10.1016/j.jaerosci.2015.12.006, 2016.

Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J.,
Fushimi, A., Enami, S., Arangio, A. M., Fröhlich-Nowoisky, J.,
Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas,
K., Morino, Y., Pöschl, U., Takahama, S., Takami, A., Tong, H.,
Weber, B., Yoshino, A., and Sato, K.: Aerosol health effects from
molecular to global scales, Environ. Sci. Technol., 51, 13545–
13567, https://doi.org/10.1021/acs.est.7b04417, 2017.
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