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Abstract. A new method is presented for estimating urban hydroxyl radical (OH) concentrations using the
downwind decay of the ratio of nitrogen dioxide over carbon monoxide column-mixing ratios (XNO2/XCO)
retrieved from the Tropospheric Monitoring Instrument (TROPOMI). The method makes use of plumes simu-
lated by the Weather Research and Forecast model (WRF-Chem) using passive-tracer transport, instead of the
encoded chemistry, in combination with auxiliary input variables such as Copernicus Atmospheric Monitor-
ing Service (CAMS) OH, Emission Database for Global Atmospheric Research v4.3.2 (EDGAR) NOx and CO
emissions, and National Center for Environmental Protection (NCEP)-based meteorological data. NO2 and CO
mixing ratios from the CAMS reanalysis are used as initial and lateral boundary conditions. WRF overestimates
NO2 plumes close to the center of the city by 15 % to 30 % in summer and 40 % to 50 % in winter compared
to TROPOMI observations over Riyadh. WRF-simulated CO plumes differ by 10 % with TROPOMI in both
seasons. The differences between WRF and TROPOMI are used to optimize the OH concentration, NOx , CO
emissions and their backgrounds using an iterative least-squares method. To estimate OH, WRF is optimized
using (a) TROPOMI XNO2/XCO and (b) TROPOMI-derived XNO2 only.

For summer, both the NO2/CO ratio optimization and the XNO2 optimization increase the prior OH from
CAMS by 32± 5.3 % and 28.3± 3.9 %, respectively. EDGAR NOx and CO emissions over Riyadh are in-
creased by 42.1± 8.4 % and 101± 21 %, respectively, in summer. In winter, the optimization method doubles the
CO emissions while increasing OH by ∼ 52± 14 % and reducing NOx emissions by 15.5± 4.1 %. TROPOMI-
derived OH concentrations and the pre-existing exponentially modified Gaussian function fit (EMG) method
differ by 10 % in summer and winter, confirming that urban OH concentrations can be reliably estimated us-
ing the TROPOMI-observed NO2/CO ratio. Additionally, our method can be applied to a single TROPOMI
overpass, allowing one to analyze day-to-day variability in OH, NOx and CO emission.
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1 Introduction

The rapidly growing urbanization has led to an increase in the
number of big cities globally. More than 55 % of the global
population resides in cities, and this fraction is projected to
increase to 68 % in 2050 (United Nations, 2019). The associ-
ated rise in consumption of energy and materials leads to se-
vere air pollution that is estimated to have caused premature
deaths of 4 to 9 million people globally in 2015 (Sicard et
al., 2021; Pascal et al., 2013; Burnett et al., 2018). Air pollu-
tion control measures and the application of cleaner technol-
ogy reduced the NO2 concentrations in developed cities such
as Los Angeles and Paris by 1.5 % to 3.0 % yr−1 between
1996 and 2017 (Georgoulias et al., 2019). The CO emission
was reduced by 28.8 % to 60.7 % in these cities in the pe-
riod 2000 to 2008 (Dekker et al., 2017). In developing cities
such as Tehran and Baghdad, however, NO2 concentrations
increased by 8.6 % yr−1 and 16.9 % yr−1 between 1996 and
2017 (Georgoulias et al., 2019). The CO emission increased
by 15 % in New Delhi in the period 2000 to 2008 (Dekker
et al., 2017). As a consequence, air pollution monitoring and
mitigation in developing cities are becoming increasingly im-
portant priorities.

Nowadays, urban air pollution can be studied using a com-
bination of ground-based measurement networks and satel-
lite observations (Sannigrahi et al., 2021; Ialongo et al.,
2020). Satellite observations have helped to investigate ur-
ban air pollution, particularly in cities without a ground-
based monitoring network (Beirle et al., 2019; Borsdorff et
al., 2019). In past decades, improvements in the quality and
spatial resolution of satellite measurements have allowed the
detection of trends in air pollutants and the quantification
of urban emissions (Lorente et al., 2019; Verstraeten et al.,
2018; Borssdorff et al., 2019). Several studies have focused
on NOx , using NO2 observations from the SCanning Imag-
ing Absorption spectroMeter for Atmospheric CartograpHY
(SCIAMACHY), the Ozone Monitoring Instrument (OMI)
and TROPOMI (Ding et al., 2017; Lorente et al., 2019). At
the resolution and sensitivity of TROPOMI, urban NO2 en-
hancements can be detected readily, even in a single satellite
overpass. OMI-derived NO2 data have been used to quan-
tify NOx emissions, as well as the urban lifetime of NO2, as
demonstrated by Beirle et al. (2011) using the exponentially
modified Gaussian function fit (EMG) method.

In the EMG method, the satellite-observed exponential de-
cay of NO2 downwind of the city center is used to quan-
tify the first-order loss of NO2, which is used to quantify
the hydroxyl radical (OH), neglecting other NOx removal
pathways. Liu et al. (2016) modified the EMG method for
application to complex emission patterns. The quantifica-
tion of CO emissions from cities is more complicated com-
pared with NO2 because of its longer lifetime and the related
importance of CO sources from the surroundings of cities.
Nevertheless, a few studies have demonstrated the feasibility
of quantifying relative changes in urban CO emission using

Measurement of Pollution in the Troposphere (MOPPIT), In-
frared Atmospheric Sounding Interferometer (IASI), Atmo-
spheric Infrared Sounder (AIRS) and TROPOMI observa-
tions (Borsdorff et al., 2019; Dekker et al., 2017; Pommier
et al., 2013).

In recent years, methods have been developed that com-
bine satellite measurements of different trace gases (for ex-
ample, the combined use of NO2 and CO) to obtain spe-
cific information about pollutant sources (Lama et al., 2020;
Hakkarainen et al., 2016; Miyazaki et al., 2017; Reuter et
al., 2019; Silva and Arellano, 2017). The emission factors of
CO and NOx from fuel combustion are uncertain and vary
strongly with the combustion efficiency (Flagan and Sein-
feld, 1988). The satellite-observed1NO2 /1CO ratio is par-
ticularly sensitive to this fuel-burning efficiency, as demon-
strated by Lama et al. (2020), and can be used to evalu-
ate emission inventories. However, another important un-
certainty arises from the removal of NO2 by OH. OH is
an important oxidant in the atmosphere, which determines
the lifetime of trace gases such as CO, NOx , sulfur dioxide
(SO2) and volatile organic compounds (VOCs) (Monks et al.,
2009). OH plays an important role in atmospheric chemistry
on scales ranging from urban air pollution to the global resi-
dence times of greenhouse gases. The direct measurement of
OH is possible using spectroscopic methods, but the spatial
representativeness of the data is limited due to its short life-
time (de Gouw et al., 2019). OH estimates from global chem-
ical transport models (CTMs) have an uncertainty of > 50 %
(Huijnen et al., 2019). Urban measurement campaigns point
to large discrepancies between modeled and observed OH
abundances – for example, in Lu et al. (2013), who found a
factor 2.6 difference in a campaign in the suburbs of Beijing.

The aim of this study is therefore to estimate the average
OH concentration in the urban plume of large cities (hereafter
referred to as urban OH) from the downwind decay of the
TROPOMI-observed NO2/CO ratio. The proposed method
makes use of the Weather Research and Forecast (WRF)
model (Grell et al., 2005) to simulate the meteorological
fields and atmospheric transport. The TROPOMI instrument
(Veefkind et al., 2012), launched on 13 October 2017 on
board the Sentinel-5 Precursor satellite, is particularly well
suited for this task, as it measures both compounds with high
sensitivity and spatial resolution. Our method uses CO be-
cause it has a longer lifetime than NO2 (weeks to months
compared to a few hours). Therefore, CO can be considered
as an inert tracer at the timescale of urban plumes. The dif-
ference in the rate of decay between NO2 and CO therefore
provides information about the photochemical oxidation of
NO2 because atmospheric dispersion is expected to have a
very similar impact on both tracers and therefore cancels out
in their ratio. The use of the NO2/CO ratio for estimating
urban-scale OH is further compared to the EMG method us-
ing only satellite-retrieved NO2 (Beirle et al., 2011).

The city of Riyadh (24.63◦ N, 46.71◦ E) is chosen as a test
case. Riyadh is an isolated city and a strong source of CO
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and NO2 pollution (Beirle et al., 2019; Lama et al., 2020).
The frequent clear-sky conditions over Riyadh yield a large
number of valid TROPOMI CO and NO2 data. The signal
to noise in TROPOMI is high enough to detect the enhance-
ment of CO and NO2 over Riyadh in a single overpass (Lama
et al., 2020). Model results from the Copernicus Atmospheric
Monitoring Service (CAMS) for Riyadh show a distinct sea-
sonality in OH (see Fig. S1 in the Supplement), which we
attempt to evaluate using TROPOMI data for summer and
winter.

This paper is organized as follows: Sect. 2 describes the
TROPOMI NO2 and CO data, the WRF model setup that
was used and the optimization method that is used for es-
timating OH. Optimization results and comparisons between
TROPOMI and WRF are presented in Sect. 3, followed by
a summary and conclusion of the main findings in Sect. 4.
Additional figures and information about the optimization
method are provided in the Supplement.

2 Data and method

2.1 TROPOMI NO2 tropospheric column

We used the offline TROPOMI level-2 tropospheric column
NO2 [mol m−2] data from retrieval versions 1.2.x for 2018
and 1.3.x for 2019, available at https://s5phub.copernicus.eu;
http://www.tropomi.eu (last access: 21 September, 2020).
NO2 data of versions 1.2.x and 1.3.x have minor process-
ing differences such as removal of negative cloud frac-
tion, better flagging and uncertainty estimation. However,
they use the same retrieval algorithm applied to level-
1b version 1.0.0 spectra (Babic et al., 2019) recorded by
the TROPOMI UV-Vis module in the 405–465 nm spec-
tral range. The TROPOMI NO2 differential optical absorp-
tion spectroscopy (DOAS) software, developed at KNMI, is
used for the processing of NO2 slant column densities (van
Geffen et al., 2019). The improved NO2 DOMINO algo-
rithm of Boersma et al. (2018) has been used to translate
slant columns into tropospheric column densities. In this al-
gorithm, stratospheric contributions are subtracted from the
slant column densities, and the residual tropospheric slant
column density is converted to tropospheric vertical col-
umn density using the air mass factor (AMF). The AMF
depends on the surface albedo, terrain height, cloud height,
cloud fraction and a priori NO2 profiles from the TM5-MP
model at 1◦× 1◦ (Eskes et al., 2018; Lorente et al., 2017).
The comparison of multi-axis differential optical absorption
spectroscopy (MAX-DOAS) ground-based measurements in
European cities shows that TROPOMI underestimates NO2
columns by 7 % to 29.7 % (Lambert et al., 2019). To re-
duce the differences between satellite and model, we re-
calculated the AMF by replacing the tropospheric AMF
based on TM5-simulated vertical NO2 columns with the
WRF-Chem equivalent (Lamsal et al., 2010; Boersma et al.,
2016; Visser et al., 2019; Huijnen et al., 2010) using the

equation provided in Appendix A. After the AMF recalcu-
lation, the NO2 vertical profiles are consistent between satel-
lite and model. Furthermore, the use of WRF-Chem has the
advantage that it resolves NO2 gradients between urban and
downwind regions better than the coarser-resolution TM5-
MP model (Russell et al., 2011; McLinden et al., 2014;
Kuhlmann et al., 2015). During summer, the AMF recal-
culation increases TROPOMI NO2 by 5 % to 10 % and by
25 % to 30 % in winter in the urban plume over Riyadh,
whereas background areas are less affected (see Fig. S2).
The Sentinel-5P Product Algorithm Laboratory (S5P-PAL)
reprocessed NO2 data available at https://data-portal.s5p-pal.
com/products/no2.html (last access: 1 September 2022) dif-
fer by 7.5 % to 10 % in summer (June to October 2018) and
13.5 % to 16 % in winter (November 2018 to March 2019)
compared to the AMF-recalculated TROPOMI NO2 data
used in this study. These differences have been used to quan-
tify the systematic uncertainty of the NO2 data and its con-
tribution to the uncertainty in the NOx emission and lifetime
derived using our method (see Tables S1, S2 and S3 in the
Supplement).

2.2 TROPOMI CO

For CO, the offline level-2 CO data product version 1.2.2
has been used, available at https://s5phub.copernicus.eu (last
access: 20 September 2020). The Shortwave Infrared Car-
bon Monoxide Retrieval (SICOR) algorithm is applied to
TROPOMI 2.3 µm spectra to retrieve CO total column den-
sity [molec. cm−2] (Landgraf et al., 2016). The retrieval
method is based on a profile-scaling approach, in which
TROPOMI-observed spectra are fitted by scaling a reference
vertical profile of CO using the Tikhonov regularization tech-
nique (Borsdorff et al., 2014). The reference CO profile is
obtained from the TM5 transport model (Krol et al., 2005).
The averaging kernel (A) quantifies the sensitivity of the re-
trieved total CO column to variations in the true vertical pro-
file (ρtrue) as follows Borsdorff et al., 2018a):

Cretrieval = A · ρtrue+∈CO, (1)

where Cretrieval is the retrieved column-average CO mixing
ratio, and ∈CO is the retrieval error, statistically represented
by the retrieval uncertainty that is provided for each CO re-
trieval.

The comparison of TROPOMI-derived XCO to the 28 dif-
ferent Total Carbon Column Observing Network (TCCON)
ground-based stations suggests that the difference between
TCCON and TROPOMI is in the range of 9.1± 3.3 % (Shah
et al., 2020). Such difference is used to estimate the uncer-
tainty in the emission and lifetime (see Tables S1, S2, S3 and
Text S6).
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2.3 Satellite data selection and filtering criteria

As NO2 and CO are retrieved from different channels of
TROPOMI using different retrieval algorithms, the filtering
criteria and spatial resolutions of CO and NO2 are different.
The data filtering makes use of the quality assurance value
(qa) and is provided with the CO and NO2 retrievals, rang-
ing from 0 (no data) to 1 (high-quality data). We selected
NO2 retrievals with qa ≥ 0.75 (clear-sky condition) and CO
retrievals with qa ≥ 0.7 (clear sky or low-level cloud), as
in Lama et al. (2020). The SICOR algorithm was origi-
nally developed for SCIAMACHY to account for the pres-
ence of low-elevation clouds, increasing the number of valid
measurements (Borsdorff et al., 2018a). In addition, the CO
stripe-filtering technique is applied as described by Borsdorff
et al. (2018a). Using dry-air column density derived from
the surface pressure data in CO and NO2 TROPOMI files,
the total CO column and tropospheric NO2 column densities
are converted to dry column-mixing ratios XCO (ppb) and
XNO2 (ppb). The spatial resolution of the NO2 data is finer
compared to the CO data (3.5× 7 km2 versus 5.5× 7 km2).
After the CO and NO2 retrievals pass the filtering criteria,
their co-location is approximated by assigning the center co-
ordinates of an NO2 retrieval to the CO footprint in which it
is located (Lama et al., 2020).

2.4 Weather Research Forecast model (WRF)

We have used WRF chemistry model (http://www.
wrf-model.org/, last access: 22 August 2019), version
3.9.1.1 to simulate NO2 and CO mixing ratios over Riyadh.
WRF is a non-hydrostatic model designed by the National
Center for Environmental Protection (NCEP) for both atmo-
spheric research and operational forecasting applications.
For this study, we have set up three nested domains in
the model at resolutions of 27, 9 and 3 km, centered at
24.63◦ N, 46.71◦ E. The first and second domain cover Saudi
Arabia and provide the boundary conditions for the nested
third domain (see Fig. S3). The analysis in this paper uses
the 500× 500 km2 sub region around Riyadh in the third
domain, containing 161 by 161 grid cells. All domains are
extended vertically from the Earth’s surface to 50 hPa, using
31 vertical layers, with 17 layers in the lowermost 1500 m.
WRF simulations are performed using a time step of 90 s for
the period June 2018 to March 2019, using a spin-up time of
10 d.

We have used the Unified Noah land surface model for
surface physics (Ek et al., 2003; Tewari et al., 2004), an up-
dated version of the Yonsei University (YSU) boundary layer
scheme (Hu et al., 2013) for the boundary layer processes,
and the rapid radiative transfer method (RRTM) for short-
wave and longwave radiation (Mlawer et al., 1997). Cloud
physics is solved with the new Tiedtke cumulus parameter-
ization scheme (Zhang and Wang, 2017). The WRF Single-
Moment 6-class scheme is used for microphysics (Hong et

al., 2006). The WRF coupling with chemistry (WRF-Chem)
allows the simulation of tracer transport and the chemical
transformation of trace gases and aerosols. Here, we used
the passive tracer transport function instead of the encoded
chemistry in WRF to speed up the model simulation and
to reduce the computational cost. In addition, the passive-
tracer option helps in separating the influences of wind, OH
and the rate constant of the NO2+OH reaction (KNO2·OH) on
the NO2/CO ratio in the downwind city plume. Compared
to previously used methods (Beirle et al., 2011; Valin et al.,
2013) which did not use a transport model at all, we con-
sider this an important improvement. The function of differ-
ent tracers, their acronyms and an explanation of different
WRF simulations are provided in Table 1.

The meteorological initial and boundary conditions are
based on NCEP data at 1◦× 1◦ spatial and 6 h temporal
resolutions, available at https://rda.ucar.edu/datasets/ds083.
2/ (last access: 10 September 2019). Nitrogen oxides (NOx
= NO2+NO) and CO anthropogenic emissions have been
taken from the Emission Database for Global Atmospheric
Research v4.3.2 (EDGAR) 2012 at 0.1◦× 0.1◦ spatial res-
olution (Crippa et al., 2016). The EDGAR 2012 data
have been re-gridded to the resolution of the WRF do-
mains, and hourly, weekly and monthly emission variations
are taken into account using the temporal emission fac-
tors provided by van der Gon et al. (2011). The chemi-
cal boundary conditions for CO and NOx are based on the
CAMS chemical reanalysis product at 0.75◦× 0.75◦ spa-
tial and 3 h temporal resolutions (Inness et al., 2019), re-
trieved from https://ads.atmosphere.copernicus.eu/cdsapp#!/
dataset/cams-global-reanalysis-eac4?tab=_form, last access:
1 November 2020). XCO and XNO2 boundary conditions
based on CAMS are assumed to be representative as back-
ground values within the domain. Since we do not explicitly
compute the sources and sinks of background NO2 inside the
domain, we decide to transport the boundary conditions as
background passive tracers.

The atmospheric transport in WRF causes the influence
of NOx and CO emissions from Riyadh on their column-
average mixing ratios to be linear. Instead of a simplified
photochemistry solver, we make use of a WRF-Chem mod-
ule for passive tracer transport for transporting NOx . This
WRF module has been modified to account for the first or-
der loss of NOx in the reaction of NO2 with OH, using
NOx/NO2 ratios from CAMS to translate NOx into NO2 and
CAMS OH fields to compute the chemical transformation of
NO2 to HNO3 (see Text S1 for detail).

This is a simplified treatment of the lifetime of NOx as
other photochemical pathways play a role, such as

– the oxidation of NO2 in reaction with organic radicals
(RO2) to form the alkyl and multifunctional nitrates
(RONO2) (Romer Present et al., 2019);
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Table 1. Summary of WRF simulations and the definition of tracers and acronyms used.

WRF simulation or tracer WRF input and tracer definition

Prior WRF run using NCEP meteorological data, EDGAR CO and NOx emissions, CAMS OH, and
CAMS CO and NOx as initial and lateral boundary conditions.

WRFOH×1.1 Prior run with CAMS OH increased by 10 %
Optimized run1st iter Optimized state (emission, OH, background) after iteration 1
Optimized run2nd iter Optimized state (emission, OH, background) after iteration 2

CO

XCOemis The contribution of urban CO emissions to XCO
XCOBg The contribution of the background to XCO
XCOWRF XCO from the prior run
XCOWRF, 1st iter XCO from optimized run1st iter
XCO WRF, opt XCO from optimized run2nd iter

NO2

XNO2 emis The contribution of urban NOx emissions to XNO2, ignoring the OH sink
XNO2 (emis,OH) As XNO2 (emis) accounting for the OH sink
XNO2 (emis,OH×1.1) As XNO2 (emis,OH) with CAMS OH increased by 10 %
XNO2 Bg The contribution of the background to XNO2
XNO2 WRF XNO2 from the prior run.
XNO2(WRF,OH×1.1) XNO2 from WRFOH×1.1
XNO2 WRF 1st iter XNO2 from optimized run1st iter
XNO2 WRF opt XNO2 from optimized run2nd iter

Ratio (NO2/CO)

Ratiowithout OH Ratio of XNO2 emis and XCOemis
Ratiowith OH Ratio of XNO2 (emis,OH) and XCOemis
RatioBg Ratio of XNO2 Bg and XCOBg
WRF ratio Ratio of XNO2 WRF and XCOWRF
WRF ratioOH×1.1 Ratio of XNO2 (WRF, OH×1.1) and XCOWRF
WRF ratio1st iter Ratio of XNO2 WRF, 1st iter and XCOWRF, 1st iter
WRF ratioopt Ratio of XNO2 WRF, opt and XCOWRF, opt

– NOx loss due to the formation of dinitrogen pentox-
ide (N2O5) followed by heterogeneous transformation
to HNO3 (Shah et al., 2020);

– peroxyacetyl nitrate (PAN) formation in equilibrium
between NO2 and the peroxyacetyl radical (Moxim,
1996);

– the dry deposition of NO2 on the surface and plant stom-
ata (Delaria et al., 2020).

The loss of NO2 by OH to HNO3 accounts for 60 % of
the global NOx emission (Stavrakou et al., 2013). Macin-
tyre and Evans (2010) showed that the N2O5 pathway re-
duces NOx concentrations by 10 % in the tropics (30◦ N to
30◦ S) and 40 % at northern latitudes. The NOx loss through
N2O5 hydrolysis is largest at northern latitudes during winter
(50 % to 150 %), unlike in the tropics where, its seasonality is
small. Moreover, the removal of N2O5 is primarily important
during nighttime because of its photolysis during daytime,
whereas our analysis focuses on the midday overpass time

(13:30 LT) of TROPOMI when OH abundances are highest.
For these reasons, we consider it safe to neglect the loss of
NOx through N2O5 in our analysis for Riyadh. The dry depo-
sition flux is also expected to be low, as it is controlled largely
by stomatal uptake, which is assumed to be insignificant for
the low vegetation cover of Riyadh. The same is expected to
be true for PAN formation because of its thermal decompo-
sition at increasing temperatures. We acknowledge that our
OH estimates should be regarded as upper limits due to the
neglect of other NOx transformation pathways. A quantifi-
cation of the combined effect would require full chemistry
simulations, which we consider to be outside of the scope of
this paper.

Note that, in this study, OH is only applied to the
urban NOx emission tracer (XNOx emis). The CAMS
NOx background tracer (XNOx Bg) is transported in
WRF without OH decay, since it already represents
the balance between regional sources and sinks. CAMS
hydroxyl radical (OH) data at 0.75◦× 0.75◦ spatial
and 3 h temporal resolutions (Inness et al., 2019),
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retrieved at https://ads.atmosphere.copernicus.eu/cdsapp#!/
dataset/cams-global-reanalysis-eac4?tab=_form, last access:
1 July 2020), are spatially, temporally and vertically interpo-
lated to the WRF grid. The NOx lifetime is derived as fol-
lows:
dNO2

dt
= KNO2 OH · [OH] · [NO2], (2)

fact=
NOx
NO2

, (3)

τNOx =
1

KNO2 OH
fact · [OH]

, (4)

where, KNO2 OH is the International Union of Pure and Ap-
plied Chemistry’s (IUPAC’s) second order rate constant for
the reaction of NO2 with OH; “fact” represents the fractional
contribution of NO2 to NOx (NOx/NO2). This NOx-to-NO2
conversion factor is derived from the CAMS reanalysis and
is re-gridded to WRF to account for its spatial and temporal
variation. τNOx is the lifetime of NOx .

The components of NOx (NO and NO2) have short life-
times during daytime because of the photo-stationary equi-
librium exchanging NO and NO2 into each other. For this
reason, we estimate the lifetime of their sum (NOx), which is
determined largely by the reaction with OH. In earlier work
with satellite NO2 data, the Jet Propulsion Laboratory (JPL)
high-pressure limit was used as the rate constant to represent
the first order loss of NO2 (Beirle et al., 2011; Lama et al.,
2020; Lorente et al., 2019). However, we found this approx-
imation to be too crude and therefore apply the full IUPAC-
recommended pressure-dependent formula for the second or-
der rate constant. Supplement Fig. S4 shows the difference
between the three rate constants, i.e., JPL high-pressure limit,
JPL second order and IUPAC second order, confirming the
importance of accounting for the pressure dependence.

WRF output for the third domain is interpolated spatially
and temporally to the footprints of TROPOMI. The inter-
polated WRF NOx tracers are converted to NO2 using the
conversion factor derived from the CAMS reanalysis, ac-
counting for its spatial and temporal variation (for the names
and functions of tracers, see Table 1). The averaging kernel
available for each TROPOMI CO and NO2 observation is
applied to the WRF output after interpolation to the verti-
cal layers of the TROPOMI retrieval. To compare WRF out-
put to TROPOMI, WRF-derived XNO2(XNO2 WRF) is cal-
culated by combining the NO2 tracer that accounts for the
OH effect (XNO2 (emis,OH)) and the CAMS NO2 background
(XNO2 Bg) (see Figs. S5 and S6). Similarly, the CO emis-
sion tracer (XCOemis) is added to the CAMS CO background
(XCOBg) to calculate WRF-simulated XCO (XCOWRF) (see
Figs. S7 and S8).

2.5 NO2/CO ratio calculation using box rotation

The variation of the NO2/CO ratio in the downwind city
plume is calculated as a function of distance x from the

city center in a downwind direction. We select days with
an average wind speed (U ) in the range of 3.0 m s−1

(Beirle et al., 2011) <U < 8.5 m s−1 (Valin et al., 2013)
within a 50 km radius from the center of Riyadh (24.63◦ N,
46.71◦ E). The horizontal distribution of EDGAR emissions
over Riyadh is used within this 50 km radius (Fig. S9).
A total of 95 d in summer and 70 d in winter meet the
wind speed criteria over Riyadh for the ratio calcula-
tion. The boundary layer average wind speed and direc-
tion are calculated using the CAMS global reanalysis eac4
(retrieved at https://ads.atmosphere.copernicus.eu/cdsapp#!/
dataset/cams-global-reanalysis-eac4?tab=_form, last access:
1 August 2020) at a 0.75◦× 0.75◦ spatial and 3 h tem-
poral resolution. For this, the CAMS wind vector is spa-
tially and temporally interpolated to the central coordinate
of TROPOMI pixels.

To compute the NO2/CO ratio as function of the down-
wind distance x, TROPOMI and WRF data have been re-
gridded at 0.1◦× 0.1◦. A box (B1) is selected with a width
of 100 km, from 100 km in upwind to 200 km in down-
wind direction of the city center (see Fig. 1a). The dimen-
sion of the box is motivated by multiple TROPOMI over-
passes over Riyadh, showing NO2 and CO enhancements
advected downwind over a ∼ 200 km distance without other
large sources of NO2 and CO within a 100 km radius of the
city center (see Fig. 1a). Figure 1b shows the boundary layer
averaged wind speed and wind direction over Riyadh, indi-
cating flow towards the northeast on 4 August 2018. The box
is rotated for every TROPOMI overpass, depending upon the
daily average wind direction within a 50 km radius from the
center of Riyadh, as shown in Figs. 1a and S10. The rotated
box B1 is divided into N rectangular boxes, orthogonal to
the wind direction with length (1x) ∼ 11 km (see Figs. 1
and S10). The XNO2 and XCO grid cells that fall within the
N rectangular boxes are selected to derive zonally averaged
XNO2 and XCO for summer and winter.

Unlike the enhancements over the city, 1XNO2 and
1XCO become smaller than retrieval uncertainties at large
distance from the city, where the ratio 1XNO2/1XCO be-
comes ill defined. Therefore, we decided to use the ratio
of mean XNO2 and XCO instead of enhancements over the
background. To analyze the influence of atmospheric trans-
port and the OH sink on the WRF-derived XNO2/XCO ra-
tio, two different ratios are derived: (1) XNO2 emis

XCOemis
, named

“ratiowithout OH”, and (2) XNO2 (emis,OH)
XCOemis

, named “ratiowith OH”
(see Table 1). The CAMS background accounts for the bal-
ance between regional source and sink in CTMs, so it is
excluded to analyze the influence of atmospheric transport
on the ratio. For the comparison between TROPOMI and
WRF, the CAMS backgrounds are included in “WRF ratio”
( XNO2 WRF

XCOWRF
) (see Table 1). The comparison of WRF ratio to

TROPOMI ratio and the contribution of its components are
presented in Sect. 3.2.
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Figure 1. TROPOMI-derived XCO (a) and average wind speed and wind direction from the surface to the top of the boundary layer (b)
derived from the CAMS global reanalysis eac4 data at the TROPOMI overpass time over Riyadh for 4 August 2018. The white star represents
the center of Riyadh. The black box (B1), with a dimension of 300×100 km2, is rotated in the average wind direction at a 50 km radius from
the center of Riyadh at the TROPOMI overpass time, resulting in the red box. For the calculation of cross-directional averaged NO2 and CO,
the red box is divided into 29 smaller cells with the width (1x) ∼ 11 km. For this, TROPOMI-derived XCO is gridded at 0.1◦× 0.1◦.

2.6 OH estimation: satellite data only

In the EMG method, following Beirle et al. (2011), 2D NO2
column density maps are assigned to eight equal wind sec-
tors, spanning 360◦ for summer and winter; 1D column den-
sities per wind sector are computed by averaging in a cross-
wind direction. This way, average NO2 column density func-
tions of the downwind distance to the city center have been
constructed for summer and winter (see Fig. S11). Using
the EMG method, as in Beirle et al. (2011), the e-folding
distance (x0) and NO2 emissions have been estimated. The
NO2 lifetime is derived by dividing x0 by the average wind
speed (5.46 and 5.24 m s−1 for winter and summer, respec-
tively) and is provided in Table 2. The OH concentration is
derived from the inferred NO2 lifetime using the IUPAC sec-
ond order rate constant (for details, see Text S2 and S3 in
the Supplement). Rate constants at the time of TROPOMI
overpasses are obtained from WRF by averaging the IUPAC
second order rate constant from the surface to the top of
the planetary boundary layer (PBL). The PBL height at the
time TROPOMI overpass has been taken from WRF. EMG-
derived NO2 emissions are also converted to NOx emissions
using the CAMS-derived conversion factor. Summer- and
winter-averaged CAMS-derived conversion factors for the
box of 300 km× 100 km are 1.28 and 1.31, respectively.

2.7 OH estimation: WRF optimization

To jointly estimate the NOx and CO emissions as well as the
OH concentration from the TROPOMI data, a least-squares
optimization method is used. This method fits the model to
the data by minimizing a cost function (J ) (see Text S4 for
details). The reaction of NO2 with OH introduces a non-
linearity in the OH optimization. To account for this non-
linearity, we linearize the problem around the a priori start-
ing point using the small perturbations (10 %)1background,
1emission and 1OH. The non-linear model is fitted to the
observations by optimizing scaling factors fBg, femis, fOH

to the perturbation functions 1background, 1emission and
1OH, respectively. This process is repeated iteratively, up-
dating the linearization point and re-computing the perturba-
tion functions. The scaling factors femis, foh and fbg repre-
sent the modification of the prior in percentage change.

We estimate OH by optimizing WRF with TROPOMI in
two ways: (1) optimizing the simulated NO2/CO ratio us-
ing TROPOMI-derived ratios, named as “ratio optimization”,
and (2) optimizing NO2 and CO separately using TROPOMI-
derived XCO and XNO2, named as “component-wise opti-
mization”. First, the ratio optimization is described, followed
by the component-wise optimization. Optimized ratios are
derived as follows:

FTROPOMI = F +
1F

1emis
·
femis

10
+
1F

1OH
·
fOH

10

+
1F

1Bg
·
fBg

10
, (5)

F =
XNO2 WRF

XCOWRF
, (6)

XNO2 WRF = XNO2 (emis, OH)+XNO2 Bg, (7)
XCOWRF = XCOemis+XCOBg, (8)
1F

1emis
=

XNO2 (emis, OH) · 1.05+XNO2 Bg

XCOemis · 0.95+XCOBg
−F, (9)

1F

1OH
=

XNO2 (emis, OH×1.1)+XNO2 Bg

XCOemis+XCOBg
−F, (10)

1F

1Bg
=

XNO2 (emis, OH)+XNO2Bg · 1.05
XCOemis+XCOBg · 0.95

−F, (11)

Here, FTROPOMI is the TROPOMI-derived NO2/CO ratio, F
is the WRF ratio, 1F

1 emis is the change in F due to an increase
in the NO2 emission by 5 % and a decrease in the CO emis-
sion by 5 % (1.05/0.95=∼ 10 %), 1F

1OH is the change in F
due to an increase in OH by 10 %, and 1F

1Bg is the change in
F due to an increase in the XNO2 background by 5 % and a
decrease in the CO background by 5 %. XNO2 (emis, OH) is the
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contribution of city NOx emissions to XNO2, accounting for
the OH sink. XNO2 Bg is the NO2 background. XCOemis is
the contribution of the EDGAR city CO emissions to XCO,
and XCOBg is the CO background derived from CAMS.
XNO2 WRF and XCOWRF are the WRF-derived XNO2 and
XCO, respectively. XNO2 (emis, OH× 1.1) is the contribution
of city NOx emissions to XNO2 after increasing CAMS OH
by 10 %. The scaling factors femis, fOH and fBg obtained
from the ratio optimization have been divided by 10 because
1F
1emis ,

1F
1OH and 1F

1Bg are defined as the change in F due to
modification of emission, OH and background by 10 %.

Although the ratio optimization is sensitive to the emis-
sion ratio and the OH sink of NO2, it is not sensitive to the
absolute emissions of CO and NO2. Therefore, we performed
component-wise optimizations for XCO and XNO2 to opti-
mize absolute emissions. We also compare the OH factor ob-
tained from the ratio optimization and component-wise opti-
mization to test the robustness of the method. The optimized
XNO2 is derived using Eq. (12). XCO is optimized using the
same equation but without considering the OH sink (see Ap-
pendix B).

XNO2 TROPOMI = XNO2 WRF+1XNO2 emis ·
femis

10

+1XNO2 OH ·
fOH

10
+1XNO2 Bg ·

fBg

10
(12)

1XNO2 emis = XNO2 (emis, OH) · 1.10

−XNO2 (emis, OH) (13)

1XNO2 OH = XNO2 (emis, OH×1.1)

−XNO2 (emis, OH) (14)
1XNO2 Bg = XNO2 Bg · 1.10−XNO2 Bg (15)

Here, XNO2 TROPOMI is the TROPOMI-derived XNO2,
XNO2 WRF is the WRF XNO2. 1XNO2 emis is the change in
XNO2 due to an increase in emissions by 10 %, 1XNO2 OH
is the change in XNO2 due to an increase in CAMS OH by
10 %, and 1XNO2 Bg is a change in the background XNO2
by 10 %. The scaling factors femis, fOH and fBg are di-
vided by a factor 10 because 1XNO2 emis, 1XNO2 OH and
1XNO2 Bg are defined as 10 % changes in NOx emission,
OH and background level.

3 Results and discussion

3.1 XNO2 and XCO over Riyadh

In this subsection, we compare WRF-derived XCOWRF and
XNO2 WRF with TROPOMI for summer (see Fig. 2) and win-
ter (see Fig. S12) over Riyadh. TROPOMI and WRF-derived
XCO and XNO2 are averaged from June to October 2018 for
summer and November 2018 to March 2019 for winter in a
domain of 500×500 km2 centered around Riyadh. The com-
parison for summer in Fig. 2 shows TROPOMI NO2 after
replacing the TM5-based tropospheric AMF with WRF pro-
files, as described in Visser et al. (2019). The enhancement

of XNO2 and XCO over Riyadh due to urban emissions is
clearly separated from the background for TROPOMI and
WRF, showing that the city of Riyadh is well suited to inves-
tigating the use of the NO2/CO ratio to quantify OH in urban
plumes. Due to the longer lifetime of CO, the TROPOMI-
observed XCO plume extends further in the southeast di-
rection compared to XNO2. Figure 2 shows that our WRF
simulations are able to reproduce the TROPOMI-retrieved
XNO2 (r2

= 0.96) and XCO (r2
= 0.78) plumes, confirming

that WRF-derived XNO2 WRF
XCOWRF

is suitable for the optimization
of CTM-derived OH concentrations using TROPOMI data.
XNO2 WRF is higher by 25 % compared to TROPOMI in the
city center. In the background, XCOWRF shows a similar spa-
tial distribution as TROPOMI XCO, but the values are higher
by 5 % to 10 % (see Fig. 2). Close to the city center, XCOWRF
is ∼ 5.7 % higher than TROPOMI XCO. In EDGAR 2011,
emission sources are located in the center of Riyadh (see
Fig. S9). However, as noted by Beirle et al. (2019), they ex-
tend to a larger part of the city in reality. This difference in
spatial distribution leads to higher XNO2WRF and XCOWRF
close to the center of Riyadh compared to TROPOMI.

In winter, the wind direction is predominantly from
the southeasterly sector in WRF and TROPOMI (see
Fig. S12). The spatial distribution of XCOWRF (r2

=

0.73) and XNO2 WRF (r2
= 0.88) matches quite well with

TROPOMI. Therefore, the difference between summer and
winter should offer the opportunity to quantify the season-
ality in emissions and OH concentrations over Riyadh. In
winter, XCOWRF is ∼ 5 % to 10 % higher than TROPOMI,
while XNO2WRF is higher by 40 % to 50 %. The difference
could either point to uncertainties in the NO2/CO emission
ratio, uncertainties in the NO2 lifetime or inaccuracies in the
background. By quantifying OH, we can evaluate these ex-
planations (see Sect. 3.3). XNO2 WRF is higher by 20 % in
winter than in summer. Contrarily, TROPOMI NO2 is lower
by∼ 30 % in winter (Fig. S12) compared to summer (Fig. 2).
Again, to disentangle the role of changing sources and sinks,
we need an independent estimate of OH.

3.2 The XNO2/XCO ratio and OH

Before comparing TROPOMI- and WRF-derived
XNO2/XCO ratios, we first analyze the influence of
atmospheric transport and the OH sink on the WRF-derived
XNO2/XCO ratio. To do this, three ratios are used:
(1) ratiowithout OH, (2) ratiowith OH, and (3) WRF ratio (see
Table 1). As seen in Figs. 3, S13 and S14, WRF is able to
reproduce the TROPOMI-observed downwind evolution
of XNO2 and XCO in summer and winter. The peak of
the XNO2 and XCO plumes is shifted away from the city
center due to the balance between the accumulation of
urban emissions in the atmospheric column and atmospheric
transport (Lorente et al., 2019).

As expected, ratiowithout OH shows an approximately
straight line when the background is removed because trans-
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Figure 2. Comparison between XNO2 (a, c) and XCO (b, d) from TROPOMI and WRF over Riyadh, averaged over June to October 2018.
Panels (a) and (b) show TROPOMI data, and panels (c) and (d) show the corresponding co-located WRF results. XNO2 WRF is derived by
adding XNO2(emis, OH) and XNO2 Bg. XCOWRF is derived by adding XCOemis and XCOBg. The white star represents the center of the city.
TROPOMI and WRF results are gridded at 0.1◦× 0.1◦.

port influences NO2 and CO in the same way and therefore
cancels out in the ratio (see Fig. 3b). The ratiowith OH how-
ever, shows an approximately Gaussian relation with dis-
tance due to the influence of the sink on NO2. This com-
parison demonstrates the sensitivity of the relation between
the XNO2/XCO ratio and downwind distance to the NO2
lifetime, which we want to exploit to quantify OH. When in-
cluding the background, the shapes of the functions in Fig. 3c
change (not shown) because the relative weights of the back-
ground and city contributions to the ratio vary with distance
from the city center. In summer, the WRF ratio is higher by
∼ 15 % close to the center-of-city TROPOMI due to the over-
estimation of XNO2 WRF in WRF (see Fig. 3d). However, in
the downwind plume, at a distance of 100 km, WRF ratio is
higher by 20 % to 50 % compared to TROPOMI.

In winter, ratiowithout OH and ratiowith OH show relations
with downwind distance that are similar to summer, confirm-
ing that an OH sink leads to a Gaussian structure of the ratio
(see Fig. S14). The winter WRF ratio is 40 % to 60 % higher
than TROPOMI due to the overestimation of XNO2 by 40 %
to 50 %. The WRF ratio close to the center of the city is also
20 % higher in winter than in summer due to higher winter
XNO2 WRF (see Figs. S12 and S15). In contrast, TROPOMI
shows a higher ratio in summer compared to winter (see
Fig. S15). These differences between TROPOMI- and WRF-

derived ratios offer an opportunity to address uncertainties in
CTM-computed urban OH and emission inventories, which
will be explored next.

3.3 WRF optimization using synthetic data

To translate the discrepancies between TROPOMI- and
WRF-derived ratios of Sect. 3.2 into implied differences in
emissions, OH and background, the least-squares optimiza-
tion method has been used as described in Sect. 2.7. Before
optimizing WRF using TROPOMI, pseudo-data experiments
in WRF have been carried out to test if the optimization
method is capable of recovering true emissions and OH lev-
els. To this end, changes in OH concentrations, emissions and
background by known scaling factors have been applied to
the WRF prior simulation to create a synthetic dataset. This
process is repeated multiple times to create thousands of syn-
thetic datasets. Subsequently, the scaling factors are obtained
in the inversion procedure. These tests reveal that the estima-
tion errors for femis, fOH and fBg are less than 2.5 % (see
Fig. S16). This confirms that the least-squares optimization
method works, with two iterations leading to a sufficient ac-
curacy, and can be used to estimate emissions and OH from
TROPOMI data. Using TROPOMI data, estimation errors for
femis, fOH and fBg are expected to be higher due to atmo-
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Figure 3. Comparison of WRF and TROPOMI averaged across the wind for each small box (a) XNO2, (b) XCO, (c) WRF ratio
(XNO2/XCO) without CAMS background and (d) WRF ratio (XNO2/XCO), with background and TROPOMI as a function of distance to
the center of Riyadh for summer (June to October 2018).

spheric transport errors, simplified chemistry, and XCO and
XNO2 retrieval uncertainties. These errors did not play a role
in the pseudo-data experiments, in which perfect transport
and sampling were assumed.

To obtain a more realistic estimate of the uncertainty in
least-squares-optimized OH, TROPOMI data have been re-
placed by NO2, CO and the NO2/CO ratio derived from
WRF-Chem using the Carbon Bond Mechanism Z (CBM-
Z) gas-phase chemical mechanism (Zaveri and Peters, 1999).
EDGAR-based VOCs, NOx and CO emissions have been
used in combination with boundary conditions for NO, NO2,
CO and ozone (O3) from CAMS to run WRF-Chem for
17 August and 18 November 2018, representing a summer
and winter day, respectively. For 17 August 2018, the ra-
tio and XNO2 optimization increase the CAMS-based prior
OH of 1.19× 107 molec. cm−3 by 15.7 % and 13.4 %, re-
spectively (see Fig. S17). In the fully coupled online chem-
istry with WRF simulation, the boundary layer averaged
OH for the box of 300 km× 100 km amounts to 1.33×
107 molec. cm−3, which is < 5 % lower than the optimized
OH value that is derived using our method. The optimized
NOx and CO emissions differ by < 11 % from the emis-
sion input used in the full-chemistry-version WRF. In win-
ter, the optimization increases CAMS-based OH of 1.03×
107 molec. cm−3 by 19.4 %. The OH derived from WRF with

full online chemistry is 1.07×107 molec. cm−3 and lower by
15.2 % than the optimized OH value. The component-wise
optimization increases the EDGAR NOx and CO emissions
by 23.1 % and 10.5 %, respectively (see Fig. S18). Overall,
the uncertainty in optimized NOx , CO emission and OH de-
rived from this test is < 11 % in summer and 10 % to 23 %
in winter. Since the lifetime of NOx is determined by other
reactions in addition to the oxidation to HNO3 considered in
our method, it is expected to overestimate the real OH value.
The test using WRF full chemistry confirms that this is in-
deed the case. The uncertainties for OH, NOx emission and
CO emission are in good agreement with the CLASS com-
putations explained in detail in Text S6.

3.4 WRF optimization using seasonally averaged
TROPOMI data

The results for summer are summarized in Fig. 4, showing
the optimized fit to the TROPOMI data as well as the cor-
responding scaling factors femis, fOH and fBg that are esti-
mated. The optimized emission, OH and Bg obtained from
the second iteration are divided by the prior to derive the
femis, fOH and fBg (see Text S5 for details). The convergence
of the iterative procedure is shown in Figs. S19 and S20.
The estimated uncertainties for the scaling factors femis, fOH
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and fBg are derived by summing the contribution of wind
speed, length and width of the box, NO2 bias, CO bias, and
the different pathways of NOx loss in quadrature (see Text
S6, Tables S1 and S2). For summer and winter, the uncer-
tainties of the optimized OH concentrations are < 17 % and
< 29 %, respectively. For NOx and CO emissions, the un-
certainty is < 29 % in summer and winter. Figure 4a shows
WRF ratios for summer in comparison to TROPOMI, before
and after optimizing the OH concentration. The optimized
WRF ratios fit the TROPOMI ratios well, with X2

= 0.1
(for the derivation of X2, see Text S7). The prior and opti-
mized emission ratios, OH concentrations and background
ratios obtained from component and ratio optimizations for
summer and winter are provided in Table S4. According to
the ratio optimization, the emission ratio and CAMS OH are
underestimated by 155± 26 % and 32± 5.3 %, respectively
(see Table S4). The optimized CAMS background ratio is
lower by 70± 6.5 % compared to prior. It should be realized
here that the ratio optimization does not estimate the absolute
emission of NO2 and CO, only their ratio.

To derive the absolute emission, we performed
component-wise optimizations of WRF-derived XCOWRF
and XNO2 WRF. Optimized XCOWRF and XNO2 WRF fit
well to the TROPOMI data (see Fig. 4b and c). In the XNO2
optimization, the EDGAR NOx emission is increased by
42.1± 8.4 %, and the CAMs background is reduced by
75.9± 10.0 %. CAMS OH is increased by 28.3± 3.9 %,
which is close to the results obtained from the ratio opti-
mization (see Table S4). In the XCO optimization, EDGAR
CO emissions are roughly doubled, and the background is
reduced by 4.5± 0.7 % compared to CAMS (see Table S4).

The summer optimized NOx/CO emission ratio derived
from the component-wise optimization is 0.55± 0.09. The
optimized emission ratio from ratio optimization is larger
by factor 3.6 compared to component-wise optimization (see
Table S4). The difference between two estimates can be ex-
plained by different constraints on the solution in the two
methods. In particular, the ratio inversion allows emission
adjustment in a fixed relation between NO2 and CO emis-
sions, whereas the component-wise has the full flexibility to
adjust CO and NO2 emissions. The NO2/CO ratio over a city
is the sum of the contributions of the background and the
city emissions. The relative weight of the two is determined
by the absolute background levels and absolute emissions of
CO and NO2. Therefore, the emission ratio estimated by ratio
optimization is sensitive to the XNO2 Bg. However, the dif-
ference between the two estimates is larger than expected but
does not affect the OH estimation. Lama et al. (2020) inferred
an NO2/CO emission ratio over Riyadh of 0.47± 0.1 for
2018 from TROPOMI, favoring the Monitoring Atmospheric
Chemistry and Climate and CityZen (MACCity) emission ra-
tio over that of EDGAR. The optimized emission ratio ob-
tained from component-wise optimization is consistent with
Lama et al. (2020) and with MACCity summer emissions.
This shows that, for the accurate estimation of the emission

and emission ratio, the component-wise optimization method
is preferable.

Figure 5 presents optimization results for winter, where
optimized WRF is in similar good agreement with
TROPOMI as for summer, with X2

= 0.11. For winter, the
ratio optimization increases the emission ratio by 58.8±33 %
and OH by 52.0± 14 %. The ratio and component-wise op-
timizations again show similar OH adjustments, demonstrat-
ing the robustness of our method. The background ratio is
reduced by 66.8± 11 %. The XNO2 optimization reduces
the EDGAR NOx emission by 15.45± 4.1 % and the CAMS
background by 70.2± 6.1 %. For XCO, the WRF XCOBg
is reduced by 1.74± 0.1 % in combination with a doubling
of the EDGAR CO emission. The optimized emission ra-
tio (NOx/CO) derived from component-wise optimization is
0.36, which is 4 times lower than the optimized emission ra-
tio obtained from ratio optimization (see Table S4).

3.5 WRF optimization using a single TROPOMI
overpass

To demonstrate the application of our WRF optimization
method to a single TROPOMI overpass, results are presented
in this subsection for 18 August 2018. This date was se-
lected for clear-sky conditions, with most of the TROPOMI
NO2 and CO pixels passing the data quality filter. Dur-
ing this day, the urban plume was transported in a south-
western direction over Riyadh. The spatial distribution of
XNO2 WRF (r2

= 0.76) and XCOWRF (r2
= 0.65) matches

quite well with TROPOMI (see Fig. S21). The optimized ra-
tio, XNO2 and XCO for a single day fit well with TROPOMI
(X2
= 0.1, 0.3 and 0.7), comparable to the summer-averaged

plumes, indicating that the optimization method can be ap-
plied to a single TROPOMI overpass. The ratio optimization
increases the emission ratio and CAMS OH by 111± 18.4 %
and 37.9± 6.2 %, respectively, whereas the background is re-
duced by 51.5± 5.2 % (see Fig. S22a). The XNO2 optimiza-
tion increases the EDGAR NOx emission by 25.5± 5.1 %
and CAMS OH by 32.3± 4.4 %, whereas the NOx back-
ground is reduced by 54.4± 7.0 % (see Fig. S22b). The CO
optimization doubles the EDGAR CO emission and reduces
the background by 6.1± 0.97 % (see Fig. S20c). The opti-
mized NOx and CO emissions for 18 August are 8.9± 1.7
and 18.9± 4.0 kg s−1, respectively, and differ by < 25 %
from the summer optimized emission (see Tables 2 and S5).
The optimized OH derived from a single TROPOMI overpass
is 1.73× 107

± 0.3 molec. cm−3 and differs by < 5 % from
the summer-averaged OH, i.e., 1.7× 107

± 0.3 molec. cm−3,
confirming that the method yields realistic results for a single
overpass.
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Figure 4. Comparison between TROPOMI and WRF, before and after optimization for summer (averaged over June to October 2018)
(a) XNO2/XCO ratio, (b) XNO2 and (c) XCO in comparison to TROPOMI; fOH, femis and fBg are optimized scaling factors obtained
iteratively for OH, emissions and background by the least-squares optimization method; femis, fOH and fBg are derived by accounting the
total change in emission, OH and background using the corresponding scaling factors obtained from the first and second iterative steps. The
unit of the scaling factor is in percent (%).

Table 2. Overview of WRF-optimized OH and NOx emissions for Riyadh and comparison to the EMG method. The estimated uncertainty
for EMG- and WRF-derived NOx emissions and OH concentrations is the sum of the contribution of wind speed, length and width of the
box, NO2 bias correction, CO bias, and the different pathways of NOx loss provided in Tables S1, S2 and S3.

Parameter Summer WRF optimization Summer EMG Winter WRF optimization Winter EMG

Prior Optimized Prior Optimized

NOx emission (kg s−1) 8.2 11.6± 2.3 8.6± 1.3 9.4 7.9± 2.1 5.3± 1.2
OH (107, molec. cm−3) 1.3 1.7± 0.32 1.53± 0.16 0.86 1.3± 0.38 1.2± 0.16
NOx lifetime (h) 3.1 2.4± 0.46 2.26± 0.3 4.9 3.3± 0.9 2.98± 0.4
NOx background (ppb) 0.22 0.053± 0.007 0.079± 0.01 0.15 0.049± 0.006 0.057± 0.008

3.6 WRF optimization vs. the EMG method

To investigate the consistency between our method and the
EMG method, the derived NOx lifetimes, emissions and OH
concentrations using both methods are listed in Table 2 for
winter and summer. Our optimization and the EMG method
agree well on the seasonal change in NOx emission and OH
concentration. Both methods result in higher NOx emissions
and shorter lifetimes in summer and lower NOx emissions
and longer lifetimes in winter. Riyadh has dry and warm

summer days, and the increase in power consumption due
to the use of air conditioning contributes to the higher emis-
sions in summer than in winter (Lange et al., 2022). Dur-
ing the summer, EMG and the WRF optimization method
both increase the NOx emission and OH concentration com-
pared with the prior. The sizes of the NOx emission and
OH concentration increase, obtained using the WRF opti-
mization method, which is higher than the EMG method by
10 % to 29 %. However, the differences between the EMG
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Figure 5. As Fig. 4, for winter (averaged over November 2018 to March 2019).

method and the component optimization method are smaller
compared to the uncertainties of the emission and OH con-
centration derived for the optimization method. For winter,
the difference between the EMG and WRF-optimized re-
sults are smaller than the difference between the EMG re-
sults and the prior. The NOx emission after optimization dif-
fers from the EMG method by 33 %. Optimized OH concen-
tration and NOx lifetime differ by < 10 % compared to the
EMG method. In general, the difference between the EMG
and optimization results is within the uncertainty range of
20 % to 30 %, confirming their consistency and strengthen-
ing the confidence in the estimates that are obtained from
TROPOMI data. In contrast to the EMG method, the opti-
mization method can be used for a single TROPOMI over-
pass (see Sect. 3.5) and does not require yearly averaged
NO2 data, allowing analysis of day-by-day OH, NOx and
CO emissions (see Sect. 3.3). Segregation and averaging of
NO2 urban plumes by wind sector is not required in the
optimization method. The effect of transport cancels out in
taking the NO2/CO ratio, and loss of NO2 is mostly gov-
erned by OH during the midday. In this study, NOx emission
and OH concentration are estimated iteratively, whereas the
EMG method arrives at the solution in a single step. How-
ever, since our optimization method requires a WRF model
simulation, it is computationally more expensive. Uncertain-

ties in transport may create mismatches with the satellite
observations, leading to errors in the optimized fit. This in-
fluences the quality of derived emission estimates (Dekker
et al., 2017). Therefore, finding a simplified approach using
satellite data to derive the emission ratio and to estimate OH
concentration in urban plumes will be our focus in the fu-
ture. In the future, the accuracy of our method can be further
improved by accounting for other NOx removal pathways.

3.7 WRF optimized emissions and emission trends

It should be realized that the a priori EDGAR emissions
and TROPOMI optimized estimates represent different years
(2012 and 2018, respectively). To check whether the emis-
sion differences that are found may be explained by trends
in emissions, we compare EDGARv5.0 2012 NOx and CO
emissions with 2018, accounting for seasonal and diurnal
emission variations using temporal emission factors from van
der Gon et al. (2011). EDGAR 2018 NOx and CO emis-
sions are derived by linear extrapolation using emissions
from 2000 to 2015 (see Fig. S23). For summer, midday NOx
emissions, the EDGAR emissions increased by 16.7 % from
2012 to 2018, which is lower than our optimization results.
For winter, midday NOx emissions increased in EDGAR by
15.2 % from 2012 to 2018, whereas the WRF optimization
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yielded reductions of 15.6 %. In EDGAR, summer and win-
ter CO emissions increased from 2012 to 2018 by 38.5 %.
However, the WRF optimization suggests that the EDGAR
CO emissions for summer and winter need to be doubled (see
Table S5). Borsdorff et al. (2018b) mentioned that EDGAR
CO emissions have to be increased significantly to match
with TROPOMI CO observations over middle eastern cities
such as Tehran, Yerevan, Tabriz and Urmia. Overall, this
points to a significant uncertainty in the EDGAR emission
inventory at the city scale.

To test the accuracy of the linear extrapolation of
EDGAR data, we compare the relative change in NOx
and CO emissions in 2012 to 2018 using CAMS Global
(CAMS-GLOB) anthropogenic v4.2 emission datasets
(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-
global-emission-inventories?tab=overview, last access: 15
June 2021). CAMS-GLOB shows that, for summer and win-
ter, NOx emissions increased by 26 % from 2012 to 2018,
which is higher than EDGAR by a factor of 1.7. CAMS-
GLOB-based summer and winter CO emissions increase by
20 % from 2012 to 2018, which differs by ∼ 40 % compared
to EDGAR. In general, the relative increase in CO and NOx
emissions from EDGAR and CAMS-GLOB is much smaller
compared to the difference with our optimization method.

4 Discussion

The TROPOMI-retrieved XNO2/XCO ratio is useful for es-
timating midday OH over isolated localized sources, such as
the city of Riyadh, showing a clear contrast between the ur-
ban plume and the background. Such TROPOMI-derived OH
estimates offer a new opportunity to evaluate urban photo-
chemistry in chemistry transport models. OH depends non-
linearly on NOx and VOC emissions, meteorological con-
ditions, etc. (Sillman et al., 1990), which vary substantially
between cities that are monitored by TROPOMI. Therefore,
the application of our method to the global and multi-year
dataset that is available could contribute substantially to the
understanding of urban photochemistry and the development
of effective pollution mitigation strategies. In addition, the
method requires local sources with NO2 and CO emissions
that are large enough to be detected by TROPOMI. Espe-
cially in European cities with lower CO emission, where
TROPOMI cannot detect the CO enhancement along with
NO2, this method cannot be applied.

We realize that our method only considers the first order
loss of NO2 by OH-forming HNO3. In reality, the NO2 life-
time is influenced by more spatially and temporally varying
factors such as temperature, ozone and radiation (Lang et al.,
2015; Romer et al., 2018). In cities, the loss of NO2 via the
formation of alkyl and multifunctional nitrates (RONO2) is
also an important reaction influencing the lifetime of NO2
(Browne et al., 2013; Sobanski et al., 2017). For CO, sec-
ondary production from short-lived volatile organic com-

pounds can also play an important role in urban pollution
plumes. The application of full chemistry that includes all
the sources and losses of NO2 and CO could therefore fur-
ther improve the accuracy of OH estimates.

For cities at higher latitudes, especially in winter, it be-
comes more critical to account for the contribution of other
pathways of NOx loss than OH oxidation. Isolated tropical
and subtropical cities are therefore best suited for application
of our current method.

A sensitivity test has been performed in which XNOx, Bg
is lost by OH. In this case, the optimized NOx emission and
OH for summer and winter differ by < 7 % from the default
method, where the background is treated as an inert tracer
(see Table S6). Furthermore, a sensitivity test has been per-
formed in which the prior emission has been changed. The
optimized emission varied by < 5 %, demonstrating robust-
ness of the method to the choice of prior (see Fig. S24).
This also indicates that the optimization method can be
used to study emission changes. Figure S25 shows that road
transport, power plants and manufacturing industries are the
largest pollutant emitter over Riyadh (Beirle et al., 2019). In
this study, NOx and CO anthropogenic emissions are intro-
duced at the surface, whereas the emission height of different
sources is expected to vary in reality. The different emission
heights for NOx and CO emission sources can also influence
the result. In the future, realistic emission heights should
also be incorporated in WRF for accurate estimation of OH.
Moreover, the temporal emission factors that have been used
by van der Gon et al. (2011) are based on European coun-
tries. The comparison of van der Gon et al. (2011) with the
Copernicus Atmosphere Monitoring Service TEMPOral pro-
files (CAMS-TEMPO) (Guevara et al., 2021) suggests that
temporal emission factors for weekend road transport and
monthly residential combustion are different in Riyadh com-
pared to European countries. CAMS-TEMPO is expected to
provide a more accurate representation of emission varia-
tion due to the information on temporal and spatial variations
that is included. Road transport CO emissions are the largest
contributor by ∼ 75 % to the total emissions over Riyadh,
whereas NOx emissions from the road contribute by 24 %
to the total NOx emission. Residential combustion has the
smallest contribution of ∼ 0.3 % to 0.4 % to total NOx and
CO emissions (see Fig. S25). In the future, the application
of accurate diurnal emission factors for road transport (see
Fig. S26) can further improve the accuracy of urban OH con-
centrations estimated using TROPOMI-derived XNO2/CO
ratios. In addition, the seasonality for NOx and CO emissions
is different in Riyadh than in Europe, which should also be
accounted for in future studies.

5 Conclusions

In this study, a new method is presented for estimating OH
concentrations in urban plumes using TROPOMI-observed
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XNO2/XCO ratios in combination with WRF simulations
of the downwind pollution plume of large cities. Our new
method has been tested for the city of Riyadh using synthetic
as well as real TROPOMI data. Seasonal emissions and OH
concentrations have been estimated for summer (June to Oc-
tober 2018) and winter (November 2018 to March 2019).
WRF is well able to reproduce the spatial distribution of
TROPOMI-retrieved XNO2 and XCO plumes over Riyadh
during the summer and winter seasons. However, before the
optimization, WRF overestimates XNO2 by 15 % to 30 % in
summer and 40 % to 50 % in winter compared to TROPOMI.
In both seasons, TROPOMI XCO agrees within 10 % with
WRF. The WRF-derived XNO2/XCO ratio is higher by 15 %
to 30 % in summer and 40 % to 60 % in winter compared to
TROPOMI, explained mostly by differences in XNO2.

The differences between WRF and TROPOMI observa-
tions have been used to optimize emissions and the NO2 life-
time. To this end, scaling factors for the city emissions, OH
and the background level have been optimized iteratively us-
ing a least-squares method. Ratio and component-wise opti-
mizations have been compared to test the overall consistency
of the method. In summer, the ratio and XNO2 optimization
for XNO2 suggest that the OH prior from CAMS is underes-
timated by 32± 5.3 % and 28.3± 3.9 %, respectively . The
OH estimates obtained from the ratio and NO2-only opti-
mization differ by < 10 %, demonstrating the robustness of
the method. Summertime emissions of NOx and CO from
EDGAR are increased by 42.1± 8.4 % and 101± 21 %. For
winter, the ratio and component-wise optimizations increase
OH by ∼ 52± 14 % to fit TROPOMI-inferred ratios. In the
optimization of winter data, NOx emissions are reduced by
15.5± 4.1 %, and CO emissions are doubled. In the future,
the remaining differences between TROPOMI observations
and WRF simulations could be reduced further by the use
of precise temporal and monthly emission factors, emission
heights and full chemistry to account for secondary sources
and sinks of CO and NO2.

TROPOMI-inferred OH concentrations obtained from the
least-squares optimization method have been compared to
the EMG method. For the summer and winter, the optimized
OH concentrations differ by 10 % between the two meth-
ods. These results confirm that urban emissions and OH con-
centrations can be estimated robustly from TROPOMI data.
With our method, single TROPOMI overpasses can be used
to estimate OH, whereas the EMG method requires averag-
ing of urban NO2 plumes by wind sector. The iterative ap-
proach allows one to test the factors, i.e., femis, foh and fbg,
obtained from the optimization method, whereas the EMG
method does not allow such flexibility.

An important remaining uncertainty is the bias correc-
tion of the TROPOMI XNO2 retrieval. Following the recom-
mended procedure, the air mass factor AMF is recalculated
by replacing the tropospheric AMF based on TM5, which
is provided with the data, with WRF-Chem. The TROPOMI
XNO2 bias correction increases the mixing ratio in the urban

plume of Riyadh by 5 % to 10 % in summer and 25 % to 30 %
in winter. The background is less affected by the bias correc-
tion. Without TROPOMI XNO2 bias correction, the uncer-
tainty in the scaling factor for OH can vary up to 20 % and
up to 60 % for NOx emissions over Riyadh.

Appendix A: AMF recalculation

The air mass factor (AMF) used in the retrieval of TROPOMI
XNO2 has been re-calculated by replacing the tropospheric
AMF, calculated from the NO2 column simulated by TM5,
with its WRF-Chem equivalent, as described by Lamsal et
al. (2010) and Boersma et al. (2016), using the following
Eq. (A1):

Mtrop,WRF =Mtrop,TM5×

L∑
l=1
Atrop,lxl,WRF

L∑
l=1
xl,WRF

, (A1)

whereMtrop,WRF andMtrop,TM5 are the tropospheric air mass
factors derived from WRF and TM5, respectively. Atrop,l is
the tropospheric averaging kernel, ranging from the surface
to the uppermost layer of the troposphere in the TM5 model
(l). xl,WRF is the equivalent NO2 column density in model
layer l, based on WRF. Atrop in Eq. (A1) is derived using
Atrop = A× M

Mtrop
, whereM andMtrop are the total and tropo-

spheric AMFs, respectively. Finally, the bias-corrected NO2
vertical column density is computed using

NO2, bias corrected =
Mtrop,TM5

Mtrop,WRF
×NO2, (A2)

where NO2 is the TROPOMI tropospheric NO2 vertical
column density, and NO2, bias-corrected is the bias-corrected
TROPOMI tropospheric NO2 vertical column density.

Appendix B: XCO component-wise optimization

The component-wise optimization of XCOWRF to estimate
the emission and background of CO uses the following equa-
tions:

XCOTROPOMI = XCOWRF+1XCOemis ·
femis

10

+1XCOBg ·
fBg

10
, (B1)

XCOWRF = XCOemis+XCOBg, (B2)
1XCOemis = 0.10 ·XCOemis, (B3)
1XCOBg = 0.10 ·XCOBg. (B4)

Here, XCOTROPOMI is TROPOMI XCO, XCOWRF is the
WRF-simulated XCO accounting for emissions and back-
ground CO, XCOemis is the XCO contribution from the urban
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CO emission, and XCOBg is the CAMS-derived XCO back-
ground. 1XCOemis is the change in XCO due to emission,
and 1XCOBg is the change in the XCO background level.

Data availability. TROPOMI CO and NO2 data can
be downloaded from https://cophub.copernicus.eu/s5pexp
(ESA, 2018). EDGAR emission data are available at
https://edgar.jrc.ec.europa.eu/emissions_data_and_maps (last
access: 23 June 2021, Crippa et al., 2016). CAMS data can be
downloaded from https://ads.atmosphere.copernicus.eu/cdsapp#
!/dataset/cams-global-reanalysis-eac4?tab=_form (last access:
1 November 2020, Inness et al., 2019).

WRF simulations outputs are available at
https://doi.org/10.5281/zenodo.5752219 (Lama et al., 2021).
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