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Abstract. Satellite observations of tropospheric NO2 columns can provide top-down observational constraints
on emissions estimates of nitrogen oxides (NOx). Mass-balance-based methods are often applied for this purpose
but do not isolate near-surface emissions from those aloft, such as lightning emissions. Here, we introduce an
inverse modeling framework that couples satellite chemical data assimilation to a chemical transport model. In
the framework, satellite-constrained emissions totals are inferred using model simulations with and without data
assimilation in the iterative finite-difference mass-balance method. The approach improves the finite-difference
mass-balance inversion by isolating the near-surface emissions increment. We apply the framework to separately
estimate lightning and anthropogenic NOx emissions over the Northern Hemisphere for 2019. Using overlap-
ping observations from the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument
(TROPOMI), we compare separate NOx emissions inferences from these satellite instruments, as well as the
impacts of emissions changes on modeled NO2 and O3. OMI inferences of anthropogenic emissions consis-
tently lead to larger emissions than TROPOMI inferences, attributed to a low bias in TROPOMI NO2 retrievals.
Updated lightning NOx emissions from either satellite improve the chemical transport model’s low tropospheric
O3 bias. The combined lighting and anthropogenic emissions updates improve the model’s ability to reproduce
measured ozone by adjusting natural, long-range, and local pollution contributions. Thus, the framework informs
and supports the design of domestic and international control strategies.

1 Introduction

Tropospheric nitrogen oxides (NOx), nitric oxide (NO) and
nitrogen dioxide (NO2), harm human health (Anenberg et
al., 2018; Murray et al., 2020) and play a key role in the for-
mation of important secondary atmospheric pollutants, such
as O3 (Jacob, 2000). NOx is emitted to the troposphere pri-
marily by anthropogenic combustion processes, but natural
sources, including soil, lightning, and wildfires, also con-
tribute to the atmospheric NOx budget (Jacob, 1999). Ac-

curate NOx emissions are a critical component of local- to
global-scale atmospheric chemistry simulations. On hemi-
spheric scales, realistically representing the formation and
intercontinental transport of O3 with models requires ad-
equate global emissions inventories (Itahashi et al., 2020;
Zhang et al., 2016, 2008; Verstraeten et al., 2015; Mathur
et al., 2017). In regional air quality simulations, which com-
monly rely on hemispheric or global models for chemical
boundary conditions, the relative contribution of long-range
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pollutant transport to ground-level O3 concentrations has
grown in many areas as O3 precursor emissions have de-
creased in the US and other high-income countries (HICs)
(McDuffie et al., 2020; Jaffe et al., 2018; Simon et al., 2015).
As a result, air quality management policies, often informed
by regional modeling, are strengthened by accurate and up-
to-date global NOx emissions inventories. However, compi-
lation of bottom-up regional and global emissions invento-
ries, developed from source- and location-specific emissions
factors and activity data, is time- and labor-intensive and can
be hindered by limited data. As a result, bottom-up invento-
ries lag behind emissions changes and are often incomplete.
Uncertainties in bottom-up emissions estimates are particu-
larly large for lower–middle-income countries (McDuffie et
al., 2020; Elguindi et al., 2020) and remain significant for
HICs (Day et al., 2019).

Satellite observations of NO2 can bridge temporal gaps in
emissions estimates (Tong et al., 2016, 2015) and constrain
uncertainty in emissions inventories through inverse model-
ing (e.g., Lamsal et al., 2011; Goldberg et al., 2021; de Foy
and Schauer, 2022). Several methods have been applied to
develop top-down emissions estimates using satellite obser-
vations and atmospheric models, each carrying advantages
and limitations (Elguindi et al., 2020). Adjoint-based meth-
ods can provide precise emissions updates but require sig-
nificant computational resources (e.g., Qu et al., 2017, 2019;
Muller and Stavrakou, 2005; Kurokawa et al., 2009; Cooper
et al., 2017; Zhang et al., 2019; Y. Wang et al., 2020). Sim-
ilarly, Kalman filtering and related approaches have been
used but are computationally intensive (e.g., Napelenok et
al., 2008; Ding et al., 2020, 2015; Mijling and van der A,
2012; Miyazaki and Eskes, 2013; Miyazaki et al., 2017,
2012a, b; Sekiya et al., 2021). Mass-balance inversion ap-
proaches, which scale model emissions by directly com-
paring model estimates and satellite observations, were in-
troduced by Martin et al. (2003), updated by Lamsal et
al. (2011), and have been widely used in research and fore-
casting (e.g., Boersma et al., 2015; Itahashi et al., 2019; Li
et al., 2018; Visser et al., 2019; Zhu et al., 2021; Cooper
et al., 2017). Although lower computational costs allow the
finite-difference mass-balance (FDMB) approach (Lamsal et
al., 2011) to readily update emissions, the method is subject
to an emissions-smearing effect (e.g., Cooper et al., 2017),
which can cause emissions updates to be spatially misallo-
cated. Since FDMB uses satellite observations directly, near-
surface NO2 bias cannot be isolated from biases in the mid-
dle and upper troposphere, which obscures the surface emis-
sions inference. Further, applications often rely on a single
inversion from a single satellite, although available satellite
products have been shown to have significant biases. For ex-
ample, early versions of the Tropospheric Monitoring In-
strument (TROPOMI) NO2 product showed a low bias in
urban areas when compared against ground-based and air-
borne spectrometer measurements (Judd et al., 2020; Ver-
hoelst et al., 2021), and the Ozone Monitoring Instrument

(OMI) NO2 product has been reported to differ with mea-
surements by ±20 % (Lamsal et al., 2014). The impact of
biases in satellite-based NO2 data on mass-balance inver-
sions has not been fully explored despite the wide use of the
method to scale NOx emissions. Minimizing biases in an-
thropogenic emissions inferences and understanding the po-
tential for them to propagate to emissions updates are needed
to improve mass-balance-based inversions.

Here, we introduce a modeling framework that couples
satellite chemical data assimilation to the Community Mul-
tiscale Air Quality model (CMAQ) and applies an iterative
FDMB inversion to estimate NOx emissions in the North-
ern Hemisphere. The framework provides observational con-
straints to improve emissions estimates in areas where emis-
sions are highly uncertain, at a lower computational cost rel-
ative to adjoint- and Kalman-filter-based approaches. We ap-
ply the framework in an iterative assimilation to infer 2019
NOx emissions, the first complete year in which OMI and
TROPOMI records overlap. In contrast to traditional FDMB
approaches, which directly compares modeled and observed
columns, our framework improves the FDMB method by first
assimilating satellite-retrieved NO2 and then performing the
inversion by comparing model simulations with and with-
out assimilation. In the assimilation step, updates to model
concentrations are vertically allocated to model layers. As a
result, assimilating the observed column allows the inversion
framework to use only the near-surface portion of the model
column in the FDMB inversion, minimizing influences from
the upper troposphere and extending the framework pro-
posed by Lamsal et al. (2011). In addition, our analysis com-
pares independent inversions which separately use OMI or
TROPOMI NO2 data. We show that the inverse emissions
produced by this framework influence the representation of
intercontinental O3 transport to the US, offering an oppor-
tunity to improve chemical boundary conditions in policy-
relevant regional-scale air quality simulations.

2 Methods

We develop a framework to update NOx emissions esti-
mates using the CMAQ chemical transport air quality model
(Byun and Schere, 2006), 3D variational (3DVAR) chemical
data assimilation (Sandu and Chai, 2011), and space-based
NO2 observations. We apply the framework to estimate 2019
lightning and anthropogenic NOx emissions and compare
ground- and space-based NO2 observations to model simula-
tions using the prior emissions (inventory before the frame-
work is applied) and posterior emissions (inventory after the
framework is applied) to assess the impact of the updates.
Figure 1 provides an overview of the framework, in which
lightning NOx (LNOx) emissions and anthropogenic NOx
(ANOx) emissions are updated separately.
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Figure 1. NOx emissions inversion framework. Lightning NOx (LNOx ) emissions are updated in the first step. Then, anthropogenic
NOx (ANOx ) emissions are updated iteratively. CMAQ boxes represent air quality simulations without chemical data assimilation, and
CMAQ+3DVAR boxes represent air quality model simulations with chemical data assimilation. Satellite NO2 retrievals and a background
error covariance (BECOV) are inputs to the chemical data assimilation, described in Sect. 2.3. Red dotted lines around the inversion boxes
correspond to the red dotted lines in Fig. 3, which details the inversion algorithm. Dashed black emissions input lines around the ANOx
inversion represent the iterative process. Iteration and convergence criteria are described in Sect. 2.6.

2.1 Satellite data

We use NO2 tropospheric column observations from the
National Aeronautics and Space Administration’s (NASA’s)
OMI and from the Royal Netherlands Meteorological In-
stitute’s (KNMI’s) TROPOMI instruments in the inver-
sion framework. TROPOMI was launched in October 2017
and provides 7.2× 3.6 km2 resolution NO2 retrievals, up-
graded to 5.6×3.6 km2 resolution in August 2019 (Van Gef-
fen et al., 2020; Veefkind et al., 2012). TROPOMI’s sun-
synchronous polar orbit crosses the Equator at approximately
13:30 local time (LT), allowing the instrument to achieve
global coverage in one day. We assimilate the Level-2 tro-
pospheric slant column retrieved from NASA’s Earth Science
Data Systems program (https://www.earthdata.nasa.gov/, last
access: 9 December 2022). The data product is described
in the Algorithm and Theoretical Basis Document (ATBD)
for TROPOMI NO2 (Van Geffen et al., 2019). We only con-
sider TROPOMI observations with a quality flag greater than
0.5 and a cloud fraction lower than 30 % in the assimi-
lation, following data product recommendations (Eskes et
al., 2019). We use the latest publicly available versions of the
TROPOMI retrieval for 2019 (versions 1.2.2 to 1.3.2) at the
time of the analysis. Version 1.3 introduced updates to cloud
processing that decreased noisy hotspots and broadened the
range of acceptable air mass factors (Eskes et al., 2021). In-
formation about the updates applied in each version and the
dates on which updates were applied is given in Eskes et
al. (2021). A research version with an updated retrieval ap-
plied to 2019 observations has been developed (Van Geffen
et al., 2022) but was not yet standard and was not available
at the time of this analysis. We discuss the impact of these
latest updates in Sect. 3.3.

OMI, on board the Aura satellite launched in 2004,
provides tropospheric NO2 vertical and slant column re-
trievals with a resolution of 13× 24 km2 near nadir in a sun-
synchronous polar orbit, with a local Equator crossing time
of 13:45 LT. Global coverage is achieved in 2 d. We use the
NASA Goddard Space Flight Center (GSFC) Level-2 NO2
product (Krotkov et al., 2019b). OMI was impacted by a row
anomaly beginning in 2008, reducing the number of usable
pixels in the OMI retrieval (Boersma et al., 2018). We in-
clude only pixels with a cloud fraction lower than 30 % and
a summary quality flag of 0. Detailed information about the
NO2 data product is included in the OMI ATBD (Chance,
2002) and in Krotkov et al. (2019a).

A low bias has been noted in the versions of TROPOMI
NO2 used for this study (Judd et al., 2020; Verhoelst et
al., 2021). Although TROPOMI NO2 retrievals from 2019
have been reprocessed with retrieval version 2.3.1, resulting
in an improvement of the bias (Eskes et al., 2021), these re-
processed datasets were not yet available at the time this anal-
ysis was conducted. Figure 2 compares TROPOMI and OMI
tropospheric vertical column densities (VCDs) for 2019, re-
gridded to the CMAQ grid used. For the VCDs shown in the
figure, we remove the effect of the assumed vertical profile of
NO2 from the original satellite product by recalculating the
VCDs with the NO2 vertical profile simulated by CMAQ. In
the results, we discuss the low bias in TROPOMI data and
explore its impact on emissions inversions.

2.2 Hemispheric air quality modeling

Model simulations in the inversion framework were com-
pleted for January–December 2019 using CMAQ v5.3.2 (Ap-
pel et al., 2021; U.S. EPA Office of Research and Devel-
opment, 2020). CMAQ has been used to simulate air qual-
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Figure 2. 2019 annual average TROPOMI and OMI vertical NO2 vertical column densities, with CMAQ NO2 profiles applied, and the ratio
between them. Column density ratios are only shown for the grid cells where NOx emissions updates are applied in the emissions inversion.

ity over the Northern Hemisphere and has been shown to
adequately capture chemical composition against observa-
tions (Mathur et al., 2017). Model inputs and satellite ob-
servations are summarized in Table 1. Simulations, designed
to capture continental-scale pollutant transport, cover the
Northern Hemisphere with 108 km horizontal grid spacing
and a 44-layer vertical structure reaching 50 hPa (Mathur et
al., 2017). The simulations use version CB6r3 of the Car-
bon Bond 6 chemical mechanism (Luecken et al., 2019),
the AERO7 aerosol module (Xu et al., 2018) and updated
halogen chemistry (Kang et al., 2021). Anthropogenic emis-
sions are modeled using representative day-of-week emis-
sions that change month to month. Representative-day emis-
sions are created by averaging data from the prior emissions
inventory on a day-of-week basis by month. For each day
of the week and each month, there is a unique hourly emis-
sions file that is used for every matching day of the week
in that month. As a result, diurnal and weekly patterns are
captured in the emissions, while daily variations that are spe-
cific to the prior emissions inventory year are averaged. The
prior emissions inventory relies on the best available emis-
sions data at the time of the study. Anthropogenic emis-
sions for North America are from the U.S. Environmental
Protection Agency’s (EPA) 2017 National Emissions Inven-
tory (NEI) modeling platform (Adams, 2020). Emissions in
China are for the year 2015 (Zhao et al., 2018), and emissions
for the rest of the hemisphere are based on the Hemispheric
Transport of Air Pollution (HTAP) version 2, projected from
their original 2010 date to 2014, with scaling factors from
the Community Emissions Data System (CEDS). To initial-
ize the 2019 prior and posterior simulations and to reduce
the impact of chemical initial conditions on the results, we
use a 1-year spin-up period not considered for the analyses.
CMAQ model runs are driven by meteorology from a retro-
spective hemispheric simulation using the Weather Research
and Forecasting (WRF) model (Skamarock et al., 2008) ver-

sion 4.1.1, configured following Mathur et al. (2017) and
Xing et al. (2015).

2.3 Chemical data assimilation in CMAQ

We adjust modeled NO2 concentrations using satellite ob-
servations by coupling the CMAQ model to a data assim-
ilation model, the National Centers for Environmental Pre-
diction (NCEP) Gridpoint Statistical Interpolation (GSI) pro-
gram version 3.3 (Shao et al., 2016). GSI performs 3D vari-
ational (3DVAR) data assimilation by minimizing the cost
function, J :

J =
1
2

[
xTB−1x+ (H (x)− y)TR−1(H (x)− y)

]
, (1)

where y is the observation innovation y = yo−H (xb), x is
the analysis increment x = xa− xb, xa is the analysis field
(NO2 concentration after application of chemical data assim-
ilation), xb is the model background (the simulated NO2 con-
centration before application of chemical data assimilation),
yo is the satellite observations, B is the background error co-
variance matrix, R is the observation error matrix, and H
is the observation operator. To compute the difference be-
tween the model column (xb) and the satellite column (yo),
the observation operator H is applied, which transforms the
model background to the form of the satellite observations.
For TROPOMI data, the averaging kernel is first converted
to scattering weights as

w(z)= A(z)×Mtotal, (2)

where A(z) is the vertically resolved TROPOMI averaging
kernel for level z, Mtotal is the air mass factor provided with
the satellite data, and w(z) is the vertically resolved scatter-
ing weights. Scattering weights accompany the OMI NO2
data product, so this step is not needed to assimilate OMI
data. Scattering weights are then applied to compute the
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Table 1. Prior emissions and model inputs.

Data Year Source

Prior emissions (North America) 2017 EPA platform (v7.1) Adams (2020)

Prior emissions (China) 2015 Tsinghua University Zhao et al. (2018)

Prior emissions (rest of hemisphere) HTAPv2 (2010) projected to 2014 using Janssens-Maenhout et al. (2015),
CEDS scaling factors Hoesly et al. (2018)

Prior emissions (LNOx ) 2017 GEIA∗ Price et al. (1997)

Biomass-burning emissions 2019 FINN∗ Wiedinmyer et al. (2011)

Soil NOx emissions 2018 CAMS∗ v2.1 with canopy Granier et al. (2019)
reduction factor

Biogenic emissions 2018 MEGAN∗ Guenther et al. (2006)

Meteorology 2019 WRF v4.1.1 Powers et al. (2017)

Satellite observation year 2019 NO2 retrievals from OMI
and TROPOMI

∗ GEIA – Global Emissions Initiative; FINN – Fire Inventory from NCAR; CAMS – Community Atmosphere Modeling System; MEGAN – Model of
Emissions of Gases and Aerosols from Nature

model slant column as

�m
s =

∑
z
�m

v (z)w(z), z ≤ ztropopause, (3)

where �m
v (z) is the model partial vertical column in the tro-

posphere, interpolated to the satellite grid, and �m
s is the

model tropospheric slant column density (SCD). The differ-
ence between the modeled and observed slant columns, or
the observation innovation y in Eq. (1), is estimated as

�′s =�
o
vMtrop−�

m
s , (4)

where �′s is the analysis increment, �o
v is the satellite tropo-

spheric VCD, and Mtrop is the tropospheric air mass factor,
distributed with the satellite data. We eliminate the influence
of the a priori satellite vertical profile by computing the anal-
ysis increment with the modeled and observed SCD, which,
unlike the VCD, does not rely on the a priori vertical NO2
profile assumed by the satellite.

We compute B using the Generalized Background Er-
ror covariance matrix model (GENBE v2.0) (Descombes et
al., 2015), which models background errors by comparing a
free-running simulation and a simulation with either light-
ning or anthropogenic NOx emissions perturbed. We use
GENBE with the prior simulation and a simulation with
a uniform −15 % perturbation to LNOx to create three-
dimensional background errors in the upper troposphere for
the LNOx assimilation. After updating LNOx emissions (as
described in Sect. 2.5), we create three-dimensional back-
ground errors in the boundary layer for the anthropogenic
NOx assimilation by using GENBE with the LNOx poste-
rior simulation and a simulation with a −15 % perturbation
to surface anthropogenic NOx emissions. Observation error
R is provided with the satellite data.

Online coupling between GSI and CMAQ was developed
in this study to perform the assimilation. At each model time
step in which a satellite observation is available, the CMAQ
model simulation is paused, and 3DVAR assimilation is per-
formed. The CMAQ model state at that time step is used as
xb. After assimilation using 3DVAR within GSI, CMAQ re-
turns to a free-running mode, and the new model state, x, is
updated to more closely match the satellite observation. The
difference in the monthly average NO2 VCDs from the as-
similation and no-assimilation runs is used in the inversion
as 1�.

2.4 Finite-difference mass-balance inversion

In the inversion framework developed, we iterate the ap-
proach of Lamsal et al. (2011). The FDMB process as applied
here is summarized in Fig. 3. In the past, this approach has
been used by directly comparing model and satellite columns
(e.g., Itahashi et al., 2019; Cooper et al., 2017; Lamsal et
al., 2011). We modify the approach by first updating model
concentrations with assimilation of satellite observations and
then updating the emissions using the difference between the
modeled VCD with and without assimilated satellite infor-
mation. All updates are performed on a monthly average ba-
sis.

In FDMB, following Lamsal et al. (2011), emissions
changes are inferred through the relationship

1E

E
= β

1�

�
, (5)

where 1E is the inferred NOx emissions change, E is the
NOx emissions prior, � is the model simulated NO2 VCD
without chemical data assimilation, and 1�=�assim−�
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Figure 3. FDMB inversion. The red dashed line corresponds to the red dashed lines in Fig. 1, and the processes inside show additional details
of the FDMB inversion. In this framework, the prior emissions (black box on the far left) are input to the CMAQ model. CMAQ simulations
are performed with unperturbed prior emissions (100 % arrow and E100) and prior emissions with a −15 % perturbation (85 % arrow and
E85). The resulting modeled VCDs are �100 and �85, respectively. These VCDs are used to compute the sensitivity, β (blue box). New
emissions totals are calculated with FDMB (yellow box), using β, NO2 VCD from a CMAQ simulation without assimilation (�), and NO2
VCD from a CMAQ simulation with assimilation (�′). When iteration is used, the posterior emissions from the previous iteration are used
as input to the CMAQ model to simulate new VCDs, � and �′.

is the monthly average difference between the model sim-
ulated tropospheric NO2 VCD with (�assim) and without (�)
chemical data assimilation. β is a unitless scaling parameter,
the Jacobian, that linearly relates NO2 VCD changes to NOx
emissions changes. β is calculated through finite differencing
as

β =
E′−E

E

�E

�E′ −�E
, (6)

whereE′ is perturbed NOx emissions,�E is the tropospheric
NO2 VCD simulated with model emissionsE, and�E′ is the
tropospheric NO2 VCD simulated with model emissions E′.
To estimate β, we use the same −15 % perturbation used to
create background errors B in the boundary layer. Cooper et
al. (2017) found that using perturbations ranging from 5 %
to 20 % to calculate β changed posterior emissions estimates
by less than 2 % globally.

2.5 Inverse modeling NOx emissions

In our framework, LNOx emissions are updated first, sepa-
rately from anthropogenic emissions. Due to the satellite in-
struments’ sensitivity to NO2 in the upper atmosphere (e.g.,
Eskes and Boersma, 2003), small model biases there can in-
fluence the total column comparison and adversely impact
the anthropogenic emissions adjustment. By updating LNOx
emissions, we aim to decrease this bias and its impact on
the ANOx inversion. We compute the scaling parameter for
lightning emissions, βLNOx , using the −15 % LNOx pertur-
bation simulations applied to create background errors for

the upper troposphere. We then assimilate satellite NO2 ob-
servations using the background errors for the upper tropo-
sphere and apply βLNOx in a single inversion iteration us-
ing the full tropospheric VCD to compute spatially varying
LNOx adjustment factors. Updates to LNOx are calculated
using monthly averages.

After LNOx emissions are updated, ANOx emissions are
updated by iteratively applying an FDMB inversion indepen-
dently for each month in 2019. Iterating the FDMB has been
shown to improve emissions estimates compared to a sin-
gle FDMB application (Cooper et al., 2017). In the FDMB
iteration, each update to the emissions serves as the prior
emissions for the subsequent iteration (represented as black
dashed lines in Fig. 1). The number of iterations is deter-
mined based on the synthetic observation experiment de-
scribed in Sect. 2.6. β is held constant during all ANOx in-
version iterations and is not recalculated each time to pre-
vent instability in β as changes in the column become smaller
with subsequent iterations. In the ANOx emissions inversion,
we only consider grid cells in which local anthropogenic
NOx emissions likely contribute significantly to the satellite-
observed NO2 column by only including grid cells in which
anthropogenic NOx emissions comprise at least 50 % of total
NOx emissions, following Lamsal et al. (2011); population
density is greater than 15 000 people km−2 (CIESIN, 2018);
modeled cloud cover is less than 30 %; and the local time is
13:00 or 14:00 (OMI and TROPOMI overpass times). Only
emissions in grid cells meeting these criteria are adjusted.
Table S1 in the Supplement describes each simulation per-
formed for the LNOx and ANOx inversions.
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The FDMB method assumes that emissions impacts are
local (i.e., emissions in one grid cell do not affect VCD
amounts in neighboring grid cells). This assumption is most
valid when NOx lifetime is shorter than NOx transport time
to neighboring grid cells, which is typical near the surface
in coarse-resolution models (Martin et al., 2003), such as the
one used in this study. However, the assumption is less real-
istic at finer resolutions and in the upper troposphere, where
the lifetime of NO2 is longer than at the surface and where
NO2 concentrations are not directly impacted by coinci-
dent near-surface emissions. Even at coarse resolutions (e.g.,
100 km grid spacing), emissions-smearing effects, which oc-
cur when the FDMB assumption of local emissions effects
is incorrect and emissions are inappropriately adjusted, can
appear due to NOx transport, reservoir species, and chemi-
cal feedbacks (Turner et al., 2012; Cooper et al., 2017). Tra-
ditional FDMB, which directly compares modeled and re-
motely sensed columns, cannot address this effect. Assimi-
lating the satellite VCD introduces an additional complica-
tion. The horizontal length scales (on the order of several
hundreds of kilometers) used in the background error ex-
tend beyond the grid cell horizontal dimensions (nominally
108 km) in the middle and upper troposphere; as a result,
NO2 changes introduced by assimilation (1�) do not have
a local relationship with surface emissions directly below. In
our work, assimilating the observed column information in-
stead of directly comparing modeled and satellite-retrieved
VCDs allows the analysis to be restricted to the lower tro-
posphere, mitigating both the misallocation errors of FDMB
and the effect of horizontal length scales extending beyond
the grid cell dimension. To that end, we limit the anthro-
pogenic emissions analysis to the lowest 20 model layers,
which is nominal from the ground to ∼ 720 hPa over non-
mountainous terrain in the summer, and use that partial col-
umn to calculate1� in the FDMB inversion.1� for a single
month above and below the threshold is illustrated in Fig. S1
in the Supplement. By applying this cutoff, we focus the in-
version on surface anthropogenic NOx .

2.6 Inversion system testing

We conduct a synthetic observation experiment to evaluate
the ability of the inversion system to constrain emissions to
a known perturbation. Artificial NO2 observations were gen-
erated from CMAQ simulations with unperturbed emissions
and NOx emissions reduced by 15 %. As expected, assimilat-
ing the synthetic observations derived from a simulation with
unperturbed emissions results in an analysis increment of
zero. The results of an iterative emissions inversion based on
the synthetic observations derived from the simulation with
perturbed emissions are shown in Fig. S2. Across Northern
Hemisphere regions, the normalized mean error (NME) rel-
ative to the known perturbed emissions and the rate at which
it changes decrease with subsequent iterations. The NME is
minimized after seven to nine iterations, depending on the

region. In all subsequent results, emissions inferences made
with eight iterations of the inversion system are shown and
analyzed. Convergence of the inversion in different global
regions adds confidence to the system’s ability to constrain
real-world emissions.

3 Results

3.1 Lightning NOx emissions updates

Assimilation of retrievals from either satellite increases
LNOx emissions across all seasons, relative to the prior emis-
sions (monthly climatology from GEIA), with the largest
changes occurring during the summer (Figs. S3 and S4). Ap-
plying 2019 OMI data increases total LNOx emissions in
2019 by 20 % over the GEIA climatology, while assimila-
tion of TROPOMI data increases LNOx emissions by 24 %.
The emissions increases inferred by both satellite products
are driven by NO2 increases in the mid and upper troposphere
due to assimilation, with changes near the surface being neg-
ligible in comparison. Increases in background areas with
small NO2 column totals and subsequent LNOx increases
in these areas suggest a low bias in modeled background
NO2 relative to observations from both satellites. A low bias
agrees with the findings reported by other model and satellite
NO2 comparisons (Silvern et al., 2019; Qu et al., 2021; Gold-
berg et al., 2017). The LNOx emissions adjustments inferred
here decrease the differences between modeled and satellite-
derived NO2 in the upper troposphere and decrease the bias
that differences in the upper troposphere can introduce to the
subsequent ANOx inversion.

3.2 Impact of assimilation on modeled NO2 vertical
column density

Figure 4 shows the change to CMAQ-modeled tropospheric
VCD, (1�) caused by assimilating NO2 observations from
OMI or TROPOMI with background errors for the boundary
layer, before applying any emissions adjustments. In Fig. 4
and throughout the results, 1� reflects differences near the
surface (as described in Sect. 2.5). Assimilating OMI NO2
data generally increases modeled NO2 columns near popu-
lated areas in China, India, and the US. In contrast, assimi-
lating TROPOMI NO2 data decreases modeled NO2 columns
more widely across the Northern Hemisphere. The changes
brought about by assimilating satellite data are larger during
the winter and fall and smaller in the spring and summer,
when NOx lifetime is shortest and when NO2 columns are
smaller. During the winter in northeast China, where the as-
similation impacts are most apparent, the seasonal average
change due to assimilation reaches 1.8× 1015 molec. cm−2

for OMI and −2.8× 1015 molec. cm−2 for TROPOMI. The
direction of 1� after assimilation of OMI data is more
heterogeneous and shows a stronger seasonality, while 1�
based on assimilating TROPOMI data is consistently nega-
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Figure 4. Seasonal NO2 VCD change (1�) from CMAQ simulation using prior emissions after assimilating OMI or TROPOMI tropospheric
NO2 observations and modeling atmospheric composition with prior NOx emissions. 1� shown for winter (DJF), spring (MAM), summer
(JJA), and fall (SON).

tive. Over Europe, 1� after assimilating OMI observations
is close to zero in warm months and negative in colder sea-
sons. Assimilating satellite-observed NO2 increases the NO2
levels modeled over the ocean and less-populous areas, such
as the Sahara, with low NOx emissions and small NO2 col-
umn amounts.

Over polluted areas, the direction of 1� for the
TROPOMI or OMI data assimilations tends to differ. This
discrepancy is likely due to the low bias in TROPOMI-
derived tropospheric NO2 columns, which has been reported
to be approximately 10 % over the US, Europe, and In-
dia, and greater than 20 % over China when compared with
the OMI Quality Assurance for Essential Climate Variables
(QA4ECV) retrieval (Van Geffen et al., 2022; Verhoelst et
al., 2021; C. J. Wang et al., 2020; Li et al., 2021). Over
background areas, the analysis increments that result from
assimilation of observations from both satellites generally
agree. The consistency suggests a low bias in modeled back-
ground NO2 concentrations and also agrees with the low bias
in CMAQ-modeled free-tropospheric NO2 reported by Gold-
berg et al. (2017). Such a bias can contribute to the pos-
itive analysis increment over background areas. However,
NO2 columns observed in these regions may be smaller than
the retrieval accuracy of 0.7× 1015 molec. cm−2 (Van Gef-
fen et al., 2019), reducing confidence in the analysis incre-
ment at these locations. In the anthropogenic emissions in-
version, our filtering criteria exclude background areas which
are more likely to have low VCD amounts.

3.3 Emissions inversion

Season-average β values, relating NO2 vertical column dif-
ferences to anthropogenic near-surface NOx emissions up-
dates, are shown in Fig. S5. Based on our criteria for grid
cell inclusion in the inversion, described in Sect. 2.5, we
consider 13 % of the grid cells in the domain, which rep-
resent 88 % of prior anthropogenic NOx emissions. Seasonal
domain-average values range from 1.33 to 1.66 and are lower
in the winter and higher in the summer. A β value less than
1.0 results in an emissions update that is smaller than the
VCD change, while a β greater than 1.0 has the opposite ef-
fect. β tends to be less than 1.0 in polluted regions during
colder months and larger during warmer months and in less-
polluted regions, although many grid cells which are less pol-
luted are not considered in the analysis. The scaling factors
are smallest over China and larger over the US, India, Mex-
ico, and Europe. The differences among regions stem from
local differences in NOx lifetime and transport. In Indone-
sia and sub-Saharan Africa, lower emissions and a small re-
sponse from tropospheric VCD to anthropogenic emissions
perturbations can lead to large β values. To prevent overly
large or small β values, we constrain the factor to between
0.1 and 10, following Cooper et al. (2017). Scaling factors
estimated here are larger than the 1.16 global-average previ-
ously reported by Lamsal et al. (2011). However, in Lamsal
et al. (2011), modeled NO2 vertical columns were sampled
at the morning SCanning Imaging Absorption spectroMeter
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for Atmospheric CHartographY (SCIAMACHY) overpass
time rather than at the afternoon OMI or TROPOMI over-
pass times; β tended to be closer to 1.0 during the morning
in regions with high NOx emissions (Li and Wang, 2019).
Li and Wang (2019) show that, over rural regions with lower
NOx concentrations, β is larger at the OMI or TROPOMI
overpass window than at the SCIAMACHY overpass win-
dow, suggesting that a larger overall β for analyses based on
OMI or TROPOMI products should be expected. Addition-
ally, NOx emissions have decreased considerably in several
regions of the Northern Hemisphere, including the US (Tong
et al., 2015) and China (Miyazaki et al., 2017), after the Lam-
sal (2011) study was conducted, which has changed the sen-
sitivity of NO2 VCDs to NOx emissions (Qu et al., 2021;
Silvern et al., 2019).

Annual bottom-up prior ANOx emissions estimates are
shown in Fig. 5. Season-average ANOx emissions inferences
from the inversions based on OMI and TROPOMI obser-
vations are shown in Fig. 6. The use of OMI observations
generally tends to increase emissions in most industrialized
nations outside of Europe. NOx emissions increases driven
by OMI observations are largest in winter and spring and
smaller, or slightly decreased, in summer and fall. In con-
trast, the use of TROPOMI retrievals tends to drive a de-
crease in NOx emissions across all seasons and continents,
with the largest impacts in the summer and the smallest in
the spring. The largest emissions changes based on both OMI
and TROPOMI retrievals are in northeast China during the
winter. Over India, OMI-inferred changes are concentrated
in central India, where prior emissions are lower, while the
largest changes inferred from TROPOMI are in the northern,
eastern, and southern zones, where prior emissions are high-
est. Relative NOx emissions changes driven by TROPOMI
observations tend to be small over dense urban areas, with
more uniform decreases over cells with lower emissions.

ANOx emissions totals and inferred changes are explored
for China, India, Europe, Mexico, and the US (Fig. 7). We
also show 2019 NOx emissions totals from the Coperni-
cus Atmosphere Monitoring Service’s (CAMS’s) bottom-
up emissions inventory (Granier et al., 2019) and from the
NASA Tropospheric Chemical Reanalysis products 2 (TCR-
2) satellite-inferred inventory (Miyazaki et al., 2019, 2020).
TCR-2 top-down NOx emissions are constrained using satel-
lite observations of NO2, CO, O3, and SO2 at a resolution
of 1.125◦× 1.125◦ and are further described in Miyazaki et
al. (2017). CAMS anthropogenic NOx emissions are based
on the Emissions Database for Global Atmospheric Re-
search (EDGAR version 5.3) estimates for 2015 (Crippa et
al., 2020), projected to 2019 using CEDS scaling factors, and
are provided at 0.1◦× 0.1◦. Both datasets provide monthly
anthropogenic NOx totals. Except for Europe, assimilation
toward OMI retrievals increases annual emissions totals in
the regions analyzed, while using TROPOMI retrievals de-
creases them. TCR-2 NOx emissions estimates are larger
than the prior emissions used by our inverse modeling frame-

Figure 5. 2019 prior anthropogenic NOx emissions totals. Data
sources are described in Table 1.

work, except for India, while CAMS totals are lower than the
prior emissions estimates and are similar to TROPOMI in-
ferred emissions. Across the regions considered, TROPOMI
infers an average annual decrease of −33 % in NOx emis-
sions from the regions, while OMI infers a +9 % increase.
In Europe, the only region where the sign of the inferred
changes match, the use of OMI retrievals results in a −1 %
change, while applying TROPOMI observations leads to a
−36 % decrease in NOx emissions. The largest total changes
are inferred in the highest-emitting region, China, while the
greatest relative changes, −41 % inferred with TROPOMI,
are for India, where emissions are highly uncertain. Changes
inferred with OMI observations over the US are greater than
1200× 103 short tons NOx as NO2 per year but smaller than
the difference between our prior US emissions estimates and
TCR-2 or CAMS estimates. A change of −3000× 103 short
tons NOx as NO2 emitted annually in the US, as inferred by
TROPOMI, over 30 % of the prior emissions differs signifi-
cantly from National Emissions Inventory estimates but leads
to a total close to that of the 2019 CAMS inventory.

Across the months simulated, inferences using OMI re-
trievals consistently lead to higher NOx emissions than using
TROPOMI retrievals. Figure 8 shows monthly NOx emis-
sions totals and inferred changes for several global regions.
The magnitude of changes is generally smallest in summer
months and largest in winter months for both OMI- and
TROPOMI-inferred emissions. Monthly prior emissions to-
tals lay between the OMI and TROPOMI inferences, except
for summertime emissions in India and Mexico, where both
satellite inferences decrease NOx emissions. Over Europe,
both satellite products infer a decrease during the winter, al-
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Figure 6. Season-average NOx emissions changes from inverse modeling updates based on OMI and TROPOMI observations. Emissions
changes are shown for winter (DJF), spring (MAM), summer (JJA), and fall (SON).

Figure 7. Prior and satellite-inferred 2019 anthropogenic NOx
emissions in select global regions. Plot (a) shows total emissions
(as NO2) from prior emissions estimates, inference with OMI
or TROPOMI observations (OMI and TROPOMI posterior), and
CAMS or TCR-2 inventories in the US, China, India, Mexico, and
Europe. Plot (b) shows the percent change (1ENOx ) inferred with
OMI or TROPOMI data, relative to prior emissions estimates, for
each region.

though fewer valid satellite pixels due to snow cover at high
latitudes and longer winter NO2 atmospheric lifetimes may
influence the inference.

Based on reported NOx emissions trends (McDuffie et
al., 2020; U.S. EPA, 2022a), changes from the prior emis-

sions inventory (Table 1) to 2019 are expected. Relative
to the prior emissions, significant decreases in NOx emis-
sions in China, estimated for 2015 in the prior inventory,
and smaller reductions in Europe and North America, re-
ported for 2014 and 2017 in the prior inventory, respec-
tively, should be anticipated. TROPOMI-inferred emissions
reflect the direction anticipated for these changes but with
larger than expected magnitudes. For example, the 28 % de-
crease in anthropogenic NOx emissions over China between
2015 and 2019 inferred from the TROPOMI observations
is substantially larger than the 8 % decrease estimated be-
tween 2015 and 2017 by the Community Emissions Data
System (McDuffie et al., 2020). Bottom-up estimates indi-
cate that anthropogenic NOx emissions in the US have de-
creased through 2019 (U.S. EPA, 2022a). Although the direc-
tion of the emissions change inferred from TROPOMI agrees
with the trend in bottom-up estimates, its magnitude is larger
than expected. An underestimation of US emissions in winter
in the prior inventory when compared with OMI inferences
contrasts with field study results reporting no bias in north-
eastern US winter emissions estimates (Jaegle et al., 2018;
Salmon et al., 2018). In India, bottom-up emissions inven-
tories report sustained growth of NOx emissions (Kurokawa
and Ohara, 2020; McDuffie et al., 2020), and NO2 levels ob-
served by OMI have been increasing since 2005 (Goldberg
et al., 2021; Cooper et al., 2022). The decrease in anthro-
pogenic NOx emissions inferred by TROPOMI observations
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Figure 8. Monthly prior and satellite-inferred anthropogenic NOx emissions in 2019 in select global regions. Total monthly emissions (as
NO2) from prior emissions estimates, inference with OMI or TROPOMI observations (OMI and TROPOMI posterior), and CAMS or TCR-
2 inventories in the US, China, India, Mexico, and Europe are shown. Percent changes (1ENOx ) inferred with OMI or TROPOMI data,
relative to prior emissions estimates, for each region are shown by the purple and orange bars.

contrasts with these trends in bottom-up estimates and OMI
observations.

The low bias known to affect TROPOMI NO2 observa-
tions influences the results of the emissions inversion, which
targets grid cells with high emissions, likely leading to de-
creases in inferred emissions that are larger than expected.
We conduct an inversion using the reprocessed TROPOMI
NO2 version 2.3.1 (Van Geffen et al., 2022) to infer NOx
emissions for January 2019 and find that the updated data in-
crease the TROPOMI posterior inference by 17 % over the
US and 4 % in China relative to version 1.2.2. While us-
ing the updated retrievals shrinks the gap between OMI- and
TROPOMI-inferred emissions, it does not change the over-
all trend of smaller posterior emissions using TROPOMI
NO2 (Figs. S10 and S11). The differences between emis-
sions inferred by OMI and TROPOMI observations high-
light the importance of ongoing efforts to harmonize OMI
and TROPOMI NO2 retrieval algorithms, such as the NASA
Multi-Decadal Nitrogen Dioxide and Derived Products from
Satellites (MINDS) (Lamsal et al., 2020) and the QA4ECV
(Boersma et al., 2017) datasets.

In addition to smearing effects, coarse-resolution mod-
els can artificially alter nonlinear NO2 chemistry, leading to

biases in inferences of NOx emissions from satellite NO2
columns (Valin et al., 2011; Sekiya et al., 2021; Lamsal et
al., 2011). Higher-resolution simulations can better resolve
β and reduce biases caused by nonlinear chemistry. Addi-
tional errors in the emissions estimates may be associated
with emissions from non-anthropogenic NOx sources. Al-
though the emissions inversion targets anthropogenic sources
only, changes in NO2 columns observed by the satellite in-
struments driven by natural NOx emissions processes may
not be captured in the air quality model simulations and sub-
sequently lead to biased anthropogenic emissions inferences
(Li et al., 2021).

The emissions resulting from the inverse modeling frame-
work are comparable to CAMS and TCR-2 2019 emissions
estimates in several ways. In the US, China, and Europe,
the magnitudes of ANOx emissions from OMI retrievals are
comparable to TCR-2 NOx emissions estimates and exhibit
similar monthly patterns. Annual NOx emissions inferred
from OMI observations are also relatively similar to TCR-2
estimates for India and Mexico, although monthly emissions
patterns differ. Unlike TCR-2 emissions estimates, which are
also constrained by OMI NO2 observations, 2019 CAMS
emissions estimates are projected from 2015 bottom-up data.
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However, CAMS estimates provide a representation of an-
ticipated emissions trends. In all regions considered, CAMS
NOx emissions estimates are close to the TROPOMI infer-
ence annual totals and lower than the prior emissions, OMI
inferences, and TCR-2 estimates, potentially suggesting that
global NOx emissions have not decreased as much as antici-
pated by the CAMS inventory projections.

3.4 Impacts of emissions updates on modeled NO2 and
O3

We evaluate and compare the CMAQ simulations’ ability
to reproduce observed pollutant concentrations when driven
with NOx emissions estimates from the prior inventory and
with those derived by the inverse modeling framework. Fig-
ure 9 compares 2019 OMI and TROPOMI NO2 VCD re-
trievals with modeled NO2 VCDs using the prior emissions
with no updates, LNOx emissions updates, and LNOx and
ANOx emissions updates. Satellite-based LNOx emissions
updates improve CMAQ model performance – correlation
coefficient (R), normalized mean error (NME), and nor-
malized mean bias (NMB) – when evaluated against tro-
pospheric VCD retrievals, relative to model performance
with the prior emissions. OMI-inferred ANOx emissions up-
dates further improve CMAQ model performance evaluated
against VCD retrievals, decreasing NMB from −20 % to
−5 % and NME from 38 % to 28 %. Model performance is
improved by using OMI data in the inverse modeling frame-
work across all seasons (Figs. S6–S9). Although LNOx emis-
sions updates derived from TROPOMI observations improve
model bias and error relative to the CMAQ simulation us-
ing prior emissions estimates, TROPOMI-inferred anthro-
pogenic emissions do not, except during summer months
(Figs. 9 and S6–S9). The lack of significant improvements in
CMAQ-simulated NO2 VCDs after applying the emissions
inversion with TROPOMI NO2 retrievals prior to the ver-
sion 2.3.1 update (Van Geffen et al., 2022) may be associated
with changing chemical regimes that are not captured in the
emissions inversion process.

Changes in modeled VCD due to assimilation and the
emissions inferences calculated in the TROPOMI ANOx in-
version exceed the emissions perturbation and VCD changes
used to calculate β. For example, over the eastern US, the
−15 % emissions perturbation used to calculate β leads to
VCD changes of −15 % on average in winter, but assimi-
lating TROPOMI retrievals leads to VCD changes (1�) of
−19 % on average in the winter, with individual changes ex-
ceeding −30 %. Modeled NOx chemistry and NO2 vertical
profiles after assimilating TROPOMI retrievals may be dif-
ferent than those used in the calculation of β. As a result, as-
similating TROPOMI retrievals in the ANOx inversion may
lead to modeled NO2 vertical profiles which are inconsistent
with the precalculated β used in the FDMB relationship and
to less reliable subsequent emissions inferences. In contrast,
the magnitude of VCD changes due to assimilating OMI re-

trievals over the eastern US in winter is 8 %, well within
the magnitude of the VCD changes used to precalculate β.
This highlights the importance of applying a β sensitivity
valid for the magnitude of anticipated emissions changes in
FDMB inversions and the potential consequences of rely-
ing on satellite-derived retrievals with pre-existing biases in
emissions inversions.

Comparing CMAQ-modeled O3 to ozonesonde measure-
ments from the World Ozone and Ultraviolet Radiation
Data Centre (WOUDC) network shows the impacts updat-
ing LNOx emissions on simulated tropospheric O3 (Fig. 10).
Above 300 hPa, the model is biased low, but neither update
has a major impact on this bias. However, within the free tro-
posphere, the effects of LNOx emissions updates are larger.
LNOx satellite-inferred emissions from both satellites in-
crease O3 and subsequently improve the model’s low O3 bias
across all seasons, with the strongest effect in the summer.
This suggests a low background NO2 in our prior simula-
tion, consistent with several studies demonstrating that mod-
els underestimate background NO2 (Goldberg et al., 2017;
Qu et al., 2021; Silvern et al., 2019).

Comparisons of CMAQ-modeled NO2 and O3 concen-
trations with ground-level measurements highlight the chal-
lenges of reproducing local air quality with a coarse scale
model but suggest potential to improve model performance
with satellite-derived NOx emissions updates. Table 2 shows
statistics evaluating modeled ground-level daily average NO2
and maximum 8 h O3 concentrations over the US against
observations from 1218 monitoring sites in the Air Qual-
ity System (AQS) (U.S. EPA, 2022b), excluding near-road
monitors for which the gridded NO2 fields are not represen-
tative. Statistics for each season are included in Tables S2
and S3. There is a significant low bias in CMAQ-predicted
ground-level NO2 concentrations compared with monitoring
site measurements, likely due to the model’s coarse grid res-
olution and the aggregation of NO2 monitors within urban
areas with high NOx emissions and large concentration gra-
dients. CMAQ simulations at higher horizontal resolution do
not show the same bias against NO2 surface observations
(Toro et al., 2021). Agreement between modeled and ob-
served ground-level NO2 concentrations is improved by us-
ing OMI-inferred NOx emissions compared with the prior
emissions simulation, particularly during winter and spring
months. Model performance evaluated against ground-level
O3 measurements improves to a smaller extent with OMI-
inferred NOx emissions during winter and spring months.
The use of TROPOMI-inferred emissions has mixed impacts
on CMAQ performance against observed ground-level NO2
and O3 concentrations, leading to limited gains in seasonal R
and some seasonal biases and errors but also less agreement
with observations for other seasonal statistics. In the US, the
network of ground-based air quality observations is relatively
large. However, in some regions where emissions uncertain-
ties are expected to be especially high, ground-based obser-
vations are significantly limited and less accessible. Assess-
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Figure 9. Impact of NOx emissions updates on modeled NO2 VCDs. Plots compare 2019 season-average CMAQ-modeled NO2 VCD at
each model grid cell in which NOx emissions were updated by the inverse modeling framework against OMI and TROPOMI tropospheric
NO2 VCD retrievals averaged in each model grid cell. Modeled NO2 VCD using prior emissions (Prior), inferred LNOx emissions (LNOx
posterior), and inferred lightning and anthropogenic NOx emissions (ANOx posterior) are each compared with NO2 VCD retrievals. Top-
row plots compare retrievals and modeled VCD based on OMI observations, while bottom-row plots compare retrievals and modeled VCD
based on TROPOMI observations. Linear regression line, correlation coefficient (R), normalized mean error (NME), and normalized mean
bias (NMB), relative to tropospheric NO2 VCD retrievals, are shown for each CMAQ simulation.

Figure 10. Ozonesonde observations from the WOUDC network and impact of lightning emissions inferences on modeled ozone. Left plot
shows sonde observations averaged in each season and total number of launches per season. The NMB is shown for the prior emissions
simulation. Plots on the right show the decrease in the NMB, relative to the prior simulation for simulations, with LNOx emissions updated
with OMI and TROPOMI data.

ing the impact of emissions updated against ground-based
observations in these regions, although a challenge, would
provide further evaluation of the inversion framework in lo-
cations where satellite retrievals have the largest potential to
provide important constraints to emissions estimates.

3.5 Impacts of emissions updates on long-range O3
transport

Global NOx emissions estimates affect model simulations of
long-range air pollution transport. To explore these impacts,
we examine the response of CMAQ-modeled trans-Pacific
O3 to the inverse modeling framework’s NOx emissions up-
dates. Figure 11 shows season-average changes in simulated
free-tropospheric O3 over the North Pacific Ocean resulting
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Table 2. CMAQ model performance evaluated against daily average NO2 (DA NO2) and maximum 8 h O3 concentrations (MDA8 O3)
observed in 2019 by AQS monitoring sites in the US. Near-road monitors are not considered. Statistics are shown for simulations using prior
emissions (Prior), lightning and anthropogenic NOx emissions inferred with OMI data (OMI-inferred), and lightning and anthropogenic
NOx emissions inferred with TROPOMI data (TROPOMI-inferred). Coefficient of determination (R), normalized mean error (NME), and
normalized mean bias (NMB), relative to AQS observations, are estimated for each CMAQ simulation.

Pollutant NOx emissions R NME NMB

MDA8 O3 Prior 0.65 15.9 % −1.4 %
OMI-inferred 0.68 15.4 % 3.4 %
TROPOMI-inferred 0.68 15.3 % −3.3 %

DA NO2 Prior 0.45 62.2 % −56.9 %
OMI-inferred 0.52 57.4 % −49.6 %
TROPOMI-inferred 0.45 71.7 % −69.9 %

from the use of OMI- and TROPOMI-inferred ANOx emis-
sions relative to the emissions simulation with LNOx emis-
sions updated. As expected, the emissions inversions lead to
O3 variations that follow NOx emissions changes inferred
for each satellite’s observations, with OMI inferences re-
sulting in higher O3 concentrations and TROPOMI infer-
ences resulting in lower O3 concentrations over the North
Pacific Ocean. Season-average differences with respect to the
prior emissions simulation are as large as +1.8 ppb in win-
ter, using OMI-based updates, and −1.9 ppb in spring, us-
ing TROPOMI-based updates. Combined with trans-Pacific
wind patterns, the effects of the NOx emissions inversions
on modeled O3 suggest potential implications of uncertain
Asian emissions estimates for US air quality management
and emphasize the impacts of biases in satellite retrievals on
inverse modeling systems.

At the Trinidad Head, California, a location where atmo-
spheric composition is relatively unaffected by local emis-
sions sources and is responsive to trans-Pacific pollution
transport (Fig. 11), differences in modeled daily average free-
tropospheric O3 concentrations can reach+5 or−3 ppb. Fig-
ure 12 compares CMAQ-modeled vertical O3 profiles to ob-
servations from 39 ozonesondes launched at Trinidad Head
in 2019 (WOUDC, 2019). Relative to the CMAQ simula-
tion using prior emissions, NOx emissions updates inferred
from OMI and TROPOMI data can improve the model’s abil-
ity to reproduce ozonesonde O3 distributions measured from
the site, in particular during winter and spring, when the
discrepancies between modeled and observed concentrations
are largest. These impacts on modeled vertical O3 profiles are
largely driven by changes the modeling framework’s updates
to lightning NOx emissions. The inferred LNOx increases
from each satellite improve O3 biases, while subsequent an-
thropogenic updates have smaller impacts, suggesting that
biases in O3 could be driven by background NO2 compo-
sition in the model and not solely by long-range transport
resulting from anthropogenic emissions.

Figure 11. Changes in 2019 season-average free-tropospheric O3
concentrations (averaged between 750 and 250 hPa) simulated over
the North Pacific Ocean using lightning and anthropogenic NOx
emissions inferred with OMI or TROPOMI observations, relative
to simulations using prior ANOx emissions and updated LNOx
emissions. Differences are shown for winter (DJF), spring (MAM),
summer (JJA), and fall (SON). Arrows depict season-average free-
tropospheric winds (750–250 hPa). Star marker indicates location
of Trinidad Head, California.

4 Conclusions

In this study, we describe a satellite chemical data assimi-
lation and inverse emissions modeling framework based on
the CMAQ hemispheric air quality modeling platform. In the
framework, data assimilation adjusts modeled NO2 concen-
trations online using satellite retrievals of tropospheric NO2
VCDs. The NO2 column changes drive the FDMB inversion,
resulting in satellite-constrained top-down emissions esti-
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Figure 12. Season-average vertical O3 concentration profiles modeled by CMAQ and measured by ozonesondes launched at Trinidad Head,
California, in 2019. Vertical distributions are shown for simulations using prior emissions (Prior), lightning and anthropogenic NOx emissions
inferred with OMI data (OMI-inferred), and lightning and anthropogenic NOx emissions inferred with TROPOMI data (TROPOMI-inferred).
Modeled season-average profiles are shown during winter (DJF), spring (MAM), summer (JJA), and fall (SON) for days and times matching
ozonesonde launches. Shading around sonde and prior emissions profiles represent the maximum and minimum O3 at each pressure level.
Map shows location of the Trinidad Head launch site.

mates. Here, we implement the framework in a NOx emis-
sions inversion to separately update 2019 Northern Hemi-
sphere lightning and anthropogenic NOx emissions estimates
using NO2 products from the OMI and TROPOMI satel-
lite instruments. Relative to the modeling platform’s prior
emissions derived from regional and global emissions in-
ventories, updates inferred using OMI and TROPOMI ob-
servations change average anthropogenic NOx emissions
by −41 % to +12 % in China, the US, India, Europe, and
Mexico. Evaluated against ground-based NO2 observations
recorded over the US in 2019, the model performs best
when using OMI-updated emissions, although a low bias
in CMAQ predictions using prior emissions persists into
simulations with satellite data assimilation. Compared with
US ground-based O3 observations, satellite-inferred emis-
sions have mixed impacts on model performance, improv-
ing agreement with the measurements during certain months.
LNOx emissions inferences improve modeled O3 when com-
pared against ozonesonde observations across the Northern
Hemisphere. The framework’s NOx emissions updates also
affect model estimates of trans-Pacific O3 transport, a source
of growing concern in the US, with changes ranging from
−3 to +5 ppb in simulated O3 at a remote West Coast site,
resulting from the use of satellite-inferred emissions.

The modeling framework presented has several limita-
tions. The computational cost is greater than that of tra-
ditional FDMB inversions due to the assimilation step.
However, the computational burden is comparable or less
than other satellite assimilation methods such as Kalman-
filter and adjoint 4D variational approaches. In addition, the
framework requires minimal code changes to the underlying
CTM, so inverse estimates will improve as the underlying air
quality model is updated, with little additional effort needed
to implement this framework. The global coverage of instru-
ments on polar-orbiting satellites, such as Aura and Sentinel-
5P, makes the emissions inversions possible but does not al-
low satellite observations to inform diurnal emissions vari-

ations. Upcoming geostationary satellite missions, including
GEMS, TEMPO, and Sentinel-4, will provide this capabil-
ity. Our approach, which balances computational costs and
precision in the inversion, is subject to several assumptions.
As in all mass-balance-based approaches, our method fully
attributes the change in the VCD to emissions changes. To
the extent that column differences are due to chemistry or
transport and not emissions, this assumption introduces er-
ror into mass-balance inversions, including the inversion im-
plemented in our framework. Large changes to the model
concentrations resulting from the chemical data assimilation
may invalidate assumptions in the subsequent FDMB inver-
sion, leading to biases in the inferred emissions. The FDMB
inversion treats each grid cell independently and cannot re-
late NO2 column changes in one grid cell to emissions in
another. Although emissions smearing in the approach is mit-
igated by only analyzing the lower portion of the model col-
umn, our emissions changes may be less precise than tar-
geted assimilation methods, such as 4DVAR adjoint-based
methods. Further, coarse grid resolution exacerbates biases in
modeled NO2 columns (Valin et al., 2011) and inferred NOx
emissions (Sekiya et al., 2021). The air quality model used
here does not include stratospheric chemistry, which could
affect comparisons against NO2 retrievals. Nevertheless, the
framework shows the potential to improve air quality model
predictions using satellite-derived emissions updates, in par-
ticular for regions with uncertain emissions inventories or un-
dergoing rapid emissions changes (Elguindi et al., 2020).

Emissions inversions based on satellite observations can
provide valuable information for air quality modeling by ad-
dressing the gaps in bottom-up emissions inventories. How-
ever, our analysis shows that such inversions and subsequent
air quality simulations can be strongly influenced by uncer-
tainties and biases in the satellite data products used. In the
analysis conducted, NOx emissions inferred from TROPOMI
observations appear to be biased low when assessed against
those inferred from OMI data and surface and concentra-
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tion measurements. The bias is consistent with recent re-
search showing a low bias in TROPOMI v1.2 and v1.3 tro-
pospheric columns (Judd et al., 2020; Verhoelst et al., 2021;
Li et al., 2021; Van Geffen et al., 2022). The results high-
light the importance of efforts to develop robust and consis-
tent satellite data products for use in air quality modeling
evaluation, assimilation, and emissions inversions. Ongoing
efforts to this end include the MINDS (Lamsal et al., 2020)
and the QA4ECV (Boersma et al., 2017) projects. This study
also emphasizes the need for longer-term satellite data as-
similation and comparisons of established and new satellite
data products. The framework introduced here can serve as a
generalized tool, with applications beyond those explored in
this study, and allows new satellite data products to be incor-
porated as they become available. As satellite data products
evolve and advance, the emissions inferred by the framework
will improve.

Code and data availability. NOx emissions data derived
from this research are available from the authors upon re-
quest. Level-2 satellite retrievals are available from NASA’s
Goddard Earth Sciences Data and Information Services Cen-
ter for OMI (https://doi.org/10.5067/Aura/OMI/DATA2017;
Krotkov et al., 2019b) and TROPOMI version 1 (https:
//disc.gsfc.nasa.gov/datasets/S5P_L2__NO2____1/summary;
last access: 9 December 2022; https://doi.org/10.5270/S5P-
s4ljg54; Copernicus, 2018). TROPOMI retrievals reprocessed to
version 2.3.1 are available through the Sentinel-5P data portal
(https://data-portal.s5p-pal.com/browser/, last access: 9 Decem-
ber 2022; https://doi.org/10.5270/S5P-9bnp8q8; Copernicus,
2021). WOUDC ozonesonde data, including data at the Trinidad
Head, California, launch site, are available through WOUDC at
https://doi.org/10.14287/10000008 (WOUDC, 2019). Hourly AQS
O3 and NO2 observations are available from EPA’s Air Data web-
site (https://aqs.epa.gov/aqsweb/airdata/download_files.html,
last access: 9 December 2022; U.S. EPA, 2022b). GSI
code is available via https://dtcenter.org/community-code/
gridpoint-statistical-interpolation-gsi/download (last access: 9 De-
cember 2022; DTC, 2018). CMAQ source code is freely available
via https://github.com/usepa/cmaq.git (last access: 9 December
2022) and via the U.S. EPA Office of Research and Development
(2020; https://doi.org/10.5281/zenodo.4081737).
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