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Text S1. Relationship between aerosol hygroscopicity factor calculated from the 22 

chemical composition and the individual composition groups. 23 

For understanding the relationship between aerosol hygroscopicity factor 24 

calculated from the chemical composition (chem) and the individual composition groups, 25 

it is important to realize that these groups do not act in the same way in Eq 3. The 26 

influence of organics is direct. As shown in Table 1, the hygroscopicity of organics (org) 27 

is smaller than that of inorganics (inorg). Thus, higher mass fraction of organics (forg) 28 

means lower chem, as shown in Figure S5a. But with SO4, NH4, NO3 it is more 29 

complicated because they are coupled through the ion balance. As shown in Figure 5c, 30 

the absolute amount of SO4 and NH4 seems stable, but the NO3 amount changes a lot 31 

between the seasons. The presence of NO3 shifts the salts from mostly (NH4)2SO4 32 

towards NH4NO3 and NH4HSO4 or even H2SO4. Hygroscopicity factors () are very 33 

similar between (NH4)2SO4, NH4HSO4, and NH4NO3, but  of H2SO4 is much higher. 34 

Thus, an increase in NO3 can have a dual impact on  for this data set, causing the 35 

positive correlation between mass fraction of nitrate and chem in Figure S5b. The 36 

increase in NO3 adds a higher proportion of salt and increases the  of SO4. So, if mass 37 

fraction of SO4 (fsulfate) decreases because more organics is present,  decreases. If fsulfate 38 

decreases because more NO3 is present, k increase. As these two trends are opposite, 39 

the correlation of fsulfate and chem will be poor. 40 

41 
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Text S2. Yearly variations of CCN activation characteristics. 42 

Yearly trends of CCN activation properties are investigated. The CCN number 43 

concentration (NCCN) and hygroscopicity factor calculated from monodisperse CCN 44 

measurements (CCN) measured at supersaturation (SS) of 0.1% and 0.7% are chosen to 45 

represent the CCN activation characteristics. The results are shown in Figure S7. The 46 

yearly trends in NCCN and CCN are not significant (without significant increase or 47 

decrease trends) during the measurements from August 2012 to October 2016. However, 48 

it is interesting to see that the NCCN measured in 2015 was significantly lower than it 49 

measured in other four years. One of the reasons could be that the CCN measurements 50 

in 2015 concentrated in summer and autumn, lacking measurements in the spring and 51 

winter months (Figure S1). As shown in Figure 3b, NCCN measured at summer and 52 

autumn are lower than those measured in spring and winter due to its seasonal trend, 53 

causing the lowest median NCCN values in 2015. Thus, the CCN measurements in 2015 54 

may not be representative of the CCN characteristics of the whole year. Similarly, the 55 

2012 measurements may not be representative of year-round CCN characteristics 56 

because of the lacking spring and summer measurements. Additionally, it is also hard 57 

to see the yearly trends of CCN activation characteristics using the only 4-year data. In 58 

order to investigate the yearly trends of CCN activation characteristics, longer-term 59 

measurements are required.  60 

  61 
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Text S3. Method for evaluating the impact of NCCN overestimation on cloud 62 

radiative forcing and autoconversion process 63 

Cloud optical thickness () can be expressed by (Stephens, 1984) 64 

𝜏 ≈
3

2
𝑊𝑟𝑒

−1, 
（1） 

where W is the liquid water path, re is the effective radius of cloud droplets. Meanwhile 65 

re is proportional to the volume weighted mean radius of cloud droplets (rv) (Bower and 66 

Choularton, 1992) and can be expressed by 67 

𝑟𝑒 = 𝛽 (
3𝑞

4𝜋𝜌𝑤𝑁𝑐
)
1/3

= 𝛽𝑟𝑣, 
（2） 

where  is the scaling factor, q is the cloud liquid water content, w is the density of 68 

water, and Nc is the number concentration of cloud droplet. Here, to focus on the effect 69 

of Nc on re,  is specified as a fixed parameter, i.e., ignoring the dispersion effect, as 70 

assumed in many climate models (Quaas et al., 2004). 71 

According to Liu et al. (2004, 2005), parameterization of the autoconversion 72 

process can be expressed by 73 

𝑃 = 𝑇𝐴 × 𝑃0, 
（3） 

where P is the autoconversion rate, P0 is the rate function describing the conversion 74 

rate after the onset of the autoconversion process, and TA is a function describing the 75 

threshold behavior of the autoconversion process. Meanwhile, TA can be expressed by 76 

𝑇𝐴 = [
∫ 𝑟6𝑛(𝑟)𝑑𝑟
∞

𝑟𝑐

∫ 𝑟6𝑛(𝑟)𝑑𝑟
∞

0

] [
∫ 𝑟3𝑛(𝑟)𝑑𝑟
∞

𝑟𝑐

∫ 𝑟3𝑛(𝑟)𝑑𝑟
∞

0

], 
（4） 
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where r is the droplet radius, n(r) is the cloud droplet size distribution, and rc is the 77 

critical radius of autoconversion process. The TA ranges from zero to one, with a larger 78 

TA indicating a greater probability that the collision process occurs in clouds. Liu et al. 79 

(2006) derived the analytical expression of rc as follows: 80 

𝑟𝑐 ≈ 4.09 × 10−4𝛽𝑐𝑜𝑛
1/6𝑁𝑐

1/6

𝑞1/3
, 

（5） 

where 𝛽𝑐𝑜𝑛 = 1.15 × 1023 s-1 is an empirical constant. 81 

Essentially, an overestimation of NCCN leads to overestimate Nc in models. From 82 

the 3rd and 4th scheme to 5th scheme, the slope of the linear fitting decreases 0.1 on 83 

average, meaning that the ~10% overestimation of NCCN and Nc is reduced. According 84 

to equations 1 and 2, it can reduce 3.1% underestimation of re when assuming the 85 

constant q and , thereby reducing 3.2% overestimation of . When assuming the global 86 

average cloud shortwave cooling effect is 40 Wm-2 (Lee et al., 1997), the corresponding 87 

difference is 1.28 Wm-2, which amounts to 32% of the direct radiative forcing from a 88 

doubling CO2 (about 4 Wm-2). Additionally, according to the equations 4 and 5, it can 89 

reduce the overestimation of rc thus the underestimation of TA, indicating that the 90 

underestimation of the strength of autoconversion process can be reduced.  91 

  92 
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Text S4. NCCN predictions using the seasonally mean value of  over Dp of 100 to 93 

200 nm 94 

The main size dependence of  occurs at Dp of ~40 to 100 nm as shown in Figure 95 

6a, which would be for SS larger than 0.2%. At Dp of 100 to 200 nm corresponding to 96 

SS less than 0.2%,  almost stays constant. The mean value of  at Dp of 100 to 200 nm 97 

is close to 0.3 for spring and winter, and that’s where deviations in Figure S7c are small. 98 

However, the mean value of  at Dp of 100 to 200 nm overestimates the  for SS larger 99 

than 0.2% at each season. We further compare the NCCN predictions between using the 100 

seasonally mean value of  over Dp of 100 to 200 nm and the  - Dp power-law fit. As 101 

shown in Figure S8, at SS = 0.1 and 0.2%, the seasonally mean  value over Dp of 100 102 

to 200 nm and  - Dp power-law fit both predict the NCCN well at each season, while the 103 

mean  value over Dp of 100 to 200 nm leads to a significant overestimation of NCCN 104 

within 10% on average at SS = 0.3, 0.5, and 0.7%. Therefore, to predict the NCCN at a 105 

relatively low SS of less than 0.2% (e.g., in fog and shallow stratiform cloud), the mean 106 

 value over Dp of 100 to 200 nm also works well.  107 

 108 

  109 
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 141 

Figure S1. Coverage of the effective data represented by the gray columns during the 142 

long-term experiment at Melpitz. CCNC — cloud condensation nuclei counter, D-143 

MPSS — Dual-mobility particle size spectrometer, ACSM — aerosol chemical species 144 

monitor, MAAP — multi-angle absorption photometer. 145 
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 147 

Figure S2. Schematic diagram for the relationship among the particle number size 148 

distribution (PNSD), CCN number size distribution (CCN NSD) at internally mixing, 149 

and the CCN NSD at externally mixing. 150 

 151 
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 152 

Figure S3. Monthly variations of CCN number size distributions and activation ratios (AR) at 153 

five different supersaturation (SS) conditions. The CCN number size distribution was the result 154 

of using an average of every ten days. The black dot presents the median AR at each month. 155 
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 156 

Figure S4. Mean particle number size distribution at each season. 157 

 158 
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 159 

Figure S5. Relationships between (a) aerosol hygroscopicity factor calculated from the 160 

chemical composition (chem) and mass fraction of organics (forg) in submicron aerosol, 161 

(b) chem vs. mass fraction of nitrate (fnitrate), (c) chem vs. mass fraction of nitrate (fsulfate), 162 

and (d) chem vs. mass fraction of black carbon (fBC). Color bar represents the probability 163 

density function (PDF). Black lines are linear fit lines. 164 
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 165 

Figure S6. Relationships among seasonal median values of aerosol number 166 

concentration with diameter raging 10 to 800 nm (Naero), geometric mean diameter of 167 

aerosol particles (GMD), and particle hygroscopicity parameter calculated from the 168 

chemical compositions (chem). The dots represent the median values at each season.  169 

170 
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 171 

Figure S7. Yearly variations of (a) CCN number concentration (NCCN) at 172 

supersaturation (SS) of 0.1% (NCCN,0.1%), (b) NCCN at SS of 0.7% (NCCN,0.7%), (c) 173 

hygroscopicity factor calculated from monodisperse CCN measurements (CCN) at SS 174 

of 0.1% (CCN, 0.1%), and (d) CCN at SS of 0.7% (CCN, 0.7%). Dots represent the median 175 

values. Shaded areas represent the values in the range from 25th to 75th percent. 176 

 177 

 178 
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 179 

Figure S8. Statistics of the ratio of predicted CCN number concentration (NCCN) to the 180 

measured one at different supersaturation (SS) conditions for each season and all 181 

datasets. The (a), (b), (c), (d), and (e) represent the prediction results from the N1, N2, 182 

K1, K2, and K3 scheme, respectively. Introduction for the schemes is in Table 3. 183 
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 184 

Figure S9. Predicted vs. measured CCN number concentration (NCCN) at Melpitz. (a) 185 

using the  - Dp power-law fitting measured at Xinken station in China (Eichler et al., 186 

2008) to predict the Melpitz NCCN; (b) using the  - Dp power-law fitting measured at 187 

Vavihill station in Sweden (Fors et al., 2011). Dashed line is the 1:1 line and solid line 188 

is the linear fitting. 189 

 190 
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 191 

Figure S10. Predicted vs. measured CCN number concentration (NCCN) at different 192 

supersaturation (SS) conditions for different seasons. (a) results at SS = 0.1 and 0.2%; 193 

(b) results at SS = 0.3, 0.5, and 0.7%. Red cross represents the predicted NCCN using 194 

mean hygroscopicity factor () over particle diameter (Dp) of 100 to 200 nm, while the 195 

blue cross represents the predicted NCCN using power-law fit of  and Dp. Red and blue 196 

lines are the linear fits. 197 

  198 
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Table S1. Summary of CCN number concentration (NCCN) at different supersaturation 199 

(SS) conditions measured at different locations (data for Figure 2). 200 

Location 

(coordinates; a.m.s.l) 
Type Period SS (%) 

Mean 

NCCN (cm-

3) 

Reference 

Melpitz, Germany 

(51.5°N, 12.9°E; 86 

m) 

rural, 

continental 

Aug. 

2012–

Oct. 

2016 

0.1 513 

Present 

study 

0.2 1102 

0.3 1466 

0.5 2020 

0.7 2477 

Vavihill, Sweden 

(56.0°N, 13.2 °E; 172 

m) 

rural 

May 

2008–Jul 

2010 

0.1–

1.0 
362–1795 

Fors et al., 

2011 

Southern Great Plains, 

USA  

(36.6°N, 97.5°W; 320 

m) 

rural, 

agricultural 

Sep. 

2006–

Apr. 

2011 

0.4 1248 
Liu and Li, 

2014 

Hyytiälä, Finland 

(61.9°N, 24.3°E; 181 

m) 

rural 

Feb. 

2009–

Dec. 

2012 

0.1–

1.0 
274–1128 

Paramonov 

et al., 2015 

Mahabaleshwar, India 

 (17.9°N, 73.7°E; 

~490 m) 

rural 
Jun. 

2015 

0.1–

0.94 
118–1826 

Singla et 

al., 2017 

Guangzhou, China 

(23.6°N, 113.1°E; ~21 

m) 

rural Jul. 2006 
0.068–

0.67 

995–

10731 

Rose et al., 

2010 

Wuqing, China 

(39.4°N, 117.0°E; 7.4 

m) 

suburban 

Dec. 

2009–

Jan. 2010 

0.056–

0.7 

2192–

12963 

Deng et 

al., 2011 

Seoul, Korea 

(37.6°N, 127.0°E; ~38 

m) 

urban 
2004–

2010 

0.4–

0.8 

4145–

6067 

Kim et al., 

2014 

Mahabubnagar, India 

(17.7°N, 78.9°E; ~490 

m) 

polluted 

continental 

Oct. 

2011 
1.0 ~5400 

Varghese 

et al., 2016 
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Table S2. Error function fits for the relationships between activation ratio (AR) vs. 202 

supersaturation (SS), and CCN number concentration (NCCN) vs. SS for different seasons. 203 

The equation is y=a+a*erf(ln(x/b)/c), where a, b, and c are parameters remained to be 204 

determined. The aAR and aNCCN represent the parameter a in AR vs. SS fitting and NCCN 205 

vs. SS fitting, respectively. 206 

Season aAR aNCCN b c R2 

Spring 0.50 2637 0.72 2.33 0.998 

Summer 0.51 3162 1.04 2.15 0.997 

Autumn 0.56 2443 0.84 2.29 0.999 

Winter 0.44 1624 0.29 1.83 0.999 

All  0.40 2199 0.59 2.25 0.998 
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