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Abstract. Column mixing ratio of carbon dioxide (CO;) data alone do not provide enough information for
source attribution. Carbon monoxide (CO) is a product of inefficient combustion often co-emitted with CO;. CO
data can then provide a powerful constraint on fire emissions, supporting more accurate estimation of biospheric
CO; fluxes. In this framework and using the chemistry transport model TMS5, a CO inversion using Measure-
ments of Pollution in The Troposphere (MOPITT) v8 data is performed to estimate fire emissions which are then
converted into CO, fire emissions (called FIREMo) through the use of the emission ratio. These optimized CO;
fire emissions are used to rebalance the CO; net ecosystem exchange (NEEMo) and respiration (RhMo) with
the global CO; growth rate. Subsequently, in a second step, these rebalanced fluxes are used as priors for a CO;
inversion to derive the NEE and ocean fluxes constrained either by the Orbiting Carbon Observatory 2 (OCO-2)
v9 or by in situ (IS) CO, data. For comparison purpose, we also balanced the respiration using fire emissions
from the Global Fire Emissions Database (GFED) version 3 (GFED3) and version 4.1s (GFED4.1s). We hence
study the impact of CO fire emissions in our CO; inversions at global, latitudinal, and regional scales over
the period 2015-2018 and compare our results to the two other similar approaches using GFED3 (FIRE3) and
GFEDA4.1s (FIRE4) fires, as well as with an inversion using both Carnegie—Ames—Stanford Approach (CASA)-
GFED3 NEE and GFED?3 fire priors (priorCMS). After comparison at the different scales, the inversions are
evaluated against Total Carbon Column Observing Network (TCCON) data. Comparison of the flux estimates
shows that at the global scale posterior net flux estimates are more robust than the different prior flux estimates.
However, at the regional scale, we can observe differences in fire emissions among the priors, resulting in differ-
ences among the NEE prior emissions. The derived NEE prior emissions are rebalanced in concert with the fires.
Consequently, the differences observed in the NEE posterior emissions are a result of the balancing with fires
and the constraints provided by CO, observations. Tropical net flux estimates from in situ inversions are highly
sensitive to the prior flux assumed, of which fires are a significant component. Slightly larger net CO, sources
are derived with posterior fire emissions using either FIRE4 or FIREMo in the OCO-2 inversion, in particular
for most tropical regions during the 2015 El Nifio year. Similarly, larger net CO, sources are also derived with
posterior fire emissions in the in situ data inversion for Tropical Asia. Evaluation with CO, TCCON data shows
lower biases with the three rebalanced priors than with the prior using CASA-GFED3. However, posteriors have
average bias and scatter very close each other, making it difficult to conclude which simulation performs better
than the other. We observe that the assimilated CO; data have a strong influence on the global net fluxes among
the different inversions. Inversions using OCO-2 (or IS) data have similar emissions, mostly as a result of the
observational constraints and to a lesser extent because of the fire prior used. But results in the tropical regions
suggest net flux sensitivity to the fire prior for both the IS and OCO-2 inversions. Further work is needed to
improve prior fluxes in tropical regions where fires are a significant component. Finally, even if the inversions
using the FIREMo prior did enhance the biases over some TCCON sites, it is not the case for the majority
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of TCCON sites. This study consequently pushes forward the development of a CO-CO; joint inversion with
multi-observations for a possible stronger constraint on posterior CO; fire and biospheric emissions.

1 Introduction

Carbon dioxide (CO;) is the most important greenhouse gas
contributing to global climate change (IPCC, 2014). Gaps
in our understanding of the processes that control land—sea—
atmosphere exchange of CO; are a leading source of uncer-
tainty in future projections of the global climate (Friedling-
stein et al., 2014). The global net flux and hence the airborne
fraction can be deduced from the atmospheric growth rate
(Ballantyne et al., 2012). Historically, different efforts such
as the Global Carbon Project (Le Quéré et al., 2009) have di-
vided the total global net flux into its constituent components,
consisting of fluxes from the ocean, terrestrial biosphere, fos-
sil fuel combustion and other anthropogenic activities, and
biomass burning.

CO, emissions from fires are well characterized at the
largest spatial and temporal scales, but the uncertainties
increase rapidly as we look to finer spatial and temporal
scales. Two approaches are currently employed to estimate
global emissions from fires. The first approach uses burned-
area products. The Global Fire Emissions Database (GFED)
products (van der Werf et al., 2010) and the Fire INven-
tory from NCAR (FINN) (Wiedinmyer et al., 2011), for in-
stance, use this approach. GFED was developed for under-
standing the monthly contribution of fires to global carbon
cycling (van der Werf et al., 2004), while FINN was de-
veloped for near-real-time estimation (Wiedinmyer et al.,
2011). The second technique deduces fuel consumption from
fire radiative power (FRP) determined from infrared ther-
mal measurements. Two examples of emission inventories
that use this approach are the Global Fire Assimilation Sys-
tem (GFAS) (Kaiser et al., 2012) and the Quick Fire Emis-
sions Database (QFED) (Darmenov and Silva, 2015). Several
studies used and compared these fire emission inventories
and found several differences in capturing wildfire activity
over different areas as well as sources of uncertainties from
the cloud gap adjustments, small fires estimations, and land
use and land cover estimation (Liu et al., 2020). While these
fire emission inventories all use the MODIS thermal anoma-
lies (Giglio et al., 2006), they use different methods of trans-
lating emission factors and land cover to estimate fire emis-
sions. Although the quantification of emissions from biomass
burning from space-based instruments has increased signifi-
cantly, uncertainties regarding input data and methodologies
can still lead to errors up to an order of magnitude for the
total trace gas emissions (Vermote et al., 2009; Baldassarre
etal., 2015).

Moving from global annual fluxes to finer scales in
space and time greatly complicates the emission estima-
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tion. Interpreting atmospheric measurements of CO; at these
scales requires the use of an atmospheric chemistry transport
model (CTM) and assimilation system, frequently referred to
in the literature as “atmospheric inversions” or “top-down in-
versions”. However, even using the same set of observations
such as the Orbiting Carbon Observatory 2 (OCO-2) data in
different inverse modeling systems can induce a large range
of CO, flux estimation at regional scales (Crowell et al.,
2019; Peiro et al., 2022). Flux estimates from top-down in-
versions have been shown to be sensitive to the choice of
transport model (Schuh et al., 2019) and observational cover-
age (Byrne et al., 2017). Even more importantly, atmospheric
measurements of CO, dry-air mole fractions represent the
combined influence of all upstream emissions and transport,
and so individual tracer measurements cannot be used to dif-
ferentiate between different source or sink processes without
more information. Additionally, prior estimate of the fluxes
and their associated uncertainties can impact posterior CO;
estimations (Lauvaux et al., 2012b, a; Byrne et al., 2017;
Gurney et al., 2003; Wang et al., 2018; Chevallier et al., 2005;
Baker et al., 2006, 2010). A few studies (Liu et al., 2017a;
Palmer et al., 2019; Crowell et al., 2019; Peiro et al., 2022)
utilized XCO, from OCO-2 to constrain top-down surface
fluxes of CO;. All of the mentioned studies found the tropics
to be a large source region for 2015-2016, though the expla-
nations varied. Crowell et al. (2019) showed that an ensem-
ble of inversion models delivered robust results for tropical
regions when OCO-2 data were assimilated. The ensemble
employed included different atmospheric transport models,
prior ocean and terrestrial biosphere and fire fluxes, and as-
similation techniques. None of the participating models op-
timized fire and fossil fuel emissions. As such, only the non-
fossil land (net biosphere exchange, NBE) and ocean flux at
regional scales were examined in the study, with no attempt
to attribute ensemble spread to different sources of uncer-
tainty, such as the assumed fire emissions, which neglected to
include some of the global inventories, such as FINN, QFED,
and GFED4.1s (earlier versions of GFED were included).
Most inversion models do not explicitly constrain fire
emissions with CO; observations. Rather, it is assumed that
fire emissions have much lower uncertainty (generally be-
lieved to be less than 10 %; Le Quéré et al., 2018; Quilcaille
et al., 2018) than the ocean and terrestrial biosphere fluxes
(Le Quéré et al., 2018; Khatiwala et al., 2009, 2013) and
so are held fixed, with the net ecosystem exchange (NEE)
assumed to be the residual between the posterior total net
land flux and the assumed fire and fossil fuel emissions. This
assumption is problematic, not least due to the aforemen-
tioned fire emission uncertainties in time and space, which
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could alias into inferred biospheric fluxes at continental or
regional scales (Wiedinmyer and Neff, 2007; Peylin et al.,
2013). To reduce the uncertainties associated with fires and
consequently with CO, biospheric emissions, we can exam-
ine gas species that are co-emitted with CO, from fires, such
as carbon monoxide (CO).

CO is an air pollutant that affects the oxidation capacity of
the atmosphere through its reaction with the hydroxyl radi-
cal (OH), leading to a relatively short atmospheric lifetime of
1 to 3 months because of its fast oxidation with OH. Reac-
tions between CO and OH impact atmospheric composition
on hemispheric (mainly in the tropics) or even global scales
(Logan et al., 1981). CO also leads to the formation of tro-
pospheric ozone (O3), an important short-lived greenhouse
gas, and CO;. CO is produced by incomplete combustion,
i.e., when there is not enough oxygen to make CO» (van der
Werf et al., 2010), such as in the case of smoldering fires.
In this way, CO» is strongly co-emitted with CO in the pres-
ence of combustion (Bakwin et al., 1997; Potosnak et al.,
1999; Turnbull et al., 2006). Previous studies used trace gases
such as CO to improve the CO, flux estimation or to separate
CO; emission sources. Wang et al. (2010) used the CO, / CO
correlation slope to differentiate the source signature of CO,
and separate the different characteristics of CO, emissions
between rural and urban sites in China. Basu et al. (2014)
estimated CO, emissions with Greenhouse gases Observing
SATellite (GOSAT) data and the Comprehensive Observa-
tion Network for TRace gases by AlrLiner (CONTRAIL)
project and studied seasonal variations of CO;, fluxes dur-
ing the 2009 and 2011 period over Tropical Asia. By using
the Infrared Atmospheric Sounding Interferometer (IASI)
CO measurements, their study showed an increased source of
CO3 in 2010 that was not caused by increased biomass burn-
ing emissions but by biosphere response to above-average
temperatures. In addition to CO, some studies worked on the
correlation between additional species and CO; to constrain
CO; emission from biomass burning. Konovalov et al. (2014)
used satellite CO and aerosol optical depth data to constrain
CO; emissions from wildfires in Siberia by estimating FRP
to biomass burning rate conversion factors. Using this ap-
proach, they found that global emission inventories underes-
timated CO; emissions from Siberia from 2007 to 2011.

As biomass burning emission estimates are necessary for
constraining top-down CO, emissions, we want to provide
our CO; inversion model with fire emissions that contain as
much realism as possible. Fires that incorporate information
from both traditional bottom-up estimation techniques and
atmospheric CO data may provide a better estimate than the
global inventories alone. The corresponding top-down CO;
fluxes imposing these optimized fire emissions should have
more fidelity, particularly in the tropics, where fires and the
biosphere strongly interact with one another, and especially
during severe drought conditions associated with the 2015-
2016 El Nifio. The objective of this paper is to assess the
improvement in CO; biogenic emission estimates when CO-
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informed fire emissions are imposed, particularly during the
20152016 El Nifio event and the subsequent years (2017
and 2018). First, we constrain CO emissions using data from
the Measurements of Pollution in The Troposphere (MO-
PITT). We use these optimized CO emissions together with
key vegetation parameters from GFED to create an updated
estimate of fire CO; emissions that incorporates both sets
of information. Finally, these updated fire emissions and ap-
propriately rebalanced prior biogenic fluxes are imposed in
an atmospheric CO; inversion to constrain the net land and
ocean CO, fluxes using either OCO-2 XCO, retrievals or in
situ data. To evaluate these new emissions, an alternative set
of fire emissions and rebalanced prior biogenic fluxes have
also been used in this CO; inversion framework.

This paper is ordered as follows. The assimilation and
evaluation data sets and the inversion modeling framework
are described in Sect. 2. The results for CO and CO; flux esti-
mates and evaluation against independent data are presented
in Sect. 3. The importance of these inversion results are dis-
cussed in Sect. 4. Conclusions and proposed future work are
presented in Sect. 5. Description of the different GFED ver-
sions are presented in Appendix A.

2 Data and methodology

Our experiments focus on estimation of top-down fluxes us-
ing the TM5-4D-Var system (e.g., Meirink et al., 2008; Basu
et al., 2013; Crowell et al., 2018). Our inversions are per-
formed in sequence: (1) we assimilate total column CO re-
trievals from the MOPITT v8 products to produce optimized
CO fluxes, which are used to update the assumed CO; fire
emissions, and then (2) we assimilate either total column
CO, from OCO-2 version 9 retrievals or CO; in situ data
to produce optimized CO, NEE and ocean fluxes. We intro-
duce hereafter the observations used in the inversions, the
inversion system, and the observations used for validation.

2.1 Data sets
2.1.1 MOPITT data

Space-based CO data are available from a large variety of
instruments: IASI (Infrared Atmospheric Sounding Interfer-
ometer, Turquety et al., 2004; Clerbaux et al., 2009) aboard
the Metop satellite, MOPITT (Measurements of Pollution
in the Troposphere, Drummond et al., 2010, 2016) aboard
the Terra satellite, the Tropospheric Emission Spectrome-
ter (TES, Beer et al., 2001) aboard EOS-Aura and the At-
mospheric InfraRed Sounder (AIRS, Aumann et al., 2003)
aboard EOS-Aqua. These satellite data can be used to moni-
tor fire emissions from an atmospheric point of view. So far,
MOPITT has been the only space-based instrument deriv-
ing CO from near-infrared (NIR), thermal infrared (TIR), and
multispectral radiances (TIR + NIR). Recently, the TROPO-
spheric Monitoring Instrument (TROPOMI, Landgraf et al.,
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2016) and GOSAT-2 TANSO-FTS-2 (http://www.gosat-2.
nies.go.jp/, last access: 12 December 2022) are also retriev-
ing CO from NIR radiances. However, MOPITT products
have been consistently validated against airborne vertical
profiles and ground-based measurements, allowing a well-
understood product (Worden et al., 2010; Deeter et al., 2019).

MOPITT (Drummond, 1993) was launched in 1999 on
board the Terra satellite. Terra flies in a sun-synchronous po-
lar orbit at an altitude of 705 km, crossing the Equator at ap-
proximately 10:30 LT (local time) each morning and evening.
It has a nadir view with spatial resolution of 22 x 22 km. Its
swath is 650 km wide, with 116 cross-track footprints. MO-
PITT achieves a global coverage in about 4 d.

MOPITT uses gas filter correlation radiometry to retrieve
CO mixing ratios from radiances in the 4.7 um (TIR) and
2.3um (NIR) spectral bands. TIR-only retrievals of MO-
PITT have been shown to be mostly sensitive to CO in the
mid-upper troposphere (excluding regions with strong ther-
mal gradients such as deserts, Deeter et al., 2007). NIR-
only retrievals depend on reflected solar radiation and are
also used for retrievals of CO total column, though the verti-
cal sensitivity is stronger near the surface than the TIR-only
retrievals (Deeter et al., 2009; Worden et al., 2010). MO-
PITT TIR 4 NIR retrievals can provide improved estimates
of CO near source locations and have enhanced land sur-
face sensitivity compared to the TIR-only product (Deeter
et al., 2015). In this study, we consequently use the level 2
TIR-NIR profiles product in order to have better sensitiv-
ity of CO on the total column with greatest sensitivity in the
lower troposphere (Deeter et al., 2013). With the observing
limitations of NIR data, this product is limited to daytime
observations over land. In addition, because retrievals with
surface pressures less than 900 hPa might be of lower qual-
ity, they are removed for the assimilation (Fortems-Cheiney
et al., 2011; Yin et al., 2015). MOPITT retrieval products
are generated with an optimal estimation-based retrieval al-
gorithm and a fast radiative transfer model involving both
MOPITT calibrated radiances and a priori knowledge of
CO variability (Deeter et al., 2003). The MOPITT opera-
tional fast forward model (MOPFAS) is a radiative transfer
model based on the HITRAN2012 (Rothman et al., 2013)
database with CO parameters in log(VMR) used to simulate
the MOPITT measured radiances (Edwards et al., 1999). For
this retrieval method, cloud-free observations are required.
The MOPITT v8 products consist of CO profile with 10 pres-
sure levels. In our assimilation system, simulated values of
logXCO using the MOPITT v8 averaging kernel are com-
pared to the retrievals, and the difference is then propagated
into flux adjustments using the TM5 adjoint.

Several studies have used inverse modeling with MOPITT
data to estimate CO emissions (Huijnen et al., 2016; Yin
et al., 2016; Nechita-Banda et al., 2018), and they showed
that MOPITT v7 data have poor performance at detecting
extreme events. However, MOPITT v8 implemented a bias
correction in the radiance which demonstrated improved re-
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trievals relative to v7 (Deeter et al., 2019). In particular, MO-
PITT v8 does not exhibit a latitudinal dependence in partial
CO column biases observed in v7 (Deeter et al., 2019). MO-
PITT v8 TIR-NIR product biases are within 5 % at all lev-
els when compared to NOAA aircraft profiles. In addition,
apparent long-term trends in v7 biases have been decreased
to 0.1 % yr~! or less at all retrieval levels for v8 products
(Deeter et al., 2019). We thus expect to have better perfor-
mance in the detection of extreme events by assimilating
MOPITT v8 and less bias in the inferred CO emissions over-
all.

2.1.2 0OCO-2 data

The OCO-2 (Crisp et al., 2017; Eldering et al., 2017) satel-
lite was launched in July 2014 as the first NASA mission
dedicated to observing CO, from space. The satellite flies
in a sun-synchronous orbit with an altitude of 705km and
a 16d revisit time. OCO-2 passes each location at approxi-
mately 13:30 LT (Crisp and Johnson, 2005). OCO-2 observes
eight footprints across a 10 km ground track, each of which is
less than 1.29 km by 2.25 km (Eldering et al., 2017). Smaller
spatial footprints increase the number of cloud-free scenes,
allowing for more successful retrievals with lower errors
(O’Dell et al., 2018), e.g., relative to the Greenhouse gases
Observing SATellite (GOSAT; Kuze et al., 2009).

OCO-2 measures the absorption of solar reflectance spec-
tra within CO» (1.6 and 2.0 ym) and molecular oxygen (O3)
bands (0.76 um). Retrievals from OCO-2 have sensitivity
throughout the entire troposphere with the highest sensitiv-
ity close to the surface (Eldering et al., 2017). As with CO,
retrievals of CO, from TIR observations such as those from
TES or AIRS typically have lower sensitivity in the atmo-
spheric boundary layer (Eldering et al., 2017).

CO;, retrieval products come from the Atmospheric Car-
bon Observations from Space (ACOS) retrieval algorithm
(O’Dell et al., 2012; Crisp et al., 2012; O’Dell et al., 2018;
Kiel et al., 2019). OCO-2 radiance measurements are ana-
lyzed with remote sensing retrieval algorithms to spatially
estimate column-averaged CO, dry-air mole fraction, XCO».
This quantity represents the average concentration of CO,
in a column of dry air from the surface to the top of the
atmosphere. ACOS XCO; product have been largely vali-
dated against ground-based observations from the Total Car-
bon Column Observing Network (TCCON; Wunch et al.,
2017). Our study uses the OCO-2 version 9 data product, as
it contains all of the improvements as well as a bug fix that
was found after the release of version 8 (v8). Being a non-
linear optimal estimation product, retrievals contain residual
errors that must be removed through the use of a bias cor-
rection (O’Dell et al., 2018; Kiel et al., 2019). Residual bi-
ases in XCO; were reduced especially over rough topogra-
phy and were found to be caused by relative pointing off-
sets between the three bands. Even after the bias correction
is applied, errors on regional scales likely remain (O’Dell
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et al., 2018). Despite these shortcomings, data coverage from
satellites is dense in the tropics relative to the global in situ
network, which has very few sites there. Despite the known
shortcomings (biases) of satellite data, several studies have
preferred to use satellite data over the tropics to take full ad-
vantage of the improved spatial coverage. For instance, Liu
et al. (2017a) and Palmer et al. (2019) have discussed the
impacts of the 2015-2016 El Nifo event on the carbon cy-
cle, particularly in the tropics using OCO-2 v7. In addition,
OCO-2 retrievals have been used in several inversion models.
For example, Crowell et al. (2019) showed that with different
assumptions (such as a large ensemble of atmospheric inver-
sions using different CTM, data assimilation algorithms, and
prior flux), OCO-2 posterior inferred fluxes globally agree
with in situ data, but that this agreement breaks down quickly
at smaller spatial and temporal scales.

To finish regarding the data we are using in our study,
Huijnen et al. (2016) and Patra et al. (2017) have shown
that pyrogenic CO» emission estimates from CO MOPITT
data (through the use of emission factors) are consistent with
OCO-2 measurements using a forward simulation with a
CTM. With this in mind and also that OCO-2 and MOPITT
have similar vertical sensitivity for their retrievals of CO»
and CO, we use these two data sets to constrain surface fluxes
for these two tracers. Using CO; and CO together in this way
is an important proof of concept for upcoming missions such
as GeoCarb (Moore et al., 2018), which will measure both
tracers from geostationary orbit over the Americas.

2.1.3 In situ data

The in situ CO, data used for assimilation come from five
collections in ObsPack format (Masarie et al., 2014). These
collections include

— the obspack_co2_1_GLOBALVIEWplus_v5.0_2019-
08-12 (Cooperative Global Atmospheric Data Integra-
tion Project, 2019), which contributes to 93 % of all
data;

— obspack_co2_1_NRT_v5.0_2019-08-13 (NOAA Car-
bon Cycle Group ObsPack Team, 2019), which provides
near-real-time provisional observation, and so the data
did not get final quality control;

— obspack_co2_1_AirCore_v2.0_2018-11-13, which is
provided by the balloon-borne AirCore instrument; this
data set includes almost the entire atmospheric column;

— obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-
13 (NOAA Carbon Cycle Group ObsPack Team, 2018);
this collection of data only comes from aircraft profiles
at fives sites in Brazil,

— obspack_co2_1_NIES_Shipboard_v2.1_2019-06-12;
the data come from nine volunteer ships of opportunity
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operated by the Japanese National Institute for Envi-
ronmental Studies (Tohjima et al., 2005; Nara et al.,
2017).

These five collections provide around 540 assimilable obser-
vations per day. These CO, measurements are collected in
flasks or by continuous analyzers at surface, tower, and air-
craft sites (see Fig. S1 in the Supplement) and are an impor-
tant anchor for this exercise because their error characteris-
tics are generally well known, being directly established via
calibration traceable to World Meteorological Organization
standards. Additionally, these measurements provide trace-
ability to a long history of flux estimates derived from these
data as an atmospheric constraint.

2.1.4 Observations for validation: TCCON data

We evaluate our posterior model mole fractions against re-
trievals from TCCON, which is a ground-based network
of Fourier transform spectrometers established in 2004 and
designed to retrieve atmospheric gases from NIR spectra
(Wunch et al., 2011). The global monthly means of the total
column CO, measurements have accuracy and precision bet-
ter than 0.25 % (less than 1 ppm) relative to validation with
aircraft measurements (Wunch et al., 2010, 2011). TCCON
measurements have been used in several papers for validation
of satellite measurements (e.g., Kulawik et al., 2016; Wunch
et al., 2017; O’Dell et al., 2018; Kiel et al., 2019). Our eval-
uation uses data from 23 operational instruments of TCCON
globally. Table 1 lists all TCCON sites used for the evalua-
tion, and Fig. S2 shows the site locations over the globe.

2.2 Chemistry transport model TM5

We employ TM5 (Krol et al., 2005) and the four-dimensional
variational (4D-Var, Meirink et al., 2008) framework to link
trace gas emissions to atmospheric tracer mixing ratios. Sev-
eral inverse modeling studies have estimated CO emissions
or CO, emissions using TM5-4D-Var (Hooghiemstra et al.,
2011; Van Leeuwen et al., 2013; van der Laan-Luijkx et al.,
2015; Nechita-Banda et al., 2018; Basu et al., 2018; Crowell
et al., 2018, 2019). TMS is driven by 3-hourly offline mete-
orological fields from the ERA-Interim (Dee et al., 2011) re-
analysis of the European Centre for Medium-Range Weather
Forecasts (ECMWF). We run TMS5 on a 3° x 2° horizon-
tal resolution grid for the CO inversion and on a 6° x 4°
horizontal resolution grid for the CO; inversions with 25
vertical hybrid sigma-pressure levels. The initial condition
for CO is globally constant to 80 ppb, which is then com-
bined with a 6-month spin-up to account for discrepancies
from the real atmospheric distribution of CO. The initial
global distribution of CO» is taken from the CarbonTracker
(Peters et al., 2007 version CT2017, with updates docu-
mented at http://carbontracker.noaa.gov, last access: 12 De-
cember 2022) posterior mole fractions. The CT2017 fields
are constrained over the period 2000-2016 with data from
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Table 1. Geolocation and reference of each TCCON station used for the evaluation section.

TCCON sites Country Latitude  Longitude Data Reference

revision
Eureka Canada 80.05°N  86.42°W R3 Strong et al. (2019)
Ny-Alesund Spitsbergen 78.9°N 11.9°E RO Notholt et al. (2014b)
Sodankyld Finland 67.4°N 26.6°E RO Kivi et al. (2014)
Biatystok Poland 53.2°N 23.0°E R2 Deutscher et al. (2019)
Bremen Germany 53.10°N 8.85°E RO Notholt et al. (2014a)
Karlsruhe Germany 49.1°N 84°E R1 Hase et al. (2015)
Paris France 48.8°N 24°E RO Té et al. (2014)
Orléans France 47.9°N 2.1°E R1 Warneke et al. (2019)
Garmisch Germany 47.5°N 11.1°E R2 Sussmann and Rettinger (2018)
Park Falls Wisconsin (USA) 45.9°N 90.3° W R1 Wennberg et al. (2017)
Rikubetsu Japan 43.5°N 143.8°E R2 Morino et al. (2018b)
Lamont Oklahoma (USA) 36.6°N 97.5°W R1 Wennberg et al. (2016)
Anmyeondo Korea 36.5°N 126.3°E RO Goo et al. (2014)
Tsukuba Japan 36.1°N 140.1°E R2 Morino et al. (2018a)
Edwards California (USA) 34.2°N 118.2°W R1 Iraci et al. (2016)
Caltech California (USA) 34.1°N 118.1°W RO Wennberg et al. (2014)
Saga Japan 33.2°N 130.3°E RO Kawakami et al. (2014)
Izafia Tenerife 28.3°N 16.5°W R1 Blumenstock et al. (2017)
Ascension Island UK 7.9°8S 14.3°W RO Feist et al. (2014)
Darwin Australia 12.4°S 130.9°E RO Griffith et al. (2014a)
Reunion Island France 20.9°S 55.5°E R1 De Maziere et al. (2017)
Wollongong Australia 34.4°8 150.9°E RO Griffith et al. (2014b)
Lauder 125HR New Zealand 45.0°S 169.7°E RO Sherlock et al. (2014)

the global in situ network. Both inversions are run from
1 July 2014 until 1 March 2019, i.e., with 6 months of spin-
up and 2 months of spin-down to avoid so-called “edge ef-
fects”affecting the period of interest from 2015-2018.

The CO sink from OH is represented in TMS by a
monthly OH climatology from Spivakovsky et al. (2000).
This OH climatology is scaled by a factor 0.92 based on
methyl chloroform simulations (Huijnen et al., 2010).

2.3 Inversion system and analyses

We use TM5-4D-Var to infer fluxes as the long window
ensures a long-term spatiotemporal distribution of the trace
gas in the atmosphere that is consistent with multi-year flux
distributions. The TM5—4D-Var model is used in this study
to estimate CO and CO, emissions with the corresponding
satellite and in situ. TM5-4D-Var utilizes optimal estimation
to minimize a Bayesian cost function (Rodgers, 2000) in or-
der to find the state vector corresponding to surface emissions
of CO or CO; that best match the observations within their
relative uncertainties. The a posteriori flux is found by min-
imizing the mismatch between the forward model and the
observations weighted by the inverse of the observation error
covariance matrix R while staying close to a set of a priori
fluxes weighted by the inverse of the a priori error covari-
ance matrix B. These matrices are discussed in more detail
in Sect. 2.3.1. If TMS cannot represent the synoptic variabil-
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ity accurately, then the resulting errors when comparing the
model with observations will prevent these observations from
being used effectively in the 4D-Var. The mismatch between
the model and the observation due to the differences in the
resolution of the tracer transport model (including both the
resolution of the meteorological ERA-Interim fields and the
resolution of the fluxes on the model grid) and the resolution
of the observation footprint is also known as the representa-
tiveness error (observational error). If the observational error
in data assimilation is not correctly accounted for, there will
be errors in the optimized parameters (surface fluxes). For
more information on the calculation of observational error in
TMS, see Bergamaschi et al. (2010). However, it has been
shown in previous studies that going from coarse resolution
of the global tracer transport models to higher resolution does
not provide improvement with respect to observations (Lin
et al., 2018; Remaud et al., 2018).

Fluxes and measured concentrations are linked through the
transport and the observation operator. The observations are
not aggregated at the model resolution. Although the CTM
is quasi-linear, the observation operator for CO is not. Since
we use log(VMR) for the MOPITT retrievals as the CO ob-
servable, the nonlinear optimizer M1QN3 from Gilbert and
Lemaréchal (1989) is employed. Both the transport and ob-
servation operators for CO; are linear, and so we employ the
conjugate gradient method to estimate the optimal CO, emis-
sions, the implementation of which is described in great de-
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tail in Basu et al. (2013). Due to some information gaps in
the observational coverage, there is not enough information
for the state vector. Therefore, the prior fluxes are used as the
foundation to which we make corrections with information
from the observations. These corrections are determined by
the prior uncertainty and the model-data mismatch statistics.

2.3.1 A priori information
(a) CO parameterizations

Injection heights, in the CO inversion, are computed us-
ing IS4FIRES (Integrated System for Wild-Land Fires, http:
//isdfires.fmi.fi/, last access: 12 December 2022, Sofiev et al.,
2013). This emission database is driven by reanalysis FRP
obtained from the MODIS (Giglio et al., 2006) instrument
on board Aqua and Terra satellites.

Three emission categories are used for the CO inversion:
anthropogenic (which represents the combustion of fossil
fuels and biofuels), natural sources (direct CO emissions
from vegetation and oceans), and biomass burning (vegeta-
tion fires). In our configuration, we only optimize biomass
burning emissions.

Anthropogenic emissions come from the MACCity inven-
tory (Granier et al., 2011). This inventory provides projected
inter-annual trends in the anthropogenic CO emissions.

The oxidation of CH4 and non-methane volatile or-
ganic compounds (NMVOCs) such as isoprene (CsHg) and
monoterpene (C1oH;e) leads through photolysis and reaction
with OH to the formation of formaldehyde, the major chem-
ical source of CO (Atkinson, 2000). Isoprene is a member
of the group of hydrocarbons known as terpenes. It is ex-
plicitly taken into account in TMS5 as it represents the domi-
nant biogenic NMVOC emission (Guenther et al., 2012). Iso-
prene and monoterpene oxidation schemes are based on the
mechanisms developed by Yarwood et al. (2005). Isoprene
contributes to 9 %—16 % of the global CO burden (Pfister
et al., 2008). They account for 68 % in TM5 of the biogenic
NMVOC emissions that react to produce CO. By contrast,
monoterpene accounts for 15 % (Tsigaridis et al., 2014). The
chemical production of CO coming from the oxidation of
methane and NMVOCs requires monthly 3-D CO fields pro-
duced by oxidation of biogenic and anthropogenic hydro-
carbons including CH4. We use chemical production of CO
from the oxidation of CH4 and from NMVOCs by using
a 2010 simulation with the full chemistry version of TMS5
(Huijnen et al., 2010).

A priori biomass burning CO emissions are taken from the
GFEDA4.1s inventory (van der Werf et al., 2010) and incorpo-
rate a daily cycle. Further description of the GFED versions
can be found in Appendix A. GFED4.1s has a spatial resolu-
tion of 0.25° x 0.25° and includes estimates of burned area,
carbon emissions, monthly biospheric carbon fluxes based on
the Carnegie—Ames—Stanford Approach (CASA)-GFED4s
framework, and the information from the small-fire fraction.

https://doi.org/10.5194/acp-22-15817-2022

15823

Additionally, monthly carbon emissions of GFED4.1s distin-
guish between different vegetation types such as boreal for-
est, agricultural waste, temperate forest, deforestation, peat-
land, and savanna.

The prior uncertainty covariance matrix B is described by
a product of uncertainty variance and correlations in space
and time. Spatially, a Gaussian correlation length scale of
1000 km 1is used, as justified in Meirink et al. (2008), while
we assume the prior errors have a temporal correlation scale
of 4d. As in Hooghiemstra et al. (2011, 2012) and Nechita-
Banda et al. (2018), an uncertainty standard deviation of
250 % has been applied for the grid-scale prior of biomass
burning emission. This large uncertainty is assumed since
these inventories support large uncertainties. As mentioned
by Hooghiemstra et al. (2011), this yields between 40 %—
100 % of prior continental emission uncertainty, depending
on the region. The observation covariance matrix R includes
two errors: instrument errors and transport model errors. In
this matrix R, we only assume uncorrelated errors, meaning
we only have errors along the diagonal. This can be assumed
since observation error is in general easily quantifiable by
careful calibration of instruments.

(b) Computation of an optimized CO» fire prior

In this section, we describe the computation of our opti-
mized prior fire emission (FIREMo), which we use to ob-
serve the impact of CO fire emissions in posterior CO» bio-
spheric fluxes. The steps of FIREMo calculation are shown
in Fig. 1. For each pixel (3° x 2° resolution) of CO poste-
rior fire emissions, we applied a vegetation fraction based on
the dry matter product (DM) of GFED4.1s. We obtained fire
emissions for each monthly vegetation type (savanna, boreal
forests, peat, temperate forests, deforestation, and agriculture
waste). Figure S3 shows GFED DM vegetation type for each
year over land, where each pixel represents one or more veg-
etation types.

We first calculated the emission ratios ER(co,co,), which
allowed us to convert CO fire emissions to CO; fire emis-
sions. The emission ratios are computed using GFED emis-
sion factor for each vegetation type (annotated i in the Eq. 1).
Following the equation of Andreae and Merlet (2001):

EFco; Mco,
EFco,, Mco'

ER(co/co,), = (1)

with Mco = 28 gmol~! and Mo, = 44 gmol~! the molec-
ular weights of CO and CO;; EF represents the emission fac-
tors for each vegetation type described in Table 2. Emission
factors allow us to estimate trace gas emissions from carbon
losses during fires (Andreae and Merlet, 2001). For better
comparison we applied the same emission factors used by
the OCOCMS product (based on Andreae and Merlet, 2001,
and Akagi et al., 2011) and not the more recent emission fac-
tors provided by Andreae (2019).
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Figure 1. Flowchart of the FIREMo calculation.

partitioning

Table 2. Emission factors (in grams per kilogram of dry matter burned) for CO and CO;, and emission ratios ER(co,c0,) available from

GFEDA4.1s by vegetation types based on van der Werf et al. (2017).

Savanna Boreal Temperate Deforestation Peat  Agriculture

forests forests waste

EFco 63 127 88 93 210 102
EFco, 1686 1489 1647 1643 1703 1585
ER(co/c0,) 0.059  0.134 0.084 0.089 0.194 0.101

We then aggregated the 0.25° x 0.25° vegetation fraction
partitioning of GFED to create the vegetation fraction prod-
uct at a 3° x 2° grid (see Fig. 1). We applied this aggregated
fraction to the posterior simulated CO fires, which parti-
tioned the posterior CO fires by vegetation types. Finally, the
emission ratio for each vegetation type was divided into the
posterior CO fire partitioned for each vegetation type (Basu
et al., 2014). This results in monthly CO; emission per veg-
etation type at a 3° x 2° resolution. Finally, we sum up these
emissions across all surface types and also include CO; bio-
fuel emissions (see Table 3) in order to get monthly total op-
timized prior CO; biomass burning emissions that we called
“FIREMo” (see Fig. 1). We used FIREMo as fire prior emis-
sions in CO; inversions along with a rebalanced respiration
and NEE (in balance with fire estimate), using the parame-
terization described in “(c) CO, parameterizations”.
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(c) CO2 parameterizations

CO; emissions are separated into four categories: anthro-
pogenic sources, ocean fluxes, terrestrial biosphere fluxes
(meaning the sum of the photosynthesis and respiration), and
fires.

The anthropogenic emissions are taken from the Open-
source Data Inventory for Anthropogenic CO, 2018
(ODIAC2018; Oda and Maksyutov, 2011). A diurnal cycle is
imposed by the Temporal Improvements for Modeling Emis-
sions by Scaling (TIMES) product with weekly scaling as
suggested by Nassar et al. (2013). Fossil fuel emissions are
not optimized in the CO; inversions, as is typical of global
tracer transport inversions (e.g., Peylin et al., 2013; Crowell
et al., 2019). Ocean fluxes are taken from Takahashi et al.
(2009). They are assumed to have an uncertainty variance of
50 %. Both biospheric and oceanic emissions are optimized

https://doi.org/10.5194/acp-22-15817-2022



H. Peiro et al.;: Optimizing 4 years of CO» biospheric fluxes from OCO-2 and in situ data in TM5

Table 3. Global total fossil fuel emissions, fire from GFED3 and
GFEDA4.1s, FIRE (fire + biofuel), biofuel emissions, and AGR from
NOAA in PgCyr—!.

2015 2016 2017 2018

Biofuel 0479 0476 0486  0.486
Fossil fuel ~ 9.89 991 1007 10.28
GFED3 203 163 197 197
GFED4 200 173 178 1.69
FIRE3 251 211 246 246
FIRE4 257 221 227 218
FIREMo 182 147 158 156
NEECMS  —193 —171 —158 —1.55
NEEre3 342 —341 -540 -5.10
NEEre4 —340 -350 -5.11 —4.73
NEEreMo  —2.43 —251 —425 —3.90
AGRCMs 787 771 835 859
AGRj 638 601 453 504
AGRy 646 602 463 513
AGRyo 6.68 627 48 534

AGRNOAA 63 606 454 505

in the CO; inversions. The uncertainties in the prior fluxes
are derived from different climatological fluxes with expo-
nential spatiotemporal correlation assumed. For the oceanic
component, the horizontal correlation is 1000 km and the
timescales is 3 weeks, while for the terrestrial component,
the length and timescale are 250km and 1 week. These un-
certainties are applied similarly to all experiments.

Terrestrial biosphere fluxes and fire emissions are difficult
to disentangle from CO, data alone, and some inverse mod-
eling studies (e.g., Crowell et al., 2019) choose instead to
report the net land fluxes. Likewise, some global land flux es-
timates such as the GEOS-Carb CASA-GFED3 project (Ott,
2020) use fire estimates with ecosystem respiration to revise
the terrestrial biosphere flux estimates. We take a similar (but
not identical) approach, using emissions of fire and respira-
tion to estimate the terrestrial biosphere flux. We start with
the gross primary production and respiration estimates from
the CASA-GFED3 3-hourly 0.5° x 0.625° resolution (Ott,
2020). We then modify the net flux in concert with each fire
emission estimated as follows.

Net ecosystem exchange (NEE) in the CASA-GFED3
product is expressed as the sum of heterotrophic respira-
tion (Rh) and gross ecosystem exchange (GEE):

NEE3 = Rh3 + GEE3. 2)

We modified the respiration from CASA-GFED3 (Rh3, res-
piration linked to FIRE3) to create respiration estimates
for GFED4.1s (Rh4, respiration linked to FIRE4) and
FIREMo (RhMo, respiration in balance with the updated
CO;, fire estimate FIREMo), so that estimated respiration in-
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creases (decreases) in the places where each fire estimate is
smaller (larger) than FIRE3 (GFED3):

Rhx = Rh3 4 max(FIRE3 — FIREx, 0), 3)

where x is either “4” or “Mo”. This equation means that the
difference between FIRE3 and FIREx is cut off at 0 when the
difference is negative. With this equation we only consider
the positive difference (when we have lower FIREx emis-
sions than FIRE3). The resulting net ecosystem exchange,
i.e., NEE4 or NEEMo, is then computed using Eq. (2), with
GEE3 used for both NEE4 or NEEMo equations. We then ap-
ply a simple rebalancing scheme to match the yearly NOAA
global mean growth rate (AGRnoaa ) for 2015-2018 (see Ta-
ble 3), since

AGR = NEE + fire + fossil + biofuel + ocean, 4)

where X represents the global total annual flux for cate-
gory X. We use ODIACv2018 (with 2018 repeated for 2019)
to compute the global fossil fuel totals (values in the Table 3),
biofuel from the CASA land biosphere model (van der Werf
et al., 2004), and a fixed annual value of —2.6 PgC yr_1 for
the oceans for simplicity, and we use FIRE from each source
described above.

Any mismatch between the AGR derived from our prior
flux estimates (AGRy) and AGRnoaA is assumed to be due to
an incorrect estimate of global NEE. We adjust NEE at each
grid point with a simple scaling on global total respiration
(i.e., Rhx) and GEE:

AGRNoaa — AGR, = (1 + k)Rhx + (1 — k)GEE, 3)

where x is either 3, 4, or Mo, depending on whether we
use FIRE3 (GFED3), FIRE4 (GFEDA4.1s), or FIREMo. This
equation is easily solved for k using each annual global to-
tal, and the resulting corrections are applied to each 3-hourly
gridded value of GEE and respiration for each choice of fire
emissions. In this way, the a priori global CO; emissions are
ensured to match the annual global growth rate as measured
by NOAA regardless of the fire emissions assumed, as well
as a spatial pattern and seasonality that aligns with bottom-up
models’ GEE and Rh estimates as closely as possible.

We run the CO, inversions with the rebalanced terrestrial
biosphere net flux NEErex corresponding to either FIRE3,
FIRE4, or FIREMo priors. In order to assess the impacts
of the rebalancing procedure, we perform a fourth experi-
ment that assumes the GEOS-Carb CASA-GFED3 NEE as
the prior biosphere flux with GFED3 fires, and the results are
labeled in the following as OCOCMS. All CO;, FIRE pri-
ors include both biomass and biofuel burning. The details of
each of the four priors and the experimental configurations
are detailed in Table 4.

In this study, several inversions were performed with the
TM5-4D-Var inversion framework. MOPITT v8 L2 CO data
were assimilated to constrain fire emissions of CO. Sepa-
rately, OCO-2 v9 XCO, and in situ CO, are used to constrain
net fluxes of CO; (see Fig. 2).
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Table 4. Experimental configurations.
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OCOCMS OCO3re OCO4re OCOMOre
ODIAC fossil X X X
FIRE3 (GFED3 fires) X
FIRE4 (GFEDA4.1s fires) X
FIREMo (MOPITT fires) X
Takahashi ocean flux X X X
Annual total matches AGRNoaA X X X
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Figure 2. Flowchart of the six different CO, inversions performed.

We optimized CO biomass burning emissions and CO;
biospheric and oceanic emissions on a weekly basis.

3 Results

In Sect. 3.1, we examine the impacts of assimilating MO-
PITT v8 XCO observations on inferred fire CO emissions
after vegetation partition <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>