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Abstract. Column mixing ratio of carbon dioxide (CO2) data alone do not provide enough information for
source attribution. Carbon monoxide (CO) is a product of inefficient combustion often co-emitted with CO2. CO
data can then provide a powerful constraint on fire emissions, supporting more accurate estimation of biospheric
CO2 fluxes. In this framework and using the chemistry transport model TM5, a CO inversion using Measure-
ments of Pollution in The Troposphere (MOPITT) v8 data is performed to estimate fire emissions which are then
converted into CO2 fire emissions (called FIREMo) through the use of the emission ratio. These optimized CO2
fire emissions are used to rebalance the CO2 net ecosystem exchange (NEEMo) and respiration (RhMo) with
the global CO2 growth rate. Subsequently, in a second step, these rebalanced fluxes are used as priors for a CO2
inversion to derive the NEE and ocean fluxes constrained either by the Orbiting Carbon Observatory 2 (OCO-2)
v9 or by in situ (IS) CO2 data. For comparison purpose, we also balanced the respiration using fire emissions
from the Global Fire Emissions Database (GFED) version 3 (GFED3) and version 4.1s (GFED4.1s). We hence
study the impact of CO fire emissions in our CO2 inversions at global, latitudinal, and regional scales over
the period 2015–2018 and compare our results to the two other similar approaches using GFED3 (FIRE3) and
GFED4.1s (FIRE4) fires, as well as with an inversion using both Carnegie–Ames–Stanford Approach (CASA)-
GFED3 NEE and GFED3 fire priors (priorCMS). After comparison at the different scales, the inversions are
evaluated against Total Carbon Column Observing Network (TCCON) data. Comparison of the flux estimates
shows that at the global scale posterior net flux estimates are more robust than the different prior flux estimates.
However, at the regional scale, we can observe differences in fire emissions among the priors, resulting in differ-
ences among the NEE prior emissions. The derived NEE prior emissions are rebalanced in concert with the fires.
Consequently, the differences observed in the NEE posterior emissions are a result of the balancing with fires
and the constraints provided by CO2 observations. Tropical net flux estimates from in situ inversions are highly
sensitive to the prior flux assumed, of which fires are a significant component. Slightly larger net CO2 sources
are derived with posterior fire emissions using either FIRE4 or FIREMo in the OCO-2 inversion, in particular
for most tropical regions during the 2015 El Niño year. Similarly, larger net CO2 sources are also derived with
posterior fire emissions in the in situ data inversion for Tropical Asia. Evaluation with CO2 TCCON data shows
lower biases with the three rebalanced priors than with the prior using CASA-GFED3. However, posteriors have
average bias and scatter very close each other, making it difficult to conclude which simulation performs better
than the other. We observe that the assimilated CO2 data have a strong influence on the global net fluxes among
the different inversions. Inversions using OCO-2 (or IS) data have similar emissions, mostly as a result of the
observational constraints and to a lesser extent because of the fire prior used. But results in the tropical regions
suggest net flux sensitivity to the fire prior for both the IS and OCO-2 inversions. Further work is needed to
improve prior fluxes in tropical regions where fires are a significant component. Finally, even if the inversions
using the FIREMo prior did enhance the biases over some TCCON sites, it is not the case for the majority
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of TCCON sites. This study consequently pushes forward the development of a CO–CO2 joint inversion with
multi-observations for a possible stronger constraint on posterior CO2 fire and biospheric emissions.

1 Introduction

Carbon dioxide (CO2) is the most important greenhouse gas
contributing to global climate change (IPCC, 2014). Gaps
in our understanding of the processes that control land–sea–
atmosphere exchange of CO2 are a leading source of uncer-
tainty in future projections of the global climate (Friedling-
stein et al., 2014). The global net flux and hence the airborne
fraction can be deduced from the atmospheric growth rate
(Ballantyne et al., 2012). Historically, different efforts such
as the Global Carbon Project (Le Quéré et al., 2009) have di-
vided the total global net flux into its constituent components,
consisting of fluxes from the ocean, terrestrial biosphere, fos-
sil fuel combustion and other anthropogenic activities, and
biomass burning.

CO2 emissions from fires are well characterized at the
largest spatial and temporal scales, but the uncertainties
increase rapidly as we look to finer spatial and temporal
scales. Two approaches are currently employed to estimate
global emissions from fires. The first approach uses burned-
area products. The Global Fire Emissions Database (GFED)
products (van der Werf et al., 2010) and the Fire INven-
tory from NCAR (FINN) (Wiedinmyer et al., 2011), for in-
stance, use this approach. GFED was developed for under-
standing the monthly contribution of fires to global carbon
cycling (van der Werf et al., 2004), while FINN was de-
veloped for near-real-time estimation (Wiedinmyer et al.,
2011). The second technique deduces fuel consumption from
fire radiative power (FRP) determined from infrared ther-
mal measurements. Two examples of emission inventories
that use this approach are the Global Fire Assimilation Sys-
tem (GFAS) (Kaiser et al., 2012) and the Quick Fire Emis-
sions Database (QFED) (Darmenov and Silva, 2015). Several
studies used and compared these fire emission inventories
and found several differences in capturing wildfire activity
over different areas as well as sources of uncertainties from
the cloud gap adjustments, small fires estimations, and land
use and land cover estimation (Liu et al., 2020). While these
fire emission inventories all use the MODIS thermal anoma-
lies (Giglio et al., 2006), they use different methods of trans-
lating emission factors and land cover to estimate fire emis-
sions. Although the quantification of emissions from biomass
burning from space-based instruments has increased signifi-
cantly, uncertainties regarding input data and methodologies
can still lead to errors up to an order of magnitude for the
total trace gas emissions (Vermote et al., 2009; Baldassarre
et al., 2015).

Moving from global annual fluxes to finer scales in
space and time greatly complicates the emission estima-

tion. Interpreting atmospheric measurements of CO2 at these
scales requires the use of an atmospheric chemistry transport
model (CTM) and assimilation system, frequently referred to
in the literature as “atmospheric inversions” or “top-down in-
versions”. However, even using the same set of observations
such as the Orbiting Carbon Observatory 2 (OCO-2) data in
different inverse modeling systems can induce a large range
of CO2 flux estimation at regional scales (Crowell et al.,
2019; Peiro et al., 2022). Flux estimates from top-down in-
versions have been shown to be sensitive to the choice of
transport model (Schuh et al., 2019) and observational cover-
age (Byrne et al., 2017). Even more importantly, atmospheric
measurements of CO2 dry-air mole fractions represent the
combined influence of all upstream emissions and transport,
and so individual tracer measurements cannot be used to dif-
ferentiate between different source or sink processes without
more information. Additionally, prior estimate of the fluxes
and their associated uncertainties can impact posterior CO2
estimations (Lauvaux et al., 2012b, a; Byrne et al., 2017;
Gurney et al., 2003; Wang et al., 2018; Chevallier et al., 2005;
Baker et al., 2006, 2010). A few studies (Liu et al., 2017a;
Palmer et al., 2019; Crowell et al., 2019; Peiro et al., 2022)
utilized XCO2 from OCO-2 to constrain top-down surface
fluxes of CO2. All of the mentioned studies found the tropics
to be a large source region for 2015–2016, though the expla-
nations varied. Crowell et al. (2019) showed that an ensem-
ble of inversion models delivered robust results for tropical
regions when OCO-2 data were assimilated. The ensemble
employed included different atmospheric transport models,
prior ocean and terrestrial biosphere and fire fluxes, and as-
similation techniques. None of the participating models op-
timized fire and fossil fuel emissions. As such, only the non-
fossil land (net biosphere exchange, NBE) and ocean flux at
regional scales were examined in the study, with no attempt
to attribute ensemble spread to different sources of uncer-
tainty, such as the assumed fire emissions, which neglected to
include some of the global inventories, such as FINN, QFED,
and GFED4.1s (earlier versions of GFED were included).

Most inversion models do not explicitly constrain fire
emissions with CO2 observations. Rather, it is assumed that
fire emissions have much lower uncertainty (generally be-
lieved to be less than 10 %; Le Quéré et al., 2018; Quilcaille
et al., 2018) than the ocean and terrestrial biosphere fluxes
(Le Quéré et al., 2018; Khatiwala et al., 2009, 2013) and
so are held fixed, with the net ecosystem exchange (NEE)
assumed to be the residual between the posterior total net
land flux and the assumed fire and fossil fuel emissions. This
assumption is problematic, not least due to the aforemen-
tioned fire emission uncertainties in time and space, which
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could alias into inferred biospheric fluxes at continental or
regional scales (Wiedinmyer and Neff, 2007; Peylin et al.,
2013). To reduce the uncertainties associated with fires and
consequently with CO2 biospheric emissions, we can exam-
ine gas species that are co-emitted with CO2 from fires, such
as carbon monoxide (CO).

CO is an air pollutant that affects the oxidation capacity of
the atmosphere through its reaction with the hydroxyl radi-
cal (OH), leading to a relatively short atmospheric lifetime of
1 to 3 months because of its fast oxidation with OH. Reac-
tions between CO and OH impact atmospheric composition
on hemispheric (mainly in the tropics) or even global scales
(Logan et al., 1981). CO also leads to the formation of tro-
pospheric ozone (O3), an important short-lived greenhouse
gas, and CO2. CO is produced by incomplete combustion,
i.e., when there is not enough oxygen to make CO2 (van der
Werf et al., 2010), such as in the case of smoldering fires.
In this way, CO2 is strongly co-emitted with CO in the pres-
ence of combustion (Bakwin et al., 1997; Potosnak et al.,
1999; Turnbull et al., 2006). Previous studies used trace gases
such as CO to improve the CO2 flux estimation or to separate
CO2 emission sources. Wang et al. (2010) used the CO2 / CO
correlation slope to differentiate the source signature of CO2
and separate the different characteristics of CO2 emissions
between rural and urban sites in China. Basu et al. (2014)
estimated CO2 emissions with Greenhouse gases Observing
SATellite (GOSAT) data and the Comprehensive Observa-
tion Network for TRace gases by AIrLiner (CONTRAIL)
project and studied seasonal variations of CO2 fluxes dur-
ing the 2009 and 2011 period over Tropical Asia. By using
the Infrared Atmospheric Sounding Interferometer (IASI)
CO measurements, their study showed an increased source of
CO2 in 2010 that was not caused by increased biomass burn-
ing emissions but by biosphere response to above-average
temperatures. In addition to CO, some studies worked on the
correlation between additional species and CO2 to constrain
CO2 emission from biomass burning. Konovalov et al. (2014)
used satellite CO and aerosol optical depth data to constrain
CO2 emissions from wildfires in Siberia by estimating FRP
to biomass burning rate conversion factors. Using this ap-
proach, they found that global emission inventories underes-
timated CO2 emissions from Siberia from 2007 to 2011.

As biomass burning emission estimates are necessary for
constraining top-down CO2 emissions, we want to provide
our CO2 inversion model with fire emissions that contain as
much realism as possible. Fires that incorporate information
from both traditional bottom-up estimation techniques and
atmospheric CO data may provide a better estimate than the
global inventories alone. The corresponding top-down CO2
fluxes imposing these optimized fire emissions should have
more fidelity, particularly in the tropics, where fires and the
biosphere strongly interact with one another, and especially
during severe drought conditions associated with the 2015–
2016 El Niño. The objective of this paper is to assess the
improvement in CO2 biogenic emission estimates when CO-

informed fire emissions are imposed, particularly during the
2015–2016 El Niño event and the subsequent years (2017
and 2018). First, we constrain CO emissions using data from
the Measurements of Pollution in The Troposphere (MO-
PITT). We use these optimized CO emissions together with
key vegetation parameters from GFED to create an updated
estimate of fire CO2 emissions that incorporates both sets
of information. Finally, these updated fire emissions and ap-
propriately rebalanced prior biogenic fluxes are imposed in
an atmospheric CO2 inversion to constrain the net land and
ocean CO2 fluxes using either OCO-2 XCO2 retrievals or in
situ data. To evaluate these new emissions, an alternative set
of fire emissions and rebalanced prior biogenic fluxes have
also been used in this CO2 inversion framework.

This paper is ordered as follows. The assimilation and
evaluation data sets and the inversion modeling framework
are described in Sect. 2. The results for CO and CO2 flux esti-
mates and evaluation against independent data are presented
in Sect. 3. The importance of these inversion results are dis-
cussed in Sect. 4. Conclusions and proposed future work are
presented in Sect. 5. Description of the different GFED ver-
sions are presented in Appendix A.

2 Data and methodology

Our experiments focus on estimation of top-down fluxes us-
ing the TM5–4D-Var system (e.g., Meirink et al., 2008; Basu
et al., 2013; Crowell et al., 2018). Our inversions are per-
formed in sequence: (1) we assimilate total column CO re-
trievals from the MOPITT v8 products to produce optimized
CO fluxes, which are used to update the assumed CO2 fire
emissions, and then (2) we assimilate either total column
CO2 from OCO-2 version 9 retrievals or CO2 in situ data
to produce optimized CO2 NEE and ocean fluxes. We intro-
duce hereafter the observations used in the inversions, the
inversion system, and the observations used for validation.

2.1 Data sets

2.1.1 MOPITT data

Space-based CO data are available from a large variety of
instruments: IASI (Infrared Atmospheric Sounding Interfer-
ometer, Turquety et al., 2004; Clerbaux et al., 2009) aboard
the Metop satellite, MOPITT (Measurements of Pollution
in the Troposphere, Drummond et al., 2010, 2016) aboard
the Terra satellite, the Tropospheric Emission Spectrome-
ter (TES, Beer et al., 2001) aboard EOS-Aura and the At-
mospheric InfraRed Sounder (AIRS, Aumann et al., 2003)
aboard EOS-Aqua. These satellite data can be used to moni-
tor fire emissions from an atmospheric point of view. So far,
MOPITT has been the only space-based instrument deriv-
ing CO from near-infrared (NIR), thermal infrared (TIR), and
multispectral radiances (TIR+NIR). Recently, the TROPO-
spheric Monitoring Instrument (TROPOMI, Landgraf et al.,
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2016) and GOSAT-2 TANSO-FTS-2 (http://www.gosat-2.
nies.go.jp/, last access: 12 December 2022) are also retriev-
ing CO from NIR radiances. However, MOPITT products
have been consistently validated against airborne vertical
profiles and ground-based measurements, allowing a well-
understood product (Worden et al., 2010; Deeter et al., 2019).

MOPITT (Drummond, 1993) was launched in 1999 on
board the Terra satellite. Terra flies in a sun-synchronous po-
lar orbit at an altitude of 705 km, crossing the Equator at ap-
proximately 10:30 LT (local time) each morning and evening.
It has a nadir view with spatial resolution of 22× 22 km. Its
swath is 650 km wide, with 116 cross-track footprints. MO-
PITT achieves a global coverage in about 4 d.

MOPITT uses gas filter correlation radiometry to retrieve
CO mixing ratios from radiances in the 4.7 µm (TIR) and
2.3 µm (NIR) spectral bands. TIR-only retrievals of MO-
PITT have been shown to be mostly sensitive to CO in the
mid-upper troposphere (excluding regions with strong ther-
mal gradients such as deserts, Deeter et al., 2007). NIR-
only retrievals depend on reflected solar radiation and are
also used for retrievals of CO total column, though the verti-
cal sensitivity is stronger near the surface than the TIR-only
retrievals (Deeter et al., 2009; Worden et al., 2010). MO-
PITT TIR+NIR retrievals can provide improved estimates
of CO near source locations and have enhanced land sur-
face sensitivity compared to the TIR-only product (Deeter
et al., 2015). In this study, we consequently use the level 2
TIR–NIR profiles product in order to have better sensitiv-
ity of CO on the total column with greatest sensitivity in the
lower troposphere (Deeter et al., 2013). With the observing
limitations of NIR data, this product is limited to daytime
observations over land. In addition, because retrievals with
surface pressures less than 900 hPa might be of lower qual-
ity, they are removed for the assimilation (Fortems-Cheiney
et al., 2011; Yin et al., 2015). MOPITT retrieval products
are generated with an optimal estimation-based retrieval al-
gorithm and a fast radiative transfer model involving both
MOPITT calibrated radiances and a priori knowledge of
CO variability (Deeter et al., 2003). The MOPITT opera-
tional fast forward model (MOPFAS) is a radiative transfer
model based on the HITRAN2012 (Rothman et al., 2013)
database with CO parameters in log(VMR) used to simulate
the MOPITT measured radiances (Edwards et al., 1999). For
this retrieval method, cloud-free observations are required.
The MOPITT v8 products consist of CO profile with 10 pres-
sure levels. In our assimilation system, simulated values of
logXCO using the MOPITT v8 averaging kernel are com-
pared to the retrievals, and the difference is then propagated
into flux adjustments using the TM5 adjoint.

Several studies have used inverse modeling with MOPITT
data to estimate CO emissions (Huijnen et al., 2016; Yin
et al., 2016; Nechita-Banda et al., 2018), and they showed
that MOPITT v7 data have poor performance at detecting
extreme events. However, MOPITT v8 implemented a bias
correction in the radiance which demonstrated improved re-

trievals relative to v7 (Deeter et al., 2019). In particular, MO-
PITT v8 does not exhibit a latitudinal dependence in partial
CO column biases observed in v7 (Deeter et al., 2019). MO-
PITT v8 TIR–NIR product biases are within 5 % at all lev-
els when compared to NOAA aircraft profiles. In addition,
apparent long-term trends in v7 biases have been decreased
to 0.1 % yr−1 or less at all retrieval levels for v8 products
(Deeter et al., 2019). We thus expect to have better perfor-
mance in the detection of extreme events by assimilating
MOPITT v8 and less bias in the inferred CO emissions over-
all.

2.1.2 OCO-2 data

The OCO-2 (Crisp et al., 2017; Eldering et al., 2017) satel-
lite was launched in July 2014 as the first NASA mission
dedicated to observing CO2 from space. The satellite flies
in a sun-synchronous orbit with an altitude of 705 km and
a 16 d revisit time. OCO-2 passes each location at approxi-
mately 13:30 LT (Crisp and Johnson, 2005). OCO-2 observes
eight footprints across a 10 km ground track, each of which is
less than 1.29 km by 2.25 km (Eldering et al., 2017). Smaller
spatial footprints increase the number of cloud-free scenes,
allowing for more successful retrievals with lower errors
(O’Dell et al., 2018), e.g., relative to the Greenhouse gases
Observing SATellite (GOSAT; Kuze et al., 2009).

OCO-2 measures the absorption of solar reflectance spec-
tra within CO2 (1.6 and 2.0 µm) and molecular oxygen (O2)
bands (0.76 µm). Retrievals from OCO-2 have sensitivity
throughout the entire troposphere with the highest sensitiv-
ity close to the surface (Eldering et al., 2017). As with CO,
retrievals of CO2 from TIR observations such as those from
TES or AIRS typically have lower sensitivity in the atmo-
spheric boundary layer (Eldering et al., 2017).

CO2 retrieval products come from the Atmospheric Car-
bon Observations from Space (ACOS) retrieval algorithm
(O’Dell et al., 2012; Crisp et al., 2012; O’Dell et al., 2018;
Kiel et al., 2019). OCO-2 radiance measurements are ana-
lyzed with remote sensing retrieval algorithms to spatially
estimate column-averaged CO2 dry-air mole fraction, XCO2.
This quantity represents the average concentration of CO2
in a column of dry air from the surface to the top of the
atmosphere. ACOS XCO2 product have been largely vali-
dated against ground-based observations from the Total Car-
bon Column Observing Network (TCCON; Wunch et al.,
2017). Our study uses the OCO-2 version 9 data product, as
it contains all of the improvements as well as a bug fix that
was found after the release of version 8 (v8). Being a non-
linear optimal estimation product, retrievals contain residual
errors that must be removed through the use of a bias cor-
rection (O’Dell et al., 2018; Kiel et al., 2019). Residual bi-
ases in XCO2 were reduced especially over rough topogra-
phy and were found to be caused by relative pointing off-
sets between the three bands. Even after the bias correction
is applied, errors on regional scales likely remain (O’Dell
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et al., 2018). Despite these shortcomings, data coverage from
satellites is dense in the tropics relative to the global in situ
network, which has very few sites there. Despite the known
shortcomings (biases) of satellite data, several studies have
preferred to use satellite data over the tropics to take full ad-
vantage of the improved spatial coverage. For instance, Liu
et al. (2017a) and Palmer et al. (2019) have discussed the
impacts of the 2015–2016 El Niño event on the carbon cy-
cle, particularly in the tropics using OCO-2 v7. In addition,
OCO-2 retrievals have been used in several inversion models.
For example, Crowell et al. (2019) showed that with different
assumptions (such as a large ensemble of atmospheric inver-
sions using different CTM, data assimilation algorithms, and
prior flux), OCO-2 posterior inferred fluxes globally agree
with in situ data, but that this agreement breaks down quickly
at smaller spatial and temporal scales.

To finish regarding the data we are using in our study,
Huijnen et al. (2016) and Patra et al. (2017) have shown
that pyrogenic CO2 emission estimates from CO MOPITT
data (through the use of emission factors) are consistent with
OCO-2 measurements using a forward simulation with a
CTM. With this in mind and also that OCO-2 and MOPITT
have similar vertical sensitivity for their retrievals of CO2
and CO, we use these two data sets to constrain surface fluxes
for these two tracers. Using CO2 and CO together in this way
is an important proof of concept for upcoming missions such
as GeoCarb (Moore et al., 2018), which will measure both
tracers from geostationary orbit over the Americas.

2.1.3 In situ data

The in situ CO2 data used for assimilation come from five
collections in ObsPack format (Masarie et al., 2014). These
collections include

– the obspack_co2_1_GLOBALVIEWplus_v5.0_2019-
08-12 (Cooperative Global Atmospheric Data Integra-
tion Project, 2019), which contributes to 93 % of all
data;

– obspack_co2_1_NRT_v5.0_2019-08-13 (NOAA Car-
bon Cycle Group ObsPack Team, 2019), which provides
near-real-time provisional observation, and so the data
did not get final quality control;

– obspack_co2_1_AirCore_v2.0_2018-11-13, which is
provided by the balloon-borne AirCore instrument; this
data set includes almost the entire atmospheric column;

– obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-
13 (NOAA Carbon Cycle Group ObsPack Team, 2018);
this collection of data only comes from aircraft profiles
at fives sites in Brazil;

– obspack_co2_1_NIES_Shipboard_v2.1_2019-06-12;
the data come from nine volunteer ships of opportunity

operated by the Japanese National Institute for Envi-
ronmental Studies (Tohjima et al., 2005; Nara et al.,
2017).

These five collections provide around 540 assimilable obser-
vations per day. These CO2 measurements are collected in
flasks or by continuous analyzers at surface, tower, and air-
craft sites (see Fig. S1 in the Supplement) and are an impor-
tant anchor for this exercise because their error characteris-
tics are generally well known, being directly established via
calibration traceable to World Meteorological Organization
standards. Additionally, these measurements provide trace-
ability to a long history of flux estimates derived from these
data as an atmospheric constraint.

2.1.4 Observations for validation: TCCON data

We evaluate our posterior model mole fractions against re-
trievals from TCCON, which is a ground-based network
of Fourier transform spectrometers established in 2004 and
designed to retrieve atmospheric gases from NIR spectra
(Wunch et al., 2011). The global monthly means of the total
column CO2 measurements have accuracy and precision bet-
ter than 0.25 % (less than 1 ppm) relative to validation with
aircraft measurements (Wunch et al., 2010, 2011). TCCON
measurements have been used in several papers for validation
of satellite measurements (e.g., Kulawik et al., 2016; Wunch
et al., 2017; O’Dell et al., 2018; Kiel et al., 2019). Our eval-
uation uses data from 23 operational instruments of TCCON
globally. Table 1 lists all TCCON sites used for the evalua-
tion, and Fig. S2 shows the site locations over the globe.

2.2 Chemistry transport model TM5

We employ TM5 (Krol et al., 2005) and the four-dimensional
variational (4D-Var, Meirink et al., 2008) framework to link
trace gas emissions to atmospheric tracer mixing ratios. Sev-
eral inverse modeling studies have estimated CO emissions
or CO2 emissions using TM5–4D-Var (Hooghiemstra et al.,
2011; Van Leeuwen et al., 2013; van der Laan-Luijkx et al.,
2015; Nechita-Banda et al., 2018; Basu et al., 2018; Crowell
et al., 2018, 2019). TM5 is driven by 3-hourly offline mete-
orological fields from the ERA-Interim (Dee et al., 2011) re-
analysis of the European Centre for Medium-Range Weather
Forecasts (ECMWF). We run TM5 on a 3◦× 2◦ horizon-
tal resolution grid for the CO inversion and on a 6◦× 4◦

horizontal resolution grid for the CO2 inversions with 25
vertical hybrid sigma-pressure levels. The initial condition
for CO is globally constant to 80 ppb, which is then com-
bined with a 6-month spin-up to account for discrepancies
from the real atmospheric distribution of CO. The initial
global distribution of CO2 is taken from the CarbonTracker
(Peters et al., 2007 version CT2017, with updates docu-
mented at http://carbontracker.noaa.gov, last access: 12 De-
cember 2022) posterior mole fractions. The CT2017 fields
are constrained over the period 2000–2016 with data from
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Table 1. Geolocation and reference of each TCCON station used for the evaluation section.

TCCON sites Country Latitude Longitude Data Reference
revision

Eureka Canada 80.05◦ N 86.42◦W R3 Strong et al. (2019)
Ny-Ålesund Spitsbergen 78.9◦ N 11.9◦ E R0 Notholt et al. (2014b)
Sodankylä Finland 67.4◦ N 26.6◦ E R0 Kivi et al. (2014)
Białystok Poland 53.2◦ N 23.0◦ E R2 Deutscher et al. (2019)
Bremen Germany 53.10◦ N 8.85◦ E R0 Notholt et al. (2014a)
Karlsruhe Germany 49.1◦ N 8.4◦ E R1 Hase et al. (2015)
Paris France 48.8◦ N 2.4◦ E R0 Té et al. (2014)
Orléans France 47.9◦ N 2.1◦ E R1 Warneke et al. (2019)
Garmisch Germany 47.5◦ N 11.1◦ E R2 Sussmann and Rettinger (2018)
Park Falls Wisconsin (USA) 45.9◦ N 90.3◦W R1 Wennberg et al. (2017)
Rikubetsu Japan 43.5◦ N 143.8◦ E R2 Morino et al. (2018b)
Lamont Oklahoma (USA) 36.6◦ N 97.5◦W R1 Wennberg et al. (2016)
Anmyeondo Korea 36.5◦ N 126.3◦ E R0 Goo et al. (2014)
Tsukuba Japan 36.1◦ N 140.1◦ E R2 Morino et al. (2018a)
Edwards California (USA) 34.2◦ N 118.2◦W R1 Iraci et al. (2016)
Caltech California (USA) 34.1◦ N 118.1◦W R0 Wennberg et al. (2014)
Saga Japan 33.2◦ N 130.3◦ E R0 Kawakami et al. (2014)
Izaña Tenerife 28.3◦ N 16.5◦W R1 Blumenstock et al. (2017)
Ascension Island UK 7.9◦ S 14.3◦W R0 Feist et al. (2014)
Darwin Australia 12.4◦ S 130.9◦ E R0 Griffith et al. (2014a)
Reunion Island France 20.9◦ S 55.5◦ E R1 De Mazière et al. (2017)
Wollongong Australia 34.4◦ S 150.9◦ E R0 Griffith et al. (2014b)
Lauder 125HR New Zealand 45.0◦ S 169.7◦ E R0 Sherlock et al. (2014)

the global in situ network. Both inversions are run from
1 July 2014 until 1 March 2019, i.e., with 6 months of spin-
up and 2 months of spin-down to avoid so-called “edge ef-
fects””affecting the period of interest from 2015–2018.

The CO sink from OH is represented in TM5 by a
monthly OH climatology from Spivakovsky et al. (2000).
This OH climatology is scaled by a factor 0.92 based on
methyl chloroform simulations (Huijnen et al., 2010).

2.3 Inversion system and analyses

We use TM5–4D-Var to infer fluxes as the long window
ensures a long-term spatiotemporal distribution of the trace
gas in the atmosphere that is consistent with multi-year flux
distributions. The TM5–4D-Var model is used in this study
to estimate CO and CO2 emissions with the corresponding
satellite and in situ. TM5–4D-Var utilizes optimal estimation
to minimize a Bayesian cost function (Rodgers, 2000) in or-
der to find the state vector corresponding to surface emissions
of CO or CO2 that best match the observations within their
relative uncertainties. The a posteriori flux is found by min-
imizing the mismatch between the forward model and the
observations weighted by the inverse of the observation error
covariance matrix R while staying close to a set of a priori
fluxes weighted by the inverse of the a priori error covari-
ance matrix B. These matrices are discussed in more detail
in Sect. 2.3.1. If TM5 cannot represent the synoptic variabil-

ity accurately, then the resulting errors when comparing the
model with observations will prevent these observations from
being used effectively in the 4D-Var. The mismatch between
the model and the observation due to the differences in the
resolution of the tracer transport model (including both the
resolution of the meteorological ERA-Interim fields and the
resolution of the fluxes on the model grid) and the resolution
of the observation footprint is also known as the representa-
tiveness error (observational error). If the observational error
in data assimilation is not correctly accounted for, there will
be errors in the optimized parameters (surface fluxes). For
more information on the calculation of observational error in
TM5, see Bergamaschi et al. (2010). However, it has been
shown in previous studies that going from coarse resolution
of the global tracer transport models to higher resolution does
not provide improvement with respect to observations (Lin
et al., 2018; Remaud et al., 2018).

Fluxes and measured concentrations are linked through the
transport and the observation operator. The observations are
not aggregated at the model resolution. Although the CTM
is quasi-linear, the observation operator for CO is not. Since
we use log(VMR) for the MOPITT retrievals as the CO ob-
servable, the nonlinear optimizer M1QN3 from Gilbert and
Lemaréchal (1989) is employed. Both the transport and ob-
servation operators for CO2 are linear, and so we employ the
conjugate gradient method to estimate the optimal CO2 emis-
sions, the implementation of which is described in great de-
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tail in Basu et al. (2013). Due to some information gaps in
the observational coverage, there is not enough information
for the state vector. Therefore, the prior fluxes are used as the
foundation to which we make corrections with information
from the observations. These corrections are determined by
the prior uncertainty and the model–data mismatch statistics.

2.3.1 A priori information

(a) CO parameterizations

Injection heights, in the CO inversion, are computed us-
ing IS4FIRES (Integrated System for Wild-Land Fires, http:
//is4fires.fmi.fi/, last access: 12 December 2022, Sofiev et al.,
2013). This emission database is driven by reanalysis FRP
obtained from the MODIS (Giglio et al., 2006) instrument
on board Aqua and Terra satellites.

Three emission categories are used for the CO inversion:
anthropogenic (which represents the combustion of fossil
fuels and biofuels), natural sources (direct CO emissions
from vegetation and oceans), and biomass burning (vegeta-
tion fires). In our configuration, we only optimize biomass
burning emissions.

Anthropogenic emissions come from the MACCity inven-
tory (Granier et al., 2011). This inventory provides projected
inter-annual trends in the anthropogenic CO emissions.

The oxidation of CH4 and non-methane volatile or-
ganic compounds (NMVOCs) such as isoprene (C5H8) and
monoterpene (C10H16) leads through photolysis and reaction
with OH to the formation of formaldehyde, the major chem-
ical source of CO (Atkinson, 2000). Isoprene is a member
of the group of hydrocarbons known as terpenes. It is ex-
plicitly taken into account in TM5 as it represents the domi-
nant biogenic NMVOC emission (Guenther et al., 2012). Iso-
prene and monoterpene oxidation schemes are based on the
mechanisms developed by Yarwood et al. (2005). Isoprene
contributes to 9 %–16 % of the global CO burden (Pfister
et al., 2008). They account for 68 % in TM5 of the biogenic
NMVOC emissions that react to produce CO. By contrast,
monoterpene accounts for 15 % (Tsigaridis et al., 2014). The
chemical production of CO coming from the oxidation of
methane and NMVOCs requires monthly 3-D CO fields pro-
duced by oxidation of biogenic and anthropogenic hydro-
carbons including CH4. We use chemical production of CO
from the oxidation of CH4 and from NMVOCs by using
a 2010 simulation with the full chemistry version of TM5
(Huijnen et al., 2010).

A priori biomass burning CO emissions are taken from the
GFED4.1s inventory (van der Werf et al., 2010) and incorpo-
rate a daily cycle. Further description of the GFED versions
can be found in Appendix A. GFED4.1s has a spatial resolu-
tion of 0.25◦× 0.25◦ and includes estimates of burned area,
carbon emissions, monthly biospheric carbon fluxes based on
the Carnegie–Ames–Stanford Approach (CASA)-GFED4s
framework, and the information from the small-fire fraction.

Additionally, monthly carbon emissions of GFED4.1s distin-
guish between different vegetation types such as boreal for-
est, agricultural waste, temperate forest, deforestation, peat-
land, and savanna.

The prior uncertainty covariance matrix B is described by
a product of uncertainty variance and correlations in space
and time. Spatially, a Gaussian correlation length scale of
1000 km is used, as justified in Meirink et al. (2008), while
we assume the prior errors have a temporal correlation scale
of 4 d. As in Hooghiemstra et al. (2011, 2012) and Nechita-
Banda et al. (2018), an uncertainty standard deviation of
250 % has been applied for the grid-scale prior of biomass
burning emission. This large uncertainty is assumed since
these inventories support large uncertainties. As mentioned
by Hooghiemstra et al. (2011), this yields between 40 %–
100 % of prior continental emission uncertainty, depending
on the region. The observation covariance matrix R includes
two errors: instrument errors and transport model errors. In
this matrix R, we only assume uncorrelated errors, meaning
we only have errors along the diagonal. This can be assumed
since observation error is in general easily quantifiable by
careful calibration of instruments.

(b) Computation of an optimized CO2 fire prior

In this section, we describe the computation of our opti-
mized prior fire emission (FIREMo), which we use to ob-
serve the impact of CO fire emissions in posterior CO2 bio-
spheric fluxes. The steps of FIREMo calculation are shown
in Fig. 1. For each pixel (3◦× 2◦ resolution) of CO poste-
rior fire emissions, we applied a vegetation fraction based on
the dry matter product (DM) of GFED4.1s. We obtained fire
emissions for each monthly vegetation type (savanna, boreal
forests, peat, temperate forests, deforestation, and agriculture
waste). Figure S3 shows GFED DM vegetation type for each
year over land, where each pixel represents one or more veg-
etation types.

We first calculated the emission ratios ER(CO/CO2), which
allowed us to convert CO fire emissions to CO2 fire emis-
sions. The emission ratios are computed using GFED emis-
sion factor for each vegetation type (annotated i in the Eq. 1).
Following the equation of Andreae and Merlet (2001):

ER(CO/CO2)i =
EFCOi

EFCO2i

·
MCO2

MCO
, (1)

with MCO = 28 g mol−1 and MCO2 = 44 g mol−1 the molec-
ular weights of CO and CO2; EF represents the emission fac-
tors for each vegetation type described in Table 2. Emission
factors allow us to estimate trace gas emissions from carbon
losses during fires (Andreae and Merlet, 2001). For better
comparison we applied the same emission factors used by
the OCOCMS product (based on Andreae and Merlet, 2001,
and Akagi et al., 2011) and not the more recent emission fac-
tors provided by Andreae (2019).
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Figure 1. Flowchart of the FIREMo calculation.

Table 2. Emission factors (in grams per kilogram of dry matter burned) for CO and CO2, and emission ratios ER(CO/CO2) available from
GFED4.1s by vegetation types based on van der Werf et al. (2017).

Savanna Boreal Temperate Deforestation Peat Agriculture
forests forests waste

EFCO 63 127 88 93 210 102
EFCO2 1686 1489 1647 1643 1703 1585
ER(CO/CO2) 0.059 0.134 0.084 0.089 0.194 0.101

We then aggregated the 0.25◦× 0.25◦ vegetation fraction
partitioning of GFED to create the vegetation fraction prod-
uct at a 3◦× 2◦ grid (see Fig. 1). We applied this aggregated
fraction to the posterior simulated CO fires, which parti-
tioned the posterior CO fires by vegetation types. Finally, the
emission ratio for each vegetation type was divided into the
posterior CO fire partitioned for each vegetation type (Basu
et al., 2014). This results in monthly CO2 emission per veg-
etation type at a 3◦× 2◦ resolution. Finally, we sum up these
emissions across all surface types and also include CO2 bio-
fuel emissions (see Table 3) in order to get monthly total op-
timized prior CO2 biomass burning emissions that we called
“FIREMo” (see Fig. 1). We used FIREMo as fire prior emis-
sions in CO2 inversions along with a rebalanced respiration
and NEE (in balance with fire estimate), using the parame-
terization described in “(c) CO2 parameterizations”.

(c) CO2 parameterizations

CO2 emissions are separated into four categories: anthro-
pogenic sources, ocean fluxes, terrestrial biosphere fluxes
(meaning the sum of the photosynthesis and respiration), and
fires.

The anthropogenic emissions are taken from the Open-
source Data Inventory for Anthropogenic CO2 2018
(ODIAC2018; Oda and Maksyutov, 2011). A diurnal cycle is
imposed by the Temporal Improvements for Modeling Emis-
sions by Scaling (TIMES) product with weekly scaling as
suggested by Nassar et al. (2013). Fossil fuel emissions are
not optimized in the CO2 inversions, as is typical of global
tracer transport inversions (e.g., Peylin et al., 2013; Crowell
et al., 2019). Ocean fluxes are taken from Takahashi et al.
(2009). They are assumed to have an uncertainty variance of
50 %. Both biospheric and oceanic emissions are optimized
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Table 3. Global total fossil fuel emissions, fire from GFED3 and
GFED4.1s, FIRE (fire+ biofuel), biofuel emissions, and AGR from
NOAA in Pg C yr−1.

2015 2016 2017 2018

Biofuel 0.479 0.476 0.486 0.486
Fossil fuel 9.89 9.91 10.07 10.28
GFED3 2.03 1.63 1.97 1.97
GFED4 2.09 1.73 1.78 1.69
FIRE3 2.51 2.11 2.46 2.46
FIRE4 2.57 2.21 2.27 2.18
FIREMo 1.82 1.47 1.58 1.56
NEECMS −1.93 −1.71 −1.58 −1.55
NEEre3 −3.42 −3.41 −5.40 −5.10
NEEre4 −3.40 −3.50 −5.11 −4.73
NEEreMo −2.43 −2.51 −4.25 −3.90

AGRCMS 7.87 7.71 8.35 8.59
AGR3 6.38 6.01 4.53 5.04
AGR4 6.46 6.02 4.63 5.13
AGRMo 6.68 6.27 4.8 5.34

AGRNOAA 6.3 6.06 4.54 5.05

in the CO2 inversions. The uncertainties in the prior fluxes
are derived from different climatological fluxes with expo-
nential spatiotemporal correlation assumed. For the oceanic
component, the horizontal correlation is 1000 km and the
timescales is 3 weeks, while for the terrestrial component,
the length and timescale are 250 km and 1 week. These un-
certainties are applied similarly to all experiments.

Terrestrial biosphere fluxes and fire emissions are difficult
to disentangle from CO2 data alone, and some inverse mod-
eling studies (e.g., Crowell et al., 2019) choose instead to
report the net land fluxes. Likewise, some global land flux es-
timates such as the GEOS-Carb CASA-GFED3 project (Ott,
2020) use fire estimates with ecosystem respiration to revise
the terrestrial biosphere flux estimates. We take a similar (but
not identical) approach, using emissions of fire and respira-
tion to estimate the terrestrial biosphere flux. We start with
the gross primary production and respiration estimates from
the CASA-GFED3 3-hourly 0.5◦× 0.625◦ resolution (Ott,
2020). We then modify the net flux in concert with each fire
emission estimated as follows.

Net ecosystem exchange (NEE) in the CASA-GFED3
product is expressed as the sum of heterotrophic respira-
tion (Rh) and gross ecosystem exchange (GEE):

NEE3= Rh3+GEE3. (2)

We modified the respiration from CASA-GFED3 (Rh3, res-
piration linked to FIRE3) to create respiration estimates
for GFED4.1s (Rh4, respiration linked to FIRE4) and
FIREMo (RhMo, respiration in balance with the updated
CO2 fire estimate FIREMo), so that estimated respiration in-

creases (decreases) in the places where each fire estimate is
smaller (larger) than FIRE3 (GFED3):

Rhx = Rh3+max(FIRE3−FIREx,0), (3)

where x is either “4” or “Mo”. This equation means that the
difference between FIRE3 and FIREx is cut off at 0 when the
difference is negative. With this equation we only consider
the positive difference (when we have lower FIREx emis-
sions than FIRE3). The resulting net ecosystem exchange,
i.e., NEE4 or NEEMo, is then computed using Eq. (2), with
GEE3 used for both NEE4 or NEEMo equations. We then ap-
ply a simple rebalancing scheme to match the yearly NOAA
global mean growth rate (AGRNOAA) for 2015–2018 (see Ta-
ble 3), since

AGR= NEE+fire+ fossil+ biofuel+ ocean, (4)

where X represents the global total annual flux for cate-
gory X. We use ODIACv2018 (with 2018 repeated for 2019)
to compute the global fossil fuel totals (values in the Table 3),
biofuel from the CASA land biosphere model (van der Werf
et al., 2004), and a fixed annual value of −2.6 Pg C yr−1 for
the oceans for simplicity, and we use FIRE from each source
described above.

Any mismatch between the AGR derived from our prior
flux estimates (AGRx) and AGRNOAA is assumed to be due to
an incorrect estimate of global NEE. We adjust NEE at each
grid point with a simple scaling on global total respiration
(i.e., Rhx) and GEE:

AGRNOAA−AGRx = (1+ k)Rhx+ (1− k)GEE, (5)

where x is either 3, 4, or Mo, depending on whether we
use FIRE3 (GFED3), FIRE4 (GFED4.1s), or FIREMo. This
equation is easily solved for k using each annual global to-
tal, and the resulting corrections are applied to each 3-hourly
gridded value of GEE and respiration for each choice of fire
emissions. In this way, the a priori global CO2 emissions are
ensured to match the annual global growth rate as measured
by NOAA regardless of the fire emissions assumed, as well
as a spatial pattern and seasonality that aligns with bottom-up
models’ GEE and Rh estimates as closely as possible.

We run the CO2 inversions with the rebalanced terrestrial
biosphere net flux NEErex corresponding to either FIRE3,
FIRE4, or FIREMo priors. In order to assess the impacts
of the rebalancing procedure, we perform a fourth experi-
ment that assumes the GEOS-Carb CASA-GFED3 NEE as
the prior biosphere flux with GFED3 fires, and the results are
labeled in the following as OCOCMS. All CO2 FIRE pri-
ors include both biomass and biofuel burning. The details of
each of the four priors and the experimental configurations
are detailed in Table 4.

In this study, several inversions were performed with the
TM5–4D-Var inversion framework. MOPITT v8 L2 CO data
were assimilated to constrain fire emissions of CO. Sepa-
rately, OCO-2 v9 XCO2 and in situ CO2 are used to constrain
net fluxes of CO2 (see Fig. 2).
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Table 4. Experimental configurations.

OCOCMS OCO3re OCO4re OCOMOre

ODIAC fossil X X X X
FIRE3 (GFED3 fires) X X
FIRE4 (GFED4.1s fires) X
FIREMo (MOPITT fires) X
Takahashi ocean flux X X X X
Annual total matches AGRNOAA X X X

Figure 2. Flowchart of the six different CO2 inversions performed.

We optimized CO biomass burning emissions and CO2
biospheric and oceanic emissions on a weekly basis.

3 Results

In Sect. 3.1, we examine the impacts of assimilating MO-
PITT v8 XCO observations on inferred fire CO emissions
after vegetation partition and the comparison with the prior
GFED4.1s CO emissions categorized by vegetation type.

In Sect. 3.2, we focus on the CO2 inversions. As fire emis-
sions are not optimized in CO2 inversions, we examine how

posterior NEE varies according to observation constraint and
the imposed fire fluxes. We first compare (in Sect. 3.2.1) the
variability and magnitude between the fire and biospheric
priors used in the CO2 inversions over the globe and zonal
bands. Comparisons are also done over the same regions
as in Crowell et al. (2019), which are TransCom (Gurney
et al., 2002) regions that are further subdivided at the Equa-
tor (which we call OCO-2 MIP regions, where MIP stands
for Model Intercomparison Project). The regions are defined
in Fig. 3 and are composed of 16 land regions and 11 ocean
regions. We focus on regions over land, as we are mostly
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Figure 3. OCO-2 MIP (Model Intercomparison Project) regions for which prior and posterior gridded fluxes are aggregated for comparison.

interested in the interplay between assumed fire emissions
and inferred NEE. We then investigate the covariation of im-
posed CO2 fire emissions and optimized NEE with OCO-2
data and in situ data (Sect. 3.2.2). Finally, posterior simu-
lated CO2 mixing ratios are validated against TCCON data
over the globe in Sect. 3.2.3.

3.1 Fire CO emissions partitioned by vegetation type:
MOPITT optimized emissions versus GFED4.1s
emissions

Figure 4 shows the annual CO posterior and prior fire emis-
sions split by vegetation combustion across the globe and by
OCO-2 MIP regions. Overall, it can be seen that, depending
on the region, the assimilation of MOPITT data yields less or
more CO emissions compared to the prior GFED4.1s.

For North America Temperate, posterior emissions remain
close to the prior estimates, suggesting that the inferred emis-
sions are consistent with GFED4.1s. Comparable results are
also observed for Temperate North Africa. However, this re-
gion is known to have a lot of Saharan dust transported across
the Atlantic Ocean and towards Europe most of the year,
which could explain the posterior emissions being close to
the prior as those MOPITT soundings have largely been re-
moved by prescreeners. Northern Tropical Africa is not only
affected by dust, but it is also largely affected by clouds dur-
ing the wet season of the African monsoon (from May to
August), which could lead to errors in retrievals that pass
the prescreeners. The combination of clouds and dust could
explain the MOPITT posterior fires having lower emissions

than the prior GFED4.1s estimate. But further investigation
into Northern Tropical Africa is needed. Even though the
prior is higher than the posterior for Tropical Africa, in op-
position to the previous multi-species study of Zheng et al.
(2018a), the posterior emissions better fit MOPITT mea-
surement than the prior (Fig. S4). Tropical South America
(including Northern Tropical South America and Southern
Tropical South America) is also known to have cloud cov-
erage limiting satellite observations. We, however, observe
similar emissions between the prior and the posterior for the
northern region, with slightly higher emissions for MOPITT.
For the southern region, differences between the prior and
the posterior are large. The cloud coverage might explain this
behavior, but further investigation is needed for these two re-
gions.

The discrepancies observed for Eurasia Temperate be-
tween MOPITT and GFED4.1s could be that the vegetation
type is not well represented for these regions. As mentioned
in Pechony et al. (2013), agriculture and savanna vegetation
types might not be the dominant burning vegetation type over
North Africa and the Middle East, as these regions have seen
an increase in croplands, controlled by human activities, and
therefore rarely burn. However, Kazakhstan is a region of
temperate forest often dominated by fires (Venevsky et al.,
2019), a characteristic that is shared between the MOPITT
constrained fire emissions and GFED4.1s.

We can also observe that over Northern Tropical Asia,
MOPITT fire emissions are higher than GFED4.1s (see
Figs. 4 and S6). This is observed for all years, where MO-
PITT emissions are almost 5 Tg CO yr−1 (2 Tg CO yr−1) for
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Figure 4. Annual CO fire emissions by vegetation type over the OCO-2 MIP regions between fire priors (hatch bars) and fire posterior
from 2015 through 2018. Vegetation types are representing by colors: agriculture in gray, deforestation in yellow, savanna in dark red,
temperate forest in blue, peatland in red, and boreal forests in green. Emissions are annually in Tg CO yr−1.

savanna (for the other vegetation types), which is higher than
from GFED4.1s. As mentioned in Pétron et al. (2002) and
Arellano et al. (2004), CO emissions in Northern Tropical
Asia are significantly underestimated in current inventories.
Previous studies have shown that the parameterization of peat
(surface area and layer thickness) resulted in significant un-
certainties in emission inventories. This is especially true for
Indonesia (Lohberger et al., 2017; Hooijer and Vernimmen,
2013), where combustion of peat can produce a significant

amount of carbon (Nechita-Banda et al., 2018). Our poste-
rior fire emissions are lower than the prior fire emissions
for Southern Tropical Asia, in contradiction to what Nechita-
Banda et al. (2018) observed. However, Nechita-Banda et al.
(2018) assimilated MOPITT and NOAA observations and
used GFAS as a prior for fire emissions. Also, their inver-
sion setup was different to what we used. Additionally, no
evaluation against independent data have been performed in
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their study, so there is no reason to believe their results are
more trustworthy than ours.

Moreover, our posterior can capture the seasonality of peat
fires over Indonesia in comparison to GFED4.1s. Figure S5
shows for Southern Tropical Asia (mainly visible in 2015
due to the large emissions) that GFED4.1s have a fire peak
earlier than MOPITT. van der Laan-Luijkx et al. (2015) and
Nechita-Banda et al. (2018) hypothesized that GFED4.1s
might not capture the timing of emissions over the area with
peat fires due to the use of the burned area, which may be
more sensitive to the initial stages of the fire than to the con-
tinued burning.

3.2 OCO-2 and in situ CO2 inversions with different fire
and NEE priors

We performed inversions with different CO2 fire and NEE
priors assimilating: (i) OCO-2 XCO2 retrievals and (ii) CO2
in situ data. See Fig. 2 for details of the eight CO2 inversions.

To investigate the uncertainty in inferred CO2 emissions
arising from the selection of fires, we perform CO2 inver-
sions with three different global gridded fire estimates. The
first one is taken from the GEOS-Carb CASA-GFED3 prod-
uct (Ott, 2020), which we label “FIRE3”; for the second
we use GFED4.1s, denoted “FIRE4”. The third set, denoted
“FIREMo”, is described in “(b) Computation of an opti-
mized CO2 fire prior”. The methodological differences be-
tween FIRE3 and FIRE4 are described in Appendix A.

3.2.1 Prior NEE and fires CO2 fluxes

Figure 5 shows annual CO2 emissions for the prior esti-
mates at a global scale and by latitude bands from 2015
through 2018. The prior categories shown are fire, NEE,
and net fluxes for prior4 (FIRE4, NEEre4), prior3 (FIRE3,
NEEre3), priorMO (FIREMo, NEEreMo), and priorCMS
(FIRE3, GEOS-Carb). At the global scale, the three non-
CMS priors (prior3, prior4, and priorMO) give the same net
sink of carbon for the whole period (matching the AGRNOAA
with the same assumed fossil and ocean fluxes), increasing
from 2015 through 2018. The priorCMS gives net sources
of carbon increasing in time. Global fire emissions and net
carbon fluxes, of the non-CMS priors, are within the spread
of estimation of the Global Carbon Budget estimated by
Le Quéré et al. (2018) and Bastos et al. (2018). The de-
crease (increase) in NEE sinks (net sources) for priorCMS
during the period of study is driven by the fact that the prod-
uct imposes a long-term balance between fire and NEE and
is not constrained to match the measured growth rate of CO2
in the atmosphere. The discrepancy shows up particularly in
the Northern Hemisphere extratropics (NH Ext) and South-
ern Hemisphere extratropics (SH Ext), where sinks of prior-
CMS are generally smaller than the others.

We can observe that prior4 and priorMO have deeper
Northern Hemisphere sinks than prior3 (particularly ob-

served for Europe and northern Asia, Figs. 5 and 6), which
is balanced by stronger net sources over the tropics (coming
mainly from Southern Tropical Africa and Southern Tropi-
cal Asia respectively, Fig. 6). The scaling of GFED3 GEE
and respiration to match the global AGR yields deeper bio-
genic sinks over the tropics than with all the other priors. We
can also observe for Southern Tropical Africa that FIRE4 has
larger fires than FIREMo.

The global fire emissions indicate that FIREMo yields
fewer emissions compared to all other priors – a difference
coming from tropical regions. These lower fire emissions es-
timated by FIREMo in the tropics come mainly from Trop-
ical Australia (with values in 2015 of ∼ 0.05 Pg C yr−1),
Tropical Africa (∼ 0.35 Pg C yr−1) and Southern Tropical
South America (∼ 0.1 Pg C yr−1). But larger fire emissions
are observed with FIREMo in Southern and Northern Trop-
ical Asia compared to FIRE4. The larger emissions with
FIREMo compared to FIRE4 over Tropical Asia come
mainly from savanna (the main vegetation type in this region;
see Fig. S7).

As already observed with the CO emissions (Fig. S5) and
discussed in van der Laan-Luijkx et al. (2015) and Nechita-
Banda et al. (2018), the seasonality of fires over Tropical
Asia seems to be better captured with MOPITT than with the
CO emission inventories for peatlands. However, this is not
only true for peat but also for other vegetation types and can
also be observed for CO2 emissions. For savanna, agricul-
ture, and peatlands, FIREMo has a peak in fire seasonality af-
ter the peaks observed with both FIRE3 and FIRE4 (Fig. S8).
This is particularly true for the 2015 El Niño fires but less
for the fires that occurred in 2017 and 2018. In this period,
FIREMo does not observe as much fire emissions as FIRE3
and FIRE4 with a similar seasonality. The large difference in
seasonality for 2015 could be particularly marked due to the
large and intense fires of the El Niño event burning larger re-
gions and releasing more smoke. However, it is important
to acknowledge the existence of data gaps due to clouds
and smoke in both MODIS burned-area products (used in
GFED3 and GFED4.1s inventories) and probably MOPITT
retrievals. Further investigations are therefore needed for this
region to make more conclusive remarks.

3.2.2 Posterior NEE and fire CO2 fluxes

We assimilated OCO-2 and in situ data separately in order
to assess the impact of these data in conjunction with differ-
ent fire emissions and corresponding land flux priors. In all
inversions, only NEE and ocean fluxes have been optimized.

(a) Global and latitudinal flux

Figure 7 shows global and latitudinal annual net fluxes, as
well as FIRE and NEE fluxes for both OCO-2 and in situ (IS)
inversions. We can see that, globally, net fluxes for OCO-2
posterior emissions across the different inversions are consis-
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Figure 5. Annual prior CO2 emissions (Pg C yr−1), at a global scale and by latitude bands, used later in top-down inversions. Annual net
flux (lines), NEE (bars with hatches), and FIRE (bars with darker colors) prior emissions are shown from 2015 through 2018 (left to right)
between prior4 (blue), prior3 (green), priorMO (red), and priorCMS (black).

tent. The sinks seem to adjust the different fire contributions.
This is also observed for the IS inversions.

The range of net flux observed with all OCO-2 inversions
is consistent with other studies (Palmer et al., 2019; Crowell
et al., 2019; Peiro et al., 2022). Global sinks are larger with
IS inversions than with OCO-2 ones. These sinks observed
with IS inversions are driven by larger sinks in the tropics
(Fig. 7). OCOCMS and ISCMS posterior emissions seem to
have slightly weaker sinks than the other posteriors. The im-
posed AGR seems to then have an impact at latitudinal scales.

The Northern Hemisphere extratropics (NH Ext) poste-
rior fluxes are consistent across the different inversions for
both observation constraints, which is not surprising given
the good coverage of the in situ observations in this region.
The consistency across the inversions for the northern lati-
tude bands is also observed in the simulation study of Philip
et al. (2019), where they used different NEE priors to ob-
serve the impact on the OCO-2 posteriors. For OCO-2 inver-
sions, we can see small variations from year to year (going

to −2.5 Pg C yr−1 in 2015 through −2.75 Pg C yr−1 in 2016)
except for 2018 where the net sink drops to −2 Pg C yr−1.

SH Ext shows similar fluxes across the inversions for each
data constraint. However, the 2016 sink is larger for the
OCO-2 fluxes (between −0.4 and −0.6 Pg C yr−1) than the
in situ fluxes (between −0.2 and 0.1 Pg C yr−1), balanced
with stronger sources over the tropics. This result suggests
a transport connection between the tropics and SH Ext fluxes
with the OCO-2 inversions, where land coverage is limited
and hence retrievals are sparser than in the other regions. On
the other hand, this does not seem to be the case in the in situ
results, but we know that there are a few in situ sites present
in the SH Ext, resulting in a limited constrain on emissions
as well.

For the tropics, we can again observe a consistency in
OCO-2 across the inversions. The intense fires and CO2
sources related to the 2015 El Niño–Southern Oscillation
over the tropics and mainly Indonesia might not be seen with
in situ data due to their weak coverage in these regions. This
could then explain the larger sinks with in situ observations.
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Figure 6. Same as Fig. 5 but for all OCO-2 MIP regions (from left to right, top to bottom): North America, Northern Tropical South America,
Southern Tropical South America, South America Temperate, Temperate North Africa, Northern Tropical Africa, Southern Tropical Africa,
Temperate South Africa, North Asia, Northern Tropical Asia, Southern Tropical Asia, Tropical Australia, Temperate Australia, and Europe.
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Figure 7. Global and latitudinal CO2 posterior emissions for OCO-2 inversions as OCO4re (in blue), OCO3re (in green), OCOCMS (in
black), and OCOMOre (in red) and in situ inversions (gray background). Annual fluxes are displayed from 2015 (a, c) through 2018 (b, d).
FIRE emissions are the darker-colored bars, NEE fluxes are the hatched bars, and lines depict the net land fluxes.

Even though we observe a consistency across the inversions,
OCOMOre and ISMOre have a smaller sink in 2015 (with
sources for OCO-2 inversion) compared to the other inver-
sions in order to balance the 0.5 Pg C yr−1 smaller fires that
FIREMo gives. This balance was also observed for the priors
(see Fig. 6). For the tropical regions, ISMOre and IS4re net
fluxes look similar. Similarly, the inversions constrained with
FIRE3 look alike, such as IS3re and ISCMS. This suggests
the sensitivity of inversions to the fire prior in these regions.

(b) Regional fluxes

When we compare the posterior regional fluxes, we ob-
serve consistent differences in posterior NEE between IS and
OCO-2 inversions. Some of these differences are caused by
differences in data coverage and cloud fraction. If we look
the northern extratropical regions, we can see that the IS in-
versions have deeper net sinks than OCO-2 (see Fig. 7). The
in situ data place almost all of the NH Ext sink over north-
ern Asia but place sources of carbon over North America
for 2015 (Fig. 8). In situ data do not have a homogenized
coverage over the NH Ext band: large number of observa-
tions are situated over North America Temperate and Europe
but are very sparse over the boreal regions and Eurasia Tem-
perate (see Fig. S1). The large differences in net sinks then

occur over the regions where data are sparse (North Asia re-
gions).

Focusing on the tropical regions, OCO-2 fluxes are consis-
tent for each inversions. For Northern Tropical South Amer-
ica (Fig. 8), OCO-2 fluxes have around 0.5 Pg C yr−1 efflux
during the El Niño period (2015–2016) and neutral emissions
during the 2017–2018 period. IS fluxes are also strong dur-
ing the El Niño period but remain moderately high in 2017.
As observed in the Fig. 1 of the paper of Peiro et al. (2022),
which used the same set of IS data, the number of IS data
does not decrease significantly, meaning that changing ob-
servational coverage is not the cause of this behavior. The
number of in situ observations is particularly low in the trop-
ics compared to the extratropical Southern Hemisphere and
Northern Hemisphere (Fig. 2 of Peiro et al., 2022). One pos-
sible explanation is the lag between flux in the tropics and
observation coverage by the in situ network, which could be
aliasing flux signals in time, though this hypothesis is diffi-
cult to test.

Very large differences between the IS and OCO-2 inver-
sions appears for Southern Tropical South America (Fig. 8).
The OCO-2 posterior emissions seem to be closer to the pri-
ors than the IS posterior emissions are. One explanation for
that has been mentioned previously in Peiro et al. (2022).
The cloud coverage above the moist Amazon decreases the
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Figure 8. Same as Fig. 7 but for all OCO-2 MIP regions (from left to right, top to bottom): North America, Northern Tropical South America,
Southern Tropical South America, South America Temperate, Temperate North Africa, Northern Tropical Africa, Southern Tropical Africa,
Temperate South Africa, North Asia, Northern Tropical Asia, Southern Tropical Asia, Tropical Australia, Temperate Australia, and Europe.
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amount of OCO-2 retrievals, while IS data are located more
inside the moist Amazon.

For Northern Tropical Africa, net fluxes derived with
OCO-2 are strong, with large sources of carbon between
0.5 and 1.5 Pg C yr−1. We can see also some fire-dependent
differences: posterior net sinks derived with FIREMo and
FIRE4 emissions decrease for 2017; however, the poste-
rior net sinks derived with FIRE3 do not. This difference
in 2017 is particularly observed with OCO-2. IS inversions,
on the contrary, give strong sinks in this region, with the
strongest one for all tropical regions. Examining Fig. 6, we
note the known prior dependency of the IS posterior emis-
sions. Northern Tropical Africa is known to have very few
IS data compared to the other tropical regions (Fig. S1).

Northern Tropical Asia (Fig. 8) shows agreements be-
tween OCO-2 and IS inversions but shows significant dif-
ferences in 2016. The sparse coverage of in situ data over
this region could explain the difference with OCO-2 but not
specifically for 2016 alone, and hence further investigations
are needed for this region.

It is also interesting to see the balance between the regions
in the Northern Hemisphere and Southern Hemisphere. For
instance, it seems that the sink reduction for 2018 (starting
in 2017) observed with both IS and OCO-2 inversions over
North Asia is balanced by net sinks in Tropical Asia (north
and south). The deeper sinks observed with OCO-2 in Eu-
rope are also anti-correlated with the net sources observed in
Northern Tropical Africa (Fig. 8). Reuter et al. (2014) found,
using GOSAT data, a similar mass balance between Europe
and northern Africa, with an uptake of around 1 Pg C yr−1 in
Europe, which was 0.5 Pg C yr−1 higher than expected from
in situ inversions. However, as mentioned in Reuter et al.
(2017), there is a lack of carbon budget information over Eu-
rope, and there is hence no reliable benchmark for compar-
ison. The balance observed here between IS and OCO-2 in-
versions was also observed in the study of Peiro et al. (2022).
However, for Europe, we can see that the variability in our in-
versions is different than the ones used in Peiro et al. (2022).
A major difference between this study and Peiro et al. (2022)
is that the rebalanced priors and posterior fluxes provide the
largest sink in 2017, as opposed to 2016 (see Figs. 6 and 8).
This is likely a consequence of the larger fires and the subse-
quent rebalanced respiration that was derived in our study.

For all data constraints, we can observe a smaller sinks
in the tropics during El Niño, while larger net sinks are ob-
served in the NH Ext. In opposition to the other southern
tropical regions, the El Niño–Southern Oscillation (ENSO)
signal appears for Southern Tropical South America in 2016
instead of 2015 with OCO-2 inversions. This region follows
the inter-seasonal variations of the northern tropical regions,
which also see highest emissions in 2016. Moreover, larger
sinks are observed with OCO-2 in North America and Eu-
rope, while larger sinks are observed with IS inversions in
Asia.

Finally, the net fluxes using FIREMo look like those us-
ing FIRE4 for the southern tropical regions, while net fluxes
using FIRE3 look alike, suggesting the sensitivity in these re-
gions to the fire prior not only for IS data but also for OCO-2
data constraint. Across the different fire emissions, we ob-
serve a split: ISMOre and IS4re inversions provide similar
results (both based on either optimized GFED4.1s and de-
fault GFED4.1s emissions), while the same is true for IS3re
and ISCMS inversions (both based on GFED3 emissions).
The same is true for OCO-2 inversions as well, where OCO-
MOre and OCO4re have similar results while OCO3re and
OCOCMS are similar. That means fires have a larger im-
pact on the posterior solution than the rebalancing of prior
NEE to match the global AGR. We can observe that for al-
most all regions, the sinks with NEE4re and NEEreMo are
deeper than with NEE3re and Geos-Carb CMS but are bal-
anced with larger sources in other regions, mainly over the
tropics (Fig. 7).

For Southern Tropical Asia, a smaller sink was de-
rived with OCOMOre and OCO4re than with OCO3re and
OCOCMS, to balance the smaller fires derived with FIREMo
and FIRE4. This is not observed, however, for the IS inver-
sions, which just show NEE sources for both ISMOre and
IS4re. The impact of the fires over this region seems to have
a strong impact with both data constraints. If we compare
the posteriors with the priors, we can in fact see that the IS
inversions tend to be closer to the priors than the OCO-2 in-
versions. This suggest that for this region as well, the few
number of IS data might explain this result, and the larger
number of OCO-2 data seem to better constrain the posterior
fluxes.

For Southern Tropical Africa, we can see the large bal-
ance between the fires and the NEE emissions (indirectly
the balance between the fires and the respiration), which are
anti-correlated in their variability. Additionally, OCO-2 in-
versions derived with FIREMo and FIRE4 emissions (OCO-
MOre and OCO4re) have larger sources than inversions de-
rived with FIRE3 (OCOCMS and OCO3re). With the IS in-
versions, there is large variation across the inversions where
IS4re and ISMOre both constrain a source of carbon for the
whole period, while ISCMS and IS3re have smaller source
of carbon and even a sink in 2016 and 2017. These differ-
ences between inversions derived with FIREMo, FIRE4, or
FIRE3 seem to suggest that fires (and thus NEE rebalanced
with fires) are especially important when observational cov-
erage is limited.

3.2.3 Evaluation of the simulations

3.2.4 (a) Evaluation of the inversions to fit the OCO-2
retrievals and IS data

The global distributions of OCO-2 retrievals over the 2015–
2018 period (Fig. 9a) show latitudinal gradients from north
to south, with higher XCO2 concentrations in the tropics and
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Figure 9. Spatial distributions of the CO2 total column (XCO2). Mean distribution of OCO-2 retrieval (a) and in situ data (b) over the
2015–2018 period. Each simulation are displayed by row (priorCMS, c–f; prior3, g–j; prior4, k–n; and priorMO, o–r). Annual difference
between the prior of each simulation minus OCO-2 data (in panels c, g, k, and o) and minus IS (in panels e, i, m, and q). Annual difference
between the posterior simulation of each simulation minus OCO-2 (in panels d, h, l, and p) and minus IS (in panels f, j, n, and r). Results
are in parts per million (ppm).

the Northern Hemisphere. High concentrations over land (no
higher than 409 ppm) are observed over East Asia, northwest
Africa, and Northern Tropical South America. Figure 9b
shows the global distributions of IS data with a higher num-
ber of observations in the Northern Hemisphere than the trop-
ics or the Southern Hemisphere. High XCO2 concentrations
(higher than 409 ppm) can be observed for North America
Temperate and near the coast of East Asia. The regional
mean differences between the prior or posterior with either
the OCO-2 retrievals or IS data are summarized in Table S1
in the Supplement.

The priors have larger differences with the OCO-2 re-
trievals than the posteriors. The prior3 (using both FIRE3 and
NEEre3; see Fig. 2) better fits the OCO-2 measurements than
the other priors for the Southern Hemisphere and the trop-

ics (Fig. 9 and Table S1). The priorCMS, however, does not
fit the OCO-2 measurements with high bias between 3 and
4 ppm. The large difference is also observed with the IS mea-
surements. For the IS inversions, the differences between pri-
ors and posteriors are very similar, suggesting that the inver-
sion does not change much from the prior. The small num-
ber of observations available in these regions could explain
this result. While the optimized concentrations fit the OCO-2
retrievals quite well compared to the priors, suggesting the
inversion’s ability to fit the data. Among the different simu-
lations, in particular, the posterior concentrations vary little
in comparison to OCO-2 and IS data.
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Figure 10. Comparison between TCCON data and the prior (left column), IS simulations (center column), and the OCO-2 simulations (right
column). Top panels show experiments biases, and bottom panels show standard deviation compared to TCCON sites. Biases and standard
deviation are expressed in ppm CO2. The left column from left to right shows the priors priorCMS, prior3, prior4, and priorMO. The center
column from left to right shows the simulations ISCMS, IS3re, IS4re, and ISMOre. The right column from left to right shows the simulations
OCOCMS, OCO3re, OCO4re, and OCOMOre.

3.2.5 (b) Validation against TCCON data

As mentioned previously, most of the differences observed
between in situ and OCO-2 inversions could be due to their
respective coverage. In situ measurements have fewer data
over the tropics and Southern Hemisphere than OCO-2 re-
trievals. However, besides the spatial coverage, satellite re-
trievals might be affected, particularly over the tropics, by
the consistently cloudy region known as the Intertropical
Convergence Zone (ITCZ) as well as aerosols from biomass
burning or dust (such as over and near the Sahara). It is then
important to validate the OCO-2 and in situ posterior simu-
lated mixing ratios against independent data. In this section,
in order to explore the accuracy in the posterior fluxes, we
evaluated the posterior fluxes by sampling the resultant con-
centrations for comparison with TCCON measurements. All
posterior mixing ratios have been sampled around TCCON
retrieval locations and times using the appropriate averaging
kernels.

In comparison to TCCON, for the 2015–2018 period, the
CO posterior biases were underestimated by 7 ppb, while the
CO priors were overestimated by 13 ppb (Fig. S9). Even if
the posterior biases are lower than the prior biases, the un-

derestimation observed in Fig. S9 against TCCON could ex-
plain the low fluxes observed of the FIREMo compared to the
other fire estimates over some regions. We can observe an un-
derestimation of the posterior CO mixing ratio of∼−12 ppb
in 2015 at the Ascension Island site, while the a priori CO
mixing ratio has an overestimation of 5 ppb in 2015. How-
ever, the biases at the Darwin TCCON site give −3 ppb for
2015–2016 (−0.5 ppb for 2017–2018) with the posterior and
20 ppb for 2015–2016 (22 ppb for 2017–2018) with the prior.
This gives the impression that our inversion is not getting
the best fluxes for Ascension Island, but we can see that this
is not the case for other tropical locations. Ascension Island
is known to be impacted with Saharan dust, and therefore
the posterior simulated concentration could be biased due to
aerosols.

Figure 10 shows biases between the prior and posterior
simulated mixing ratio (XCO2) of the different CO2 inver-
sions against each TCCON sites. While the priorCMS has
the largest biases with TCCON and standard deviation, the
other priors used (prior3, prior4, and priorMO) have biases
and standard deviation very close each other for most of the
sites. Improvements of biases and standard deviation with
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the prior3 compared to priorCMS, which also use FIRE3
as fire prior, are likely due to the rebalanced respiration that
matches the NOAA growth rate. This rebalanced respiration
and growth rate have also been used for prior4 and priorMO.
While the rebalanced prior mixing ratio is relatively simi-
lar, prior4 and priorMO have lower biases than prior3. Ad-
ditionally, depending on the TCCON site, priorMO biases
are slightly smaller than prior4. It is then not straightforward
to conclude which rebalanced prior is doing better than the
others. The XCO2 posteriors are in better agreement with
TCCON measurements than the priors. Biases observed with
OCOCMS and ISCMS have been greatly reduced by the in-
version, compared to priorCMS, with biases of the same or-
der as compared to the other inversions. For the posterior
simulated mixing ratio with IS data, we can see that all bi-
ases are very similar among the simulations, and it is here
again difficult to conclude which posterior does best. On av-
erage, IS4re seems to do better, but, looking site by site, IS-
MOre provides a better match at some tropical sites than the
other simulations (such as for Ascension Island and Reunion
Island). The same applies for the posterior simulated mix-
ing ratio with OCO-2 data, where there is not one simula-
tion doing better than the others on average. Additionally, all
standard deviations are similar between all inversions, with
a slightly larger standard deviation for the IS inversions than
for the OCO-2 inversions.

We observed in the results section that posterior fluxes
had similarity across the inversions used for each data con-
straints for SH Ext (see Fig. 7), but 2016 is adjusted down-
ward significantly in the OCO-2 fluxes. Evaluation against
the two TCCON sites in the SH Ext shows similarity us-
ing either IS or OCO-2 constraint (1.3 ppm biases) for Wol-
longong, but biases are slightly lower with OCO-2 fluxes
for Lauder (1.6 ppm with OCO-2 fluxes against 1.7 ppm for
IS fluxes). For NH Ext, we observed previously (see Fig. 7
for North America and Europe mainly) a strong sink for
OCO-2 over the period compared to IS inversions, which ob-
served stronger year-to-year variability. The evaluation with
TCCON data at European sites shows smaller biases us-
ing IS data than OCO-2 data for all simulations. For in-
stance, at the Garmisch site, biases are around −0.1 and
−0.34 ppm with IS fluxes and OCO-2 fluxes respectively,
showing a larger underestimation with OCO-2 than IS fluxes.
But for the North American sites, biases are lower with OCO-
2 fluxes than IS fluxes (see the Lamont site for instance in
Fig. 10).

4 Discussion

In this study, we have presented an optimized CO2 fire prior
flux based on the emission ratio between CO2 and CO that
comes from optimized CO fire emissions using MOPITT
CO retrievals. In addition, as fire emissions and plant respi-
ration (terms included in the net fluxes) are difficult to disen-

tangle, we rebalanced the respiration with each fire emission
estimate and with the annual NOAA growth rate. We then ex-
plored a range of NEE emissions based on different fire emis-
sions including a CO2 fire estimate calculated from CO fire
emission information in order to better constrain biospheric
emissions. We focused our study for the period 2015–2018
to observe the impact of the El Niño event in 2015 and the
recovery period that followed.

Globally and for most regions, we find that the inversion
results have a greater dependence on data constraint than on
prior emissions. The variations in posterior flux are much
smaller across different prior mean fluxes (and the different
uncertainties that come from scaling the prior mean flux) as
compared with differences resulting from assimilating OCO-
2 versus in situ data. There are exceptions, most notably in
the northern and southern tropics, where the in situ constraint
is especially limited and the corresponding posterior annual
fluxes vary by as much as 0.5 Pg C, which is a large fraction
of the expected total El Niño signal. This suggests that in situ
constrained flux estimates in the tropics are more sensitive to
the assumed prior flux, of which fires are a significant com-
ponent, and should be assigned the appropriate amount of un-
certainty in accordance with this finding. It also implies that
while residual biases in satellite retrievals remain a key focus
of the top-down inversion community, further work is needed
to improve prior fluxes in tropical regions as well as deploy
more in situ measurements. Current efforts by multiple orga-
nizations should assist in that effort on a short-term basis,
but more investments in long-term monitoring are needed
(Kathryn McKain, personal communication, 2021). OCO-2
inversions are also sensitive to the prior assumption in north-
ern Africa, though to a lesser extent, as well as in Tropical
Asia. Tropical Asia has been particularly well studied in the
past, where Nechita-Banda et al. (2018) and van der Werf
et al. (2017) have shown the underestimation of GFED in-
ventories of peat fires compared to space-based instruments
such as IASI and MOPITT. This reinforces the need for better
measurements and bottom-up estimates of biospheric and fire
fluxes in these tropical regions. Nechita-Banda et al. (2018)
converted their CO fire emissions in CO2 emissions using
emission factors and estimated that a range of 0.35–0.60 Pg C
was emitted in Indonesia and Papua from the 2015 fires.
We calculated our fire CO2 emissions over the same region
and found 0.41, 0.37, and 0.39 Pg C for FIRE3, FIRE4, and
FIREMo respectively. Our fire CO2 estimates are hence in
agreement with those found by Nechita-Banda et al. (2018).
As mentioned previously, we know that GFED4.1s has in-
formation of small fires compared to GFED3 which allow
better accuracy particularly over the tropics where peat fires
are important. However, we can see lower FIRE4 emissions
than FIRE3 for Southern Tropical Asia, similarly to what Shi
et al. (2015) found for the 2002–2012 period. A possible ex-
planation could be that the CASA biogeochemical model of
GFED3 predicts higher biomass densities than with the new
version used in GFED4. Validation against fuel loads mea-
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sured in savanna and grassland fields was found to be higher
with GFED3 than with GFED4.1s (Randerson et al., 2012;
Giglio et al., 2013). In 2015, during the onset of the El Niño
event which caused intense fires over Indonesia, FIREMo
emissions are stronger than with FIRE4 emissions but lower
than with FIRE3 emissions. Fires over peatlands spread more
during the El Niño event due to intense drought conditions
(Nechita-Banda et al., 2018). Consequently, they emit 2 to
4 times more CO than forest fires (Akagi et al., 2011) and
contribute significantly to the exchange between terrestrial
carbon stocks and the atmosphere by decreasing the uptake
of atmospheric CO2 by the biosphere. This is particularly
shown for the IS inversions where IS4re and ISMOre pro-
vide higher net carbon sources compared to the IS inversion
constrained with GFED3 fires. Moreover, FIREMo was able
to catch the seasonality of fires over Southern Tropical Asia
during the El Niño event, compared to the other priors using
GFED inventory. As discussed in Nechita-Banda et al. (2018)
and van der Laan-Luijkx et al. (2015) for equatorial Asia and
Tropical South America, GFED4 does not capture fire sea-
sonality due to the use of burned area, compared to GFAS.
In both the GFED and GFAS method (and similarly for MO-
PITT), the detection of fires underneath clouds and below
the canopy is difficult. But FIREMo, compared to FIRE3
and FIRE4, has the advantage of combining optimized fire
emissions with local observations. It is thus important to use
CO observations to constrain estimates of CO2 fire emissions
and subsequently constrain NEE with OCO-2 and IS obser-
vations. But uncertainty in our emission ratio remains when
converting CO to CO2 emissions in our prior. GFED vege-
tation partition only accounts for six different types of veg-
etation which might not be fine enough to represent all dif-
ferent types of fuels. Additionally, the emission factors, used
in the emission ratio, lack spatial and temporal variability to
account for the full dynamic range of combustion character-
istics. We know, for instance, that African savanna fires can
go from flaming to smoldering, changing the combustion ef-
ficiency (Zheng et al., 2018b) and hence the CO/CO2 emis-
sion ratio. This could explain the differences observed over
some regions of the tropics between FIREMo and the other
prior fire CO2 emissions. The estimation of EF and conse-
quently the emission ratio CO/CO2 cannot be determined ac-
curately in the field and can introduce systematic errors in the
EF(CO2) values that may well exceed 10 %. One challenge
is the separation of the information between small-fire in-
puts of CO2 (and hence their detection) from large biospheric
variability. Other difficulties come from the issue of variable
background concentrations and from smoldering emissions
that are not projected into the smoke plumes (Guyon et al.,
2005; Burling et al., 2011; Yokelson et al., 2013). More work
is required to improve emission ratios and particularly emis-
sion factors over different spatial and temporal scales. A re-
cent study has shown that MODIS products most likely un-
derestimate burned area for Africa (Ramo et al., 2021). The
higher fire posterior emissions estimated in previous studies

using GFAS as a prior compared to GFED4 (Nechita-Banda
et al., 2018) and the results of Ramo et al. (2021) seem to
suggest, for future work, the careful selection of the CO fire
prior for the inversions. Some of our future works will focus
on comparing different CO posterior emissions.

The data used to constrain inversions is very important.
We could see up to 0.4 Pg C yr−1 differences between OCO-
2 and IS inversions in tropical regions. This bring us to the
importance of the data assimilated in the inversions but also
about the priors used in the inversions concerning the differ-
ent sectors (fire and terrestrial emissions).

The difference in partitioning of fluxes in latitude and lon-
gitude for the different data constraints is not a new obser-
vation and fits the findings of the v7 OCO-2 MIP (Crowell
et al., 2019) and previous studies comparing GOSAT and in
situ data (Reuter et al., 2014; Houweling et al., 2015)) as well
as of the v9 OCO-2 MIP, an extension of the v7 OCO-2 MIP
(Peiro et al., 2022). More specifically, the OCO-2 data con-
strain a stronger northern extratropical sink in concert with a
strong tropical source, while the in situ data generally con-
strain a weaker northern sink and neutral tropical flux, or
even a sink. While the northern extratropics are relatively
densely sampled by the in situ network, Schuh et al. (2019)
found a strong sensitivity of flux estimates to model trans-
port, particularly in the vertical and meridional transport of
CO2. Though we utilized only TM5 in these experiments, the
findings here are consistent with those found in their study.

Regarding the question of the importance of the prior and
the question of which prior could do better than the others,
we have seen through the results and the evaluation that no
simulation is better than the other on average. Even if the
biases seem to have been reduced with priorMO for certain
sites (such as Ascension Island for instance), they are in the
same order as the other a priori biases for other site. On av-
erage and overall, the added value of optimizing fire emis-
sions before optimizing NEE is not very apparent. Our re-
sults seem, overall, to be very insensitive to optimized fire
emissions. Philip et al. (2019) performed simulation exper-
iments with different NEE priors and concluded that poste-
rior NEE estimates are insensitive to prior flux values. But
they found large spread among posterior NEE estimates in
regions with limited OCO-2 observations. Our results sug-
gesting that OCO-2 inversions are relatively insensitive to the
prior in most regions are consistent with Philip et al. (2019)
and not only for OCO-2 inversions but also for IS inversions.

A generally accepted (though not documented) assertion
is that a minimal number of data are required to constrain the
global growth rate, and yet we see here that OCO-2 and the
global in situ network do not see the same global annual flux,
even assuming the same transport and prior flux that matches
the AGRNOAA. Part of this discrepancy is certainly due to
the following: (i) most of the in situ measurements assimi-
lated here are taken in the atmospheric boundary layer, while
OCO-2 represents a column density; and (ii) most of the in
situ measurements are in the northern extratropics, whereas
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OCO-2 measurements are globally distributed, but with sea-
sonally varying coverage. Persistent transport biases as well
as satellite retrieval errors likely play a factor in this global
offset, though further investigation is necessary to assess the
relative importance of each.

5 Conclusions

In this study, we have explored the potential of using the
CO/CO2 emission ratio to add CO fire information in CO2
inversions in order to better estimate and constrain CO2 bio-
spheric emissions. Fires have the potential to influence inter-
annual variability and long-term trends in atmospheric CO2
concentrations and particularly alter the seasonal cycle of net
biome production. CO measurements are available with high
precision from space and bring more accuracy in CO fire
emission estimates. Including more accurate fire emissions
in CO2 inversions could improve the estimates of CO2 land
fluxes relative to a CO2 inversion without the added infor-
mation of CO. In this paper, we showed how we added on
a global scale the CO/CO2 emission ratio and its respective
rebalanced respiration with fire and NEE with annual NOAA
growth rate, as well as its value for CO2 inversions.

We performed several CO2 transport inversions assim-
ilating separately OCO-2 data and in situ measurements
from 2015 through 2018. We found that OCO-2 and in situ
net fluxes have a better agreement at the global scale as
observations are dense enough to constrain the fluxes than
at latitudinal and regional scales. Differences in net fluxes
are particularly important over the tropics not only between
OCO-2 and in situ inversions but also between the different
priors used. Discrepancies occurred over Northern Tropical
Africa where OCO-2 inversions derived net sources while in
situ inversions derived sinks. However, over southern tropical
regions, discrepancies appear between the different priors,
with larger net sources derived with the OCO-2 inversion us-
ing the optimized fire emissions (OCOMOre) over Southern
Tropical South America and with IS inversion over South-
ern Tropical Asia. For Tropical Asia, the priors seem to be
more important than the data assimilated. Additionally, over
this region, seasonality from CO2 inversions using MOPITT
fires seems to better represent the large Indonesian fires that
occurred during the 2015 El Niño event.

TCCON evaluation suggested that the prior using FIREMo
(CO2 fire prior emissions computing using the CO/CO2
emission ratio) gives an accuracy in the CO2 mixing ratio
comparable to GFED4 but with slightly larger biases over
the Northern Hemisphere. Biases of the priors with the rebal-
anced respiration are smaller than the CMS prior. Evaluation
against TCCON shows smaller biases for all the rebalanced
posterior simulated mixing ratios in comparison to the CMS
posterior simulated mixing ratio. Additionally, the variability
of all the rebalanced mixing ratios better matches that of TC-
CON. This suggests the importance of the accuracy in fire

priors and the rebalanced of terrestrial emission with fires
for the estimation of CO2 posteriors emissions. However, the
added value of CO fire emissions for NEE optimization is not
significant in terms of bias reduction on average.

We illustrated the potential of using the CO/CO2 emis-
sion ratio and the rebalanced respiration with fire in order to
match the atmospheric growth rate in CO2 inversions. This
was performed for better constraint and accuracy in the CO2
fire prior emissions and biospheric emission estimates. We
found that CO2 fluxes are more robust if the NEE and fire
emissions are rebalanced in order to match the AGRNOAA.
However, a more reliable NEE is obtained with the assim-
ilated data, using either in situ or satellite-based CO2 con-
straints. This opens new avenues for future research for the
development of a joint CO–CO2 inversion framework that
uses multiple streams of data to improve the fire and bio-
sphere emissions. Besides, the multi-species approach em-
ploying CO and CO2 for instance is important for the inter-
pretation of upcoming satellite data such as data from the
upcoming NASA Earth Venture Mission, GeoCarb.

Appendix A: GFED versions descriptions

The first version of GFED was released in 2004. Since then,
several improvements have been incorporated into GFED.
Improvement on the mapping of burned area from active
fire data in GFED2 (Giglio et al., 2006) was no longer
necessary when the MODIS product became available for
GFED3 (Giglio et al., 2010). Burned area particularly af-
fects the spatiotemporal variability of carbon emissions dur-
ing fires. This spatiotemporal impact has been implemented
in GFED with the biogeochemical modeling framework pro-
viding estimation of biomass combustion over different vege-
tation types (Giglio et al., 2013). All GFED versions are then
based on the Carnegie–Ames–Stanford Approach (CASA)
model adjusted to account for fires (see van der Werf et al.,
2004, and van der Werf et al., 2017, for more details). The
most recent versions (GFED4 and GFED4.1s, which in-
cludes the small-fire burned area) modified the burned-area-
to-burned-fraction conversion, which has been shown to in-
crease burned-area and fire carbon emissions by 11 % in
GFED4.1s compared to GFED3 (van der Werf et al., 2017)
at the global scale. Liu et al. (2017b) found that with the
omission of small fires in GFED3, global fire emissions are
underestimated. Accounting for small fires increased global
burned-area and carbon emissions by 35 % (Randerson et al.,
2012) and improved the agreement of spatial distribution be-
tween active fires and burned area over regions with large
fires such as savanna fires and boreal forests. Including
small fires in GFED amplifies emissions over regions where
drought stress and burned area varied considerably from year
to year in response to, for instance, the El Niño–Southern Os-
cillation (ENSO). The GFED4.1s version has encountered
some changes since 2017 because the MODIS burned-area
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Figure A1. Annual differences between FIRE4 and FIRE3 in Pg C yr−1 over the regions of Fig. 3 for (a) 2015, (b) 2016, (c) 2017, and
(d) 2018.

algorithm has been updated from Collection 5 to Collec-
tion 6. Consequently, GFED4s fluxes are no longer based
on the burned-area product directly but on the relationship
between climatological GFED4s emissions between 2003–
2016 and active fire detection and the MODIS FRP product.
The active fire data come from Tropical Rainfall Measuring
Mission (TRMM), the Visible and Infrared Scanner (VIS),
and the Along-Track Scanning Radiometer (ATSR), three
other instruments on board with MODIS. MODIS has a
500 m horizontal resolution.

Figure A1 shows annual differences between FIRE3 and
FIRE4 from 2015 through 2018 over the OCO-2 MIP re-
gions. We note that regional differences are as large as
0.14 Pg C yr−1, or roughly ∼ 10 % of the annual global fire
emissions budget, which has been estimated to be 1.6±
0.7 Pg C yr−1 (Friedlingstein et al., 2020). Additionally, the
size and sign of the differences vary by year and by region.
For instance, FIRE3 generally predicts higher CO2 emissions
over the boreal regions, while FIRE4 (GFED4.1s) largely
predicts more fire emissions from the northern midlatitudes.
This is consistent with differences between the two models;
i.e., GFED4.1s uses a different set of emission factors sep-
arating trace gas emissions and aerosol from boreal forest
to temperate forests (Akagi et al., 2011; van der Werf et al.,
2017). van der Werf et al. (2017) have shown that GFED3
does not capture the different patterns of fire severity be-
tween the boreal regions of North America and Eurasia and
the differences between boreal and temperate forests fires
(which could explain the large difference between FIRE4
and FIRE3 in Fig. A1). In addition, van der Werf et al.
(2017) found that including the small-fire burned area in
GFED4 doubled the burned area in North America Temper-

ate and Europe compared to GFED3. Interestingly, the dif-
ferences in the tropics have a pronounced zonal structure,
where GFED4.1s predicts smaller emissions in South Amer-
ica, Tropical Asia, and North Africa (after 2016) and larger
emissions in Southern Tropical Africa. The addition of the
small-fire burned area included in GFED4.1s has a strong
impact in the Southern Tropical Africa regions where agri-
cultural waste burning and shifting cultivation are important
drivers of fire activity. van der Werf et al. (2017) have shown
that the increase of burned area in these regions was associ-
ated with the small-fire burned area from the last GFED ver-
sion. Small fires linked with deforestation and agricultural
waste are also important over Indonesia; however, deforesta-
tion activity decreased by almost 50 % in 2017 and 2018
thanks to several Indonesian policies in order to prevent for-
est fires and land clearing, with the new law in particular pre-
venting the clearing of forest for oil palm plantations (Global
Forest Watch, 2020). This might explain the decrease in fire
emissions over Southern Tropical Asia in 2017 and 2018
with GFED4.1s, as well as the fact that 2017 and 2018 were
not impacted by the 2015 El Niño event where large fires
burned in Indonesia.
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