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Abstract. Currently, 55 % of the world’s population resides in urban areas and this number is projected to
increase to 70 % by 2050. Urban agglomerations with a population over 10 million, characterized as megacities,
are expected to be more than 100 by 2100. Such large concentrations of population could boost creativity and
economic progress, but also raises several environmental challenges such as air quality degradation. In this
study, we investigate the spatial and temporal variability of urban aerosol state of 81 cities with a population
over 5 million, relying on daily satellite-based aerosol optical depth (AOD) retrievals, derived at fine spatial
resolution (0.1° x 0.1°), over an 18-year period spanning from 2003 to 2020.

According to our results, the lowest long-term mean AOD values worldwide were found in European and
American cities (from 0.08 to 0.20). For almost all African and Asian cities, mean AOD ranged from 0.25 up
to 0.90, but a considerable dust aerosol contribution (up to 70 %) was found for some of them with associated
mean dust optical depth (DOD) values reaching up to 0.4. Mostly Chinese and Indian cities tend to have higher
mean AOD values in the areas surrounding their center, while the opposite was found for most of the cities in
the rest of the world. High intraannual AOD variability was revealed for the eastern American cities, while lower
values were found in Chinese, eastern Indian and the eastern Mediterranean cities. During the study period,
statistically significant negative AOD decadal trends were found for East Asian, European and North American
cities, with the greatest decrease of —0.1 to —0.3 per decade recorded for the Chinese cities, in which the
maximum mean AODs (0.45-0.91) are observed. In most of the US cities, where low mean AOD < 0.17 was
recorded, considerable declining AOD trends were found (—30 % to —50 % per decade). For the rest of Asian,
African and South American cities, statistically significant AOD increase was found, with the greatest values of
40.07 to +0.16 per decade recorded for Indian cities. In Bengaluru (India), it is reported the lowest mean AOD
value (0.2) and the maximum AOD increase (+69 %), which may be partially attributed to the population growth
over the study period. The agreement of the satellite-derived AOD trends against those obtained from ground-
based AERONET measurements was examined. For ground-based stations within the geographical limits of the
contiguous urban area of the examined cities, a 0.93 correlation for the long-term means of AOD was found
and ~ 75 % of the derived trends agreed in sign. It was found that the spatial homogeneity within the examined
satellite domain and the location of the surface station were key factors that determined their agreement.

The present study highlights the vital and essential contribution of spaceborne products to monitor aerosol
burden over megacities of the planet towards fulfilling the United Nations Sustainable Development Goal of
“sustainable cities and communities”, dealing with urban air quality.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Since 2018, about 55 % of the world’s population has been
living in urban areas and the current projections suggest that
this percentage will rise to 60 % by 2030 and to 70 % by
2050 (UN, 2019b). As a consequence, the population growth
will impose difficulties in implementing the United Nations
(UN) Agenda for Sustainable Development Goals (SDGs),
including SDG 11 related to “making cities and human set-
tlements inclusive, safe, resilient and sustainable”. Megaci-
ties are defined as the cities with more than 10 million in-
habitants. According to UN (2018a), there are 33 megacities
worldwide and this number is expected to increase to 43 in
2030. Despite the fact that ~ 7 % of the global population
in 2018 resides in those megacities (UN, 2018a), their con-
tinuous increase both in size and number bring them in the
spotlight, as they will accommodate an increased share of the
world’s population (projected to ~ 10 % by 2030). This pop-
ulation growth of cities, and especially those with more than
5 million inhabitants, raises urgent and critical environmen-
tal issues, like air quality (WHO, 2021). The worst pollutant
affecting the megacities is the suspended particulate matter
or aerosols. This is of particular concern, as high levels of
aerosols are known to be related to increased morbidity and
mortality rates, and in many of the megacities in developing
countries healthcare for acute cases is less proficient than in
developed countries. Particularly, in 2019, cities’ air pollu-
tion constituted the 4th leading risk factor for early death at
a global scale (HEI, 2020).

Many countries worldwide have enforced policies in re-
cent decades to reduce anthropogenic aerosol emissions in
urban areas towards mitigating the aerosol adverse health ef-
fects. These policies include the transition of thermal engines
technologies, pollution fees on big industries and schemes
for air quality control. The exact policies and the level of
implementation largely differ between countries, but it is
the main cause of decrease in aerosol concentration in some
megacities. WHA69 (WHO, 2016) set a global roadmap and
targets for reduction of air pollution related deaths, urban
air quality and clean energy. In the United States (US), the
first regulations were legislated in 1970, and Environmen-
tal Protection Agency (EPA) reported a drop of ~40% in
aerosol related air pollution in major US cities in the last
half century (DeMocker, 2003). In the European Union (EU)
countries, a decrease of ~ 29 % in aerosols has been reported
since 1970 as a result of policy measures and technological
improvements (Turnock et al., 2016). In South and Central
American countries, a poor emission control has been re-
ported, resulting in 150 million people living in urban areas
with poor air quality (UNEP, 2016). Jin et al. (2016) sum-
marized the policies and their implementation over the last
three decades for China, and as a consequence China’s an-
thropogenic emissions markedly declined in the last decade
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(Zheng et al., 2018). In 2019, India launched the National
Clean Air Programme, with the objective to reduce in 2024
the particulate air pollution by 20 %-30 % with respect to
2017 levels, in 122 cities (Ganguly et al., 2020). The regu-
lations for air pollution for many African cities are weak or
non-existent (Abera et al., 2020), which will be challenging
for their future air quality, since many African cities have
an unprecedented population growth. So, it is of vital impor-
tance to understand the trends of aerosol loads and their spa-
tial variability over those great population agglomerations,
this way assessing the effectiveness of air pollution emission
regulations.

Aerosol-related air pollution can be quantified, in opti-
cal terms, through aerosol optical depth (AOD), which is
the most comprehensive variable for assessing the aerosol
load of the atmospheric column. Ground-based sun photome-
ters have been deployed during the last 20-25 years, provid-
ing long-term AOD measurements at established global/re-
gional networks such as AERONET (Holben et al., 1998),
GAW-PFR (Kazadzis et al., 2018) and SKYNET (Nakajima
et al., 2020). Although the most precise method for moni-
toring AOD is provided by surface sun photometers, these
measurements are scarce, lacking full spatial and temporal
coverage. On the contrary, satellite remote sensing is a pow-
erful tool for monitoring AOD around the globe (Kaufman et
al., 2002) at considerable accuracy, almost on a daily basis
and at relatively fine spatial resolution. Despite the fact that
the quality of spaceborne AOD over urban surfaces depends
strongly on the limitations of the retrieval algorithms (Gupta
et al., 2016), it is an aerosol parameter available worldwide
at high spatial and temporal resolution.

There is a large number of studies dealing with AOD
trends at local (e.g., Raptis et al., 2020; Vohra et al., 2021),
regional (e.g., Che et al., 2019; Cherian and Quaas, 2020;
Zhao et al., 2017) and global scale (e.g., Buchholz et al.,
2021; Gupta et al., 2022; Logothetis et al., 2021; Wei et al.,
2019a). AOD trends (either from spaceborne or from ground-
based observations) in the last two decades indicate robust
regional patterns, with decreasing aerosol loads over Europe
and US since 2000 and reversed to decreasing since 2010 for
East Asia and continuously increasing over southern Asia,
which is also supported by in situ particulate concentration
measurements (Gulev et al., 2021 and references therein).
Nevertheless, limited studies have focused on aerosol regime
over megacities, which are the major anthropogenic aerosol
sources worldwide, and hence studies focused on them pro-
vide the direct link between aerosol load and emissions vari-
ability. In order to conduct studies like this, it is necessary
to have available a dense surface-based network or to take
advantage of the satellite remote sensing coverage capabili-
ties. Alpert et al. (2012), relying on spaceborne aerosol mea-
surements (MODIS and MISR), investigated the AOD ten-
dencies over the 189 largest world cities for the 8-year pe-
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riod between 2002-2010. According to their findings, in-
creasing AOD trends were found for the largest cities in
the Indian subcontinent, the Middle East and North China,
whereas opposite trends were evident in European, northeast
US and southeast Asian megacities. The aim of this study
is to use up-to-date and state-of-the art spaceborne aerosol
retrievals (AOD and dust optical depth — DOD) to study
local and transported aerosols that can affect air quality in
large cities around the globe. Based on the idea of Alpert et
al. (2012), we used a finer spatial resolution (0.1°) aerosol
product that is able to reveal aerosol air pollution disparities
within megacities and will allow for a more detailed AOD
spatial analysis at urban scale and for a period from 2003
to 2020, in order to have more robust trends. Analyzing the
aerosol spatiotemporal variability over megacities is of great
importance for air quality and human health.

The present study aims to investigate the aerosol regime of
megacities by addressing the following scientific questions:

— What is the spatial variability of AOD in megacities at
different geographical locations?

— What is the temporal variability?

— Are ground-based AOD measuring stations adequate for
reflecting the spatiotemporal changes of AOD in megac-
ity scales?

2 Data and methods

2.1 Megacities information

Megacities are defined as cities with a population of more
than 10 million, but in our analysis, we include cities with
populations between 5 and 10 million as well, due to their
potential to become megacities in the coming decades, as
estimated by UN projections (UN, 2018a). Table 1 summa-
rizes the number of cities according to their population by
2018 and future projections. According to UN projections,
10 cities with populations between 5 and 10 million are ex-
pected to become megacities in the near future. Here, we
focus on 81 cities, with more than 5 million inhabitants as
reported in 2018, which are listed in Table Al (UN, 2018a,
2019a) and their geographical location is depicted in Fig. 1.

It should be mentioned that the UN data correspond mostly
(65 %) to urban agglomerations, for which the city’s bound-
aries are defined as the extent of the contiguous urban area
(or built-up area). A small part refers to the metropolitan ar-
eas (25 %) and even smaller (10 %) to the city proper. For
a major metropolitan area (MMA), more than one city is
close together, and in most cases with no distinct limits.
For example, in the Kinki MMA, Osaka is the city with the
highest population and the Los Angeles metropolitan area
includes the Long Beach and Santa Ana population. There
are five MMAs included in this study, and they are shown
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Table 1. Number of cities according to their population (adopted by
UN, 2018a).

By 2018 Projection
to 2030
Megacities 33 43
(> 10 million)
5-10 million 48 66
(10 of those —20 % — are
projected to become
megacities by 2030)
Total > 5 million 81 109
1-5 million 467 597
> 1 million 548 706
28 of those —5 % — are
projected to cross the
5 million mark)
5000001 million 598 710
50°N . ~ S Beijing, Tgkyo
o« g *Xaird, . Pelh ¥ 80saka
gt Borhbayg, #Shanghai
Mexico City'.. - % Uhak:a A
Oe 5 . .
¢ Sgp Paulo
50°8
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Figure 1. Map of the location of the 81 cities with popula-
tions greater than 5 million (black circles). Red circles denote the
10 megacities with the highest population.

in bold in Table Al. One last remark concerning popula-
tion data is about Guangzhou, Shenzhen, Hong Kong, Dong-
guan and Foshan (shown in italics in Table Al). They are all
located in the Guangdong—Hong Kong—Macau Greater Bay
Area. This area, which is confined in a domain narrower than
1° x 1°, also includes five other cities with population more
than 1 million, forming a megalopolis, which is the largest
urban agglomeration on the planet. The cities in this particu-
lar region and the MMAs will be exempted from the spatial
gradient analysis.

2.2 Spaceborne aerosol optical depth (AOD) and dust
optical depth (DOD)

Daily retrievals of AOD at 550 nm from the MODerate res-
olution Imaging Spectroradiometer onboard the Aqua satel-
lite (MODIS-Aqua) were used for this analysis. Specifically,
quality assured Collection 6.1 MODIS — Aqua Level 2 AOD
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retrievals (Levy et al., 2013; Wei et al., 2019b) from the Dark
Target (DT) and Deep Blue (DB) retrieval algorithms were
merged according to Sayer et al. (2014) into one dataset and
presented by Gkikas et al. (2021). AOD values from DT re-
trieval algorithm above ocean and land and DB above land
were selected based on quality assurance (QA) of the re-
trievals. Then, the AOD values from both retrieval algorithms
were merged by applying additional quality filtering criteria
(see Sect. 2.1 in Gkikas et al., 2021) and stored in a scien-
tific dataset. Based on this MODIS AOD combined prod-
uct and on MERRA-2 (Randles et al., 2017; Gelaro et al.,
2017) reanalysis data of dust optical depth (DOD) to AOD
ratio, the MIDAS (Modls Dust AeroSol; Gkikas et al., 2021,
2022) dataset was developed providing columnar mid-visible
(550nm) DOD and the corresponding AOD, on a daily ba-
sis, at fine spatial resolution (0.1° x 0.1°) and at global scale
over the period 2003-2020. Regarding the DOD uncertain-
ties, there were assessed in Gkikas et al. (2021) by consid-
ering the AOD and Merra-2 dust fraction uncertainties, as
they were calculated using AERONET retrievals (Giles et al.,
2019) and LIVAS database (Amiridis et al., 2015) as refer-
ences, respectively.

2.3 Ground-based (GB) measurements

AERONET ground-based measurements of AOD for cities
that have available long-term time series in the 2003-2020
period were also analyzed. The level 2, version 3 daily mean
product of AOD at 500 nm was collected for stations with
at least 8 years of data within the study period. Using the
Angstrijm exponent, 440-870 nm, the AOD values were in-
terpolated at 550 nm. Table B1 gives the details of the 27
AERONET stations utilized for the comparison. Statistics
and trends of ground-based measurements were calculated
with the same methodology and data availability criteria ap-
plied to the satellite data (see Sect. 2.5 and 2.6).

2.4 Spatial features

Initially, the geographical distribution of long-term (2003—
2020) mean annual and seasonal AOD was derived for a
square area spanning of £1° around the city center (as de-
fined by the UN 2018b database). The goal of this analysis
was to investigate the AOD variability inside the urban areas,
as retrieved by spaceborne data. In addition, visual inspec-
tion of aerosol distributions over 1° x 1° areas and the identi-
fied patterns was used for the first qualitative classification of
megacities. The main advantage of the MIDAS AOD dataset
is the high spatial resolution (of 0.1°) and the daily data avail-
ability. However, there were challenges during averaging re-
garding the data availability, and for this reason temporal
availability criteria were applied. Every seasonal mean value
was calculated when at least 9 d were available (1st thresh-
old applied), whereas the annual means were computed when
at least three seasonal means were valid (2nd threshold ap-
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plied). The choice of the 9d was decided after conducting a
sensitivity analysis (not shown here) based on data availabil-
ity limitations for calculating AOD trends. Based on the fil-
tered year-by-year seasonal and annual means, their respec-
tive long-term averages were calculated. In Fig. 2, the geo-
graphical distributions of the annual (Fig. 2b) and seasonal
(Fig. 2d) long-term averages are illustrated for the megacity
of Tokyo. Comparing the AOD field £1° around the city’s
center (black circle) with the corresponding Google Earth
satellite map (Fig. 2a), higher values of mean AOD can been
seen over the urban agglomeration of Tokyo, with respect to
the surrounding area, throughout the year (Fig. 2b, d). The
blank boxes are pixels that do not fulfill the applied criteria
for data availability or data are not available. This example
case demonstrates the applied methodology as it will be ex-
plained in the following sections.

In order to investigate further the spatial AOD variabil-
ity, we quantified the AOD gradients between the city’s cen-
ter and the surrounding areas. The square area at each city
was divided into six different sectors (Fig. 2c). Sector 1 (or
S1) is the 4-pixel area that encompasses the city center. The
daily AOD time series has been constructed by calculating
the AOD median for each sector under investigation. Me-
dian was selected rather than mean for AOD aggregation, as
a non-parametric statistic of central tendency, accounting for
the not normally distributed AOD data at those spatial and
temporal scales (Sayer and Knobelspiesse, 2019). This ag-
gregation process increased the data availability compared
to the single pixel approach. Following the previous proce-
dure with filtered seasonal and annual means, the long-term
average AOD for every sector was derived. An example for
Tokyo is given in Fig. 3. For this megacity, a mean AOD
value ~ 0.35 was found over the city’s center and decreas-
ing mean AOD values moving towards the outer sections.
Although a uniform approach like this ignores the effect of
topography (mainly mountains and sea) that breaks the sym-
metry around many cities, it could be considered an indi-
cator of the spatial distribution of AOD. It should also be
highlighted that the “city center” area could have different
characteristics and be wider than the area assumed in this
approach. These assumptions are used only to make the re-
sults comparable, and studies focusing on a small number of
cities should make a specific division for each case. In order
to give a single number that will describe the spatial gradi-
ent of AOD field from megacities center to the surrounding
area, linear regression was performed to the sectoral annual
AOQOD averages in order to calculate the AOD changes per
0.1° along with their statistical significance. The results then
were expressed in A(AOD) per 1° and finally were converted
in A(AOD) per 100 km (see next paragraph) and were used
for a categorization of the megacities.

Another source of uncertainty for the unified pixel-based
approach that was followed for all cities would be the east—
west (E-W) direction size of the pixel. While the pixel size
in the north—south (N-S) direction is the same (~ 110 km for
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Figure 2. (a) Geographical limits of the study area for the megacity of Tokyo on © Google Earth maps, © Google Maps. (b) Geographical
distribution of the long-term (2003-2020) annual averaged AOD for the broader area of Tokyo megacity. (¢) Spatial representation equal
lat/long grid of AOD data and the sectors under investigation with different colors. (d) Geographical distribution of the seasonally averaged
AOD for the broader area of Tokyo megacity. Blank pixels do not fulfil the data availability criteria. The black circle denotes the pixel of the
megacity center.
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Figure 3. The long-term average of AOD (red points) for Tokyo
megacity for the six different sectors considered around every
megacity center. The shaded area denotes 1o. The solid red line
is the regression line resulted from the six points.

10 pixels = 1°), this is not the case in the E-W direction.
More than 50 % of the cities are located at absolute latitudes
15-45° (left panel Fig. 4) with a median size of 10 pixels
(= 1°) in E-W direction of 95 km (central panel Fig. 4) and
with majority of the cities (over 75 %) within the +10km
limit. Even for the high latitude cities (~ 60°), the E-W size
of the 10 pixels (= 1°) is ~ 65km (~ 2/3 of the median).
This difference for the high latitudes cities has been consid-
ered in the subsequent two-domain analysis (see Sect. 2.5),
by including additional pixels in the analysis. For the six-
sector analysis, we expressed the single measure of the AOD
gradients in terms of distance in order to account for the dif-
ference in the east—west direction. We derived the equivalent
distance of the 1° for every city by taking the mean of 110 km
size in the N-S direction and the distance in E-W direction
(central panel Fig. 4) and subsequently we converted the sin-
gle measure of the AOD gradients from A(AOD) per 1° in
terms of distance in A(AOD) per 100 km. Finally, the right
panel of Fig. 4 shows the distribution of cities elevation, a
parameter that has been also considered in the interpretation
of the results.

2.5 Temporal variability and long-term averages

In order to investigate the temporal variability of AOD and
derive the long-term mean values, an area of 0.4° x0.4° (4 x4
pixels, S1 and S2 combined) was considered as representa-
tive of the urban agglomerations, denoted as urban domain
hereafter (Fig. 5). In the same manner as in six-sector anal-
ysis (Sect. 2.4), the daily AOD time series has been con-
structed for the urban domain by calculating the AOD me-
dian. Filtered (the same temporal criteria as in Sect. 2.4) an-
nual mean AOD values were calculated and, based on them,
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Figure 5. Spatial representation of equal lat/long grid of the AOD
data and the urban domain (red) and surrounding area domain
(brown) under investigation.

the long-term (2003-2020) annual mean values were derived
for the urban domain. The AOD interannual variability and
decadal trends for the urban domain were derived, and the
methodological details are described in the following sub-
section. A 4 x 6 pixels area (instead of 4 x 4) was considered
for high latitude cities (London, Moscow and Saint Peters-
burg) in order to have comparable areas for all cities. The
differences in annual mean AOD were 1 %—5 % compared to
the same results without making this correction. Despite the
small increase in data availability (~ 10 %) when this correc-
tion was applied, the trend calculations remained stable. In
general, the uncertainties introduced due to the pixel size are
minor compared to those associated with the data availabil-

1ty.
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Figure 6. Annual mean AOD values for the Tokyo megacity (red
points) and the surrounding area (brown points) and the correspond-
ing standard deviations (shaded areas). The linear trends are de-
picted with the straight lines.

2.6 AOD interannual variability and trends

The linear trends were calculated by using simple linear re-
gression for the filtered annual mean values when at least
10 years (out of 18) were available. The statistical signifi-
cance of the trends was assessed by performing the 7-test.
In Fig. 6, we are presenting an example for Tokyo. The red
and brown curves correspond to the annual means for the ur-
ban and surrounding domains, respectively, the shaded areas
represent the standard deviation, and the same colored lines
denote the calculated linear trends. For this interannual time
series, declining AOD trends are evident both for the urban
and the surrounding domains of the Tokyo megacity.

2.7 AOD intraannual variability

Monthly mean AOD values were calculated when 3 d were
available. From those filtered monthly AODs, the long-term
monthly mean AOD values were derived, in order to assess
the intraannual variability of aerosol loads for every city’s
urban domain. As an example, the intraannual variability for
the megacity of Tokyo is given in Fig. 7. In order to give
a single measure of this intraannual variability of AOD, the
temporal coefficient of variation (CV) was derived. The mean
and the standard deviation (SD) were calculated for cities
with at least nine monthly values in order to calculate the
temporal CV using the following formula:

SD
mean

CV=

100 %. ()
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2.8 Spatiotemporal variability

In order to investigate the spatiotemporal AOD variability,
the long-term mean AOD values and the linear trends were
also derived for a second domain corresponding to the sur-
rounding area of the urban agglomerations (brownish cells in
Fig. 5). This domain (surrounding domain hereafter, Fig. 5)
is the remainder from a broader 8 x 8 pixel domain around
the city’s center after eliminating the urban domain (4 x 4
pixels). Again, for high latitude cities, extra pixels were con-
sidered (12 x 8 pixels) adjusting for different pixel area, but
even smaller differences were observed (1 %—4 %), with re-
spect to those found for the urban domain considering this
change.

3 Results and discussion

3.1 Megacities’ spatial AOD characteristics

In this section, megacities’ AOD spatial variability has been
investigated and used as a proxy for cities’ classification.

3.1.1  Geographical distribution

As already mentioned in Sect. 2.4, the aim of deriving the
geographical distribution of the 18-year period mean annual
and seasonal AOD at the original spatial resolution (0.1°) of
satellite retrievals over 1° x 1° area around every cities cen-
ter was to investigate the AOD variability inside and around
cities by the visual inspection of those geographical distri-
butions. An example of the analysis performed is given for
Tokyo megacity in Sect. 2.4. The same approach was fol-
lowed for all the examined cities (not shown). The first im-
portant result of this analysis was that the comparison of the
AOD fields (1° around cities’ centers) with the correspond-
ing Google Earth maps confirms that the selection of the 4 x 4
urban domain is representative of cities’ urban agglomera-
tions and the remainder up to 8 x 8 pixel area representa-
tive of cities’ surrounding areas. Additionally, by examin-
ing the spatial AOD heterogeneities between the urban and
surrounding domains for all megacities, interesting features
were found, which led to their first qualitative classification.

Out of the 81 cities, 53 % are coastal and 47 % are inland.
This classification is important, as coastal cities are related
with low data availability — due to satellite retrieval algo-
rithm restrictions — and most cities that are not present in the
following results are from this group because they did not
fulfill the criteria of data availability. One group consists of
high-elevated (> 2000 m) cities such as Mexico City and Bo-
gota. Those cities are related with low data availability, and
for the available pixels the AOD values are very low, which
is not consistent with the GB measurements (see Sect. 3.5),
so they were excluded from the spatial gradient analysis.
Another group contains inland cities situated nearby large
deserts where dust is regularly dominating the aerosol mix-
ture (Cairo, Tehran, Riyadh, Baghdad and Khartoum).
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Figure 7. (a) AOD intraannual variability for Tokyo megacity (red line) and the surrounding area (brown line). (b) Normalized monthly

mean AOD values with respect to June mean AOD value.

Cities with few blank pixels (< 50 %) within the defined
limits are clustered in three distinct groups. There are cities
where the AOD fades from the central sector towards the sur-
rounding area (~ 60% for coastal and ~ 35 % for inland).
This is always the case for the MMA group of megacities.
For a number of cities (~ 40% for coastal and for inland),
an opposite gradient is found, attributed to the higher anthro-
pogenic activities (e.g., industrial zones) in the outer domain.
Finally, in the third category are grouped only inland cities
(~ 25 %) where a uniform distribution of mean AOD exhibits
a weak variation in spatial terms. This is a qualitative classi-
fication and it is based on the more uncertain results (based
on the data at the original spatial resolution at 0.1°). In order
to give a quantitative measure of this spatial variability and
with lower uncertainty compared to the singe pixel approach,
the six-sector and two-domain analysis was performed (see
Sect. 3.1.2).

3.1.2 Long-term means and spatial variability

One of the objectives of this analysis was to take advantage
of the high spatial resolution (0.1°) of MODIS AOD product
in order to assess inequities in aerosol air pollution exposure
levels within those high-risk communities. The aggregation
of the AOD for the different sectors and domains that have
been applied (see Sect. 2.4 and 2.5) increase the confidence
in the results relative to the single pixel approach. It must be
pointed out here that the combination of the local topography
and the location of the anthropogenic activity outside the ex-
amined cities (industrial zones, nearby smaller cities) distorts
the spatial AOD distribution, highlighting the possible non-
homogeneity of the city sectors or domain of the surrounding
area we have used.

Atmos. Chem. Phys., 22, 15703-15727, 2022

Spatial (six-sector) analysis

In order to give a single measure of the AOD gradients (i.e.,
sharp or smooth) in the vicinity of the megacities, a linear
fit was applied to the six sectoral 18-year mean AOD values.
The slopes are expressed as A(AOD) per 100 km and along
with their statistical significance are presented in Fig. 8. Neg-
ative values indicate that greater values of AOD were found
in the city center and are denoted with blue color. Positive
values are related with higher AOD values moving away
from cities center and are denoted with red color. Due to
low data availability, 24 cities were discarded from the anal-
ysis. The MMAs and cities with high elevation (> 2000 m)
were also excluded from this spatial gradient analysis. In Ap-
pendix C for every city, the mean AOD values for six sec-
tors are given, normalized with the 18-year mean value of S1
(Fig. C1).

For the majority of megacities (~ 65 %), lower mean AOD
values resulted for the surrounding areas with respect to
the city’s center (i.e., negative A(AOD)). This percentage is
raised to ~ 75 % when only the statistically significant results
are considered. The largest values of negative AOD gradients
were found for Xian (China), Alexandria (Egypt) and Santi-
ago (Chile), attributed to complex topography (high moun-
tains and coastal areas). On the other hand, only 19 (~ 35 %)
cities have larger mean AOD values in the surrounding sec-
tors (i.e., positive A(AOD)) and most of them are located in
China and India. The reason that higher AODs were recorded
in the surrounding sectors for most of those cities is that they
are enclosing smaller-scale cities (MMAs have been already
excluded from the analysis), which, however, host significant
sources of anthropogenic aerosols. For example, Shanghai is
the Chinese city with the largest positive AOD gradient at-
tributed to the influence from the nearby megacity Suzhou at
the west and the Pacific Ocean at the east part of the city.
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Figure 8. Spatial AOD gradients per 100 km (A(AOD) per 100 km)
from city center to surroundings. The circle radius is proportional
to the statistical significance of the trends. Three cities with greatest
negative AOD gradient are Xian, Alexandria and Santiago and the
three cities with greatest positive AOD gradient are Shanghai, Jinan
and Atlanta.

Two-domain spatial analysis

The geographical distribution analysis (Sect. 3.1.1) revealed
that the 4 x 4 pixels area is a domain well fitted to the
cities” urban agglomeration (urban domain). The remainder
between the urban domain and an area up to 8 x 8 pixels (sur-
rounding domain) was found also to be representative for the
surrounding area of all cities. The results for this two-domain
analysis are presented in this section.

The geographical distribution of the long-term mean AOD
values for the urban domain is presented in Fig. 9. Four cities
(BOGO, HCMC, KUAL, SING) are not included due to low
data availability. Low mean AOD values were found for Eu-
ropean and American cities in contrast to Asian and African
cities. Specifically, the larger mean AOD values (> 0.5) were
recorded for Chinese cities, with Indian cities following,
since both areas are densely populated and with high in-
dustrial activity. Many megacities (mostly Asian) lying in
the proximity of great deserts are also influenced by natural
aerosols of desert dust (Proestakis et al., 2018; Gkikas et al.,
2022). In order to investigate further this feature and quan-
tify this influence, the long-term mean DOD and the DOD to
AOD ratio — as a metric of dust contribution in the aerosol
mixture — were derived using the MIDAS DOD and AOD
products and the obtained results are presented in Fig. 10.
Significant dust contribution (~ 20 %—40 %) was found for
the western Chinese cities, with mean DOD values rang-
ing from 0.1 to 0.2, that were influenced by the nearby arid
and semi-arid regions (namely the great Gobi Desert and the
Taklamakan Desert). For Indian and Pakistan cities around
the Thar Desert (India—Pakistan borders), even bigger dust
contribution was found ~ 40 %-50 % and mean DOD values
ranging from 0.15 to 0.35. The greatest dust contribution (up
to 60 %) with significant mean DOD values up to ~ 0.4 was
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Figure 9. Long-term (2003-2020) mean AOD for megacities urban
domain (~ 40km x 40km around cities center). The circle radius is
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Figure 10. Long-term (2003-2020) mean DOD for megacities ur-
ban domain (~ 40km x 40km around cities centre). The circle ra-
dius is in proportion to the DOD to AOD ratio. Five cities with
greatest dust contribution (mean DOD / AOD ratio) are Khartoum,
Riyadh, Baghdad, Cairo and Tehran.

found for the African cities of Khartoum and Cairo and for
all Middle East cities (Riyadh, Baghdad and Tehran) that are
influenced by the great deserts of North Africa and Middle
East.

In order to contrast the mean AODs for the urban domain
against those of the surrounding area, we have reproduced a
global scatterplot with their matchups, presenting also ancil-
lary information (i.e., continent, population, coastal/inland)
(Fig. 11). Points residing on top of the one-by-one line indi-
cate cities with homogeneous spatial AOD distributions (in-
side and surrounding area), whereas above/below the equal-
ity line, AODs are higher in the surrounding and urban do-
main, respectively.

Almost 60 % of the cities have greater mean AOD values
over the urban domain and 40 % have greater values over the
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Figure 11. Long-term (2003-2020) mean AOD for megacities’ ur-
ban domain (~ 40km x 40km around cities’ centers) versus the
surrounding area domain. The name of the cities with difference
in mean AOD greater than +0.04 between the two domains is de-
picted. The dotted black line is the identity line and the dashed red
lines denote £10 % difference in mean AOD between the two do-
mains.

surrounding domain. There are more cities with differences
exceeding 10 % when higher values of AOD are recorded
over the urban domain compared to the opposite case. In
general, the obtained results are in line with those of spatial
gradients (sectoral analysis, Fig. 8), while almost all cities
(apart from four) are included here due to the greater data
availability for the two-domain approach. Shenzhen, Osaka
and Jakarta show the biggest decrease of 0.15-0.25 (~ 25 %-—
35 %) in a range of few kilometers from their center. On the
other hand, Chinese cities (Shanghai, Suzhou and Qingdao)
and Atlanta have greater mean AOD values in the area sur-
rounding the center.

Additionally, the classification of the cities according to
their geographical location (in line with Fig. 9) came up, ac-
cording to the obtained results for both domains. All Euro-
pean and American cities yield mean AODs ranging from
0.08 to 0.20, in contrast to African and Asian cities in which
the corresponding levels range from 0.25 to 0.9 (apart from
Bangalore (0.2), Dar es Salaam (0.17) and Johannesburg
(0.09)).

3.2 Temporal variability
3.2.1 AOD trends

The geographical distribution of the AOD changes per
decade (Fig. 12, after excluding 11 cities which did not fulfill
the temporal criteria) revealed pronounced regional features.
The resulted AOD trends for the megacities are reflecting the
changes in the anthropogenic emissions, associated with the
air quality regulations implemented throughout the years, in
the same manner that previous studies have shown the con-

Atmos. Chem. Phys., 22, 15703-15727, 2022

K. Papachristopoulou et al.: Aerosol optical depth regime over megacities

nection of the satellite-observed AOD trends with the imple-
mented mitigation policies in regional scales (Gupta et al.,
2022; Zhao et al., 2017)

For all European and US/Canadian cities, decreasing AOD
values were found (up to ~ 0.03 and ~ 0.07 per decade, re-
spectively), in accordance with the AOD decrease in western
Europe and eastern North America that have already been
reported in the literature, and was associated with a series
of air quality control measures that have been implemented
(Gupta et al., 2022; Zhao et al., 2017). While negative trends
have been found in this study for Los Angeles, other recent
studies report small positive trends for the western United
States of America that are associated with reduced precipi-
tation and increased fire activity over the area (Gupta et al.,
2022; Cherian and Quaas, 2020). However, the latter studies
refer to much wider areas and not to the city of Los Angeles,
which indicates that the trends in the city may be related to
different mechanisms (i.e., reduction of anthropogenic emis-
sions dominates over the increase due to increasing dust and
smoke events), relative to the trends over the wider region of
the western US. Statistically significant negative AOD trends
were derived for the eastern Asian megacities, with the high-
est values (in absolute terms) up to ~ 0.3 per decade being
evident for the Chinese megacities. This result (net negative
AOD trend for the whole study period for Chinese cities) is
in agreement with recent studies that reported AOD decrease
for eastern China (Gupta et al., 2022), which was associated
with the implemented emission control policies. Specifically,
for China, while up to 2010 AOD was increasing (e.g., Hsu
et al., 2012) due to the rapid economic and industrial devel-
opment of the country, after 2011 declining AOD trends have
been recorded for the central and eastern sectors of the coun-
try, related with the reduction in anthropogenic aerosol emis-
sions due to the implementation of emission control mea-
sures (Zhao et al., 2017; Sogacheva et al., 2018). According
to Sogacheva et al. (2018), the gradual AOD decline after
2011 is more prominent for the highly populated and indus-
trialized southeast China regions, being in agreement with
our results.

On the contrary, strong positive AOD trends (ranging from
0.07 up to 0.16 per decade) were found for all megacities
in the Indian subcontinent, reflecting the increased industrial
and financial development during this period, and is in agree-
ment with previous studies (e.g., Buchholz et al., 2021). In a
recent study by Samset et al. (2019), they have shown that the
climate implications of this dipole pattern of positive AOD
trends over southern Asia and strong negative values over
eastern Asia observed since 2010 might be strong not only
on a regional scale but also for areas away from the sources.

Positive AOD trends were also found for the Middle East
megacities, ranging from 0.03 to 0.1 per decade. This finding
is in line with the AOD trends that resulted from the analyses
of retrievals from different satellite sensors (Che et al., 2019),
although negative trends have been reported in the study of
Gupta et al. (2022) who analyzed AOD from CALIOP. For
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Figure 12. Linear trend of AOD per decade for urban domain
(~ 40km x 40 km around cities’ centers). The circle radius is in pro-
portion to the statistical significance of the trends. Three cities with
greatest increase of AOD are Hyderabad, Kolkata and Bangalore
and the three cities with greatest decrease of AOD are Chengdu,
Chongqing and Xian.

the Latin American megacities, the highest AOD trends are
positive (~ 0.03 per decade for Buenos Aires and Lima),
reflecting the poor emission control measures over this ge-
ographical domain. In recent studies (Gupta et al., 2022;
Buchholz et al., 2021), a reduction in AOD was reported
for South America, attributed to the decline in forest fires,
which might explain the negative AOD trends for the rest
of Latin American cities. Sub-Saharan Africa is an area for
which AOD decrease has been reported in previous studies,
which is opposite to our findings (4-0.06 per decade for Lu-
anda and +0.03 per decade for Dar es Salaam). For this area,
an increase in AOD was also found by the recent study of
Gupta et al. (2022), which was associated with the increase
in biomass burning of agricultural activity in the dry season
over the area. However, since our study is focused on megac-
ities, our findings may reflect the increasing urbanization in
combination with the limited air quality regulations over the
area, but further investigation is needed here.

The comparison of the AOD trends against the long-term
mean AOD of the urban domain revealed an interesting
clustering of cities, according to their geographical location
(Fig. 13). It has to be pointed out here that only the statisti-
cally significant trends were included in Fig. 13, thus ensur-
ing robust and meaningful results.

In all European and North American cities, low AOD cli-
matological values and decreasing trends were found. Note
that in some US cities like Atlanta, Washington, Philadelphia
and New York, apart from their relatively low mean AOD
values (< 0.17), considerable negative trends (ranging from
—53% to —28 %) were recorded.

All Indian cities have results with positive AOD trends
regardless of their mean AOD levels, which span from low
to high values. Among them, Kolkata is the city where ex-
tremely high mean AODs (0.70) and large positive trends
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Figure 13. AOD decadal changes expressed in percentages
(A(AOD) % per decade) versus the long-term mean AOD for the ur-
ban domain. Only statistically significant AOD trends are presented
(P <0.1). Cities with absolute values of A(AOD) % per decade
greater than 25 % are denoted in the figure.

(+22 % per decade and the higher in absolute values + ~
0.16 per decade) were revealed. Of particular interest is Ban-
galore, which has relatively low mean AOD value (0.20),
but the maximum positive AOD trend is almost +69 % per
decade. Bangalore’s population increased from 6 million to
12 million during the last two decades, which is one of the
biggest population increases for cities at this scale and thus
it can explain to a large degree the extreme increase of AOD.
Meanwhile, financial development in the area is linked more
with new technologies and not heavy industry, which par-
tially answers the relatively low mean.

All Chinese cities are subjected to AOD decrease (up to
~ 30%), while at the same time they have the highest mean
AOQOD values ranging from 0.45 to 0.91. Chengdu is the city
with the biggest mean AOD value along with the highest
AOD decrease of ~ 30 % per decade (or ~ 0.3 per decade).

3.2.2 Intraannual variability

AOD exhibits strong intraannual variability (Zhao et al.,
2018), which is quite important to be analyzed at megaci-
ties’ scales in order to improve our understanding regarding
the aerosol-related health effects. The normalized (using the
mean AOD of June as reference ) monthly mean values for
all cities are provided in the Appendix D, Fig. D1, classified
for the different geographical domains. In order to investigate
the intraannual variability of AOD at city level, the temporal
CV (Sect. 2.7) was calculated. The geographical distribution
of temporal CV is illustrated in Fig. 14, only for cities com-
plying with the defined temporal criteria (four cities were
omitted). Low CV values (< 20%) were found for eastern
India, most of the Chinese cities and for the eastern Mediter-
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Figure 14. Temporal coefficient of variation (CV) of monthly mean
AOD (intraannual variability) expressed in percentages for megac-
ities’ urban domains (~ 40km x 40km around cities’ center). The
circle radius is proportional to the cities’ population. Three cities
with the highest temporal CV are Atlanta, Houston and Washington,
DC and the three cities with lowest values are Kolkata, Chongqing
and Pune.

ranean as well. The highest CV values > 70 % were recorded
for three US cities. In order to investigate those results fur-
ther, the relationship between temporal CV and the long-
term mean AOD values for the urban domain was examined
(Fig. 15).

A non-linear relationship was found, with the gradual de-
crease of the mean AOD to be related with increasing CV
levels. The CV values can reach at their maximum levels
(> 50%) only in the group of cities with low mean AOD
values (< 0.25, with only exception being Luanda) and all
are American cities on the East coasts. For North Ameri-
can cities, the monthly mean AOD values during the bo-
real winter are decreasing close to zero and maximized dur-
ing summer, this resulted in this high intraannual variability
(Fig. D1Db) especially for southeastern US cities. These high
values of intraannual variability for southeastern US cities,
and most notably in Atlanta, are explained by the high AOD
values over the area during summer due to secondary aerosol
formation by biogenic volatile organic compound (BVOC)
oxidation (Goldstein et al., 2009). For most southern Amer-
ican cities, rather stable values were found throughout the
year (Fig. Dlc). For moderate AOD levels (0.25-0.50), a
limit of 50 % was found for the CV values. For the cities
with high aerosol loads (> 0.50), which are mostly Chinese
cities, the CV values are confined to the limit 10 %—40 %.

3.3 Spatiotemporal variability

Towards assessing the AOD spatiotemporal variability, the
decadal AOD linear trends for the urban and the surrounding
domains were compared (Fig. 16). We are presenting only
the points in the scatterplot when the AOD trends are sta-
tistically significant (p < 0.1), both for the surrounding and
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Figure 15. Temporal coefficient of variation expressed in percent-
ages (CV %) against the long-term mean AOD for the urban do-
main. The size and the color of the points denote cities’ population
and geographical domain, respectively. The shape of the points de-
notes costal or inland cities.

urban domains (43 pairs). Points residing above/below the
identity line correspond to AOD trend (negative or positive)
that is higher in the surrounding/urban domain, respectively.

All cities in India exhibit an increase of AOD both in the
urban and surrounding domains. The largest difference was
found in Hyderabad where AOD trend is 10 % larger for the
urban domain, indicating an increase of the anthropogenic
activity within the boundaries of the urban agglomeration.
For cities where AOD decreases were found, two groups
are shaped. The first one, that has greater AOD decrease
for the urban domain, consists mostly of East Asian cities.
Chonggqing is the Chinese megacity with the largest differ-
ence (~ 20%), reflecting the adaptation of effective mea-
sures towards reducing city’s aerosols air pollution (Gao et
al., 2021). The second group, which consists mostly of the
North American cities, has greater AOD decrease for the sur-
rounding domain.

3.4 Evaluation with GB measurements (AERONET)

For cities with available long-term time series of AOD from
GB stations of the AERONET network, an evaluation of the
satellite AOD averages and trends was performed. Table B1
summarizes the information of the AERONET stations uti-
lized. This comparison is separated by the GB stations lo-
cated within the 4 x 4 pixel area of the urban domain and
those residing in the surrounding domain of a city. The daily
averaged AOD product was used from the AERONET sta-
tions to derive long -term mean AOD and linear trends, using
the same approach as followed with the satellite data. The
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Figure 16. AOD decadal changes expressed in percentages
(A(AOD) % per decade) for the surrounding domain versus the ur-
ban domain. Only statistically significant AOD trends are presented
(P < 0.1). The dotted line is the identity line. Cities with absolute
differences of A(AOD) % per decade greater than 10 % between the
two domains are denoted in the figure.

diurnal AOD variability of the AERONET data was not con-
sidered and this may slightly affect the long-term mean AOD
(Smirnov et al., 2002), but it plays a minor role for the calcu-
lation of trends.

Regarding the long-term mean AOD (Fig. 17), for the ur-
ban domain there is a good agreement between the satellite-
derived and the GB values (correlation coefficient R ~ 0.93).
The largest deviations (expressed in percentage terms) be-
tween spaceborne and ground-based AODs are recorded in
general for weak-load cities, and those deviations are max-
imized in the high-altitude city (> 2000 m) of Mexico and
Osaka (limited satellite data availability). For the surround-
ing domain, the studied cases are few, so the R is not repre-
sentative. The satellite derived mean AOD is overestimated,
but in this case the area that was utilized to derive the satellite
results is considerably large and it is unlikely that the point
measurement statistics would coincide with satellite statis-
tics.

A relatively good agreement was also found for the
decadal linear trends (Fig. 18), with R ~ 0.79 for the urban
domain. For 75 % of cases, GB and satellite-derived trends
have the same sign for both domains. In Fig. 18, the re-
sults are presented only when both spaceborne and ground-
based AOD trends are statistically significant. For the ur-
ban domain, all the statistically significant trends have the
same sign. For the surrounding domain, the trends’ signs
differ only for LOSA. This difference can be attributed
to the shorter time period of measurements at the LOSA
AERONET station (8 years). Additionally, in a recent study
(Wei et al., 2019c), western North America was found to
be the area with fewer sites with the same signs between
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MODIS- and AERONET-derived AOD trends. Neverthe-
less, our analysis does not focus on a validation of satel-
lite AOD against AERONET, thus not an exact colocation
of the AERONET stations with satellite pixels was attained.
In order to further investigate the obtained differences, the
spatial CV was calculated for the urban and surrounding do-
main, as the ratio of standard deviation and mean values of
the pixel long-term mean AODs derived in geographical do-
main analysis (see Sect. 2.4). The results are presented in
the lower panel of Fig. 18 along with the percentage of the
available pixels inside the domain under investigation. For
LOSA, the greatest value of spatial CV was found (> 50 %),
which was anticipated, since the spatial extent of Los An-
geles metropolitan area is high (including Long Beach and
Santa Ana), highlighting the importance of the selection of
the GB location.

An additional interesting feature is that the absolute values
of all satellite-derived statistically significant trends (Fig. 18)
have lower magnitude compared to the GB results. This
difference in magnitude could be attributed to the domain-
aggregated satellite values compared to point-derived results
of the GB stations, which may smooth out the AOD fields. In
a recent study by Logothetis et al. (2021), a sensitivity anal-
ysis was performed between coarse (1°) and fine (0.1°) spa-
tial resolution of spaceborne AOD retrievals which revealed
AOD trends of lower magnitude for the coarse spatial resolu-
tion data. Moreover, the daily satellite value, corresponding
to satellite overpass, contains less information compared to
the continuous monitoring during daytime of cloudless days
of the ground-based photometers.

Hence, GB stations are representing the close area around
their location and the representativeness of AERONET sta-
tions to characterize aerosol load/trends in megacities should
be considered individually in each case, according to local
conditions.

4 Summary and conclusions

Motivated by the environmental challenges caused by in-
creasing urbanization and to maximize the use of space-
borne aerosol products, in this study, we investigate the
aerosol regime over the megacities of the world using satel-
lite aerosol retrievals. We are taking advantage of the global
coverage, the high sampling frequency (daily values) and the
relatively fine spatial resolution (0.1° x 0.1° grid) of the 18
years MODIS-based AOD and DOD at 550 nm products, in
order to examine the spatiotemporal variability of aerosol
loads for the largest 81 cities of the world.

For all European and American cities, mean AOD ranges
mainly from 0.08 to 0.20. For all African and Asian cities but
three (Bangalore (0.2), Dar es Salaam (0.17) and Johannes-
burg (0.09)), mean AOD ranges from 0.25 up to almost 0.90.
There are cities which lie in the proximity of deserts or in the
path of transported mineral dust particles, which were found
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Figure 17. (a) Satellite-derived (red line) and GB (blue line) long-term mean AODs and their relative difference expressed in percentage
(black line) for the urban domain of cities. (b) The same for the surrounding domain (brown line for the satellite-derived values).
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Figure 18. (a) Satellite-derived (red line) and GB (blue line) statistically significant (P < 0.1) AOD linear trends for the urban domain and
the corresponding spatial CV (red bars) for every city; the numbers on top of the bars declare the pixel availability for the domain. (b) The
same for the surrounding domain (brown line for the satellite-derived values).

to have considerable dust contribution (up to 70 %) and the
associated mean DOD values (up to 0.4) can be considered
as a constant background aerosol source for those megacities.
Results of this contribution can be used by policymakers for
defining the legislations on air quality urban thresholds.

The majority of cities (~ 60 %) have greater mean AOD
values over their urban agglomeration domain. Mostly Chi-
nese and Indian megacities tend to have higher AOD in the
surrounding areas of the city center. Shanghai is the city with
the largest difference (13 % greater mean AOD values for the
surrounding domain), but in general for the cities grouped
in this category, the declinations between the two domains
are lower compared to the first category, because of the high
mean AOD values of the urban domain. Finding inequities in
the exposure at urban scales using satellite remote sensing,

Atmos. Chem. Phys., 22, 15703-15727, 2022

may be a useful tool for air pollution assessment and finally
taking diverse reduction measures at community level. As
AOD differences are also observed for different months/sea-
sons during the year, AOD intraannual variability at megac-
ities’ scale have been quantified. Low intraannual variability
(temporal CV 10 %—40 %) was found for Chinese, eastern
Indian and eastern Mediterranean megacities, while high val-
ues (> 50 %) of temporal CV was recorded for eastern Amer-
ican megacities.

Although Chinese cities were found with the highest mean
AOD values (up to ~ 0.90), they also exhibit the highest
AOD decrease in absolute values up to ~ 0.3 per decade (or
30 % per decade), in response to the rigorous emission con-
trol measures implemented in the country, especially after
2010. The effectiveness of those measures also reflects the

https://doi.org/10.5194/acp-22-15703-2022
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fact that, for Chinese cities, the AOD decrease was found to
be higher for the urban domain (up to ~ 20 %). Decreasing
AOD values were also derived for US/Canadian and Euro-
pean megacities (up to ~ 0.07 and ~ 0.03 per decade) due to
a series of air pollution control policies in the last decades.
The maximum worldwide negative AOD trends in relative
terms, ~ 30 %—55 %, per decade were derived for most US
cities, which simultaneously have low mean AOD values
(Iess than ~ 0.15). The highest AOD increase worldwide in
absolute (up to ~ 0.16 per decade for Kolkata) and relative
terms (~ +70 % per decade for Bangalore) was found for In-
dian megacities. Statistically significant positive AOD trends
were found for all Indian cities, reflecting the increasing ur-
banization and industrialization of the country. The AOD in-
crease for Indian megacities was found to be greater (up to
~ 10 %) for the urban domain. Statistically significant AOD
increase was also found for Middle East, South African and
some Latin America megacities (up to ~ 0.1, 0.06 and 0.03,
respectively).

For cities where long-term ground-based AERONET mea-
surements of AOD were available, the extent at which those
measurements can capture the spatial and temporal AOD
variability was investigated with respect to the spatial and
temporal variability that were derived from satellite data. For
GB stations within the urban agglomerations, a good agree-
ment of the long-term mean AOD was found (R ~ 0.93) and
with coincident signs on AOD trends in 75 % of the selected
stations. The resulted discrepancies are attributed, apart from
the satellite retrievals-related limitations (one overpass per
day, high elevated pixels, low data availability, etc.) and
the GB retrieval limitations (large temporal gaps due to in-
strument issues/calibration, shorter operating time periods,
etc.), to the point (GB) versus area-averaged (satellite) com-
parison. It was found that for areas with non-homogeneous
aerosol fields (great spatial CV, e.g., LOSA in our anal-
ysis), great differences (opposite signs) were recorded be-
tween satellite and GB trends. Those findings highlight the
importance of the GB station location selection for future
planning of aerosol measuring sites, to achieve representa-
tive AOD measurements for a specific city.

https://doi.org/10.5194/acp-22-15703-2022
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We acknowledge that the total column optical property of
AOD, analyzed in this study to describe aerosol load vari-
ability, is not always proportional to the surface particulate
matter (PM) concentrations, which is a parameter better de-
scribing the cities’ air quality, is monitored and regulated by
the cities’ authorities and is related directly to health effects.
However, PM concentrations are derived by in situ measure-
ments and a dense network of those measurements is needed
to describe the PM distribution of a city. Although these
ground air quality monitoring stations are valuable, there
are relatively few and unevenly distributed networks within
cities around the world, especially in developing countries.
One way to provide consistent PM data worldwide is by com-
bining available PM measurements with satellite AOD ob-
servations and chemical transport models (e.g., HEI, 2020).
Therefore, the use of satellite AOD is a very fitting source
of information in order to have global coverage and high
spatiotemporal resolution of aerosol loads over urban areas,
keeping in mind that the agreement between satellite colum-
nar AOD and ground-based PM concentrations is determined
at a large degree by the vertical structure of aerosol layers
(e.g., Gkikas et al., 2016).

According to our findings, long-term high-resolution
spaceborne AOD retrievals can be utilized for detecting spa-
tial and temporal aerosol variability at an urban scale, help-
ing towards the current and future assessments of aerosol-
related impacts in megacities. The high resolution of MODIS
aerosol product provides access to cities’ aerosol monitoring
information which can serve as the basis for health-related
and other prediction services. Future work linking the AOD
changes with population and emission trends in these cities
will reveal the linkage and will enhance the performance of
the air quality projections for the next decades.

Atmos. Chem. Phys., 22, 15703-15727, 2022
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Appendix A
Table A1. Analytical table of 81 cities with the highest population up to 2018 (adopted by UN, 2018a, 2019a). The abbreviations of the

statistical concept column stand for city proper (CP), urban agglomeration (UA) and metropolitan area (MA). Major metropolitan areas
(MMAs) are shown in bold, and the cities located in the Guangdong—Hong Kong—Macau Greater Bay Area are shown in italics.

Urban agglomerations Short name  Country or area 2018 population  Statistical
(thousands) concept

Tokyo TOKY Japan 37468 MA
Delhi DELH India 28514 MA
Shanghai SHAN China 25582 CP
Sdo Paulo SAOP Brazil 21650 MA
Mexico City MEXC Mexico 21581 MA
Cairo CAIR Egypt 20076 MA
Bombay BOMB India 19980 MA
Beijing BEIJ China 19618 UA
Dhaka DHAK Bangladesh 19578 MA
Kinki MMA (Osaka) OSAK Japan 19281 MA
New York NEWY United States of America 18819 UA
Karachi KARA Pakistan 15400 UA
Buenos Aires BUEA Argentina 14967 UA
Chongqing CHON China 14 838 UA
Istanbul ISTA Turkey 14751 UA
Kolkata KOLK India 14 681 MA
Manila MANI Philippines 13482 MA
Lagos LAGO Nigeria 13463 UA
Rio de Janeiro RIOD Brazil 13293 MA
Tianjin TIAN China 13215 UA
Kinshasa KINS Democratic Republic of the Congo 13171 UA
Guangzhou, Guangdong GUAN China 12638 UA
Los Angeles, Long Beach-Santa Ana LOSA United States of America 12458 UA
Moscow MOSC Russian Federation 12410 CP
Shenzhen SHNZ China 11908 UA
Lahore LAHO Pakistan 11738 UA
Bangalore BALO India 11440 UA
Paris PARI France 10901 UA
Bogota BOGO Colombia 10574 UA
Jakarta JAKA Indonesia 10517 MA
Chennai CHNA India 10456 UA
Lima LIMA Peru 10391 MA
Bangkok BANG Thailand 10156 UA
Seoul SEOU Republic of Korea 9963 UA
Chukyo MMA (Nagoya) NAGO Japan 9507 MA
Hyderabad HYDE India 9482 UA
London LOND United Kingdom 9046 UA
Tehran TEHR Iran (Islamic Republic of) 8896 CP
Chicago CHIC United States of America 8864 UA
Chengdu CHGD China 8813 UA
Nanjing, Jiangsu NANJ China 8245 UA
Wuhan WUHA China 8176 UA
Ho Chi Minh City HCMC Viet Nam 8145 UA
Luanda LUAN Angola 7774 UA
Ahmedabad AHMA India 7681 UA
Kuala Lumpur KUAL Malaysia 7564 MA
Xi’an, Shaanxi XIAN China 7444 UA
Hong Kong HONG China, Hong Kong SAR 7429 UA
Dongguan DONG China 7360 UA
Hangzhou HANG China 7236 UA
Foshan FOSH China 7196 UA
Shenyang SHYA China 6921 UA
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Table A1. Continued.

Urban agglomerations Short name  Country or area 2018 population  Statistical
(thousands) concept

Riyadh RIYA Saudi Arabia 6907 Cp
Baghdad BAGH Iraq 6812 MA
Santiago SANT Chile 6680 UA
Surat SURA India 6564 UA
Madrid MADR Spain 6497 CP
Suzhou, Jiangsu SUZH China 6339 UA
Pune PUNE India 6276 UA
Harbin HAER China 6115 UA
Houston HOUS United States of America 6115 UA
Dallas-Fort Worth DALL United States of America 6099 UA
Toronto TORO Canada 6082 MA
Dar es Salaam DARE United Republic of Tanzania 6048 UA
Miami MIAM United States of America 6036 UA
Belo Horizonte BELO Brazil 5972 MA
Singapore SING Singapore 5792 UA
Philadelphia PHIL United States of America 5695 UA
Atlanta ATLA United States of America 5572 UA
Kitakyushu-Fukuoka MMA FUKU Japan 5551 MA
Khartoum KHAR Sudan 5534 UA
Barcelona BARC Spain 5494 CP
Johannesburg JOHA South Africa 5486 UA
Saint Petersburg STPE Russian Federation 5383 CP
Qingdao QING China 5381 UA
Dalian DALI China 5300 UA
Washington, DC WASH United States of America 5207 UA
Yangon YANG Myanmar 5157 UA
Alexandria ALEX Egypt 5086 Cp
Jinan, Shandong JINA China 5052 UA
Guadalajara GUAD Mexico 5023 MA
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Appendix B

Table B1. AERONET stations that have been used in the analysis and the corresponding urban agglomerations.

AERONET station Period Urban agglomerations ~ Short name  Country or area
Sao_Paulo 2003-2019  Sdo Paulo SAOP Brazil

Mexico_City 2003-2018  Mexico City MEXC Mexico

Cairo_EMA_2 2010-2019  Cairo CAIR Egypt

Beijing 2003-2019  Beijing CHN China

Dhaka_University 2012-2020 Dhaka BGD Bangladesh

Osaka 2004-2020 Osaka JPN Japan

CCNY 2003-2020 New York USA United States of America
Karachi 2006-2020  Karachi PAK Pakistan

CEILAP-BA 2003-2019  Buenos Aires ARG Argentina
Manila_Observatory  2009-2020  Manila MANI Philippines
Santa_Monica_Colg 2013-2020 Los Angeles LOSA United States of America
Moscow_MSU_MO  2003-2020 Moscow MOSC Russian Federation
Lahore 2007-2020  Lahore LAHO Pakistan

Paris 2005-2020  Paris PARI France
Yonsei_University 2011-2020  Seoul SEOU Republic of Korea
Hong_Kong_PolyU  2006-2020 Hong Kong HONG China, Hong Kong SAR
Solar_Village 2003-2013  Riyadh RIYA Saudi Arabia

Madrid 2012-2020 Madrid MADR Spain

Taihu 2005-2016  Suzhou SUZH China

Pune 2005-2019  Pune PUNE India

Univ_of_Houston 20062020 Houston HOUS United States of America
Toronto 2004-2020  Toronto TORO Canada

Key_Biscayne 2007-2018  Miami MIAM United States of America
Singapore 2007-2020  Singapore SING Singapore

Fukuoka 2012-2020  Fukuoka FUKU Japan

Barcelona 2005-2020  Barcelona BARC Spain

GSFC 2003-2020  Washington, D.C. WASH United States of America

Atmos. Chem. Phys., 22, 15703-15727, 2022 https://doi.org/10.5194/acp-22-15703-2022
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Data availability. The MIDAS dataset (Gkikas et al., 2021,
2022) is available online at https://doi.org/10.5281/zenodo.4244106
(Gkikas et al., 2020).
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