Supplement of Atmos. Chem. Phys., 22, 15621–15635, 2022 https://doi.org/10.5194/acp-22-15621-2022-supplement © Author(s) 2022. CC BY 4.0 License.

Supplement of

Different physicochemical behaviors of nitrate and ammonium during transport: a case study on Mt. Hua, China

Can Wu et al.

Correspondence to: Gehui Wang (ghwang@geo.ecnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supporting Information

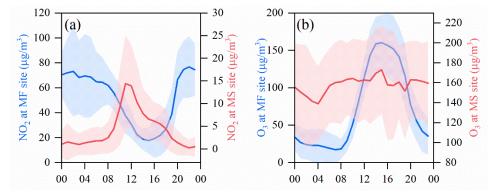


Figure S1 Diurnal variation of NO₂ and O₃ at mountain food (MF) and mountainside (MS) sites.

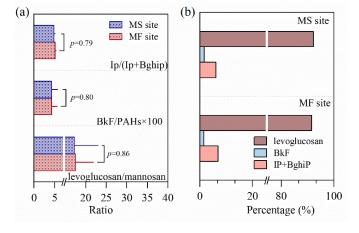


Figure S2 The mass ratio and proportion of organic tracers at two sampling sites.

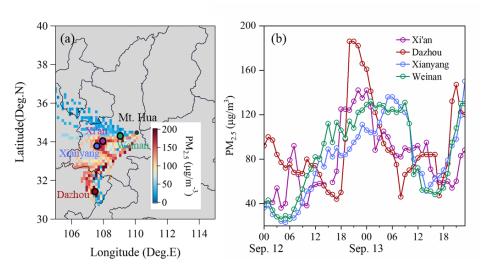


Figure S3 Concentration-weighted trajectory (CWT) analyses of $PM_{2.5}$ during 12-13 Sep. (a). Right panel shows the time series of hourly $PM_{2.5}$ concentrations at different cities on the pollutions transport pathways (b). (The data of hourly $PM_{2.5}$ concentration was downloaded from https://www.zq12369.com/).

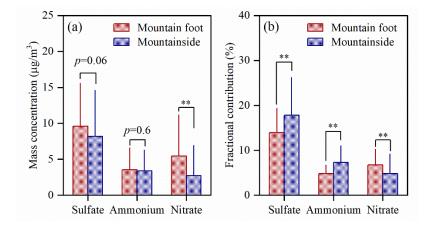


Figure S4 The mass concentration and fractional contributions to PM_{2.5} of SNA excluding the data during 12-13 September at two sites.

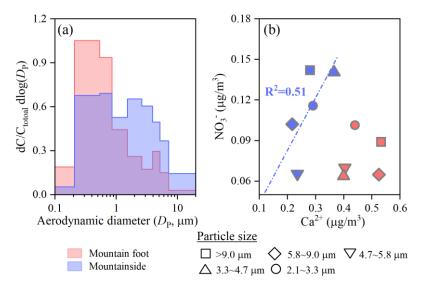


Figure S5 (a) Size distributions of NO_3^- at two sampling sites, (b) Linear fit regressions for NO_3^- and Ca^{2+} in the coarse mode.

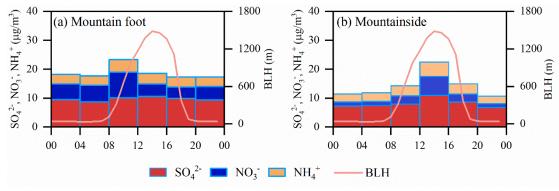


Figure S6 Diurnal variation of sulfate, nitrate and ammonium at mountain foot (MF) and mountainside (MS) sites.