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Abstract. In-flight measurements of atmospheric methane (CH4(a)) and mass balance flux quantification studies
can assist with verification and improvement in the UNFCCC National Inventory reported CH4 emissions. In the
Surat Basin gas fields, Queensland, Australia, coal seam gas (CSG) production and cattle farming are two of the
major sources of CH4 emissions into the atmosphere. Because of the rapid mixing of adjacent plumes within the
convective boundary layer, spatially attributing CH4(a) mole fraction readings to one or more emission sources
is difficult.

The primary aims of this study were to use the CH4(a) isotopic composition (δ13CCH4(a) ) of in-flight atmo-
spheric air (IFAA) samples to assess where the bottom–up (BU) inventory developed specifically for the re-
gion was well characterised and to identify gaps in the BU inventory (missing sources or over- and underes-
timated source categories). Secondary aims were to investigate whether IFAA samples collected downwind of
predominantly similar inventory sources were useable for characterising the isotopic signature of CH4 sources
(δ13CCH4(s) ) and to identify mitigation opportunities.

IFAA samples were collected between 100–350 m above ground level (m a.g.l.) over a 2-week period in
September 2018. For each IFAA sample the 2 h back-trajectory footprint area was determined using the NOAA
HYSPLIT atmospheric trajectory modelling application. IFAA samples were gathered into sets, where the 2 h
upwind BU inventory had> 50 % attributable to a single predominant CH4 source (CSG, grazing cattle, or cattle
feedlots). Keeling models were globally fitted to these sets using multiple regression with shared parameters
(background-air CH4(b) and δ13CCH4(b) ).

For IFAA samples collected from 250–350 m a.g.l. altitude, the best-fit δ13CCH4(s) signatures compare well
with the ground observation: CSG δ13CCH4(s) of −55.4 ‰ (confidence interval (CI) 95 %± 13.7 ‰) versus
δ13CCH4(s) of −56.7 ‰ to −45.6 ‰; grazing cattle δ13CCH4(s) of −60.5 ‰ (CI 95 %± 15.6 ‰) versus −61.7 ‰
to −57.5 ‰. For cattle feedlots, the derived δ13CCH4(s) (−69.6 ‰, CI 95 %± 22.6 ‰), was isotopically lighter
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than the ground-based study (δ13CCH4(s) from −65.2 ‰ to −60.3 ‰) but within agreement given the large un-
certainty for this source. For IFAA samples collected between 100–200 m a.g.l. the δ13CCH4(s) signature for the
CSG set (−65.4 ‰, CI 95 %± 13.3 ‰) was isotopically lighter than expected, suggesting a BU inventory knowl-
edge gap or the need to extend the population statistics for CSG δ13CCH4(s) signatures. For the 100–200 m a.g.l.
set collected over grazing cattle districts the δ13CCH4(s) signature (−53.8 ‰, CI 95 %± 17.4 ‰) was heavier
than expected from the BU inventory. An isotopically light set had a low δ13CCH4(s) signature of −80.2 ‰ (CI
95 %± 4.7 ‰). A CH4 source with this low δ13CCH4(s) signature has not been incorporated into existing BU
inventories for the region. Possible sources include termites and CSG brine ponds. If the excess emissions are
from the brine ponds, they can potentially be mitigated. It is concluded that in-flight atmospheric δ13CCH4(a)

measurements used in conjunction with endmember mixing modelling of CH4 sources are powerful tools for
BU inventory verification.

1 Introduction

There is considerable international interest in mapping and
mitigating sources of methane (CH4) because it is a potent
greenhouse gas. This is reflected by the fact that over 100
countries signed the international CH4 pledge launched at
COP26 in November 2021, which aims to strengthen sup-
port for CH4 emission reduction initiatives (https://www.
globalmethanepledge.org/, last access: 8 December 2022).
Currently there are plans to expand coal seam gas (CSG; re-
fer to Appendix A, Sect. A1, for a listing of abbreviations)
and shale gas productions throughout many regions of Aus-
tralia (Australian Government, 2021); thus it is critical to un-
derstand how this expansion will contribute to regional, na-
tional, and global emissions. We also need to improve our
knowledge of greenhouse gas emissions from agricultural
districts. This study uses CH4 carbon isotopic composition
(δ13CCH4 ) to gain additional insights into CSG, coal min-
ing, and agricultural contributions to regional and global at-
mospheric emissions. We also demonstrate how atmospheric
isotope studies can identify mitigation opportunities.

The southeast portion of the Surat Basin, Queensland,
Australia is an area of approximately 200 km by 200 km,
where there are over 4000 producing CSG wells, active and
inactive open-pit coal mines, piggeries, and millions of beef
cattle in feedlots (called feedlots below) and grazing through-
out the mixed agricultural districts. The study area covers
approximately 0.5 % of Australia yet produces 3 %–4 % of
Australia’s CH4 emissions (Australian Government, 2020a,
b; Neininger et al., 2021). Other CH4 sources close to CSG
production in the Surat Basin include domestic wood heaters,
landfills, wastewater treatment plants, and natural seeps from
the Condamine River. The rapid expansion of CSG in the
southeastern region of the Surat Basin has resulted in consid-
erable research interest in quantifying the emissions from the
CSG sector. A review of all past ground-based CH4 surveys
in the region is presented in Lu et al. (2021).

The Australian Government has developed its own meth-
ods for estimating emissions from CSG facilities (Australian

Government, 2020b; Neininger et al., 2021). Because of Aus-
tralia’s unique climate and farming practices there are many
locally approved emission factors for agricultural sources
and methods for determining regional emissions (Australian
Government, 2020b; EFDB, 2006; IPCC, 2006, 2019). In-
ventories prepared using the national and IPCC emission
factors are commonly called bottom–up (BU) emission es-
timates (Neininger et al., 2021), and an emission factor is
a coefficient that quantifies the emissions or removals of a
gas per unit of activity (IPCC, 2006, 2019). To support the
CH4 studies in the Surat Basin a BU inventory was cal-
culated for the region using the methods outlined in Aus-
tralia’s 2018 National Inventory submission to the UNFCCC
(Australian Government, 2020a). The comprehensive details
about that inventory and the data sets used are discussed at
length in Neininger et al. (2021). In the past decade there
has been increased use of top–down (TD) airborne and satel-
lite measurements to verify BU inventories (Barkley et al.,
2017; Gorchov Negron et al., 2020; Karion et al., 2013,
2015; Neininger et al., 2021; Peischl et al., 2015, 2016, 2018;
Pétron et al., 2014; Schwietzke et al., 2017; Turner et al.,
2015; Yacovitch et al., 2018; Zhang et al., 2020, 2021). Pre-
vious studies have shown that it is not uncommon to find a
large difference between BU inventory versus TD estimates
of emissions (Kirschke et al., 2013; Desjardins et al., 2018;
Saunois et al., 2020). Much of this uncertainty is due to the
quality and resolution of the base data sets used for calculat-
ing the emissions (Han et al., 2020; Verhulst et al., 2017).

In 2018 and 2019 CH4 emissions from many facilities
were mapped using a car-mounted Los Gatos Research ul-
traportable greenhouse gas analyser (Los Gatos Research,
Inc., USA). Where CH4 plumes were detected and the source
identifiable, the air was sampled and analysed to determine
the isotopic signature for the CH4 source (δ13CCH4(s) ; Lu et
al., 2021; Table A1). In conjunction with the ground survey-
ing, in September 2018 an airborne survey of CH4 emissions
was undertaken (Neininger et al., 2021), the focus of which
was regional and subregional CH4 mass balance analyses.
An exploratory component of the study was to collect in-
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flight atmospheric air (IFAA) samples to assess whether ad-
ditional insights into CH4 sources could be obtained from
analysing δ13CCH4 . It was also envisaged that the δ13CCH4

measurements would yield additional insights into over- and
underestimated sources of CH4 in the bottom–up (BU) in-
ventory developed for the mass balance study (Neininger et
al., 2021). The focus of the investigation was primarily to
improve our understanding of CH4 emissions from CSG pro-
duction. However, many of the CSG facilities are co-located
with feedlots, piggeries, and grazing cattle; thus we investi-
gated all sources (Lu et al., 2021; Neininger et al., 2021).

The aims of this study were to use the measurement of
CH4(a) mole fraction and δ13CCH4(a) in 49 IFAA samples
and endmember mixing modelling to assess the quality of
the regional BU inventory (missing sources or over- and un-
derestimated source categories). An additional aim was to
investigate whether we could extend our knowledge of the
δ13CCH4(s) population statistics of CH4 sources in the region
for CH4 sources that were inaccessible during ground sur-
veys. We also used the measurements to identify mitigation
opportunities and to identify where more detailed CH4 emis-
sion source studies are required.

For CH4 emission studies both carbon (δ13C) and hydro-
gen (δD) isotopic composition can help with determining
CH4 sources and the extent of the mixing of various sources
(Lowry et al., 2020; Menoud et al., 2020, 2021; Röckmann
et al., 2016; Townsend-Small et al., 2015), but in this study
only δ13C is used. Due to the population range of δ13CCH4

values for each source, δ13CCH4 may or may not be use-
ful for source attribution (Lan et al., 2021; Lu et al., 2021;
Milkov and Etiope, 2018; Menoud et al., 2022a; Quay et
al., 1999; Sherwood et al., 2017, 2020). Thus, the interpreta-
tion of IFAA sample δ13CCH4(a) must be examined critically
in the context of likely sources documented in the BU in-
ventory upwind of a sample collection point. In other CH4
emission studies focused on the gas sector, ethane has been
used for fossil fuel attribution (Smith et al., 2015; Johnson et
al., 2017; Mielke-Maday et al., 2019). However, in the Surat
Basin ethane is not a useful tracer because the ethane content
of the produced gas is less than 1 % (Hamilton et al., 2012;
Sherwood et al., 2017).

The mixed source δ13CCH4(a) value of an IFAA sample can
be used to provide insights into what CH4 sources should be
in an upwind inventory (Lowry et al., 2020; Menoud et al.,
2022b; Townsend-Small et al., 2015; Worden et al., 2017;
Zazzeri et al., 2017). When used together, TD airborne mea-
surements and source tracers provide constrained estimates
for each source of CH4 and its contribution to the overall
emissions (Beck et al., 2012; Fisher et al., 2017; France et
al., 2016; Tarasova et al., 2006). Using IFAA sampling to
characterise the δ13CCH4(s) signatures of CH4 sources has
many challenges. To reduce the uncertainty in the derived
δ13CCH4(s) signatures, ideally many samples would be col-
lected in a plume from a known source, and these discrete
samples would be rapidly collected (as fast as possible).

However, when collecting IFAA samples there are often nu-
merous CH4 sources upwind, it takes time to fill the sample
collection bags (resulting in a sampling window in the order
of kilometres), assumptions must be made about the mixing
of air parcels within the convective boundary layer, and it is
often not possible to sample enough points to minimise the
uncertainty in δ13CCH4(s) signature estimates.

Assumptions must also be made about the uniformity of
emissions from all CH4 sources. A good BU inventory can
help to minimise some of these issues. However, BU inven-
tories can contain errors. Sources of CH4 may have been
overlooked when collating the inventory, or individual CH4
sources may have been over- or underestimated. Thus, there
is two-way feedback. The IFAA samples provide insights
into what is expected in the upwind BU inventory, and the
BU inventory guides what is expected in the IFAA samples.

On warm days the plumes for each CH4 source rise rapidly
and mix within the convective boundary layer with incom-
ing regional background air. Sampling flights were restricted
to when the convective boundary layer was greater than
1000 m a.g.l. and before the vertical mixing was suppressed
and the top of the convective boundary layer not definable
(Neininger et al., 2021). This mixing of both the relatively
small CH4 point and diffuse sources with incoming low mole
fraction CH4 background air within the large volume of the
convective boundary layer reduces the CH4 enhancement
over background to less than 0.1 ppm, often to the order of
0.01 ppm. The low CH4 enhancement also makes it difficult
to distinguish CH4 sources with isotope techniques where air
samples are collected over regions with multiple source cat-
egories. Given these challenges, and the spatial and temporal
variability of CH4 emissions in regions of complex indus-
trial and agricultural production, it is improbable that BU
inventories will exactly match TD estimates of CH4 emis-
sions. An IFAA sample should contain a blend of all sources
of CH4 immediately upwind of the sample in proportion to
the source strength and rate of mixing with incoming back-
ground air (the well-mixed air within the convective bound-
ary layer entering a region).

A well-established method to determine the δ13CCH4(s) sig-
nature is to collect air samples within the plume downwind
of the source and analyse the data using a two-endmember
mixing model (Keeling, 1961; Pataki et al., 2003; Miller and
Tans, 2003).

However, the airborne surveys were not designed to track
individual plumes; the flight tracks were designed to opti-
mise the results for regional mass balance estimates of CH4
emissions (Neininger et al., 2021). For aircraft surveys that
intersect multiple plumes we present an alternative method.
Multiple IFAA samples were collected downwind of a pre-
dominant inventory source category, for example CSG or
feedlots, and these samples were analysed in sets, which is
analogous to multiple samples in a plume. We demonstrate
how to analyse these IFAA samples using a detailed BU in-
ventory (presented in Neininger et al., 2021), Hybrid Single-
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Particle Lagrangian Integrated Trajectory (HYSPLIT) mod-
elling (Draxler et al., 1998), and multi-Keeling-model re-
gression with shared parameters (background-air CH4(b) and
δ13CCH4(b) ).

2 Materials and methods

2.1 Overview of the study area

The study area is in the Condamine natural resource manage-
ment region of southeast Surat Basin, Queensland (Fig. 1a).
It includes the southeast portion of the Surat Basin CSG
field, which is the largest CSG-producing field in Australia
with more than 60 % of Australia’s total proven gas reserves
(Australian Competition and Consumer Commission, 2020).
The CSG is primarily produced from coals with high perme-
ability in the middle Walloon Coal Measures (Baublys et al.,
2015; Draper and Boreham, 2006; Scott et al., 2007). In the
CSG field there are numerous CH4 emission sources includ-
ing CSG wells (exploration, appraisal, production, and aban-
doned), field compression stations, central processing plants,
gas and water transmission pipelines, and raw water ponds
(CSG co-produced water storage) (Fig. 1b). CH4 emitted
from agricultural activities is another major source of atmo-
spheric emissions. Grazing cattle herds, feedlots, and dairies
are spread throughout the study area, and grazing cattle and
feedlots are often adjacent to CSG infrastructure (Fig. 1b).
There is also stored animal waste associated with the cattle
feedlots and piggeries. Known but poorly quantified sources
of CH4 in the study area include bush fires, wetlands, ter-
mites, on-farm biosolid fertilisers, emissions from un-capped
coal and gas exploration wells, and emissions from an aban-
doned coal gasification development (Lu et al., 2021).

To support the airborne mass balance estimate of CH4
emissions presented in Neininger et al. (2021), the Univer-
sity of New South Wales (UNSW) prepared a BU inventory
for 2018, and comprehensive details of this inventory are pro-
vided in Neininger et al. (2021). The UNSW BU inventory is
larger than the region within which the IFAA samples were
collected (Fig. 1) to allow comparison between the IFAA
sample and the upwind BU inventory. The IFAA samples are
referenced using a four-number string: the first two numbers
are the day in September 2018, and the second two num-
bers are the sample reference for the day. A full listing of the
IFAA samples and their sample location details is presented
in Table A2.

2.2 BU and TD CH4 emission estimates in the Surat
Basin

The UNSW BU inventory closely followed the methods out-
lined in Australia’s 2018 National Greenhouse Gas Inven-
tory (Australian Government, 2020a). The UNSW inventory
covers known sources such as those from the CSG industry
and agriculture as well as sources discovered during the 2018

ground campaign in the study area (Lu et al., 2021). The
inventory was collated using publicly available data. These
data were supplemented with information from environmen-
tal impact approval reports, government and industry doc-
uments, close inspection of the satellite imagery in Google
Earth, and airborne and ground survey observations (dis-
cussed in Lu et al., 2021, and Neininger et al., 2021). The
locations of the sources contained in the UNSW inventory
are shown in Fig. 1b.

In Fig. 2a all point sources (CSG facilities, feedlots, coal
mines, etc.) are presented as an emission intensity map, and
in Fig. 2b the distributed sources are shown. Distributed
sources are multiple small sources spread evenly over a
subregion. For example, we know the total number of cat-
tle within a statistical district (Condamine, Burnett Mary,
and Queensland Murray–Darling Basin) but not their loca-
tions, so the emissions are spread evenly using the popu-
lation density. Comprehensive details about how the emis-
sions from distributed sources were determined are discussed
in Neininger et al. (2021, their Supplement, Sect. S). CSG
sources are concentrated in a northwest to southeast zone,
with agricultural sources on either side. The UNSW inven-
tory estimate for the CH4 emissions in the southeast por-
tion of the Surat Basin CSG fields for 2018 is 20 900 kg h−1

(183 Gg yr−1). In the UNSW inventory most of the emissions
come from cattle, which contribute 50.3 % (29.9 % from
grazing cattle, 19.1 % from feedlots, and 1.3 % from dairy
cattle); all CSG sources contribute 30.5 %, piggeries 8.7 %,
coal mines 7.6 %, and all other sources only 2.9 %. Within
the airborne measurement TD domain, the UNSW inventory
estimate for CH4 emissions is 11 500 kg h−1 (101 Gg yr−1),
and the percentage contribution order within the TD do-
main is different: CSG 53.7 %, feedlots 19.0 %, grazing cat-
tle 14.1 %, piggeries 7.3 %, coal 3.5 %, and all other sources
2.4 %. The heterogeneity of the point source emission rate
is visually apparent in Fig. 2a. Within the UNSW inven-
tory domain, 50 % of point sources have an emission rate
of less than 4.5 kg h−1. These point sources account for 59 %
of the UNSW inventory total. The top 10 % have an emis-
sion rate exceeding 113 kg h−1. The 42 sources in the top
10 % account for 37.7 % of the UNSW inventory total. The
largest individual source is an open-pit coal mine (27.28◦ S,
151.71◦ E; red square, Fig. 2a), which emits 843 kg h−1

(4.1 % of the UNSW inventory total). The second largest
source is a feedlot (27.42◦ S, 151.14◦ E; orange square,
Fig. 2a), which emits 563 kg h−1 (2.7 % of the UNSW in-
ventory total). The largest CSG source is a raw water pond
(26.96◦ S, 150.49◦ E; light green square, Fig. 2a), which
emits 221 kg h−1 (1.1 % of the UNSW inventory total).

The distributed sources of CH4 are dominated by grazing
cattle (dark red in Fig. 2b, 6.54 kg h−1 per 25 km2), followed
by the irrigation farming district (light blue, 0.64 kg h−1 per
25 km2), and then the forested areas with kangaroos (purple,
0.09 kg h−1 per 25 km2). There may also be some termite
emissions from the forest and agricultural areas, but these
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Figure 1. Map of the study area with flight tracks and in-flight atmospheric air (IFAA) sample locations (a) (inset map shows the location
in southeastern Queensland) and map of the CH4 sources in the area (b). (Inset map data: Australian Government (2020c), Administrative
Boundaries © Geoscape Australia; base map and data from OpenStreetMap and OpenStreetMap Foundation). The black dashed polygon
shows the extent of the TD domain, where the strong correlation between the UNSW BU inventory and the TD mass balance emission
estimate was established in Neininger et al. (2021). The diffuse CH4 emissions were determined for each Australian Bureau of Statistics
district (Condamine, Burnett Mary, and Queensland Murray–Darling Basin) and land use (mixed cropping and grazing, irrigated agriculture,
and forest) using annual agricultural production data.

have not been quantified. Grazing cattle account for 29.9 %
of the UNSW inventory total CH4 emissions, and the position
of this large source of CH4 emissions is one of the largest un-
certainties in the calculations below. To maintain soil health
and grass cover, the grazing cattle are rotated through various
fields, and at times the cattle also graze along the roadside.
The forested areas with large kangaroo populations were es-
timated to contribute only 0.2 % of all CH4 emissions. The
irrigated agricultural district was estimated to have diffuse
CH4 emission sources contributing only 0.7 % towards the
UNSW inventory total.

Using airborne measurement techniques, Neininger et
al. (2021) quantified the CH4 emissions in the southeast-
ern portion of the Surat Basin CSG fields and surrounding
agricultural districts. In the September 2018 campaign, there
were 10 flights (∼ 45 h) using a research motor glider op-
erated by Airborne Research Australia (ARA). Neininger

et al. (2021) showed that there was strong correlation be-
tween the TD CH4 flux estimate and the UNSW inven-
tory. Within the airborne survey domain, the TD esti-
mate was 13 500 kg h−1 (118 Gg yr−1), which is 1940 kg h−1

(17 Gg yr−1) higher than the UNSW inventory.

2.3 δ13CCH4(s)
signatures for each inventory category

The δ13CCH4(s) signatures of 16 primary sources in the Surat
Basin were characterised in Lu et al. (2021) using air sam-
ples collected during ground-based surveys. These values are
listed in Table A1 and were assigned to the different source
categories in the inventory to create isotopic source signature
maps. The spatial locations of the CH4 point sources and
their corresponding δ13CCH4(s) values are shown in Fig. 2a
and c. The distribution of the CH4 diffuse sources and corre-
sponding δ13CCH4(s) values are shown in Fig. 2b and d. For
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Figure 2. Maps of the UNSW BU inventory (5× 5 km for each grid cell) in the southeast portion of the Surat Basin CSG fields showing the
estimated CH4(s) emissions for point (a) and distributed (b) sources and assigned δ13CCH4(s) for point (c) and distributed (d) sources.

many source types only one δ13CCH4(s) signature was deter-
mined in Lu et al. (2021). Gaining access to a wide range of
farms and CSG facilities is difficult due to operational pro-
cedures and health and safety concerns. Therefore, an aim of
this study was to examine if IFAA samples can be used to
extend our knowledge of the CH4(s) signatures from various
sources in the Surat Basin.

From the ground-based studies, the δ13CCH4(s) signatures
from CSG processing and production facilities and CSG raw
water ponds ranged from −56.7 ‰ to −45.6 ‰ (Bayesian
95 % credible interval (Crl); Lu et al., 2021). CSG is ex-
tracted from a range of depths in the Surat Basin gas fields.
The shallowest coal measures tend to have a lighter iso-
topic signature and the deeper coal measures a heavier sig-
nature. This is due to the displacement of the original CH4 in
coal seams nearest the ground surface with biologically de-
rived CH4 (Iverach et al., 2015, 2017). The reported range
for δ13CCH4(s) from gas from the Walloon Coal Measures
is −64.1 ‰ to −44.5 ‰ (Baublys et al., 2015; Draper and
Boreham, 2006; Hamilton et al., 2014, 2015; Iverach et al.,
2015, 2017). The difference between the ground-based stud-
ies and well observations highlights the need to better charac-
terise δ13CCH4(s) population statistics of CSG and other CH4
sources.

In addition to CSG sources of CH4 there are four major
sources of CH4: feedlots, grazing cattle, piggeries, and coal
mines (Neininger et al., 2021). For each of these sources
only a single plume has been sampled to estimate δ13CCH4(s) ;
thus many more data sets need to be collected to robustly
define the population statistics. A useful measure for the
likely range of δ13CCH4(s) for each source category is sum-
marised by the δ13CCH4(s) Bayesian CrIs, which for the lim-
ited sampling to date are as follows: feedlots, −65.2 ‰ to
−60.3 ‰; grazing cattle, −61.7 ‰ to −57.5 ‰; piggeries
−48.0 ‰ to−47.1 ‰; and coal mines,−61.1 ‰ to−58.9 ‰.
Refer to Lu et al. (2021) for comprehensive details about
how these δ13CCH4(s) signatures were determined and details
about Bayesian regression.

For CH4 source categories listed in the BU inventories
that were not sampled during the mobile survey, δ13CCH4(s)

signatures were obtained from the literature. These include
the δ13CCH4(s) signatures for kangaroos (−80 ‰, Godwin et
al., 2014), on-farm waterbodies (dams) (−51.2 ‰, Day et
al., 2016), and domestic wood heaters and native vegetation
wildfires (−22.2 ‰, Ginty, 2016). There are also numerous
termite mounds in the region, but there have been no stud-
ies on the rate of CH4 emissions from these mounds nor has
δ13CCH4(s) been characterised for termites in the region. For
worker termites collected from mounds near Darwin, Aus-
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tralia, Sugimoto et al. (1998) reported δ13CCH4(s) values rang-
ing from−88.2 ‰ to−77.6 ‰. A major gas distribution line
passes through the region; this transports conventional gas
from the fields to the west of the study area to the LNG ter-
minals on the coast and for the domestic market at Brisbane
(Jemena, 2021). The δ13CCH4(s) population statistics for this
gas are not known.

2.4 Research aircraft instrumentation and collection of
the IFAA samples

Collecting IFAA samples in FlexFoil or similar bags is a
comparatively fast and cost-effective method and has been
used in numerous airborne and ground-based CH4 stud-
ies (Fisher et al., 2017; France et al., 2021; Lowry et
al., 2020; Menoud et al., 2022b). During the campaign in
September 2018, 92 IFAA samples were collected on board a
Diamond Aircraft HK36TTC ECO-Dimona, equipped with
underwing pods that housed the Los Gatos Research ul-
traportable greenhouse gas analyser and the modified LI-
COR LI-7500 open path gas analyser for fast CO2 and
H2O measurements and meteorological sensors for wind
and thermodynamic parameters. Specifications of the air-
borne platform and instruments are described in Neininger
et al. (2021). Sample bags were manually filled in the cock-
pit by connecting them to an air sampling tube, which had
an inlet mounted far outside of the fuselage under the wing.
Air was drawn into 3 L SKC FlexFoil PLUS (SKC Inc.,
USA) sample bags with polypropylene fittings. Ambient air
was drawn from the intake with the assistance of a Viton
membrane pump via polyurethane tubing. Before opening
the valve of the sampling bags, the fitting was carefully
flushed to avoid sampling cockpit air. The duration of bag
filling was ∼ 1 min, which covers a track length of about
3 km at the flying speed of ∼ 170 km h−1. All IFAA samples
presented in this study were collected within the convective
boundary layer. During each flight, the top of the convective
boundary layer was established several times by ascending
and descending between the lower transects. During the sur-
veying period, the convective boundary layer typically had
an upper altitude limit ranging from 1700 to 2700 m a.g.l.
(Neininger et al., 2021). Most of the airborne measurement
surveying for the mass balance surveying and IFAA sampling
was flown at altitudes of approximately 150 and 300 m a.g.l.
(Fig. 3a). IFAA samples were collected on each transect, with
up to 25 samples being collected in 1 d. When CH4 plumes
were identified from the on-board real-time display, addi-
tional samples were collected. The IFAA sample locations
for the 4 d analysed below are shown in Fig. 1a.

When collecting IFAA samples there are many sampling
and logistical challenges. We collected 3 L samples of air
to enable both on-site testing and accurate laboratory mea-
surements, and we used SKC FlexFoil PLUS bags to reduce
the cost of the project. Also, because the air samples were
collected manually and stored in the cockpit, the number of

Figure 3. IFAA sample observations between altitudes 100–
350 m a.g.l. (a) IFAA sample altitude (m a.g.l.) versus IFAA sample
CH4(a) (ppm). This plot highlights the sampling at altitudes of ap-
proximately 150 and 300 m. (b) Back-trajectory footprint bottom–
up (BTF BU) inventory CH4 (kg h−1) versus IFAA sample CH4(a)
(ppm). The linear regression fit highlights the moderate correlation
(R2
= 0.59) between the two variables. The grey zone is the 95 %

confidence level. (c) A Keeling plot: IFAA samples δ13CCH4(a) ver-
sus IFAA sample 1/CH4(a) (ppm). (The error bars are 1 standard
deviation. For 1/CH4(a) the errors are too small to be observable;
IFAA samples 1604, 1817, 1906, 2103, and 2105 are discussed in
detail in the main text.)
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samples collected in each sampling run was limited to a max-
imum of ∼ 15. A purpose-built sampling system that rapidly
fills 1 L canisters would potentially enable in-plume higher
mole fraction IFAA samples to be collected. The smaller can-
isters would also allow for more samples to be collected on
each flight. More in-plume samples with higher CH4 mole
fraction values would reduce the uncertainty in the derived
δ13CCH4(s) signatures. However, if the plume is heterogenous
there is also a risk that rapidly filling the canisters will not
sample the highest mole fraction portions of the plume.

2.5 Calculation of the 2 h back-trajectory footprint BU
inventory emissions

For each IFAA sample the back-trajectory footprint (BTF)
was calculated using the NOAA Air Resources Laboratory’s
(ARL) HYSPLIT model (Draxler et al., 1998) (Fig. A1 in
Appendix A). HYSPLIT was used for this study because it
is publicly available, enabling the methods presented here
to be replicated by others. The HYSPLIT model is widely
used for tracking air parcel trajectories as well as calculat-
ing transport, dispersion, and deposition of pollutants and
hazardous materials (Stein et al., 2015). In this study, we
determine the contributing CH4 sources (from the UNSW
BU inventory in Neininger et al., 2021) of an IFAA sam-
ple within a BTF based on the 2 h HYSPLIT back trajec-
tory starting at the IFAA sampling height and at the mid-
point of the IFAA sampling interval. The HYSPLIT back-
trajectory calculations were done using the global data as-
similation system (GDAS) 0.5◦ meteorology option (GDAS
0.5◦, global September 2007–June 2019, using the normal
trajectory, and for the vertical motion we selected to model
the vertical velocity). The 2 h period was based on the for-
ward and inverse plume modelling in Neininger et al. (2021),
which established that most of the CH4 enhancement along
a flight line could be attributed to a CH4 source located
within 2 h, and within 0.025, 0.05, and 0.1◦ longitude/lati-
tude on each side of the IFAA sample collection mid-point
1 and 2 h back-trajectory locations (refer to Fig. A1 for the
HYSPLIT back trajectories and Fig. A2 for a representative
BTF inventory polygon; also refer to Neininger et al. (2021),
Supplement, Fig. SF26, for an example of the more detailed
back-trajectory modelling, used to guide the HYSPLIT set-
tings). Using the HYSPLIT BTF to determine contribut-
ing sources is an easy-to-replicate method. A more rigor-
ous method would involve forward modelling the mixing of
plumes for the prevailing meteorological conditions. Given
that there are over 6000 point and distributed CH4 sources
in the region, it is beyond the scope of this project to model
the plume extending from each source and δ13CCH4(s) mix-
ing. For the goal of identifying major upwind sources of
CH4, the HYSPLIT BTF results compared favourably when
checked against the higher-resolution local-scale modelling
in Neininger et al. (2021). As the wind speeds changed
throughout the sampling campaign this results in a differ-

ent BTF for each sample. However, as will be shown below,
for the purpose of identifying inventory knowledge gaps and
mitigation opportunities, the variations in the BTF land sur-
face area analysed are not critical for this study.

2.6 IFAA sample CH4(a) mole fraction and δ13CCH4(a)
measurements

All CH4 mole fractions and δ13CCH4 values reported be-
low were measured in the greenhouse gas laboratory at
Royal Holloway, University of London (RHUL) (Fisher et
al., 2006). For quality control, the IFAA samples were anal-
ysed on-site prior to shipping to the UK using a Picarro
G2201-i cavity ring-down spectrometer (CRDS) (Picarro,
Inc., USA). This was done to check for contamination during
transportation to RHUL. If the UNSW and RHUL CH4 mole
fraction values had a relative difference of greater than 1 %,
the samples were removed and not analysed further. Forty-
nine useable IFAA samples were collected. These samples
had a median CH4 mole fraction difference of 0.4 % between
the UNSW and RHUL measurements. The Picarro G2201-i
used for this quality control step had been previously cali-
brated via an interlaboratory comparison between the Com-
monwealth Scientific and Industrial Research Organisation
(CSIRO), UNSW, and RHUL. This calibration used South-
ern Ocean air from 2014 and 2016. Comprehensive details
of the Picarro G2201-i performance are discussed in Lu et
al. (2021). To control for any potential instrument drift, stan-
dardised Southern Ocean air was analysed at regular inter-
vals, typically every 120 min, and if required, a drift correc-
tion was applied.

At RHUL, a Picarro G1301 CRDS (Picarro, Inc., USA)
and a modified gas chromatography isotope ratio mass spec-
trometry (GC-IRMS) system (trace gas and isoprime mass
spectrometer, Elementar UK Ltd., UK) (Fisher et al., 2006)
were used for the measurement of CH4 mole fraction and
δ13CCH4 , respectively. The Picarro G1301 CRDS has a re-
producibility of ±0.0003 ppm. Air standards from the Na-
tional Oceanic and Atmospheric Administration (NOAA)
were used to calibrate the CRDS to the WMO X2004A scale
(Dlugokencky et al., 2005; WMO, 2020). The CH4(a) mole
fraction of each IFAA sample was determined by analysing
the sample for 210 s on the Picarro G1301, and the average
value of the last 90 s was recorded. All IFAA samples were
measured in triplicate to obtain δ13CCH4(a) on the Vienna
Pee Dee Belemnite (VPDB) scale using GC-IRMS. When
the standard deviation of the first three analyses was greater
than the target instrument precision of 0.05 ‰, a fourth anal-
ysis was performed. For more detailed information about the
instrumentation and measurement procedure, see Fisher et
al. (2006) and Lu et al. (2021).
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2.7 Points of interest identification and application of
multi-Keeling-model regression

Different CH4 formation processes result in each CH4 source
having different δ13CCH4 population statistics for both the
range and distribution shape (Whiticar, 1999; Sherwood et
al., 2017, 2020; Menoud et al., 2022a). Thus, the isotopic
composition of air samples can be used to identify inputs
from similar sources, the extent of mixing of two or more
sources, and samples that are offset to the isotopic compo-
sition expected from the BU inventory. IFAA samples of in-
terest are those that have relatively high CH4(a) or different
than expected δ13CCH4(a) (below called points of interest) be-
cause these samples may indicate over- or underestimation
of CH4 emissions in the BU inventory. The points of interest
can also indicate that a source of CH4 has been missed in the
BU inventory. A point of interest may also indicate sampling
or measurement errors, but this is unlikely for the samples
analysed, due to the quality assurance measures at all stages
of sampling and measurement.

Subsets of samples were collated based on altitude
(Fig. 3a) and the dominant CH4 source in the BTF BU in-
ventory (Tables A2, A3 and A4). Before sorting the data into
subsets, points of interest were identified by visual inspection
using two graphs: the BTF BU inventory vs. IFAA sample
CH4 (Fig. 3b) and a Keeling plot (δ13CCH4(a) vs. 1/CH4(a))
(Fig. 3c). Although the points of interest were removed for
the Keeling-model regression analysis, they are still anal-
ysed in the context of their position within the Keeling plot
(Fig. 3c). After the points of interest were identified, the
IFAA samples that had a single source that represented over
50 % of the 2 h back-trajectory inventory were combined into
sets for the multi-Keeling-model regression with shared pa-
rameters analysis. Keeling analysis sets for the following cat-
egories were collated:

– CSG> 50 % BTF BU inventory, 100–200 m a.g.l.

– CSG> 50 % BTF BU inventory, 250–350 m a.g.l.

– grazing cattle> 50 % BTF BU inventory,
100–200 m a.g.l.

– grazing cattle> 50 % BTF BU inventory,
250–350 m a.g.l.

– feedlots > 50 % BTF BU inventory, 100–350 m a.g.l.

The > 50 % threshold was set to achieve a balance between
reducing the uncertainty in the regression and having a pre-
dominant CH4 source type in the upwind inventory. Ideally
a higher threshold would be used, but this would require the
collection of a greater number of IFAA samples than done
in this study. The derived δ13CCH4(s) signatures for each cat-
egory will be affected by the threshold, but the relative in-
sights about a category being isotopically heavier or lighter
will not.

For coal mines and piggeries there are only two BTF BU
inventories with > 50 % emissions from these sources (Ta-
bles A3 and A4). As a result, these categories could not be
analysed using the modelling methods below. There is only
one category for feedlots because there are too few points
for the Keeling analysis in the 100–200 and 250–350 m a.g.l.
data sets.

For two-endmember mixing (a source of CH4 mixed in
background air), the δ13CCH4(s) signature of the source mix-
ing in background air is calculated using the Keeling-model
method (Keeling, 1961; Pataki et al., 2003). The Keeling
model is

δ13CCH4(a) = CH4(b)(δ13CCH4(b) − δ
13CCH4(s) ) · 1/CH4(a)

+ δ13CCH4(s) , (1)

where CH4(a) and δ13CCH4(a) are the IFAA sample values,
CH4(b) and δ13CCH4(b) are the background-air values, and
δ13CCH4(s) is the isotopic composition of the source.

In this study, for each source category 4 to 10 IFAA
samples were collected where a single-source category
contributed > 50 % of the BTF BU inventory emissions.
For each category the samples were collected on different
days and each day would have subtly different CH4(b) and
δ13CCH4(b) . Regression of a single-source data set is poorly
constrained, resulting in large uncertainties in the derived
δ13CCH4(s) due to the low enhancement above background
(less than 0.040 ppm) and the small number of samples in
each category (Appendix B). To improve the confidence in
the derived δ13CCH4(s) , δ

13CCH4(b) , and CH4(b), the Keeling
model (Eq. 1) was fitted simultaneously to all source cat-
egory data sets using multi-Keeling-model regression with
shared parameters (CH4(b) and δ13CCH4(b) ), calculated using
the MultiNonlinearModelFit function in Mathematica (Ver-
sion 12.0) (Wolfram Research Inc., 2019). This algorithm
globally optimises δ13CCH4(s) for each category and returns
the shared values for CH4(b) and δ13CCH4(b) . Comprehen-
sive details about the Mathematica MultiNonlinearModelFit
function for fitting multiple data sets to multiple expressions
that share parameters are available from the Wolfram func-
tion repository (Smit, 1986).

When the multi-Keeling-model regression with shared
parameters is applied globally to all category data sets, the
values for δ13CCH4(CSG-100to200), δ13CCH4(CSG-250to350),
δ13C(Grazing-100to200), δ13CCH4(Grazing-250to350), and
δ13CCH4(Feedlots-100to350) are unconstrained (allowed to
vary during the regression). Background-air CH4(b) and
δ13CCH4(b) are also unconstrained, and a single optimal set
is determined. This assumes that CH4(b) and δ13CCH4(b)

are similar on all days, which both the continuous ground
surveying and airborne measurements results support (Lu
et al., 2021; Neininger et al., 2021). This assumption is
discussed further in Sect. 3.3.1. Because there are subtle
changes in CH4(b) and δ13CCH4(b) throughout the campaign
the multi-Keeling-model regression-determined values for
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CH4(b) and δ13CCH4(b) represent the background-air centroid
for all days of measurements.

Miller and Tans (2003) discussed rearranging Eq. (1) for
different data collection scenarios and regression aims. One
algebraic expression rearrangement enables the source sig-
nature to be determined when CH4(b) and δ13CCH4(b) are un-
known:

δ13CCH4(a)CH4(a) = δ
13CCH4(s)CH4(a)

+CH4(b)(δ13CCH4(b) − δ
13CCH4(s) ). (2)

Like Eq. (1), when Eq. (2) is fitted to individual categories,
it is poorly constrained for the dimensions of the data sets
analysed.

A second algebraic expression rearrangement by Miller
and Tans (2003) requires δ13CCH4(b) and CH4(b) to be speci-
fied:

δ13CCH4(a)CH4(a)− δ
13CCH4(b) CH4(b)

= δ13CCH4(s) (CH4(a)−CH4(b)). (3)

For Eq. (3) CH4(b) and δ13CCH4(b) can be either constant or
varying in time. A multi-Miller–Tans-model regression is
equivalent to assuming constant CH4(b) and δ13CCH4(b) , and
under this assumption fitting either Eq. (1) or (3) using mul-
tiple regression with shared CH4(b) and δ13CCH4(b) will result
in the same values being determined for the shared CH4(b)
and δ13CCH4(b) . Similarly, for each category almost identi-
cal values for CH4(b) and δ13CCH4(b) are determined within
the precision of the simultaneous multiple regression calcu-
lations.

In Lu et al. (2021) Bayesian regression was used, and the
credible interval (CrI) reported. The frequentist 95 % confi-
dence interval (CI) is analogous to the Bayesian Crl (Lu et
al., 2012; Albers et al., 2018). To allow direct comparison
between this study and Lu et al. (2021), the 95 % confidence
interval is reported below for δ13CCH4(s) .

A subset of visually identified points of interest (1604,
1906, and 2103), all with low δ13CCH4(a) values, is analysed
using the results of the multi-Keeling-model regression. Us-
ing the values for CH4(b) and δ13CCH4(b) derived from the
multi-Keeling-model regression, the Keeling model (Eq. 1)
is fitted to this subset to determine its δ13CCH4(s) . For this
subset a similar result could be obtained using Eq. (2).

3 Results and discussion

3.1 IFAA sample locations and CH4 enhancement
relationships

In Fig. 1 the location of the IFAA samples is shown. Most of
the samples were collected near or above the CSG fields. As
part of the surveying on both the 16 and 18 September 2018,
IFAA samples were collected remote from CSG production
above the agricultural districts. Figure 3a shows that the

IFAA samples were collected at two focused-altitude inter-
vals: between 100 and 200 m a.g.l., with most IFAA samples
collected at approximately 150 m a.g.l., and between 250 and
350 m a.g.l., with most samples collected at approximately
300 m a.g.l.

A plot of the BTF BU inventory emissions (kg h−1) versus
IFAA sample CH4(a) (ppm) shows that there is a moderate
correlation (R2

= 0.59) (Fig. 3b). This moderate correlation
is expected because the mixing of multiple CH4 sources un-
der turbulent atmospheric conditions is not a linear process,
the inventory is calculated using annual data, and the rate of
emissions for many CH4 sources in the inventory will vary
either throughout the seasons (agriculture) or daily (for ex-
ample, CSG production or grazing cattle location). In Fig. 3c
three samples have relatively high CH4(a) values (IFAA sam-
ples 2103, 2105, and 2111), and these points are discussed in
detail below. IFAA sample 1817 is highlighted, as it is dis-
cussed in Sect. 3.4.

The IFAA samples are shown in a Keeling plot (Fig. 3c).
In this graph three points with relatively low δ13CCH4(a) mea-
surements are highlighted: 1604, 1906, and 2103. These
three points were not included in the initial Keeling analysis
but are analysed using insights from the multi-Keeling-model
regression.

3.2 IFAA samples δ13CCH4(a)
versus BTF BU inventory

source category contribution

The 2 h back trajectories calculated using HYSPLIT for
each day are shown in Fig. A1 and for each category set
in Figs. A3, A4, and A5. The total emissions from each
IFAA sample’s HYSPLIT BTF were determined based on
the UNSW BU inventory (Neininger et al., 2021, their Sup-
plement) and listed in column 8, Table A2. The total CH4
emissions in each IFAA sample’s BTF range from 2.7 to
2209.1 kg h−1 (each BTF BU inventory is a subset of the
UNSW inventory). Five source categories account for most
of the CH4 emissions in the Surat Basin: CSG, feedlots, graz-
ing cattle, piggeries, and coal mine emissions (Neininger et
al., 2021). The contribution of the individual source cate-
gories to the total emissions in the BTF were calculated as
outlined in Neininger et al. (2021) and are expressed as per-
centages of the total emissions in Fig. 4.

There are three unknown parameters in the Keeling model
(Eq. 1) (δ13CCH4(s) , CH4(b), and δ13CCH4(b) ) and one indepen-
dent variable (CH4(a) (x axis 1/CH4(a) in the Keeling plot)).
To fit the Keeling model (Eq. 1) using the NonLinearMod-
elFit and MultiNonlinearModelFit functions in Mathematica,
a minimum of four IFAA samples is required (four CH4(a)
and δ13CCH4(a) pairs).

For inclusion in the Keeling analysis input set for each
CH4 source category, an individual source (CSG, grazing cat-
tle, or feedlots) had to contribute > 50 % of the BTF CH4
emissions (Tables A3 and A4). The 50 % threshold was set
to have enough points in each Keeling modelling set and
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Figure 4. IFAA sample δ13CCH4(a) (‰) versus percentage of BTF BU inventory emissions of the source categories indicated in the figure
titles (%). (a) BTF BU inventories with CSG CH4 contributions; IFAA sample 2103 was excluded from the Keeling modelling set. (b) BTF
BU inventories with grazing cattle CH4 contributions; IFAA samples 1604, 1906, and 2103 were excluded from the Keeling modelling sets.
(c) BTF BU inventories with feedlot CH4 contributions. Category sets used in the Keeling plot modelling are each indicated by a separate
colour, as shown in the colour keys. Samples below the 50 % BTF BU inventory threshold were excluded from the Keeling modelling.

still have one source potentially dominate the emissions. For
each source category the set of samples that matched the
threshold criteria is highlighted in colour in Fig. 4 and Ta-
bles A2, A3, and A4. IFAA samples excluded from the ini-
tial Keeling analysis are labelled in Fig. 4a and b. The HYS-
PLIT back trajectories for each IFAA sample are shown in
Figs. A3, A4, and A5. These trajectories highlight that nei-
ther a single-point source nor a plume was sampled. Rather
multiple plumes, where one source category dominated emis-
sions, were analysed as a set (Fig. 4).

3.3 Multi-Keeling-model regression using shared
parameters

In Fig. 5a the result of using multi-Keeling-model regres-
sion with shared background CH4(b) and δ13CCH4(b) is shown,
and the regression statistics are summarised in Table A5. Be-
cause CH4(b) and δ13CCH4(b) are shared parameters, all Keel-

ing lines converge to a common point for background air. The
resulting values of this regression for the mole fraction and
isotopic composition of the background are discussed below.

In Fig. 5b the result of using multi-Miller–Tans-model
regression with shared background CH4(b) and δ13CCH4(b)

is shown, and the regression statistics are summarised in
Table A5. As expected, these are within measurement er-
ror identical to the Keeling-model results. For this reason,
the results below are discussed with reference only to the
Keeling-model algebraic expression representation of the
two-endmember mixing model. For the reader interested in
seeing the results of fitting the Keeling (Eq. 1) and Miller–
Tans (Eq. 2) models to the individual categories, they are
presented in Appendix B.
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Figure 5. Multiple regression with shared CH4(b) and δ13CCH4(b)
for the Keeling model (a, solid lines, Eq. 1) and the Miller–Tans
model (b, solid lines, Eq. 3) for the category subsets listed in the
colour key. Refer to Table A5 for all regression results and their er-
ror statistics. The δ13CCH4(s) signature for each category is listed
near the lines of best fit for each category. The dashed purple line
in (a) shows a Keeling model (Eq. 1) fitted to IFAA samples 1604,
1906, and 2103 (for this regression CH4(b) and δ13CCH4(b) were
fixed to match the results of the multi-Keeling-model regression
with shared CH4(b) and δ13CCH4(b) ). To highlight the subtle dif-
ferences in the multiple regression best-fit parameters, the derived
CH4(b) and δ13CCH4(b) values are given to an extra significant fig-
ure in (a) and (b) compared to the measurement precision. All error
bars are 1 standard deviation.

3.3.1 Background air (CH4(b) and δ13CCH4(b)
)

In a region with so many sources (Figs. 1 and 2), collect-
ing IFAA samples to define both background CH4(b) and
δ13CCH4(b) was not successful. Each day IFAA samples were
collected remote from sources (Fig. 1a) with the aim of
providing data to define background CH4(b) and δ13CCH4(b) .
Subsequent analysis of all the IFAA samples indicated that
none of the IFAA samples matched the low CH4 mole frac-
tions recorded in Neininger et al. (2021). The background
CH4 mole fraction recorded in continuous airborne surveys
in Neininger et al. (2021) was stable between days and
varied between 1.822 and 1.827 ppm. This range was es-
tablished over 2 weeks with varying wind directions. For
the period analysed in this study the wind directions were
southwest averaging 8.6 m s−1, 16 September 2018; north
averaging 4.1 m s−1, 18 September 2018; northwest aver-
aging 6.8 m s−1, 19 September 2018; and southeast aver-
aging 5.4 m s−1, 21 September 2018 (Fig. A1). How the
background CH4 mole fraction was defined each day is dis-
cussed at length in the supporting information of Neininger
et al. (2021).

There is no official atmospheric greenhouse gas monitor-
ing station in the Surat Basin or anywhere in Queensland.
The closest monitoring station is at Cape Grim, 1500 km
south, which for September 2018 recorded averages of
1.8300 ppm and−47.3 ‰ (https://capegrim.csiro.au/, last ac-
cess: 8 December 2022).

During the multi-Keeling-model regression calcula-
tion, the values for CH4(b) and δ13CCH4(b) were al-
lowed to vary. The resulting values for background
air are CH4(b) = 1.826 ppm (CI 95 %± 0.037 ppm) and
δ13CCH4(b) =−47.3 ‰ (CI 95 %± 0.3 ‰). This result falls
within the CH4(b) range reported in Neininger et al. (2021)
(between 1.822 and 1.827 ppm), and δ13CCH4(b) matches the
Cape Grim value for the corresponding month (−47.3 ‰).
The good match of the regression-derived CH4(b) and
δ13CCH4(b) with the independent measurements of CH4(b) and
δ13CCH4(b) demonstrates that multi-Keeling-model regression
is a useful methodology for obtaining insights about the iso-
topic composition of the atmosphere.

3.3.2 CSG>50 % BTF BU inventory, 250–350 m a.g.l.

IFAA samples included in this set were collected on all
days (16, 18, 19, and 21 September 2018) and under dif-
ferent prevailing wind directions (Fig. A3a). These sam-
ples were collected either directly over or immediately ad-
jacent to the CSG fields, and the resulting δ13CCH4(s) sig-
nature can be considered representative of blended CSG
CH4 sources. The IFAA sample-derived δ13CCH4(s) signa-
ture for CSG> 50 % BTF inventory, 250–350 m a.g.l., was
−55.4 ‰ (CI 95 %± 13.7 ‰, black line Figs. 5a and 6a),
which is within the range listed in Table A1 (CrI:−56.7 ‰to
−45.6 ‰, grey band Fig. 6a) for CSG sources measured in
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Lu et al. (2021). The large uncertainties are due to the small
CH4 enhancement, the small number of samples in each cat-
egory data set, and the fact that in most cases there will be
some small measure of input from multiple endmembers, al-
though everything is modelled as if there is two-endmember
mixing (one source and one background air). The overlap be-
tween the calculated and expected δ13CCH4(s) is shown graph-
ically in Fig. 6a. Figure 4a shows that 5 of the 10 sample
points had more than 90 % of the emissions in the BTF BU
inventory derived from CSG sources, and in each case most
of the CH4 emissions were from CSG compression stations.
This result further validates both the methodology used in
this study and the results in Lu et al. (2021).

3.3.3 CSG>50 % BTF BU inventory, 100–200 m a.g.l.

For the CSG> 50 % BTF BU inventory, 100–200 m a.g.l., set
the δ13CCH4(s) signature was −65.4 ‰ (CI 95 %± 13.3 ‰,
blue line Figs. 5a, and 6a, also see Fig. A3b). This is con-
siderably isotopically lighter than the higher-altitude CSG
set discussed above and lower in value compared to all pre-
vious CSG measurements from Lu et al. (2021). The 100–
200 m a.g.l. CSG δ13CCH4(s) signature is within the δ13CCH4(s)

signature range reported in the literature for the Walloon
Coal Measures (−64.1 ‰ to −44.5 ‰; Baublys et al., 2015;
Draper and Boreham, 2006; Hamilton et al., 2014, 2015;
Iverach et al., 2015, 2017) but is isotopically lighter than
the range reported in Lu et al. (2021). In Fig. 6a all 100–
200 m a.g.l. samples (blue points) are systematically isotopi-
cally lighter than the high-altitude, 250–350 m a.g.l. IFAA
samples (black points). This offset is difficult to explain from
the data collected.

With reference to the results in Tables A2, A3, and A4,
the lower 100–200 m a.g.l. CSG set had no significant dif-
ference in the median CH4 compared to the higher 250–
350 m a.g.l. set (1.849 to 1.847 ppm, respectively). However,
there are two noticeable differences between the high- and
low-altitude CSG sets: the median BTF BU inventory emis-
sion rate is 380 kg h−1 lower for the 100–200 m a.g.l. altitude
set, and CSG sources for the 100–200 m a.g.l. set tally to a
median emission rate that is 187 kg h−1 less than the 250–
350 m a.g.l. CSG set. But these differences do not account
for the lighter δ13CCH4(s) signature for the 100–200 m a.g.l.
CSG set. There was also no significant difference between
the low and high CSG BTF BU inventories with respect to ei-
ther the grazing cattle or feedlot percentage inputs. Both CSG
sets have samples collected on the 18, 19, and 21 Septem-
ber 2018; both sets cover a range of CSG areas (Fig. A3). In
Fig. 6a all these lower-altitude samples where the upwind in-
ventory is dominated by CSG sources are isotopically lighter
than expected.

For three samples in the 100–200 m a.g.l. CSG set (1821,
1823 and 1911), greater than 88 % of the BU inventory emis-
sions are due to CSG sources (Table A3); thus a δ13CCH4(s)

value of−56.7 ‰ to−45.6 ‰ would be expected (Table A1).

However, these samples are part of a category set that had
a best-fit value of −65.4 ‰. Assuming that there are no
major issues with the inventory, it would suggest that the
ground-based study (Lu et al., 2021) did not capture the
full δ13CCH4(s) population range for CSG sources. The low
−65.4 ‰ value could also be explained by a higher propor-
tional contribution from cattle emissions on the day of sam-
pling or unaccounted emissions from termites. An additional
possibility is that the air upwind of the 2 h limit is really a
blend of background and other upwind sources and that the
extent of enhancement of the air entering the 2 h limit was
enough to invalidate the assumption of predominantly two-
endmember mixing. Thus, an apparent source signature has
been determined (Vardag et al., 2016). This possibility could
be examined using a multisource transport model.

Ideally future chemical analysis of airborne collected air
samples should include the measurement of δD to assist with
constraining source attribution.

3.3.4 Grazing cattle >50 % BTF BU inventory,
250–350 m a.g.l.

There were only four 250–350 m a.g.l. IFAA samples where
grazing cattle contributed > 50 % of the BTF BU inventory
emissions. These four points were clear of most other sources
of emissions (Fig. A4a). The prevailing wind was from the
southwest for sample 1603 and from the northeast for sam-
ples 1803, 1804, and 1805. Prior to sample collection the air
had travelled over regions dominated by agriculture, mostly
grazing cattle and mixed cropping. The multi-Keeling-model
regression δ13CCH4(s) signature for the category grazing cattle
> 50 % BTF BU inventory, 250–350 m a.g.l., was −60.5 ‰
(CI 95 %± 15.6 ‰, Figs. 5a and 6b green line). This matches
the grazing cattle result in Lu et al. (2021) (Fig. 6b grey
band). This result indicates that in mixed cropping districts
where grazing cattle are the dominant source of CH4 emis-
sions, the expected and measured δ13CCH4(s) values align.

3.3.5 Grazing cattle >50 % BTF BU inventory,
100–200 m a.g.l.

The multi-Keeling-model regression δ13CCH4(s) signature for
the category grazing cattle> 50 % BTF BU inventory, 100–
200 m a.g.l., was −53.8 ‰ (CI 95 %± 17.4 ‰, Figs. 5a and
6b red line). This is too isotopically heavy for cattle and is
closer to the expected value for CH4 emissions from CSG.
Referring to Figs. 1a and A4b there are three possibilities
that need further investigation.

The most likely explanation consistent with the source
being within the 2 h BTF area is that there are numer-
ous CSG production wells and associated gas pipelines and
co-produced water pipelines (which have many high-point
vents) immediately upwind of IFAA samples 1903, 1904,
1908, 1910, and 1912. Thus, there are numerous locations
where venting could have been occurring on the day. In sup-
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Figure 6. Expected versus measured δ13CCH4(a) for each CH4 source category. The expected source category δ13CCH4(s) values from Lu et
al. (2021), Table A1, are shown as thin continuous Keeling lines (without number values) for the upper and lower Bayesian credible interval
for the category (where the credible interval is analogous to the 95 % confidence interval). The thick lines represent Keeling lines based on the
IFAA samples (including derived source signatures). The IFAA sample point and measurement uncertainty are also shown for each category
data set. The categories are (a) CSG > 50 % BTF inventory, 100–200 m a.g.l. (blue), and CSG > 50 % BTF inventory, 250–350 m a.g.l.
(black); (b) grazing cattle> 50 % BTF inventory, 100–200 m a.g.l. (red), and grazing cattle> 50 % BTF inventory, 250–350 m a.g.l. (green);
(c) feedlots> 50 % BTF inventory, 100–350 m a.g.l. (yellow points (100–200 m a.g.l.) and orange points (250–350 m a.g.l.)). All error bars
are 1 standard deviation.

port of local CSG production causing the heavier than ex-
pected signature, IFAA sample 1808 plots on the grazing cat-
tle line in Figs. 5a and 6b, and it has no CSG wells upwind
(refer to the upper right inset Fig. A4b).

The second potential explanation is larger than expected
urban CH4 emissions. IFAA sample 1910 is downwind
of Chinchilla (population ∼ 6000), and 1912 is downwind
of the towns of Condamine (population ∼ 400) and Drill-
ham (population ∼ 130). In Table 2 there are four domestic
sources of CH4 that could be contributing to the heavier than
expected δ13CCH4(s) signature.

The third possible explanation is that CH4 emissions from
the northwestern Surat Basin CSG facilities have been sam-
pled in the north of the study area on 19 September 2018.
Just beyond the 2 h back trajectories shown in Fig. A4b the
air parcels would have travelled over the largest northwest
Surat Basin gas fields near Woleebee Creek, which contains
CSG plants, distribution hubs, and water treatment facilities.
However, with reference to the modelling in Neininger et
al. (2021) this is less likely compared to the first explanation
that there are greater local CSG emissions than estimated in
the inventory.

3.3.6 Feedlots >50 % BTF inventory, 100–350 m a.g.l.

Due to too few points meeting the threshold requirement for
the 100–200 and 250–350 m a.g.l. categories, the feedlot set
was obtained by combining both altitude sets (Figs. 6c and
A5). The derived multi-Keeling-model regression δ13CCH4(s)

signature for the category feedlots > 50 % BTF inventory,
100–350 m a.g.l., was −69.6 ‰ (CI 95 %± 22.6 ‰, Fig. 6c
orange line), which is isotopically lighter than the −65.2 ‰
to −60.3 ‰ (CrI) listed for feedlots in Table A1 and shown
in Fig. 6c (grey band) but still compatible within the de-
rived 95 % confidence intervals. There are also too few val-

ues in the literature to fully characterise the population statis-
tics for the δ13CCH4(s) signature of feedlot emissions in Aus-
tralia, and this result may be simply better characterising
the δ13CCH4(s) signature population range for feedlots. An-
other option to be explored as part of further ground stud-
ies is that there may be other isotopically lighter biologi-
cal sources associated with the feedlots. For example, one of
the feedlots sampled was Australia’s largest feedlot (Grass-
dale), which has commercial-scale fertiliser production on
site (https://www.grassdalefert.com.au/, last access: 8 De-
cember 2022), and this potential source of CH4 is not incor-
porated into any of the BU inventories for the region. This
may be a biological source of CH4 with a lighter δ13CCH4(s)

signature.

3.3.7 Analysis of the isotopically light IFAA samples

IFAA samples 1604, 1906, and 2103 are identified as be-
ing isotopically lighter compared to the other samples and
were not used in any of the source category data sets. Us-
ing the multi-Keeling-model regression-derived background-
air values (1.8258 ppm and −47.33 ‰), the Keeling model
was fitted to 1604, 1906, and 2103 (Fig. 5a purple dashed
Keeling line). The fitted model has a δ13CCH4(s) signature of
−80.2 ‰ (CI 95 %± 4.7 ‰). The only source listed in Ta-
ble A1 that has this δ13CCH4(s) signature is kangaroos, but
this would not be a significant CH4 source for these sam-
ples. There is another biological source of CH4 in the grazing
cattle and mixed cropping districts that could be a contribu-
tor, upwind of IFAA samples 1604 and 1906. There are three
sources of CH4 listed in Sherwood et al. (2017, 2020) and
Menoud et al. (2022a) with δ13CCH4(s) signatures of −80 ‰:
wetlands, waste, and termites. Of these three sources termites
are the most likely, as termite mounds were observed dur-
ing the field campaign in many of the forested and dryland
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farming regions. For IFAA sample 2103 both the brine wa-
ter ponds and termites could be the missing biological source
with a low δ13CCH4(s) signature. However, the relatively high
CH4(a) measured for this sample (Figs. 3 and 5) suggests that
the brine ponds, or another CSG source, are likely. Below,
these isotopically light samples are discussed in detail with
reference to satellite imagery.

3.4 Keeling plot points of interest

In Figs. 3 and 4 IFAA samples 1604, 1906, and 2103 are
identified as points of interest because they are isotopically
light. These points provide unique insights into overlooked
sources of CH4 in the inventory and guide where further mea-
surements are required.

IFAA sample 1604 was collected on the western margin
of the CSG field (Fig. 7). It was initially anticipated to pro-
vide a background-air reference sample, but the δ13CCH4(a) of
the air sample is −47.7 ‰, which is isotopically too light for
fresh air in the Surat Basin. This sample sits on a Keeling re-
gression line with a δ13CCH4(s) of−80.2 ‰. From our current
knowledge of the region this cannot be assigned to a source.
The back trajectory passes over regions of mixed cropping
and cattle, and −80.2 ‰ is 20 ‰ lighter than expected for
cattle in the region. There is a cluster of piggeries with a
holding capacity of 10 000 just outside the near-distance BTF
and another piggery cluster with a holding capacity of up to
25 000 pigs immediately upwind of the 2 h BTF. However,
the one reported δ13CCH4(s) signature for piggeries in Lu et
al. (2021) had a value of −47.6 ‰, so piggeries are highly
unlikely to be the source. There are also a few CSG produc-
tion wells in the area, but this source of CH4 is isotopically
too heavy. A potential source that could explain the−80.2 ‰
signature in this farming district is termites.

Upwind of IFAA sample 1906 no CH4 point source is
recorded in the BU inventory (Fig. 7). There is a gravel
quarry that has a small pond (200 m by 50 m) that could be
a source of CH4 emissions with a biological signature. The
only other known significant CH4 sources in this region are
natural CH4 seeps and abandoned exploration well seeps (Lu
et al., 2021). Many of these are coal exploration wells that
intersect seams with a biological signature (Iverach et al.,
2015; Lu et al., 2021), but these sources would be expected
to have a δ13CCH4(s) signature of approximately −60 ‰, not
the observed−80.2 ‰. Like sample 1604, the δ13CCH4(s) sig-
nature of −80.2 ‰ for sample 1906 could be explained by
termites.

Sample 2105 (Figs. 3b and 7) is dominated by pig-
gery emissions (56 %), which have a δ13CCH4(s) signature
of −48.0 ‰ to −47.1 ‰ (CrI), with significant CSG emis-
sions (36 %) and other minor sources (Tables A3 and A4).
In Fig. 3b this point plots in a position suggesting that the
inventory has underestimated emissions (Neininger et al.,
2021). In Fig. 5a this point plots just above the CSG Keel-
ing lines. A blend of piggery and CSG emissions accounts

for both the relatively high CH4(a) and δ13CCH4(a) . A plausi-
ble explanation for this IFAA sample is that on the day of
sampling CSG emissions were higher than indicated by the
BTF BU inventory. Another possibility is that the emissions
arise from a closed open-pit coal mine over which the back
trajectory passes. Because this coal mine is closed it is not
counted in the BU inventories. Large plumes intersected near
this coal mine during the ground surveying presented in Lu et
al. (2021), and emissions from this recently closed coal mine
may have been captured in IFAA sample 2105. An additional
possibility to be explored as part of new ground surveys is the
emissions from natural seeps along the Condamine River.

The two IFAA samples with the highest CH4(a) mole frac-
tion readings were downwind of the major CSG facilities
(samples 2111 and 2103, Figs. 3, 4, and 8). Sample 2103
is of particular interest because it has the lowest δ13CCH4(a)

of any sample collected, and it plots on the −80.2 ‰ Keel-
ing line in Fig. 5a. The wind was moving from southeast
to northwest when samples 2103 and 2111 were collected
about 20 km west–northwest of the Kenya water manage-
ment ponds (Fig. 8). The back-trajectory centre line for sam-
ple 2111 passes directly over the Berwyndale South/Windbri
central processing plant and Talinga plant (Fig. 8b) and im-
mediately to the north of the Kenya water management ponds
(Fig. 8c). Sample 2111 is a blended input from all these
facilities. CSG sources contributed 93 % towards the CH4
emissions in the BTF BU inventory: CSG wells, 245 kg h−1;
CSG raw water ponds, 787 kg h−1; CSG compressor stations,
811 kg h−1; and CSG plants, 210 kg h−1 (Table A3). Feed-
lot cattle contributed 4 % (88 kg h−1) and grazing cattle 3 %
(64 kg h−1) (Table A4).

The back-trajectory centre line for 2103 passes over two
sets of ponds: ponds near Wieambilla in the proximal BTF
and further east at the Kenya water treatment complex
(Fig. 8a and c). Kenya pond holds treated water suitable
for adding to the Condamine River (Fig. 7). Orana 4 holds
brine produced from the filtering of the raw water before be-
ing sent to the brine concentrator. Orana 2 and 3 hold water
output from the brine concentrator (QGC, 2013). No plumes
were sampled near this complex in Lu et al. (2021), so the
δ13CCH4(s) of any emissions from these ponds is not known.
CSG sources contributed 96 % towards the emissions in the
BTF BU inventory for sample 2103: CSG wells, 251 kg h−1;
CSG raw water ponds, 586 kg h−1; CSG compressor stations,
714 kg h−1; and CSG plants, 338 kg h−1 (Table A3).

Sample 1817 (Figs. 3c, 5a, and 8) also has a back-
trajectory line that passes over the Kenya water manage-
ment ponds. It was collected 35 km south of the ponds and
other major CSG facilities, which accounts for its lower
CH4 mole fraction. The back-trajectory centre line for 1817
passes over the easternmost Kenya water management pond,
Orana 1, which is a raw water pond. CH4 emitted from this
pond is likely to have a similar composition to the produced
gas. CSG sources contributed 97 % of the CH4 emissions
in the BTF: CSG wells, 136 kg h−1; CSG raw water ponds,
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Figure 7. Two-hour back-trajectory path lines (red) for IFAA samples 1604, 1906, and 2105. Refer to Fig. A1 for the point source colour
key. Yellow arrows show the wind direction. The Condamine River flows from southeast to northwest (blue arrow) (image © Google Earth).

582 kg h−1; CSG compressor stations, 459 kg h−1; and CSG
plants, 78 kg h−1 (Table A3). For sample 1817 there was also
a minor input from grazing cattle (2.5 %; 32.7 kg h−1; Ta-
ble A4). This sample does not plot as an outlier (Figs. 3c and
5a).

Samples 1817 and 2111 plot in the Keeling plot (Fig. 5a)
in positions consistent with our knowledge of the δ13CCH4(s)

signatures of sources in the BTF BU inventory. To explain
the position of sample 2103 in Fig. 5a a source of CH4 with
a δ13CCH4(s) signature of approximately −80 ‰ is required.
The size and position of the Kenya water management treat-
ment complexes associated with the water treatment, the
presence of brine ponds, and other waste together make this
facility a potential location for the missing source of CH4
with an δ13CCH4(s) signature of approximately −80 ‰. The
back trajectory also passes over forested areas where there
are termites. Further fieldwork is required to answer why
sample 2103 indicates a missing biological source of CH4
in the inventories.

4 Summary

An objective of this study was to use IFAA samples to inves-
tigate whether we could characterise the δ13CCH4 source sig-
nature of emissions from facilities that could not be sampled
during the ground campaign (Lu et al., 2021), especially the
CSG regions that are remote from public roads. To achieve
this objective, we had to produce a BU inventory of both
point and diffuse CH4 sources for the region. This inventory
enabled us to sort the IFAA samples into sets based on the
predominant 2 h upwind inventory source of CH4 (e.g. one

sample per feedlot, for multiple feedlots). We were then able
to determine the δ13CCH4(s) signature for a single-source cat-
egory. The method worked with mixed results.

A concern after the measurements of the IFAA sam-
ples in the laboratory was that the lack of CH4(a) enhance-
ment above CH4(b) (less than 0.04 ppm) would not allow
for the interpretation of these data using the Keeling plot
method. Establishing CH4(b) and δ13CCH4(b) , as traditionally
done from the collated data sets, was not possible by fit-
ting the Keeling model (Eq. 1) or the Miller–Tans model
(Eq. 2) to individual data sets (this is demonstrated in Ap-
pendix B). We overcame this challenge with careful sam-
ple quality control and by using multi-Keeling-model re-
gression with shared CH4(b) and δ13CCH4(b) . An interpre-
tation in alignment with other ground and continuous air-
borne observations was possible only after applying this re-
gression algorithm. Importantly, despite the low CH4(a) en-
hancement of less than 0.04 ppm, the derived values for
background-air CH4(b) = 1.826 ppm (CI 95 %± 0.037 ppm)
and δ13CCH4(b) =−47.3 ‰ (CI 95 %± 0.3 ‰) match in-
dependent observations. Being able to assign a well-
constrained value to CH4(b) and δ13CCH4(b) was central to the
interpretation of all IFAA samples.

The derived δ13CCH4(s) values for the 250–350 m a.g.l.
IFAA sample sets (Figs. 5a, 6a and b; Table A5) where the
inventory was dominated by CSG facilities or grazing cattle
were close to those determined from the ground-based anal-
ysis of plumes (Lu et al., 2021). It can be concluded that
the upwind inventory for these samples was reasonably well
characterised.
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Figure 8. (a) Two-hour back-trajectory path lines for IFAA sam-
ples 1817, 2103, and 2111. (b) Back-trajectory paths for 2103 and
2111 relative to the Berwyndale South/Windbri central processing
plant and the Talinga processing plant. (c) Kenya water manage-
ment ponds relative to 1817, 2103, and 2111 back-trajectory centre
lines. The yellow arrows show the wind direction for each trajectory.
Refer to Fig. A1 for the point source colour key (image © Google
Earth).

For IFAA samples collected downwind of the feedlots
the derived multi-Keeling-model regression δ13CCH4(s) signa-
ture was isotopically lighter than expected by approximately
5 ‰. However, this category was poorly constrained and had
a large 95 % confidence interval ranging from −92.2 ‰ to
−47.0 ‰. A better data set is required to characterise the
population statistics for feedlot CH4 emissions, especially
since there are no uniform procedures for feedlot design and
waste management.

The results for the 100–200 m a.g.l. altitude IFAA sam-
ples where the inventory was dominated by CSG facilities
or grazing cattle did not match expectations and were iso-
topically lighter than expected (Figs. 5a, 6a and b; Table A5).
There are many possible explanations that cannot be resolved
using currently available data. The mismatch could be due
to there being more than one dominant source category in
the upwind region (with potential inputs from beyond the 2 h
back trajectory), incomplete mixing of all sources, sources
missing from the BU inventory, the applied emission fac-
tors used for source apportionment not being precise for the
individual source, or the δ13CCH4(s) signatures from the few
plumes sampled as part of the ground-based studies not being
representative of the complete population statistics.

To constrain the interpretation, for each CH4 source the
population distribution for both δ13CCH4 and δDCH4 needs
to be better characterised. These data would enable the sta-
tistical modelling of inventories for better comparison with
IFAA sample CH4(a) and δ13CCH4(a) data and be useful for
atmospheric transport isotope mixing model studies, which
have the potential to yield more insights about inventory
knowledge gaps compared to the pragmatic methods used
in this study. Due to the low enhancement in the mole frac-
tion and the small number of samples collected with predom-
inantly one inventory source category upwind, the derived
δ13CCH4(s) signatures have large uncertainties. For the meth-
ods presented in this study to work more effectively, more
samples are needed downwind of each source category, and
the sampling containers should be filled as rapidly as possi-
ble.

A primary aim of the study was to see if the IFAA sam-
ples would be useful for identifying overlooked sources of
CH4, and this was achieved. In Fig. 3c three points of in-
terest were identified for their relatively low δ13CCH4(a) val-
ues: IFAA samples 1604, 1906, and 2103. Although this is a
small subset, the insights obtained are important. The appli-
cation of multi-Keeling-model regression with shared CH4(b)
and δ13CCH4(b) constrained the δ13CCH4(s) signature for these
samples to be approximately −80 ‰. For all three samples,
termite emissions may have been sampled. For sample 2103,
the upwind CSG brine ponds, or another CSG source close
to these ponds, also need to be investigated as a potential
source of CH4 that has not been incorporated into the BU
inventories. The relatively high enhancement of atmospheric
CH4 downwind of the CSG water management ponds indi-
cates a potentially large CH4 source, which could be quanti-
fied in the future using a different sampling design (e.g. mass
balance flight pattern or ground-based plume studies). CSG
water management ponds may also represent a mitigation op-
portunity. Improved separation of the methane from the water
at the production well head or before placing the water into
the ponds would increase the resource produced and min-
imise fugitive CH4 emission.

The measurement of δ13CCH4 in this study has identified
that termites are potentially contributing significant quanti-
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ties of CH4 to the regional CH4 budget. Quantifying termite
CH4 emissions from both natural and agricultural landscapes
may help with closing the gap between the top–down and
bottom–up CH4 emission estimates reported in Neininger
et al. (2021). More generally, atmospheric measurements
of greenhouse gas emissions using satellite-, aircraft-, and
drone-based analysers are increasingly being used for inven-
tory verification. The results presented in this study and in
Basu et al. (2022) demonstrate that isotope studies are re-
quired to constrain source attribution. To further enhance our
capacity to interpret atmospheric CH4 measurements, ide-
ally both δ13CCH4 and δDCH4 should be measured (Lu et al.,
2021).

The application of the multi-Keeling-model regression
with shared CH4(b) and δ13CCH4(b) enables the following:
the characterisation of the δ13CCH4(s) signatures for sources
not accessible during ground campaigns assuming accurate
source attribution in the inventory; the identification of coal
seam gas subregions where there is poor agreement between
the IFAA sample δ13CCH4(a) measurement and the δ13CCH4

value expected from the BU inventory; the identification of
subregions where there must be a strong source of CH4 with
a δ13CCH4(s) signature of approximately −80 ‰ not recorded
in the BU inventories; and the identification of mitigation
opportunities. The isotopic analysis methods presented in
this study could be applied in any setting where there are
many co-located sources of CH4 and be used to identify CH4
source knowledge gaps in national inventories.

Appendix A

A1 Abbreviations

BTF Back-trajectory footprint
BU Bottom–up
CI Confidence interval
Crl Credible interval
CSG Coal seam gas
CSIRO Commonwealth Scientific and Industrial

Research Organisation
CRDS Cavity ring-down spectrometer
GC-IRMS Gas chromatography isotope ratio mass

spectrometry
HYSPLIT Hybrid Single-Particle Lagrangian

Integrated Trajectory
IFAA In-flight atmospheric air
m a.g.l. metres above ground level
NOAA National Oceanic and Atmospheric

Administration
RHUL Royal Holloway, University of London
TD Top–down
UNFCCC United Nations Framework Convention on

Climate Change
UNSW University of New South Wales
VPDB Vienna Pee Dee Belemnite

A2 Tables

Table A1. Surat Basin ground-based campaign (Lu et al., 2021) and
literature δ13CCH4 values for each source category within the study
area.

UNSW sources δ13CCH4 (‰)
(mean± 1σ )

Bayesian 95 %
credible
interval (‰)

δ13CCH4
(‰)
reference

CSG wells,
venting water
lines, and
distributed
CSG sources

−54.5± 0.1 −54.8 to −54.8 Lu et al.
(2021)

CSG water
ponds

−50.9± 2.8
−51.9± 2.3

−56.6 to −45.6
−56.7 to −47.2

Lu et al.
(2021)

CSG gathering
and boosting
stations

−53.7± 0.4 −54.5 to −53.0 Lu et al.
(2021)

CSG process-
ing plants

−55.6± 0.4 −56.4 to −54.7 Lu et al.
(2021)

Coal mines −60.0± 0.6 −61.1 to −58.9 Lu et al.
(2021)

Ground seeps −59.9± 0.3
−60.5± 0.2

−60.5 to −59.2
−60.9 to −60.1

Lu et al.
(2021)

Condamine
River seeps

−61.2± 1.4 −63.9 to −58.4 Lu et al.
(2021)

Feedlot cattle −62.9± 1.3 −65.2 to −60.3 Lu et al.
(2021)

Grazing cattle −59.7± 1.0 −61.7 to −57.5 Lu et al.
(2021)

Dairy cattle
(assumed simi-
lar to feedlots)

−62.9± 1.3 −65.2 to −60.3 Lu et al.
(2021)

Piggeries −47.6± 0.2 −48.0 to −47.1 Lu et al.
(2021)

On-farm water
bodies (dams)

−51.2 Not measured Day et al.
(2016)

Forest nodes –
kangaroos

−80 Not measured Godwin et al.
(2014)

Domestic wood
heaters and na-
tive vegetation
wildfire

−22.2± 2.8 Not measured Ginty (2016)

Energy – road
transport and
residential

−43.4± 3.4 Not measured Lu et al.
(2021)

Solid waste dis-
posal

−52.1± 3.6 −59.0 to −45.3 Lu et al.
(2021)

Domestic
wastewater

−47.6± 0.2 −47.9 to −47.2 Lu et al.
(2021)
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Table A2. In-flight atmospheric air sample location details and UNSW bottom–up inventory CH4 emissions estimates within the 2 h back-
trajectory footprint.
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Table A3. In-flight atmospheric air sample location details and UNSW bottom–up inventory CH4 emissions estimates for fossil fuel and
minor mixed sources within the 2 h back-trajectory footprint.
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Table A4. In-flight atmospheric air sample location details and UNSW bottom–up inventory CH4 emissions estimates for major agricultural
sources within the 2 h back-trajectory footprint (Australian Bureau of Statistics districts: Condamine Natural Resource Management (NRM)
area and Queensland Murray–Darling Basin (MDB) Natural Resource Management (NRM) area).
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Table A5. Calculated δ13CCH4(s) values using multi-Keeling-model regression with shared CH4(b) and δ13CCH4(b) and using multi-Miller–

Tans-model regression with shared CH4(b) and δ13CCH4(b) .

Category data set Multi-Keeling-model shared Multi-Miller–Tans-model with
and parameter CH4(b) and δ13CCH4(b) (Eq. 1) shared CH4(b) and δ13CCH4(b) (Eq. 3)

Estimate Confidence Confidence Estimate Confidence Confidence
interval (95 %) interval (95 %) interval (95 %) interval (95 %)

lower bound upper bound lower bound upper bound

Background-air
CH4(b) (ppm)

1.826 1.789 1.863 1.826 1.788 1.863

Background-air
δ13CCH4(b) (‰)

−47.3 −47.6 −47.0 −47.3 −47.6 −47.0

Coal seam gas
> 50 % BTF BU inventory
100–200 m a.g.l.
δ13CCH4(s) (‰)

−65.4 78.7 −52.0 −65.4 −78.8 −52.1

Coal seam gas
> 50 % BTF BU inventory
250–350 m a.g.l.
δ13CCH4(s) (‰)

−55.4 −69.1 −41.7 −55.5 −69.2 −41.8

Grazing cattle
> 50 % BTF BU inventory
100–200 m a.g.l.
δ13CCH4(s) (‰)

−53.8 −71.1 −36.4 −53.9 −71.2 −36.5

Grazing cattle
> 50 % BTF BU inventory
250–350 m a.g.l.
δ13CCH4(s) (‰)

−60.5 −76.1 −44.9 −60.6 −76.2 −45.1

Feedlots
> 50 % BTF BU inventory
100–350 m a.g.l.
δ13CCH4(s) (‰)

−69.6 −92.2 −47.0 −69.7 −92.3 −47.0
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Figure A1. Two-hour HYSPLIT back-trajectory path lines (red) for each day of IFAA sampling. The back trajectory starts at the mid-point
of the air sample collection interval (circled end of the red line) (image © Google Earth).

Figure A2. A representative BTF inventory polygon for IFAA sample 1817. The red line shows the 2 h back trajectory determined using
HYSPLIT. Refer to Fig. A1 for the point source colour key (image © Google Earth).
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Figure A3. Two-hour HYSPLIT back-trajectory path lines (red) for the points used in the coal seam gas Keeling-model regression anal-
ysis. (a) HYSPLIT back trajectories CSG> 50 % BU inventory, altitude 250–350 m a.g.l. (b) HYSPLIT back trajectories CSG> 50 % BU
inventory, altitude 100–200 m a.g.l. Refer to Fig. A1 for the point source colour key (image © Google Earth).
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Figure A4. Two-hour HYSPLIT back-trajectory path lines (red) for the points used in the grazing cattle Keeling-model regression anal-
ysis. (a) HYSPLIT back trajectories grazing cattle > 50 % BU inventory, altitude 250–350 m a.g.l. (b) HYSPLIT back trajectories grazing
cattle> 50 % BU inventory, altitude 100–200 m a.g.l. Refer to Fig. A1 for the point source colour key (image © Google Earth).
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Figure A5. Two-hour HYSPLIT back-trajectory path lines (red) for the points used in the feedlot Keeling-model regression analysis. Each
green dot indicates the position of a feedlot (image © Google Earth).

Appendix B

A commonly used method to determine δ13CCH4(s) is to fit
the Keeling model (Eq. 1) or Miller–Tans model (Eq. 2) to
a set of air samples collected within a single plume. For the
IFAA samples collected as part of this study, the combination
of the low level of CH4 enhancement (< 0.040 ppm) and the
small number of samples in each category (< 10 IFAA sam-
ples) results in poorly constrained regressions with large un-
certainties (Table B1).

The single category Keeling-model (Eq. 1) results are pre-
sented in Fig. B1a to highlight the issue of fitting the Keel-
ing model to small data sets with low CH4 enhancement
above background CH4(b). The Keeling regression lines in
Fig. B1a do not converge to a common point for CH4(b)
and δ13CCH4(b) as would be expected given the stability of
CH4(b) established during the continuous measurement air-
borne campaign (Neininger et al., 2021). Many of the re-
gression lines converge far to the right of the CH4(b) and
δ13CCH4(b) values determined from the simultaneous multi-
ple regression. In addition, the uncertainty bars for the source
signatures derived from the unconstrained fits are so large
that no meaningful source attribution is possible (Table B1).
The resulting δ13CCH4(s) signatures of the individual regres-
sions for each category are as follows:

– CSG> 50 % BTF BU inventory, 100–200 m a.g.l.,
−66.8 ‰ (CI 95 %± 38.2 ‰);

– CSG> 50 % BTF BU inventory, 250–350 m a.g.l.,
−54.6 ‰ (CI 95 %± 23.9 ‰);

– grazing cattle> 50 % BTF BU inventory,
100–200 m a.g.l., −60.7 ‰ (CI 95 %± 60.7 ‰);

– grazing cattle > 50 % BTF BU inventory,
250–350 m a.g.l., −65.3 ‰ (CI 95 %± 146.1 ‰);

– and feedlots> 50 % BTF BU inventory,
100–350 m a.g.l., −68.9 ‰ (CI 95 %± 44.9 ‰).

When CH4(b) and δ13CCH4(b) are unknown, it is common
to use the Miller–Tans model (Eq. 2) to determine δ13CCH4(s) .
The results of fitting this model separately to the five category
data sets are presented in Fig. B1b. Like the Keeling model,
the regression lines of best fit do not converge to a common
point for CH4(b) and δ13CCH4(b) . The 95 % confidence inter-
vals are also large (Table B1). The resulting δ13CCH4(s) sig-
natures of the individual regressions for each category are as
follows:

– CSG> 50 % BTF BU inventory, 100–200 m a.g.l.,
−66.9 ‰ (CI 95 %± 38.1 ‰);

– CSG> 50 % BTF BU inventory, 250–350 m a.g.l.,
−54.7 ‰ (CI 95 %± 23.8 ‰);

– grazing cattle> 50 % BTF BU inventory,
100–200 m a.g.l., −60.6 ‰ (CI 95 %± 60.7 ‰);

– grazing cattle> 50% BTF BU inventory,
250–350 m a.g.l., −65.3 ‰ (CI 95 %± 146.1 ‰);
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– and feedlots> 50 % BTF BU inventory,
100–350 m a.g.l., −69.0 ‰ (CI 95 %± 44.9 ‰).

These poorly constrained results highlight why multi-
Keeling-model regression was used for this study to bet-
ter constrain the interpretation of the IFAA samples. As
previously stated in the main text, the multi-Keeling-model
regression-determined values for CH4(b) and δ13CCH4(b) rep-
resent the background-air centroid for all days of measure-
ments, which is useful knowledge, as it highlights that none
of the IFAA samples represented background air. Comparing
the derived δ13CCH4(s) values in Tables A5 and B1, there is
little variation in δ13CCH4(s) signatures for each category re-
gardless of which two-endmember mixing model was used
or which regression method was applied.

Table B1. Calculated δ13CCH4(s) values for Keeling model (Eq. 1) and Miller–Tans model (Eq. 2) fitted to the individual source category
data sets.

Category data set Individual Keeling-model Individual Miller–Tans-model
and parameter regression (Eq. 1) regression (Eq. 2)

Estimate Confidence Confidence Estimate Confidence Confidence
interval (95 %) interval (95 %) interval (95 %) interval (95 %)

lower bound upper bound lower bound upper bound

Coal seam gas
> 50 % BTF BU inventory,
100–200 m a.g.l.
δ13CCH4(s) (‰)

−66.8 −105.0 −28.6 −66.9 −105.0 −28.7

Coal seam gas
> 50 % BTF BU inventory,
250–350 m a.g.l.
δ13CCH4(s) (‰)

−54.6 −78.4 −30.7 −54.7 −78.5 −30.9

Grazing cattle
> 50 % BTF BU inventory,
100–200 m a.g.l.
δ13CCH4(s) (‰)

−60.7 146.0 24.7 −60.6 −146.1 24.7

Grazing cattle
> 50 % BTF BU inventory,
250–350 m a.g.l.
δ13CCH4(s) (‰)

−65.3 −211.5 80.8 −65.3 −211.4 80.7

Feedlots
> 50 % BTF BU inventory,
100–350 m a.g.l.
δ13CCH4(s) (‰)

−68.9 −113.8 −24.0 −69.0 −113.8 −24.1
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Figure B1. Least squares regression for two-endmember mixing
models fitted to individual source category data sets using (a) the
Keeling model (Eq. 1) and (b) the Miller–Tans model (Eq. 2). For
reference the background-air values for CH4(b) and δ13CCH4(b) de-
termined from the multi-Keeling and multi-Miller–Tans-model re-
gressions are displayed in (a) and (b), respectively. The regression
statistics for each category are listed in Table B1. Both graphs high-
light that when the models are fitted to the individual source cat-
egory data sets, the lines of best fit do not converge to a common
value for background air. All error bars are 1 standard deviation.

Code availability. The code for the MultiNonlinearModelFit
function used in Mathematica (Version 12.0) (Wolfram Re-
search Inc., 2019) is available from the Wolfram func-
tion repository (Smit, 1986) (https://resources.wolframcloud.com/
FunctionRepository/resources/MultiNonlinearModelFit).

Data availability. The data used in Figs. 1, 3, 4, 5 and 6 are listed
in Tables A2, A3, and A4.

All data sets used for the UNSW inventory in Figs. 2, 7, 8,
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