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Abstract. Heterogeneous reactions occurring at the surface of atmospheric aerosol particles regulate the pro-
duction and lifetime of a wide array of atmospheric gases. Aerosol surface area plays a critical role in setting the
rate of heterogeneous reactions in the atmosphere. Despite the central role of aerosol surface area, there are few
assessments of the accuracy of aerosol surface area concentrations in regional and global models. In this study,
we compare aerosol surface area concentrations in the EPA’s Community Multiscale Air Quality (CMAQ) model
with commensurate observations from the 2011 NASA flight-based DISCOVER-AQ (Deriving Information on
Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) campaign.
The study region includes the Baltimore and Washington, D.C. metropolitan area. Dry aerosol surface area was
measured aboard the NASA P-3B aircraft using an ultra-high-sensitivity aerosol spectrometer (UHSAS). We
show that modeled and measured dry aerosol surface area, Sa,mod and Sa,meas respectively, are modestly corre-
lated (r2

= 0.52) and on average agree to within a factor of 2 (Sa,mod/Sa,meas = 0.44) over the course of the 13
research flights. We show that Sa,mod/Sa,meas does not depend strongly on photochemical age or the concentra-
tion of secondary biogenic aerosol, suggesting that the condensation of low-volatility gas-phase compounds does
not strongly affect model–measurement agreement. In comparison, there is strong agreement between measured
and modeled aerosol number concentration (Nmod/Nmeas = 0.87, r2

= 0.63). The persistent underestimate of Sa
in the model, combined with strong agreement in modeled and measured aerosol number concentrations, sug-
gests that model representation of the size distribution of primary emissions or secondary aerosol formed at the
early stages of oxidation may contribute to the observed differences.

For reactions occurring on small particles, the rate of heterogeneous reactions is a linear function of both Sa
and the reactive uptake coefficient (γ ). To assess the importance of uncertainty in modeled Sa for the representa-
tion of heterogeneous reactions in models, we compare both the mean and the variance in Sa,mod/Sa,meas to those
in γ (N2O5)mod/γ (N2O5)meas. We find that the uncertainty in model representation of heterogeneous reactions is
primarily driven by uncertainty in the parametrization of reactive uptake coefficients, although the discrepancy
between Sa,mod and Sa,meas is not insignificant. Our analysis suggests that model improvements to aerosol surface
area concentrations, in addition to more accurate parameterizations of heterogeneous kinetics, will advance the
representation of heterogeneous chemistry in regional models.
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1 Introduction

1.1 The role of aerosol surface area in heterogeneous
reaction kinetics

Reactions occurring at atmospheric interfaces, such as sus-
pended aerosol particles, catalyze the production and loss of
key gas-phase compounds in Earth’s atmosphere with impor-
tant implications for regional air quality (Chang et al., 2011).
The rate of heterogeneous reactions occurring at the surface
of aerosol particles is a function of the gas–aerosol collision
frequency and the reaction probability per collision. Vari-
ability in gas–aerosol collision frequency is determined by
the aerosol surface area concentration. The probability of re-
action, or the net reactive uptake coefficient (γ ), is reaction
specific and dependent on chemical kinetics, gas accommo-
dation at the surface, and near-surface diffusion (Abbatt et
al., 2012). Collectively, the first-order removal rate of a gas-
phase species (A) from the atmosphere can be written as

d[A]
dt
= −khet [A] , (1)

where the heterogeneous reaction rate constant (khet), in the
absence of gas-phase diffusion limitations, can be written as

khet =
γspeciesωspeciesSa

4
, (2)

where ω is the mean molecular speed of the gas-phase
molecule (m s−1), and Sa is the surface area concentration
of aerosol particles (m2 m−3).

To date, most evaluations of the role of heterogeneous
chemistry on gas-phase composition have focused on uncer-
tainty in parameterizations of reactive uptake coefficients,
such as the reactive uptake of dinitrogen pentoxide (N2O5)
due to its role as a NOx sink (Brown et al., 2009; Evans and
Jacob, 2005; MacIntyre and Evans, 2010; McDuffie et al.,
2018). In comparison, there has been less focus on model
representation of aerosol surface area concentrations, despite
the fact that khet is linearly dependent on Sa. An accurate
representation of aerosol surface area in regional and global
chemical transport models is challenging, as Sa is a com-
plex function of size-dependent aerosol particle emissions,
chemical transformations, and removal processes. Here, we
directly compare aerosol surface area concentrations in a re-
gional chemical transport model with commensurate aircraft
measurements to assess the representation of Sa in regional
air quality models.

1.2 Calculation of aerosol surface area in regional air
quality models

The total aerosol particle surface area concentration has
been calculated in air quality models using a variety of ap-
proaches, including the discrete representation of the particle

size distribution in defined size ranges, known as the sec-
tional method (Adams and Seinfeld, 2002; Gelbard et al.,
1980; Jacobson, 2001; Lee et al., 2009; Lee and Adams,
2012; Luo and Yu, 2011; Spracklen et al., 2006; Trivitaya-
nurak et al., 2008; Yu and Luo, 2009), and a continuous
modal representation of the particle size distribution (Klee-
man et al., 1997; Mann et al., 2010; Meng, 1998; Pringle et
al., 2010; Sartelet et al., 2006; Stier et al., 2005; Vignati et
al., 2004; Zhang et al., 2010a). Here, we review the modal
representation of particle size distributions implemented in
the Community Multiscale Air Quality (CMAQ) model and
the calculation of both wet and dry total aerosol surface area
(Sa). Aerosol particle size distributions in CMAQ follow the
method developed for the Regional Particulate Model, an ex-
tension of the Regional Acid Deposition Model (Binkowski,
1999; Binkowski and Roselle, 2003), where the total particle
size distribution is treated as the superposition of three sep-
arate lognormal distributions (or modes) – Aitken, accumu-
lation, and coarse modes (Binkowski, 1999; Whitby, 1978).
The lognormal particle size distribution for each mode is de-
fined as

n (lnD)=
N

√
2π lnσg

exp

−0.5

 ln D
Dg

lnσg

2
 , (3)

where N is the total number concentration, D is the par-
ticle diameter, and Dg and σg are the geometric mean di-
ameter and geometric standard deviation. Under this defini-
tion, the Aitken mode describes aerosol particles of diameter
smaller than approximately 0.1 µm with a median diameter
of 0.03 µm, while the accumulation mode encompasses the
diameter range of 0.1 to 2.5 µm with a median diameter of
0.3 µm (Binkowski, 1999). The coarse mode describes parti-
cles of diameter 0.3 to about 10 µm, with a median diameter
of 6 µm. It should be noted that there is uncertainty in the
exact size distributions within CMAQ, dependent on emis-
sions parameters, so the median diameters within modes are
approximate (Elleman and Covert, 2010). Particle nucleation
and growth result in changes to the mode diameter and can
result in the transfer of particle number, surface area, and
mass to the next larger size (e.g., Aitken to accumulation).
Outside of particle growth and nucleation, the approximate
median diameters are unchanged. The size ranges for each
mode are based on Whitby (1978), and geometric standard
deviation is also based on Whitby (1978) but has been up-
dated to the geometric standard deviations from Elleman and
Covert (2010).

Three integral properties of the aerosol size distribution
are calculated in CMAQ, the zeroth (M0), second (M2), and
third moments (M3), where the kth moment of the size dis-
tribution is calculated as

Mk =

∫
∞

−∞

Dk (lnD)d(lnD)=NDkg exp
[
k2

2
ln2σg

]
. (4)
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In this representation,N =M0, Sa = πM2, and V =
(
π
6

)
M3,

where V is the total aerosol volume (Binkowski, 1999;
Binkowski and Roselle, 2003). Though M2 is utilized in
CMAQ’s aerosol subroutines, it is multiplied by π prior to
use in main CMAQ routines, such that it is identified as a
modal surface area (Binkowski and Roselle, 2003).

The time rate of change of each moment is calculated for
each grid box and time interval as

∂Mk

∂t
= Pk − LkMk, (5)

where P and L represent the production and loss of Mk

in each aerosol mode. With respect to Sa (Sa = πM2), ne-
glecting transport terms, P2 includes new particle forma-
tion (Aitken mode only), condensational growth, and pri-
mary emissions, and L2 includes intramodal coagulation and
dry and wet deposition. Primary aerosol emission rates are
sourced from the 2011 EPA National Emissions Inventory,
which characterizes emissions based on source type and lo-
cation. Within CMAQ, all primary aerosol emissions, inde-
pendent of source type, are parameterized with modal size
distributions per Elleman and Covert (2010) (see the Sup-
plement). In the version of CMAQ used here, new particle
formation is based on classical, binary homogeneous nucle-
ation (Kulmala et al., 1998). Particle growth is described by
Binkowski and Roselle (2003) and secondary organic aerosol
(SOA) schemes in Carlton et al. (2010).

In the interpretation of model Sa, the following model-
specific details should be considered: (1) fine particles
(Aitken and accumulation modes) do not coagulate with
coarse-mode particles, and coarse-mode particles do not co-
agulate with each other (Binkowski and Roselle, 2003). (2)
The size distribution for primary PM2.5 emissions is assumed
to have a geometric mean (Dg = 0.3 µm) and geometric stan-
dard deviation (σg = 2), and >99 % of PM2.5 emissions are
assigned to the accumulation mode (Binkowski and Roselle,
2003), which may have consequent effects on the aerosol sur-
face area distribution. (3) Particles are assumed to be spheri-
cal.

The condensation of water is accounted for in the chem-
ical evolution of M2; thus M2 is inherently the wet second
moment (Mw

2 ), which is used in the calculation of heteroge-
neous chemical reactions. In addition to Mw

2 , a dry second
moment (Md

2 ) is calculated as a function of the third moment
(M3) as

Md
2 = M

w
2

(
Md

3
Mw

3

) 2
3

. (6)

In the following analyses, we concentrate on the compar-
ison of modeled and measured Sa to evaluate the relative
uncertainty associated with model descriptions of heteroge-
neous kinetic mechanisms (i.e., reactive uptake coefficients,
γ ) and aerosol particle size distributions (i.e., aerosol surface

area, Sa) that, combined, dictate the fate of reactive gas-phase
molecules.

1.3 Previous model–measurement comparisons of
aerosol surface area

Evaluation of regional air quality models has largely focused
on criteria air pollutants such as ozone (O3) and particle mass
(e.g., PM2.5) (Appel et al., 2021). Previous model evaluation
of particle mass has focused on an array of metrics including
mass concentration (Gantt et al., 2012; Spak and Holloway,
2009; Wang et al., 2009), number concentration (Park et al.,
2006; Ranjithkumar et al., 2021; Wang et al., 2009; Zhang et
al., 2010b), size distribution (Kelly et al., 2011; Nolte et al.,
2015; Park et al., 2006; Zhang et al., 2010b), composition
(Knote et al., 2011; Nolte et al., 2015; Prank et al., 2016),
and aerosol optical depth (Ghan et al., 2001; Knote et al.,
2011). There has been a very long and detailed history of
CMAQ evaluation of PM2.5, including ground-based (Baker
et al., 2018; Fan et al., 2005; Ghim et al., 2017; Hogrefe et al.,
2009, 2015; Liu and Zhang, 2011; Prank et al., 2016; Smyth
et al., 2006; Wang et al., 2021; Yu et al., 2012, 2008b, 2008a;
Zhang et al., 2019, 2006, 2010c), ship-based (Yu et al., 2012),
and aircraft-based measurements (Baker et al., 2018; Chen et
al., 2020; Yu et al., 2012). For 15 studies comparing ground-
based measurements of PM2.5 to CMAQ outputs between
1999 and 2018, 10 saw an underestimation of PM2.5 by the
model ranging between 6 % –75 % (Ghim et al., 2017; Liu
and Zhang, 2011; Prank et al., 2016; Wang et al., 2021; Yu
et al., 2008a, 2012, 2008b; Zhang et al., 2019, 2006, 2010c),
dependent on pollution events and rural versus urban loca-
tion, while 4 found that CMAQ predicted observations well
(Baker et al., 2018; Fan et al., 2005; Hogrefe et al., 2009;
Smyth et al., 2006), matching general trends in the obser-
vational data, and 1 saw an overestimation of observational
data (Hogrefe et al., 2015). Of the three aircraft studies, two
saw significant underestimation of PM2.5 aloft (Baker et al.,
2018; Chen et al., 2020), while one saw overestimation in
some PM2.5 compositional components and underestimation
in others (Yu et al., 2012).

Particle surface area specifically is not regulated as a cri-
teria air pollutant as standards of measurement and air qual-
ity controls are determined on a mass per unit volume basis.
However, particle surface area indirectly affects the concen-
tration of PM2.5 and O3 as it can serve to regulate the life-
time of nitrogen oxides (Chang et al., 2011; Geyer and Stutz,
2004; Portmann et al., 1996; Stadtler et al., 2018) and hydro-
gen oxides (George et al., 2013; Lakey et al., 2015; Martin et
al., 2003; Thornton et al., 2008; Thornton and Abbatt, 2005),
the production rate of secondary organic aerosol (Gaston et
al., 2014), and new particle formation and growth rates, as
the preexisting aerosol surface area serves as a condensation
sink for low-volatility gas-phase compounds (Donahue et al.,
2014; Trump et al., 2014). There are few reports of model–
measurement comparisons of particle surface area, and those
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that have been reported in the literature have focused on com-
parisons of heavily spatially and temporally averaged con-
centrations (e.g., field campaign averages). For example, Si-
mon et al. (2010) compared ground-based aerosol surface
area concentrations calculated in the CAMx model to mea-
surements made aboard the RV Ronald H. Brown in the Gulf
of Mexico and the Houston Ship Channel with two differen-
tial mobility particle sizers and an aerodynamic particle sizer
(Bates et al., 2008). The results of these studies are given in
Table 1. Model prediction of median Sa in the Gulf of Mexico
was similar to the measurement data (Sa,mod/Sa,meas = 0.96),
with median values and ranges again shown in Table 1. In
comparison, model prediction of median Sa in the Hous-
ton Ship Channel, where there is large spatial and temporal
fluctuation in Sa relative to the smaller interquartile range
seen in the Gulf of Mexico, yielded Sa,mod/Sa,meas = 1.6.
Modeled Sa was also compared to measured Sa aloft on
two research flights from the TexAQS II/GoMACCS field
study in September and October 2006. The range of mea-
sured Sa values (<600 µm2 cm−3) matched well with the av-
erage values predicted in the CAMx model, though the maxi-
mum modeled values were much larger than those measured
(4000–8000 µm2 cm−3 compared to <600 µm2 cm−3), con-
sistent with the RV Ronald H. Brown comparisons. Overall,
it should be noted that on a regional scale, modeled values
agree well with measurements of aerosol Sa; however maxi-
mum modeled values were larger than those measured both
for ground-based measurements and those aloft.

More recently, modeled dry surface area concentrations
were assessed over the northeast US during the 2015 Win-
tertime INvestigation of Transport, Emissions, and Reac-
tivity (WINTER) aircraft campaign (Jaeglé et al., 2018).
While quantitative assessment of aerosol surface area was
not the focus of this study, dry aerosol Sa was calculated
by combining dry aerosol size distribution observations from
a passive cavity aerosol spectrometer probe and ultra-high-
sensitivity aerosol spectrometer and comparing these to the
GEOS-Chem chemical transport model. Two versions of the
model, a reference and improved model, were compared to
the observations within 13 altitude bins, ranging from sur-
face to 4.5 km; here we focus on the improved model re-
sults. The GEOS-Chem model medians were encompassed
by the observed interquartile ranges in each altitude bin. The
improved model showed excellent agreement with measure-
ments when compiled over large spatial and temporal scales,
where Sa,mod/Sa,meas was 1.25 and 0.68 for the surface and
4.5 km comparisons, respectively.

Given the importance of accurate model representation of
aerosol surface area to multiple atmospheric processes, and
the limited number of prior studies conducted in urban en-
vironments, we revisit this comparison using a regional air
quality model aerosol and commensurate aircraft observa-
tions conducted in an urban environment.

2 Methods and models

2.1 Aerosol evaluation in the CMAQ model

CMAQ simulations were performed as described by Abel
et al. (2018, 2019) and Harkey et al. (2021), with carbon
bond 5 chemistry, anthropogenic emissions from the 2011
National Emissions Inventory, and input meteorology from
the Weather Research and Forecasting (WRF) version 3.2.1
(Skamarock et al., 2008), constrained to the North American
Regional Reanalysis (NARR; Messinger et al., 2006; Abel
et al., 2018, 2019; Harkey et al., 2021). The CMAQ sim-
ulation utilized here employed CMAQ version 5.2.1 (Byun
and Schere, 2006; Nolte et al., 2015) and was run with 25
vertical layers from the surface to 100 hPa, a 12× 12 km
grid, and hourly temporal resolution. Anthropogenic emis-
sions and emissions from fires (both prescribed and not) were
based on the 2011 National Emissions Inventory version 2,
with in-line estimates of NO and NO2 produced by light-
ning, boundary conditions from the Model for Ozone and
Related Chemical Tracers version 4 (MOZART; Emmons et
al., 2010), and biogenic emissions from WRF output in the
Model of Emissions of Gases and Aerosols from Nature ver-
sion 2.1 (MEGAN; Guenther et al., 2012). The model was
run from 20 May through 31 August 2011, to include 11 d
of spin-up (Harkey et al., 2021). The dataset utilized in this
analysis is only a subset of the model dataset originally run
at UW-Madison.

CMAQ was also run for the time period of the 2015 WIN-
TER field campaign for comparison of modeled and mea-
sured N2O5 uptake coefficients. This CMAQ simulation also
employs input meteorology constrained to NARR, calcu-
lated using WRF version 3.8.1 (Skamarock et al., 2008). An-
thropogenic emissions were taken from the 2016 National
Emissions Inventory Collaborative, version 1 (NEIC, 2019).
Emissions from fires and boundary conditions were taken
from the EPA Air QUAlity TimE Series (EQUATES) project
(https://www.epa.gov/cmaq/equates, last access: 29 Novem-
ber 2021). Biogenic emissions and lightning NOx emis-
sions were both calculated in-line. This simulation employed
CMAQ version 5.3.2 (Appel et al., 2021), with carbon bond
6 chemistry (Emery et al., 2015; Luecken et al., 2019).
The WINTER period simulation was run from 21 January
through 16 March 2015, to include 11 d of spin-up, with
hourly output on a 12× 12 km grid and on 35 vertical lev-
els from the surface to 100 hPa.

The CMAQ simulation for the 2011 DISCOVER-AQ (De-
riving Information on Surface Conditions from COlumn and
VERtically Resolved Observations Relevant to Air Quality)
period employed the “AERO6” aerosol module (Binkowski
and Roselle, 2003; Carlton et al., 2010; Foley et al., 2010;
Sonntag et al., 2014), where primary and secondary aerosols
are characterized by bimodal lognormal size distributions,
and the total size distribution is the sum of three aerosol
size modes, Aitken, accumulation, and coarse modes, with
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Table 1. Comparison of model and measured aerosol surface area concentrations. Simon et al. (2010) compared CAMx model results with
ground-based measurements in the Gulf of Mexico and the Houston Ship Channel. Jaeglé et al. (2018) compared measurements from the
WINTER campaign and GEOS-Chem modeled data at the surface and aloft between 3.5 and 4.5 km.

Region Median Q1, Q3 Reference
(µm2 cm−3) (µm2 cm−3)

Gulf of Mexico Measured 361 277, 398 Simon et al. (2010)
CAMx model 347 298, 394

Houston Ship Channel Measured 592 513, 800 Simon et al. (2010)
CAMx model 949 667, 1760

Northeast US Measured 135 90.6, 223 Jaeglé et al. (2018)
(surface–0.1 km) GEOS-Chem model 169 –
Northeast US Measured 4.4 2.49, 17.1 Jaeglé et al. (2018)
(3.5–4.5 km) GEOS-Chem model 3.8 –

median diameters of 0.03, 0.3, and 6 µm respectively. The
CMAQ simulation for the 2015 WINTER period employed
the “AERO7” aerosol module, which builds on the AERO6
module, with updates to aerosols formed by monoterpene ox-
idation, anthropogenic volatile organic compounds (VOCs),
and aerosol liquid water (Pye et al., 2015, 2017; Qin et
al., 2021; Xu et al., 2018). The CMAQ simulation for the
DISCOVER-AQ period employed the default heterogeneous
N2O5 uptake (Davis et al., 2008), while the simulation cover-
ing the WINTER period employed a N2O5 uptake modified
per Bertram and Thornton (2009).

Due to the modality of the CMAQ representation of
aerosols, we calculate each parameter relating to the aerosol
dataset separately for each mode, and these are then com-
bined to result in a total value that can be directly com-
pared to the DISCOVER-AQ observational data. The to-
tal CMAQ dry surface area is computed as the sum of
the modal dry surface areas. The variable SRF is an out-
put of CMAQ but is defined as SRF= πMd

2 . SRF is a
modal variable like each moment, such that total surface
area=SRFATKN+SRFACC+SRFCOR (dry surface area
in the Aitken, accumulation, and coarse modes, respectively).

2.2 DISCOVER-AQ 2011 campaign

Research flights conducted during the NASA DISCOVER-
AQ campaigns were designed to measure the vertical and
spatial distribution of key air pollutants in urban environ-
ments, with a focus on connecting surface measurements
with vertically integrating satellite observations. The first
DISCOVER-AQ campaign, conducted aboard the NASA
P-3B aircraft during July 2011, was comprised of 14 science
flights in the Baltimore and Washington, D.C. area (Craw-
ford et al., 2014; Crawford and Pickering, 2014; NASA,
2012). The 2011 DISCOVER-AQ campaign was the first
of a series of flights with an objective of narrowing the gap
of satellite and observational data and air quality utilizing
near-surface air pollution measurements. Science flights

concentrated on high-time-resolution measurements of
atmospheric composition in the convective boundary layer.
Here, we focus on measurements of dry aerosol surface area
concentration (Sa), determined from high-time-resolution
(1 Hz) size distributions made using an ultra-high-sensitivity
aerosol spectrometer (Droplet Measurement Technologies,
UHSAS) integrating between 60<dp<1000 nm, which
captures the peak of the surface area distribution, shown
in Fig. 1 below. The UHSAS measures the particle size
from optical light scattering, which was calibrated during
DISCOVER-AQ using NIST-traceable polystyrene latex
spheres whose refractive index may differ slightly from that
of real-world aerosols that may result in a slight under-sizing
bias (Moore et al., 2021). Ambient air was sampled through
an isokinetic inlet, allowing the aerosol temperature to
quickly equilibrate to that of the cabin of the P3-B aircraft.
Along with additional ram pressure heating in the inlet
during flow deceleration, particles reach an RH of below
40 %–50 %, meaning the aerosol is considered to be dry.
The term “dry” here distinguishes that the particle hydration
state is greatly reduced compared to that of the unperturbed
ambient air. It is important to note that aerosol water is
not accounted for in the following model–measurement
comparison, though there would be some aerosol water
present at the higher end of the 40 %–50 % RH threshold,
which may impact the comparison of the measured aerosol
to dry aerosol in the model. The particle mobility size from
10–310 nm diameters was measured with a TSI scanning
mobility particle sizer (SMPS) with 45 s time resolution, and
the particle aerodynamic size from 500–4000 nm diameters
was measured with a TSI aerodynamic particle sizer (APS)
at 1 Hz. On the representative day shown in Fig. 1, SMPS
data showed that approximately 5.8 % of the surface area fell
below the 60 nm threshold of the UHSAS measurement for
an average surface area distribution for the average of all alti-
tudes, while the APS indicated that supermicron particles did
not contribute to the particle surface area. The distribution
comparison between the model and measurement differs in
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Figure 1. Modeled (blue) and measured (orange) dry aerosol surface area distributions averaged over the DISCOVER-AQ sampling domain
of Baltimore and Washington, D.C. at (a) all altitudes, (b) altitudes below 1 km, and (c) altitudes above 3 km for 1 July 2011.

shape at different altitudes. Figure 1b shows a comparison of
the near-surface data, below 1 km, which gives a very similar
distribution to that of the average of all altitudes. However,
Fig. 1c, or that above 3 km altitude, shows a different shape
and one that is more comparable between model and mea-
surement. It should be noted that the axis scales in Fig. 1b
and c do not match, showing a discrepancy in distribution
calculation between CMAQ and DISCOVER-AQ that will
be discussed in later sections. For simplicity, we choose to
focus exclusively on the UHSAS size distribution data given
their high frequency and wide size range of particle diameter,
but it is important to note that not all of the particle surface
area is captured by the UHSAS instrument. UHSAS data are
available to the public at the NASA Langley Atmospheric
Science’s Data Center and Distributed Active Archive Center
(https://doi.org/10.5067/Aircraft/DISCOVER-AQ/Aerosol-
TraceGas). In the following analysis we utilize observations
of nitric oxide (NO) and nitrogen dioxide (NO2) measured
with the NCAR four-channel chemiluminescence instrument
(Ridley and Grahek, 1990) and carbon monoxide (CO)
measured via differential absorption CO measurement
(DACOM) (Sachse et al., 1987) to assess differences in
modeled and measured aerosol surface area.

2.3 Model–measurement comparison

To compare measured and modeled Sa, we sample the hourly
12 km× 12 km CMAQ output at the time and location of
each DISCOVER-AQ sampling point. The spatial resolution
of CMAQ, relative to the DISCOVER-AQ flight, is shown
in Fig. 2 for the 28 July 2011 research flight, where the
color corresponds to the modeled surface-level dry Sa (in
µm2 cm−3) at noon EST. Indexing and analysis of the two
aforementioned datasets was completed in MATLAB. Each
1 s data point from the DISCOVER-AQ 2011 campaign was
mapped to the nearest (as described below) 4D index (time
of day, latitude, longitude, and altitude) in the lower time and
spatial resolution CMAQ model for direct comparison. The
nearest 1 h averaged CMAQ time point was selected based on

the time window that encompassed the aircraft flight time;
i.e., a flight time of 09:16:00 was mapped to CMAQ time
period of 09:00–09:59. The nearest 12 km× 12 km CMAQ
grid box was also selected based on the grid box that en-
compassed the aircraft location at the time of sampling. The
nearest CMAQ altitude (or layer) was identified by locating
the aircraft height within one of the 25 indexes in which the
altitude was encompassed. With all four CMAQ indexes as-
signed to each data point, the 1 s DISCOVER-AQ dataset
could be fully mapped and compared to that from the CMAQ
model. It should be noted that there are far more data points
in the observed data than in the model due to resolution con-
straints, and thus the model is being oversampled. Each of
the four indexes were concatenated together in the order de-
fined in CMAQ, namely latitude, longitude, layer (altitude),
and time. This process was utilized for each data point for
an entire flight of DISCOVER-AQ and was then replicated
for each subsequent flight. The result of this approach is
shown in Fig. 3, for the comparison of modeled and mea-
sured carbon monoxide (CO). The coefficient of determina-
tion (r2) for the linear regression of modeled vs measured
CO concentration (COmod /COmeas) was 0.44 with a slope of
1.0499±0.0007. The large variance highlights the spatial and
temporal mismatch of model sampling and measurement,
while the near-unit correlation coefficient indicates that on
average modeled and measured CO agree. This agreement
implies that the model–measurement comparison of many
well-understood parameters should be accurate and that there
is not a fundamental issue in comparing modeled and mea-
sured data between the two datasets.

3 Results

3.1 Campaign-averaged comparison of aerosol surface
area concentrations

First, we assess general agreement between campaign-
averaged modeled and measured surface area concentrations.
The observational data are from the 13 DISCOVER-AQ
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Figure 2. Map of the Baltimore–Washington D.C. area represen-
tative of the July 2011 DISCOVER-AQ flights with an example
flight path from 28 July 2011. The flight path is overlaid on the
CMAQ model grid, showing the modeled surface area in each
12 km× 12 km grid box at noon EST (16:00 UTC).

flights during July 2011 (1–29 July). The final research flight
consisted of a dual highway leg conducted south along the
Baltimore–Washington Parkway and north along I-95 at low
altitude to compare the two roadways. Given the proximity to
a large point source, this research flight was not included in
the following analysis. The observational data from the UH-
SAS included number, surface area, and volume measure-
ments, though the focus of this study is primarily surface area
(Sa).

In this analysis, we compare dry surface area concentra-
tions as the DISCOVER-AQ measurements were made at an
RH below 40 %–50 % and are thus considered dry, and we
do not have direct measurements of particle growth factors
for comparison of wet Sa. However, it is important to note
that Sa used in E2 is the surface area concentration at am-
bient humidity, and any uncertainty in modeled aerosol hy-
groscopicity will propagate to the aerosol surface area con-
centration used in E2. Figure 4 shows the campaign-averaged
vertical profile of both the measured dry UHSAS surface area
(Sa,meas) and the modeled dry CMAQ surface area (Sa,mod),
along with the interquartile ranges separated into 1 km alti-
tude bins. Since the UHSAS measurement frequency is 1 Hz,
the CMAQ modeled data are at 1 h time resolution, and the
model samples a full domain in 12 km grid boxes compared
to the smaller domain sampled by aircraft, there are many
more measurement data points (N = 330204) than compara-
ble modeled data points (N = 5196) over the course of the
flight campaign. In Fig. 4, the UHSAS measurements have
been averaged to the spatial and temporal resolution of the
model, such that the number of observational points is the
same as the number of model points. The light gray error
bars shown in Fig. 4a reflect the standard deviation of the

data from the mean at that point in time and space. It should
be noted that the error bars on this dataset are large, due to
the spatial and temporal mismatch between model and mea-
surement in a highly heterogeneous sampling domain. For
both model and measurement, the surface area increases to-
wards the surface, as is to be expected, and decreases with
altitude. The vertical profile is well captured by the CMAQ
model; however, there is a larger range of measured surface
area concentrations than is seen in the corresponding model
altitude bin.

As shown in Fig. 4, measured Sa is on average larger
than modeled Sa, particularly at low altitude, where the ra-
tio of the median, modeled Sa to measured Sa near the sur-
face (z<1 km) is 0.47. This contrasts with what has been re-
ported previously in the literature. For example, both Jaeglé
et al (2018) and Simon et al. (2010) found that the median
modeled near-surface Sa was consistently larger than mea-
sured Sa (Sa,mod/Sa,meas = 1.04–1.6).

The comparison between modeled and measured Sa is also
shown with histograms in Fig. 5 for all altitudes (5a, b) and
for the surface-level measurements (0–1 km; 5c, d). While
the number of points is not consistent between the model and
measurement datasets due to the 12 km grid box constraint
and time frequency in CMAQ, differences in the range in
surface area concentrations are observed. Measured surface
area concentrations range between 0–1.87× 103 µm2 cm−3,
with the vast majority of data below 420 µm2 cm−3, while
modeled Sa ranges between 0–300 µm2 cm−3.

3.2 Direct model–measurement comparison

A linear regression of CMAQ modeled dry aerosol surface
area concentration and measured aerosol surface area con-
centration is shown in Fig. 6. The measured data have been
averaged to the space and time domain of CMAQ (latitude,
longitude, altitude, and time). The coefficient of determina-
tion (r2) for the linear regression of modeled and measured
Sa was 0.52 with a slope of 0.437±0.004, indicating that the
measured Sa is on average twice that of the model value.

The histogram of the surface area ratio (Sa,mod/Sa,meas)
throughout the campaign in Fig. 7 shows that the model un-
derpredicts the measured surface area ratio in 81 % of the
comparison points. The model underpredicts Sa by a factor of
2 44 % of the time. In the following section, we explore po-
tential causes for model–measurement disagreement, includ-
ing model–measurement spatial and temporal differences,
the spatial distribution of primary emissions, and/or treat-
ment of secondary aerosol formation.

4 Discussion

In the following section, we explore the source of model–
measurement discrepancy in Sa discussed in Sect. 3. We be-
gin by investigating the dependence of Sa,mod/Sa,meas on al-
titude and proximity to primary aerosol sources. We then
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Figure 3. (a) Linear regression of modeled vs measured carbon monoxide (CO) mixing ratio (in ppbv) and (b) histogram of the ratio of
modeled-to-measured CO over the full DISCOVER-AQ campaign.

Figure 4. Average vertical profile of (a) measured DISCOVER-AQ aerosol surface area concentration (Sa,meas) and (b) CMAQ aerosol
surface area concentration (Sa,mod) over the entirety of the DISCOVER-AQ campaign. Each measured point is an average of the points
included in that 4D index corresponding to CMAQ. The overlaid box plots show the median (red line within blue box) and interquartile
ranges (blue box with the 25th percentile at the left end and 75th percentile at the right end) in 1 km altitude bins. The labels on the altitude
axis lie at the midpoint of the 1 km altitude bin, and red crosses indicate outliers from the majority of the dataset at that altitude portion.

investigate the role of temporal and spatial resolution as
CMAQ has a much coarser resolution, both spatially and
temporally, than the measured data. Finally, we investigate
the possibility of impacts on Sa,mod/Sa,meas from anthro-
pogenic and biogenic indicators as they are tied to aerosol
emissions. It is also important to acknowledge that some of
the model–measurement disagreement could be due to pro-
cesses not considered in the model such as phase separation,

viscosity changes of aerosols, and direct modeling of clouds
impacting cloud processing of aerosols, though the impacts
of these processes are not investigated further in this work.
The lack of a fourth mode below the Aitken mode for nucle-
ation of particles and growth to the Aitken mode also impacts
the accuracy of the size distribution within CMAQ and may
explain a portion of the model–measurement disagreement,
though it is known that improving the default parameteriza-
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Figure 5. Histograms of (a) measured aerosol surface area con-
centration (DISCOVER-AQ) at all altitudes, (b) modeled aerosol
surface area concentration (CMAQ) at all altitudes, (c) measured
aerosol surface area in the 0 to 1 km altitude bin, and (d) modeled
aerosol surface area in the 0 to 1 km altitude bin over the entirety of
the DISCOVER-AQ campaign.

Figure 6. Comparison of Sa,mod and Sa,meas over the full
DISCOVER-AQ campaign with measurement data averaged to the
corresponding model latitude, longitude, altitude, and time point.

Figure 7. Histogram of the ratio of modeled-to-measured
aerosol surface area concentration (Sa,mod/Sa,meas) over the full
DISCOVER-AQ campaign.

tion does not reduce all errors to the size distribution (Elle-
man and Covert, 2009b).

4.1 Dependence of Sa,mod/Sa,meas on altitude

Given the strong dependence of Sa on altitude as shown
in Fig. 4, we first explore if part of the variance in
Sa,mod/Sa,meas shown in Fig. 6 can be explained by altitude.
In Fig. 8, we show Sa,mod/Sa,meas as a function of altitude.
As shown, there is an altitude dependence in Sa,mod/Sa,meas,
where the mean, median, and interquartile range (25th to
75th percentile) are given in Table 2 for the 1 km altitude
bins from 0–5 km. Model–measurement discrepancy in Sa is
largest at low altitude, where particle number concentrations
are highest, proximity to particle sources is close, and het-
erogeneity in particle number concentrations is largest.

4.2 Dependence of Sa,mod/Sa,meas on spatial and
temporal resolution

The 12 km× 12 km spatial resolution and 1 h temporal res-
olution of CMAQ is significantly larger and longer than
the spatial and temporal resolution of the aircraft data,
resulting in an inherent contrast in resolution between
model and measurement that may play a role in the vari-
ance in Sa,mod/Sa,meas. Within any individual 12 km× 12 km
model pixel, in the Baltimore–Washington sampling area,
there is heterogeneity in Sa as shown in Fig. 9. Sub-grid-
scale variability in Sa would lead to increased variance in
Sa,mod/Sa,meas but likely with a mean and median close to 1
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Figure 8. Ratio of modeled to measured aerosol surface area concentration (Sa,mod/Sa,meas) including median (red line within blue box),
and interquartile ranges (blue box with the 25th percentile at the left end and 75th percentile at the right end) in 1 km altitude bins. The red
crosses outside of the bounds of the plot denote outliers. The labels on the altitude axis lie at the midpoint of the 1 km altitude bin.

Table 2. Mean, median, and interquartile range (range of 25th to 75th percentile) surface area ratio (Sa,mod/Sa,meas) for each 1 km altitude
bin from 0–5 km.

0–1 km 1–2 km 2–3 km 3–4 km 4–5 km

Sa,mod/Sa,meas (mean) 0.56 0.97 0.89 1.05 1.42
Sa,mod/Sa,meas (median) 0.47 0.51 0.63 0.82 0.75
Sa,mod/Sa,meas (interquartile range) 0.33–0.65 0.33–0.80 0.37–0.97 0.56–1.31 0.53–2.14

if the domain sampling was not biased, comparable to what is
observed in the CO comparison (Fig. 3), where the histogram
of the CO data showcases a clear center around 1, with very
few data points beyond a COmod /COmeas value of 2.

To investigate the discrepancy more quantitatively, we
compare the probability density functions (PDFs) of the
model-to-measured CO, NOx , particle number concentra-
tion, and particle surface area concentrations. We use the
PDFs to characterize the population of data based on the
standard deviation and mean, which provides a quantita-
tive and comparable assessment of the variability in the
comparison. Assuming that the research flights sampled
the CMAQ model domain in an unbiased way (i.e., flights
did not target or avoid point sources) we would expect
that the PDFs of the modeled-to-measured ratio in CO,
NOx , number concentration, and surface area concentration
would all center at 1 (or log10(1)= 0 as shown in Fig. 10),
and the standard deviation of the distribution (σ ) would
reflect heterogeneity in the scalar concentration at scales
smaller than the model spatial or temporal domain. The his-
togram, PDF, and cumulative distribution function (CDF) for
log10(Sa,mod/Sa,meas) are shown in Fig. 10. The PDF of the

Table 3. Probability density function (PDF) fit parameters for the
distributions shown in Fig. 11.

Mean Standard deviation
(µ) (σ )

log10(Sa,mod/Sa,meas) −0.26 0.34
log10(Nmod/Nmeas) 0.047 0.27
log10([CO]mod / [CO]meas) −0.0029 0.15
log10([NOx ]mod / [NOx ]meas) −0.14 0.34

histogram of log10(Sa,mod/Sa,meas) has a mean (µ) of −0.26
and standard deviation (σ ) of 0.34.

Comparison of the peak and width of the PDF of the
model-to-measured ratios of CO, particle number concentra-
tion (N ), and NOx provides an objective measure for assess-
ing the impact of spatial and temporal resolution on the com-
parison. As shown in Fig. 11 and Table 3, the mean of each
PDF is −0.0029, 0.047, and −0.14 for CO, N , and NOx .
Each of these values is significantly closer to 0 than that
measured for Sa (−0.26), suggesting that the methodology
for assessing model–measurement agreement should not be
significantly impacted by model resolution, especially given
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Figure 9. Flight path from 28 July with overlaid UHSAS Sa data within the 10th layer of CMAQ altitude (∼ 850–1000 m) and gridded
CMAQ Sa from layer 10 in the background. The CMAQ data are specifically at noon EST (16:00 UTC).

Figure 10. Normalized histogram, probability density function (PDF), and cumulative distribution function (CDF) for the modeled-to-
measured aerosol surface area (Sa,mod/Sa,meas). The histogram and PDF serve to indicate the median and spread of the dataset, while the
CDF indicates the percentage of data encompassed at a certain data threshold.

the large range in atmospheric lifetimes for CO,N , and NOx .
However, without utilizing a smaller model resolution to di-
rectly test for impacts of the grid size, resolution issues can-
not be fully ruled out. Interestingly, the mean Nmod/Nmeas
is close to 1 (100.047

= 1.11), where a value closer to 1 in-
dicates agreement between model and measurement and that
closer to zero indicates a large discrepancy between datasets.
The mean Nmod/Nmeas is significantly different than that ob-
served for Sa,mod/Sa,meas(10−0.26

= 0.55), perhaps suggest-
ing that the model–measurement disagreement is related to
the shape of the size distribution, either due to the a priori
emissions size distribution or secondary aerosol processes.

Also shown in Fig. 11 and Table 3, the standard devi-
ation (σ ) of the PDF for the CO, N , and NOx model-to-
measurement ratios is 0.15, 0.27, and 0.34 respectively. The
standard deviation of the PDF of [CO]mod / [CO]meas is the
narrowest, likely reflecting the longer lifetime of CO and a
damping of sub-grid-scale variability of CO in each pixel.
The width of the N and Sa ratio distributions is comparable,
again highlighting that the deviation of Sa,mod/Sa,meas from
1 may reflect differences in the modeled–measured aerosol
size distribution (as shown in Fig. 1). Collectively, this anal-
ysis suggests that there is not a significant bias on average
in the methodology based on model resolution and that the
apparent differences in the number and surface area model–
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Figure 11. Normalized probability density functions for the log10 of the model-to-measurement ratio in particle number concentration
(yellow), carbon monoxide (red), NOx (purple), and particle surface area concentration (blue).

measurement ratios are most likely driven by the shape of the
underlying aerosol size distribution.

It is interesting to note that the model–measurement agree-
ment in particle number concentrations is significantly bet-
ter than that of particle surface area concentrations, implying
that the differences in Sa may be related to the shape of the
aerosol size distribution. There have been numerous analyses
of model–measurement comparison of the aerosol number
concentration and size distributions specific to CMAQ (Elle-
man and Covert, 2009a, 2010; Kelly et al., 2011; Zhang et
al., 2010b). Elleman and Covert (2009a) compared the 4 km
CMAQ v4.4 model’s size distributions to measurement data
from the 2001 Pacific Northwest and Pacific field campaigns.
The Pacific Northwest field campaign (PNW2001) was con-
ducted in August 2001 with both airborne and ground-based
measurements of pollution in the Puget Sound urban area
around Seattle, Washington, and included northwest Ore-
gon, western Washington, and southwest British Columbia.
PNW2001 was conducted to complement that of the Pacific
2001 field campaign, which was a major regional air pollu-
tion study in the Lower Fraser Valley of metropolitan Van-
couver, British Columbia, focusing on ground-based obser-
vations, conducted from 10 August to 2 September 2001.
Analyses of these two campaigns and model predictions
found that CMAQ underpredicted airborne particle number
concentrations by a factor of 10–100 and was least accu-
rate in the smallest size mode: the Aitken mode (Elleman
and Covert, 2009a). The underprediction was consistent be-
tween measurement studies and did not depend on time and
location. Zhang et al (2010b) compared CMAQ v4.4 to the
1999 Southern Oxidants Study and corroborated the find-
ings of Elleman and Covert (2009a), that the Aitken mode
was significantly underpredicted in total number concentra-

tion (varying by up to 3 orders of magnitude), yielding an
overall underprediction of PM2.5 in Atlanta.

In a follow-up analysis, Elleman and Covert used updated
emissions size distributions to compare a summer 2001 case
study comprising data from a period of August 2001 with
airborne and surface measurements from Pacific 2001 and
PNW2001, as was used in the original base case to CMAQ
(Elleman and Covert, 2010). CMAQ still underpredicted the
observable aerosol number concentrations by about one or-
der of magnitude with updated emission size distributions,
which was an improvement from the 1–2 orders of magni-
tude previously but pointed to issues within the model’s pre-
diction of aerosol number. Kelly et al. then utilized the up-
dated emissions size distributions from Elleman and Covert
as well as the original distributions with in CMAQ to com-
pare to the 1998 California Regional PM10 /PM2.5 Air Qual-
ity Study (CRPAQS) (Kelly et al., 2011). It was noted that
the simulated number size distributions from the improved
emission simulation were about 20 % lower than the obser-
vations, while the standard-emission simulation was about
a factor of 5 lower than the observations, confirming that
the updated emissions improved model–measurement agree-
ment. The observed shape of the distributions also better
matched the updated emissions simulations. The improve-
ment in model–measurement agreement showcases the ne-
cessity for accurate size distributions and emissions within
CMAQ and the impact on Sa data.

4.3 Dependence of Sa,mod/Sa,meas on secondary
aerosol production

Two potential reasons for the discrepancy between mean
Sa,mod/Sa,meas (0.55) and mean Nmod/Nmeas (1.11) are
(1) uncertainty in the size distribution of primary aerosol par-
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Figure 12. Interquartile ranges in Sa,mod/Sa,meas as a function of the modeled (CMAQ) NOx/HNO3 concentration ratio.

ticles and (2) uncertainty in secondary aerosol production
(i.e., the condensation of low-volatility material to existing
aerosol particles). To investigate these two potential sources,
we investigate the response of Sa,mod/Sa,meas to photochemi-
cal age. We start by looking at the response of Sa,mod/Sa,meas
to the NOx/HNO3 ratio (Fig. 12), where high NOx/HNO3
in this sampling region is indicative of air masses near an
anthropogenic source, similar to that of a NOx/NOy clock
(Kleinman et al., 2008; Pan et al., 2015; Tie et al., 2009).
If the aerosol surface area of primary emissions is under-
estimated in the model, we would expect Sa,mod/Sa,meas to
be biased low at high NOx/HNO3. If the condensation rate
of low-volatility anthropogenic species is underestimated in
the model, we would expect Sa,mod/Sa,meas to decrease with
a decreasing NOx/HNO3 ratio as the air mass ages. As
shown in Fig. 12, Sa,mod/Sa,meas is remarkably constant over
a wide span of NOx/HNO3 ratios (0.5–10), before tending
to larger values at low NOx/HNO3. This trend is also seen
in the dependence of Nmod/Nmeas on NOx/HNO3, suggest-
ing a potential discrepancy in the modeled–measured life-
time of aerosol or treatment of background aerosol particles
in the region. This trend suggests that an underestimate in
the condensation of low-volatility gas-phase compounds of
anthropogenic origin is not a significant driver of model–
measurement discrepancy in Sa. Rather, the persistent under-
estimate of Sa in the model at high NOx/HNO3 points to
uncertainty in the size distribution of primary emissions or
secondary aerosol formed at the early stages of oxidation.

To address secondary aerosol formation more generally,
we also assessed the response of Sa,mod/Sa,meas to temper-
ature as equilibrium partitioning in the gas phase based on
temperature and RH is a primary driver of secondary aerosol
formation. No statistically significant trend in Sa,mod/Sa,meas
was observed over the range of temperatures observed during
DISCOVER-AQ.

To further investigate secondary aerosol formation as a
factor in driving the discrepancy in modeled Sa, we assess
the response of Sa,mod/Sa,meas to isoprene oxidation products
in the aerosol phase as an example of biogenic VOC oxida-
tion. As shown in Fig. 13, there does not appear to be a trend
with concentration of isoprene SOA. Though we cannot test
for all biogenic oxidation products, the lack of a trend with
isoprene SOA in the aerosol phase may mean that the dis-
crepancy in Sa,mod/Sa,meas is not biogenic in nature. There is
also no trend with the total SOA concentration parameterized
in CMAQ, shown in Fig. 13b.

5 Implications for the treatment of heterogeneous
reactions in air quality models

As shown in E2, the rate constant for the heterogeneous loss
of gas-phase compounds to aerosol (khet) is linearly depen-
dent on both aerosol surface area concentration (Sa) and the
reactive uptake coefficient (γ ). In Sect. 3, we showed that
the average Sa,mod/Sa,meas, determined from the regression
of the average model and measurement Sa was 0.437, which
would result in an underestimate by approximately a factor
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Figure 13. Interquartile ranges in Sa,mod/Sa,meas as a function of the modeled (CMAQ) (a) isoprene SOA concentration and (b) total SOA
concentration.

of 2 in khet. A similar underestimation has been seen pre-
viously in select ground-based (Ghim et al., 2017; Liu and
Zhang, 2011; Prank et al., 2016; Wang et al., 2021; Yu et
al., 2008a, 2012, 2008b; Zhang et al., 2019, 2006, 2010c)
and aircraft-based (Baker et al., 2018; Chen et al., 2020)
studies of CMAQ prediction of PM2.5, which may point
to a larger issue in model representation of particle mass.
For some heterogeneous reactions, where the reactive up-
take coefficients are well parameterized in model (e.g., ex-
tremely low-volatility species), uncertainty in Sa likely de-
termines uncertainty in khet. To assess the dominant source
of uncertainty in model-derived khet, we focus on the N2O5
system as an example. Recently, McDuffie et al. (2018) as-
sessed the accuracy of model parameterizations of γ (N2O5)
using ambient observations from the WINTER campaign.
In Fig. 14a, we show the histogram and PDF of the ratio
of γ (N2O5)mod calculated in CMAQ using the Bertram and
Thornton (2009) parameterization for the WINTER cam-
paign, compared with γ (N2O5)meas, which was determined
in McDuffie et al. (2018) from an observationally constrained
analysis of flight data via a box model solved along the
flight path to determine the uptake coefficient. The PDF
of the directly compared model–measurement ratio is cen-
tered above zero (µ= 0.22 or γ (N2O5)mod/γ (N2O5)meas =

1.65) (Fig. 14, Table 3). Interestingly, since khet(N2O5) is
proportional to the product of Sa and γ (N2O5), the un-
derestimate in model Sa is compensated for by an over-
estimate in γ (N2O5) in the mean state if the underesti-
mate in model Sa is consistent for WINTER, though that

is not necessarily the case. While the width of the PDF of
log10(γ (N2O5)mod/γ (N2O5)meas) for WINTER is similar to
that seen for Sa for DISCOVER-AQ, it should be noted that
neither the histogram of the γ (N2O5) ratio or the Sa ratio is
easily fit to a Gaussian peak shape. As shown in Fig. 14, the
histogram of the log10(γ (N2O5)mod/γ (N2O5)meas) for WIN-
TER has a broader range of values than that of Sa in this
study. Collectively, this analysis highlights that while model
uncertainty in khet(N2O5) is largely a function of quality of
the γ (N2O5) parameterization, future improvements in mod-
eled surface area concentrations, particularly in urban envi-
ronments, will also result in more accurate representations of
heterogeneous chemical reactions.

6 Summary

This study examined the ability of the CMAQ model to ac-
curately predict aerosol surface area as it directly affects het-
erogeneous chemistry within the model. The CMAQ data
were compared to dry measured aerosol surface area data
from the 2011 DISCOVER-AQ campaign utilizing a UH-
SAS. Showing a discrepancy between modeled and mea-
sured dry aerosol surface area, Sa,mod and Sa,meas, respec-
tively, are modestly correlated (r2

= 0.52) and on average
agree to within a factor of 2 (Sa,mod/Sa,meas = 0.44) over
the course of the 13 research flights. However, there was a
strong correlation between measured and modeled number
concentration (Nmod/Nmeas = 0.87, r2

= 0.63). When look-
ing into possible sources of the discrepancy, there was not a
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Figure 14. Normalized probability density functions for the log10 of the model-to-measurement ratio in (a) γ (N2O5) from the WINTER
campaign and (b) particle surface area concentration, Sa, from this study.

strong dependence on photochemical age or secondary bio-
genic aerosol concentration. The strong agreement in aerosol
number concentration may indicate that the modeled size dis-
tribution contributes to the observed discrepancy, though the
exact source of discrepancy is outside of the scope of this
study.

The discrepancy in aerosol surface area was also compared
to that of the reactive uptake coefficient of N2O5 during the
2015 WINTER campaign due to the fact that the uptake co-
efficient also directly impacts heterogeneous reaction rates.
The uncertainty in the modeled heterogeneous chemistry re-
mains primarily driven by that of the uptake coefficient, as
the uncertainty in those values is larger than that seen by Sa.
Model improvements to aerosol surface area concentrations
along with improvements to the parameterization of reactive
uptake coefficients will greatly impact the accuracy of het-
erogeneous chemistry within regional models.
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