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Abstract. Heavy-duty vehicles (HDVs) contribute a significant, but decreasing, fraction of primary aerosol
emissions in urban areas. Previous studies have shown spatial heterogeneity in compliance with regulations.
Consequently, location-specific emission factors are necessary to describe primary particulate matter (PM) emis-
sions by HDVs. Using near-road observations from the Bay Area Air Quality Management District (BAAQMD)
network over the 2009–2020 period in combination with Caltrans measurements of vehicle number and type, we
determine primary PM2.5 emission factors from HDVs on highways in the San Francisco Bay area. We demon-
strate that HDV primary aerosol emission factors derived using this method are in line with observations by other
studies, that they decreased a by a factor of∼ 9 in the past decade, and that emissions at some sites remain higher
than would be expected if all HDVs were in compliance with California HDV regulations.

1 Introduction

Exposure to aerosols smaller than 2.5 µm in diameter (PM2.5)
at current ambient levels is estimated to cause 130 000 excess
deaths per year in the United States (Tessum et al., 2019).
Epidemiological studies have shown that health and mortal-
ity impacts from PM2.5 persist at concentrations of PM2.5
below current National Ambient Air Quality Standards and
that small changes in the PM2.5 concentration may result in
substantial health impacts (Di et al., 2017). Because of the
health impacts resulting from small increases in PM2.5, air
quality academics, public health researchers, local regula-
tory agencies, and state governments have come to appreciate
the importance of neighborhood-scale differences in cumu-
lative exposure to PM2.5 (e.g., CARB, 2018a). For example,
regulatory agencies in California have begun to shift from
a paradigm based primarily on compliance with annual and
daily, regional-scale air quality metrics to one also focused
on the mitigation of cumulative exposure, creating local re-
mediation plans based on source apportionment (BAAQMD,

2019). These source apportionment estimates are created
from bottom-up emissions inventories using emission factors
and activity data. Consequently, accurate local emission fac-
tors are vital to understanding and planning neighborhood-
scale mitigation strategies.

On-road vehicles, specifically heavy-duty vehicles
(HDVs), are a large contributor to aerosol in urban areas,
both through direct emissions and through secondary for-
mation in the atmosphere (e.g., Shah et al., 2018; Fanai et
al., 2014). Total emissions can be thought of as the product
of emission factors (EFs) and activity, where the EFs are
expressed in units of grams of aerosol per unit activity
(such as grams of aerosol per kilogram of fuel burned or per
kilometer traveled). EFs are estimated for on-road activity in
a variety of ways, including scaling based on measurements
in a lab setting and/or on-road measurements (see the
references in Table 1). A summary of on-road studies for
primary HDV and passenger vehicle PM2.5 EFs over the
last 25 years is shown in Fig. 1 and Table 1. These studies
determined EFs of primary on-road aerosol by comparing

Published by Copernicus Publications on behalf of the European Geosciences Union.



15404 H. L. Fitzmaurice and R. C. Cohen: A method for using stationary networks

Figure 1. On-road measurements of emission factors from other
studies. HDV (black) emission factors converge on LDV (blue)
emission factors. Some studies do not give error bars. Gray patches
and blue trend lines indicate findings from this study for the two
highway sites (Redwood City, RWC, and San Rafael, SR) avail-
able during all time periods. The blue trend line shows the error-
weighted mean of emission factors at these two sites during each
time period. Gray patches indicate the estimated uncertainty in the
error-weighted mean.

ratios of aerosol enhancement (in grams) to CO2 and/or CO
enhancement (as a measure of fuel burned). Measurements
included sampling directly in the exhaust of tunnels and
high-frequency sensors near or above roads to sample and
characterize individual vehicle plumes.

These prior observations show that typical heavy-duty,
diesel-powered vehicles dominated on-road emissions of pri-
mary aerosol in the 1990s and early 2000s. However, in re-
cent years, emission factors from typical heavy-duty vehi-
cles have been dramatically reduced, such that PM2.5 EFs of
HDVs are now similar to those of light duty vehicles (LDVs)
and have less than 0.05 g PM2.5 kg−1 of fuel burned. Con-
trol technologies, such as diesel particulate filters and selec-
tive catalytic reduction, are contributing to these reductions
in EFs for HDVs.

While these improvements are seen in the typical HDVs,
previous studies indicate that compliance of HDVs with
emission technology requirements, and therefore HDV on-
road emission factors, vary by up to an order of magni-
tude from location to location (Preble et al., 2018; Bishop,
2015; Haugen and Bishop, 2017, 2018). For example,
Bishop (2015) and Haugen and Bishop (2017, 2018) found
emission factors measured at the Port of Los Angeles were
as much as an order of magnitude lower than those measured
along a highway in Cottonwood, California, during the same
season. While the gap between the two sites narrowed from
2013–2017, the mean emission factors measured in Cotton-
wood were still 3 times those measured at the Port of Los
Angeles in 2017. Similarly, Preble (2018) found that, while
100 % of trucks at the Port of Oakland were registered by the
state of California as being in compliance with HDV con-

trol technology regulations, compliance rates amongst HDVs
at the Caldecott Tunnel (also in Oakland, CA) were below
90 %.

These studies highlight that variability in emission fac-
tors as a function of location may affect exposure. They
point to the importance of characterizing the spatial variation
in HDV emissions if we are to understand aggregate emis-
sions from the sector and its localized impacts. To assess
the potential for existing data sources to supply the needed
information, here we explore the use of regulatory sensor
networks (near-highway, hourly PM2.5 and CO (or CO2)
measurements) paired with coincident traffic data, including
LDV and HDV counts, to quantify the spatial variation in
HDV EFs. Such data are widely available. For example, in
the U.S., there are more than 550 regulatory sites at which
PM2.5 and CO are collocated, some of which have measure-
ments spanning more than a decade (https://www.epa.gov/
outdoor-air-quality-data, last access: 11 November 2020). Of
these, 154 are located within 500 m of a highway. The large
number of these sites and their longevity allow for examina-
tion of regional and temporal differences in EFs for HDVs
across the United States. In the future, the approach we out-
line should be even more widely applicable when dense low-
cost sensor networks, including aerosol and CO or CO2, are
available as a data source (e.g., Shusterman et al., 2016;
Kim et al., 2018; Zimmerman et al., 2018). Because HDV
emission control regulations vary regionally in the U.S., this
method has the potential to shed light on regional differences
in HDV EF trends.

We begin by describing a general method for using such
data to derive the EFs of primary PM2.5 from HDVs (Sect. 2).
We then (Sect. 3) test our method by using data from four
near-highway sites operated by the Bay Area Air Quality
Management District (BAAQMD) in the San Francisco (SF)
Bay area (Fig. 2a) over the period of 2009–2018. In Sect. 4,
we discuss the relationship of these findings to measures of
exposure.

2 Data and methods

2.1 Aerosol and CO measurements

We use 1 h averaged observations from 18 of the BAAQMD
regulatory sites which measure PM2.5 using beta attenuation
monitors and CO using the Thermo Fisher Scientific TE48i
IR sensor. Some sites have been in operation since 2009,
while others have been brought online as recently as 2018
or were operational for only a few years during this time pe-
riod. Data were retrieved from https://aqs.epa.gov/aqsweb/
documents/data_api.html (last access: 19 November 2021).
Site locations are summarized, and example data are shown
in Fig. 2. PM2.5 and CO data from four near-highway sites
(San Rafael, Redwood City, Berkeley Marina, and Pleasan-
ton) are used to characterize EFPM(HDV), and data from other
sites are used to define regional signals.
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Table 1. Summary of emission factors derived by previous studies.

Study Year of Vehicle type Measurement location EFCO EFPM
measurements (g kg−1 fuel) (g kg−1 fuel)

Kirchstetter et al. (1999) 1997 Light duty Caldecott Tunnel, Oakland, CA 0.11± 0.1
Kirchstetter et al. (1999) 1997 Heavy duty Caldecott Tunnel, Oakland, CA 2.7± 0.3

Geller et al. (2005) 2004 Light duty Caldecott Tunnel, Oakland, CA 0.07± 0.02
Geller et al. (2005) 2004 Heavy duty Caldecott Tunnel, Oakland, CA 1.04± 0.02

Ban-Weiss et al. (2008) 2006 Light duty Caldecott Tunnel, Oakland, CA 0.07± 0.2
Ban-Weiss et al. (2008) 2006 Heavy duty Caldecott Tunnel, Oakland, CA 1.4± 0.6

Park et al. (2011)∗ 2007 Light duty Los Angeles, CA (Wilmington) 47 0.15
2007 Heavy duty Los Angeles, CA (Wilmington) 36 0.73

Dallman et al. (2012) 2010 Heavy duty Caldecott Tunnel, Oakland, CA 8.0± 1.2
Dallman et al. (2013) 2010 Light duty Caldecott Tunnel, Oakland, CA 14.3± 0.7 0.038± 0.010

Bishop et al. (2015) 2013 Heavy duty Cottonwood, CA 0.65± 0.11
Bishop et al. (2015) 2013 Heavy duty Port of Los Angeles 0.031± 0.007

Park et al. (2016) 2011 Light duty West Hollywood 15.2± 53.8 0.01± 0.01
2011 Light duty Boyle Heights 36.8± 85.6 0.11± 0.68
2011 Light duty Los Angeles, CA (Wilmington) 46.6± 117.9 0.04± 0.21

Haugen and Bishop (2017) 2015 Heavy duty Port of Los Angeles 1.6± 0.4 0.11± 0.01
2015 Heavy duty Cottonwood, CA 3.0± 0.2 0.22± 0.04

Haugen and Bishop (2018) 2017 Heavy duty Port of Los Angeles 1.7± 0.3 0.035± 0.01
2017 Heavy duty Cottonwood, CA 2.8± 0.4 0.09± 0.005

Li et al. (2018) 2014 Light duty Pittsburgh, PA 0.035± 0.008
2014 Heavy duty Pittsburgh, PA 0.225± 0.065

∗ Note that, in Park (2011), no error in emission factors were reported.

Figure 2. BAAQMD sites used in this study are shown in the left panel. Red dots show near-highway sites at which HDV emission factors
were determined. Blue sites were used only for determining the regional signal. On the right-hand side, aerosol and CO at each BAAQMD
site (various colors) are shown. The regional background (black), is defined as the lowest 10th percentile of all signals within a rolling 4 h
window. Figure credit: Esri, HERE, Garmin, USGS, EPA, and NPS.
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2.2 Meteorology

Boundary layer height and wind speed and direction
were retrieved from the European Centre for Meteorology
and Weather Forecasting (ECMWF) ERA5 reanaly-
sis (https://cds.climate.copernicus.eu/cdsapp#/dataset/
reanalysis-era5-land?tab=form, last access: 12 Octo-
ber 2021). Typical diel cycles for boundary layer height and
total wind speed are shown in Fig. S1.

We use this reanalysis to find wind speed, boundary layer
height, and wind direction for each hour (2009–2020) at each
of the BAAQMD sites. Wind data are then used for filtering
PM2.5 and CO measurements, as described below.

2.3 Traffic data

Total vehicle flow, fleet speed, and the percent of vehicles
that are HDVs are taken from the Caltrans Performance Mea-
surement System (PeMS) database (http://pems.dot.ca.gov,
last access: 16 October 2021), which records these parame-
ters at over 1800 locations on highways in the SF Bay area.
We include all BAAQMD sites that are within 500 m of one
major highway and use traffic count data from the PeMS
measurement site closest to each air quality site. In cases of
missing PeMS data, data were filled in with the median value
associated with that parameter for a particular site in a par-
ticular year or, if not possible, retrieved from the second- or
third-nearest sites. More details about the PeMS data, includ-
ing a map of PeMS measurement sites, a list of sites used in
this study, and example diels of truck flow and truck percent
are presented in Figs. S2–S3 and Table S1.

2.4 The EMissions FACtor (EMFAC2017) model

In order to calculate EFPM(HDV), as described in Sect. 2.5,
we make use of the EMFAC2017 model to estimate both
HDV and LDV emission factors for CO and a HDV and LDV
fuel efficiency. We run this model for the four time periods
of interest (2009–2011, 2012–2014, 2015–2017, and 2018–
2020) by choosing the middle year for that period, specifying
the location to be the nine counties under the BAAQMD’s
jurisdiction. We assign the vehicle class to either LDV or
HDV by approximate vehicle length, as this is the manner
in which PeMS classifies vehicles as being either LDVs or
HDVs. These designations are summarized in the supple-
ment of Fitzmaurice et al. (2022). We use EMFAC emission
values across all speeds to obtain CO emission factor used to
calculate EFPM(HDV) for all sites during a given time period.

To estimate uncertainty in these emission factors at partic-
ular sites, we use the speed-dependent variance in EMFAC-
derived emission factors. To do this, we first calculate speed-
dependent CO emission factors (g CO kg−1 fuel) and emis-
sion rates g CO2 vkm−1 for HDVs and LDVs for each time

period as follows:

Xspeed,HDV/LDV =

∑n
i=1vkmi,speedXi,speed∑n

i=1vkmi,speed
. (1)

Here, vkm is the EMFAC model’s estimate of kilometers
traveled per year by a particular vehicle class, and X is ei-
ther the emission rate (g CO2 vkm−1) or emission factor in
(g CO kg−1 fuel). The EMFAC2017 model bins speeds (each
5 mph (8 km h−1)), so we use spline interpolation to esti-
mate the CO emission factor and emission rate hourly at each
PeMS site corresponding to a BAAQMD site of interest. The
1σ variance of these estimates during times corresponding
to those used to calculate EFPM(HDV) are then used estimate
uncertainty in emission rate and CO emission factors. These,
in turn, are used to estimate uncertainty in EFPM(HDV).

2.5 Derivation of EFPM(HDV)

Our derivation of HDV EFs assumes that the relationship be-
tween the enhancement of PM2.5 and CO, as observed near
roads, can be scaled so that it represents particulate matter
(PM) per unit of fuel burned by HDVs, as follows:

EFPM(HDV) = γ
PMHDV

COfleet

gCOfleet

kg fuelHDV
. (2)

In this equation, γ = 0.0008 and is the ideal gas law con-
version factor, from (µg m−3 ppm−1-CO) to (gPM2.5/gCO),
where ppm is parts per million. A detailed derivation of
Eq. (2) is described in Sect. S3. Below, we describe the steps
used to calculate each term in Eq. (2).

The first term PMHDV
COfleet

in the equation is derived from ob-
servations as the slope of a linear fit of near-road PM2.5 (as-
sumed to be primarily emitted by HDVs) and near-road CO
(assumed to be emitted by both HDVs and LDVs). This term
is derived by (1) isolating local enhancements of PM2.5 and
CO, (2) isolating roadway enhancements by using temporal
and meteorological filters, and (3) fitting resulting roadway
enhancements of PM2.5 and CO to a line, as detailed below.

To isolate local enhancements from total signal PM2.5 and
CO, we first leverage the entire BAAQMD network to de-
rive an hourly regional signal for each species. The regional
signal is defined as the 10th percentile of the data across
all 22 BAAQMD sites within a 5 h window of that hour
(Fig. 2b). We choose the bottom 10th percentile rather than
the absolute minimum in the hopes that the baseline cap-
tures regional mixing rather than just cleaner background
air. In Sect. S4 in the Supplement, we show that, while the
EFPM(HDV) is slightly sensitive to the percentile and time
window chosen, the sensitivity of EFPM(HDV) to these param-
eters is smaller than estimated uncertainty in final EFPM(HDV)
values. This regional signal is assumed to be composed of
background PM2.5/CO transported to the region from else-
where and region-wide sources of secondary aerosol/CO. We
the find the enhancement by local primary emissions by sub-
tracting the regional signal from total signal at each site.
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We isolate primary emissions from on-road sources by
considering only the morning commute times during fall and
winter only and applying meteorological filters. These are
times coinciding with relatively high traffic emissions and
are too early in the day for the significant accumulation of
new secondary aerosol. We find that the 06:00–08:00 LT (lo-
cal time) period represents the optimal overlap of low bound-
ary layer height (Fig. S1) and HDV emissions (Fig. S3). The
combination of low boundary layer height and stable early
morning conditions enhance the signal (Choi et al., 2012,
2014), allowing inferences about traffic from sites further
away than would be possible during later morning or after-
noon hours.

To avoid observations of stagnant air, we only include ob-
servations with wind speed above 0.5 m s−1. Furthermore,
for each site of interest, we exclude known fire events, and
we filter out observations that occur when the BAAQMD
site is upwind of the highway. An upwind event is defined
as occurring when the wind direction deviates more than 90◦

in either direction from the perpendicular line pointing from
the highway nearest a BAAQMD site to that site. The result
of these first two steps is enhancements in1PM2.5 and1CO
above the background.

The slope of a linear fit of all unfiltered1PM2.5 and1CO
(see Fig. 3) is defined as the enhancement ratio (units of
µg m−3 ppm−1 CO). Using the lengthy dataset, we can derive
enhancement ratio for different percentages of HDVs in the
vehicle fleet on the road. There are some high1PM2.5 values
uncorrelated with1CO, as shown in Fig. 3. In all cases, these
points show little-to-no NOx enhancement and thus are char-
acteristic of a source that is not from HDVs. We make the
assumption that LDV PM2.5 EFs are negligible, and on-road
primary emissions of aerosol are solely from HDV, implying
that the enhancement ratio is equivalent to the term PMHDV

COfleet
.

We discuss this assumption and the impact of correcting for
LDV emissions further in Sect. 3.

The term g COfleet
kg fuelHDV

can be calculated using the HDV frac-
tion, t , and LDV and HDV CO emission factors (g CO kg−1

fuel) and emission rates (g CO2 km−1) from EMFAC2017
model as follows:

gCOfleet

kg fuelHDV
=

EFCO(HDV)tEHDV+ EFCO(LDV) (1− t)ELDV

tEHDV
, (3)

where t is the HDV fraction, and E is emission rate.
Because, at a given site, we expect PMHDV

COfleet
(but not

EFPM(HDV)) to vary linearly with the HDV fraction, we bin
data by HDV fraction in increments of 0.02 and use the pro-
cess above to calculate EFPM(HDV) for each bin. Data and
slopes for each bin are shown in Fig. S6. We then calculate
EFPM(HDV) for each site during a particular time period, using
the average of the EFPM(HDV) for each bin weighted by un-
certainty. A detailed description of how we estimate the un-
certainty in EFPM(HDV) for each bin can be found in Sect. S6.

Figure 3. 1PM vs. 1CO at the Pleasanton site during the 2018–
2020 time period, for which 10 %–12 % of traffic flow are trucks.
Data are colored by NOx concentration. These points are fit linearly
to find the slope.

3 HDV emission factors from primary aerosols in
the SF Bay area: 2009–2020

The result of this procedure is EFPM(HDV) at four near-
highway BAAQMD sties (Redwood City, Berkeley Marina,
San Rafael, and Pleasanton) during the time periods of 2009–
2011, 2012–2014, 2015–2017, and 2018–2020 (Fig. 4).
We observe the EFPM(HDV) decrease substantially over the
decade (Figs. 1, 4), which amounts to a ∼ 9-fold reduc-
tion. We also observe substantial site-to-site differences in
EFPM(HDV). For example, during the 2018–2020 period, we
see a range of a factor of ∼ 7 of 0.05± 0.06 g PM2.5 kg−1

fuel to a maximum of 0.35± 0.08 g PM2.5 kg−1 fuel. In ad-
dition, we observe different timing emission factor decreases
between sites (e.g., Redwood City and San Rafael). For ex-
ample, while emission factors at both Redwood City and
Santa Rosa drop throughout the time period, values at San
Rafael in the 2018–2020 time period are similar to those
seen at Redwood City in 2012–2014, suggesting a differ-
ence in the timing of compliance to control technologies at
each place. Both the temporal decrease and the site-to-site
differences in EFPM(HDV) are similar to prior reports derived
using other approaches to data collection and interpretation
(e.g., Haugen and Bishop, 2017, 2018).

In addition to being in line with observations from other
studies, the observed decrease in EFPM(HDV) follows pro-
gressively more stringent truck regulations by the state of
California over that time. However, in the 2018–2020 pe-
riod, observed EFPM(HDV) are still higher than would be ex-
pected were all vehicles in compliance with Californian reg-
ulations. By 2020, California law required that all HDV mod-
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Figure 4. Fleet emission factors, derived from all sites, for all years,
and binned by truck fraction are shown at the top. The HDV emis-
sion factor at near-highway sites during the 2009–2011, 2012–2014,
2015–2017, and 2018–2020 time periods.

els from the years 1995–2003 replace their engines with 2010
or newer models and that all HDV models from the year
1994 or newer use diesel particulate filters (DPFs; Califor-
nia Code of Regulations, 2022). Assuming that the fleet-
wide average EF for models with 2010 or newer engines
using DPFs is 0.03 g PM kg−1 fuel, as observed by Hau-
gen and Bishop (2018), we can use fuel usage by HDV
model year in 2020 and emission factors for vehicles older
than 1994 estimated by EMFAC2017 to estimate a fleet-wide
average. Thus, a fleet-wide average should have an EF of
0.03–0.06 g PM kg−1 fuel, if the trucks were fully compli-
ant in 2018–2020. In contrast, we observe an average EF
of 0.08± 0.03 g PM2.5 kg−1 fuel for 2018–2020. While our
estimates overlap with the higher end of what is expected,
counting uncertainty, it is larger than expected for a HDV
fleet compliant with current regulations.

Non-exhaust vehicle emissions (e.g., tire wear and brake
wear) may account for some of this discrepancy. However,
we observe substantially higher emission factors at high-
ways near the Pleasanton (0.35± 0.08 g PM kg−1 fuel) and
Berkeley Marina (0.15± 0.05 g PM2.5 kg−1 fuel) sites. Pos-
sible explanations for this discrepancy include exemptions
from truck regulations, under which certain classes of HDVs
traveling fewer than 15 000 miles (24 140.16 km) per year are
eligible for exemptions, meaning that locally traveling HDVs
may have higher emission factors than those traveling long
distances (CARB, 2018b). The fact that HDVs registered in
other states are not typically subject to Californian regula-
tions, unless they enter specific areas, such as ports, and fail-
ure of or tampering with installed equipment is not taken into
account.

In considering estimated EFPM(HDV), it is important to
consider two potential biases in our method, i.e., the im-
pact of PM2.5 emitted by LDVs and the potential for local
sources to bias emissions estimates. As stated in Sect. 2, in
calculating EFPM(HDV), we assume that contribution of PM2.5

from LDVs is negligible. This assumption is sound at the be-
ginning of our period (2010s) of interest because reported
values of EFPM(HDV) were more than an order of magnitude
higher than EFPM(LDV) at that time (Fig. 1). More recently, as
EFPM(HDV) has decreased, this is less clear, especially with-
out on-road estimates of EFPM(LDV) and because LDVs also
contribute non-tailpipe emissions of PM2.5 from brake and
tire wear. However, for 2020, EMFAC still estimates the ra-
tio of EFPM(HDV) : EFPM(LDV) to be ∼ 8. Such a ratio would
mean that even if only 5 % of vehicles were HDVs, then
more than 60 % of PM2.5 emissions are expected to be at-
tributable to HDVs. This is an important concern, and we
address it in two ways. First, we show that, even in the 2018–
2020 period, the PM : CO enhancement ratio increases with
the percent of HDVs regardless of total flow rate (Fig. 5a).
We interpret the intercept of a linear fit with these data to
be the PM2.5 resulting from LDVs alone and note it to be
much smaller than the impact of increasing HDVs by only a
few percent. The observed PM2.5 : CO intercept would corre-
spond to an EFPM(LDV) to be ∼ 0.01 g PM2.5 kg−1 fuel. This
value is roughly consistent with tire and brake emission fac-
tors from EPA MOVES3 (EPA, 2020), although it is diffi-
cult to know the extent of braking at a given site, and esti-
mates from previous studies of non-exhaust PM2.5 by LDV
vary widely (Fussell et al., 2022). Second, we explore the
impact that LDV emissions might have on EFPM(LDV). To
understand the impact of LDV PM2.5 emissions on our find-
ings, we assume EFPM(LDV) to be 0.01 g PM kg−1 fuel and
recalculate EFPM(HDV). As shown in Fig. 5a, correction for
LDV emissions in this way decreases estimated EFPM(LDV),
bringing the average value in the 2018–2020 period to 0.03,
which is in line with what would be expected if all SF Bay
area HDVs were in compliance with regulations during that
period. However, even after this correction, EFPM(HDV) at
Pleasanton and Berkeley Marina are still substantially higher
(0.32± 0.08 and 0.13± 0.05) than would be expected if all
HDVs were compliant.

The second potential for bias in the method presented here
is the influence of local, non-highway sources on measured
PM2.5 and CO enhancements. Because our method is de-
pendent on finding the slope of PM2.5 and CO, we expect
this to eliminate contributions from non-combustion sources
for which PM2.5 and CO are uncorrelated. However, nearby
combustion, such as non-highway vehicle sources, has the
potential to influence EFPM(HDV) results. For example, we
consider the EFHDV calculated for Laney College, a near-
highway BAAQMD site not considered in the analysis above.
The Laney College site instruments are located in a large
parking lot. In the 2015–2017 and 2018–2020 period, we see
significantly higher EFHDV than observed at the four sites we
deem to be reliably far from other sources. While it is pos-
sible that HDVs on the highway near Laney College are un-
usually high emitters, it is more likely that emissions from a
nearby parking lot are responsible for the high inferred EFs.
This is because PM2.5 : CO emissions ratios are expected
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Figure 5. (a) Each point corresponds to the PM : CO enhancement ratio calculated via a linear fit between PM enhancement and CO
enhancement at a particular near-highway site during the 2018–2020 time period for each bin of HDV (%). Laney College data are not
included. The black line shows the linear fit corresponding to all points. (b) Trend in EFPM(HDV) for RWC and SR (as shown in Fig. 1). The
blue line indicates values calculated for the setting EFPM(LDV) = 0, while the orange line indicates values calculated using EFPM(LDV) =

0.002 g PM kg−1 fuel. Gray patches indicate the estimated uncertainty in the error-weighted mean for the case where EFPM(LDV) = 0.

to be dramatically higher at low (parking lot) speeds com-
pared to speeds typically seen on a highway, meaning that a
comparatively small number of vehicles may contribute sig-
nificantly to PM2.5 : CO enhancement ratios (see Sect. S8
and Fig. S8). This example shows that, while the method
developed in this paper has the potential to leverage exist-
ing data to highlight potential hotspots for EFPM(HDV) non-
compliance, care must be taken in interpretation of resulting
emission factors.

4 Primary PM2.5 exposure

To understand exposure from HDV PM2.5, we calculate both
a region-wide addition to aerosol burden by HDV emissions
and an enhancement as a function of distance from a high-
way. Assuming a steady state, a box of 100 km in length,
160 m in height, and a wind speed of 1.2 m s−1 (Fig. S6), and
using fuel sales data (Moua, 2022) to estimate total HDV fuel
used, we estimate a maximum region-wide enhancement of
the order of 0.12 µg m−3 on a typical day in the 2018–2020
period, compared to an enhancement of 1.1 µg m−3 during
the 2009–2011 period (Fig. S7). Decreases in emission fac-
tors over the past decade are countered by the increase in
diesel fuel usage (70 %; Moua, 2022), such that there has
been only a small change in typical regional exposure to pri-
mary PM from HDVs (see Fig. S1 for a diel cycle of the
modeled region-wide enhancement). While an enhancement
of 0.12 µg m−3 is small in comparison to average ambient
PM2.5 (8.3–14.4 µg m−3 for all BAAQMD sites in 2018), it
is sizable in comparison to the average ambient BC (0.4–
1 µg m−3 for all BAAQMD sites in 2018).

To gauge near-roadway exposure, PM2.5 enhancement
from HDVs was calculated as a function of distance from a
highway, which was modeled by treating emissions from the
highway as a Gaussian plume flowing perpendicular to a line
source. Assuming that both the highway and point of mea-
surement are at ground level, the simplified Gaussian plume
dispersion for a line source yields the following:

λPM2.5 enh =
2

√
2πuσz

, (4)

where λ is an emission rate per unit of highway length, u
is the wind speed, and σz is a dispersion parameter. Using
the average emission factor from the 2018–2020 time pe-
riod, for a typical daytime HDV flow rate of 500 vehicles
per hour (Fig. S2) and wind speed of 1.2 m s−1 (Fig. S6), we
calculate PM2.5 enhancement as a function of perpendicular
distance downwind of a highway. For unstable atmospheric
conditions (σz = 0.102x

(1+ x
927 )−1.92 ), enhancements drop to values

of below 0.8 µg m−3 in the first 200 m. For stable conditions
(σz = 0.022x

(1+ x
1170 )0.7 ), such as those typical of early morning,

enhancements of 1 µg m−3 are predicted up to a kilometer
away.

5 Conclusions

We find that HDV EFs in the SF Bay area have decreased
by about a factor of ∼ 9 over the last decade, consistent with
trends reported in other analyses in this region and Los An-
geles. We find that the spatial variation in HDV EFs remains
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large, indicating a wide range in the application of retrofit
technologies and the possibility that vehicles legally exempt
from compliance with the current standards are a significant
portion of those on the road at the sampling sites. The method
introduced in this paper has the potential to leverage existing
regulatory (or other) data to examine long-term trends and
highlight potential spatial heterogeneities in EFPM(HDV).
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