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Abstract. We have constructed an atmospheric inversion framework based on TM5-4DVAR to jointly assimi-
late measurements of methane and δ13C of methane in order to estimate source-specific methane emissions. Here
we present global emission estimates from this framework for the period 1999–2016. We assimilate a newly con-
structed, multi-agency database of CH4 and δ13C measurements. We find that traditional CH4-only atmospheric
inversions are unlikely to estimate emissions consistent with atmospheric δ13C data, and assimilating δ13C data
is necessary to derive emissions consistent with both measurements. Our framework attributes ca. 85 % of the
post-2007 growth in atmospheric methane to microbial sources, with about half of that coming from the tropics
between 23.5◦ N and 23.5◦ S. This contradicts the attribution of the recent growth in the methane budget of the
Global Carbon Project (GCP). We find that the GCP attribution is only consistent with our top-down estimate in
the absence of δ13C data. We find that at global and continental scales, δ13C data can separate microbial from
fossil methane emissions much better than CH4 data alone, and at smaller scales this ability is limited by the
current δ13C measurement coverage. Finally, we find that the largest uncertainty in using δ13C data to separate
different methane source types comes from our knowledge of atmospheric chemistry, specifically the distribution
of tropospheric chlorine and the isotopic discrimination of the methane sink.
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1 Introduction

Current atmospheric levels of methane (CH4) are about 2.5
times pre-industrial levels, primarily due to anthropogenic
emissions (Dlugokencky et al., 2011). The main sources of
CH4 to the atmosphere today are known, which are peri-
odically summarized by the Global Carbon Project (GCP,
Saunois et al., 2020). In brief, they include anthropogenic
sources from agriculture (ruminants, manure, and rice),
waste management (landfills and waste treatment), fossil fuel
production and use (coal, oil, and natural gas), and biomass
burning (including biofuels). The remainder is from natural
processes, predominantly tropical and high-northern-latitude
wetlands, with smaller contributions from termites, wild an-
imals, and geologic seeps. In the latest GCP report, how-
ever, a large disparity of ∼ 160 Tg yr−1 remains between the
bottom-up budget constructed from inventories and the top-
down budget derived from atmospheric CH4 measurements
(Saunois et al., 2020), signifying gaps in our understanding
of the CH4 budget.

As shown in Fig. 1, CH4 levels have been rising rapidly
since 2007 after a period of relatively slow growth in 1999–
2006 (Dlugokencky et al., 2011; Saunois et al., 2020). The
mechanisms behind the relative stability of 1999–2006 and
growth thereafter, however, are not yet fully understood. Pos-
sible mechanisms suggested in the literature include an ap-
proach to a steady state in the early 2000s (Dlugokencky
et al., 2003), followed by an increase in either agricultural
(Schaefer et al., 2016) or fossil (Worden et al., 2017) emis-
sions or both (Saunois et al., 2020; Jackson et al., 2020),
an increase in global (Schwietzke et al., 2016) or tropi-
cal (Nisbet et al., 2016, 2019) microbial emissions, a de-
crease in methane uptake by upland soils (Ni and Groff-
man, 2018), and decadal changes in the atmospheric sinks of
methane (Rigby et al., 2017; Turner et al., 2017). It is difficult
to choose between these competing explanations based on
atmospheric CH4 measurements alone. However, measure-
ments of the 13C:12C ratio of CH4, denoted δ13C−CH4 or
δ13C for short, provide some additional information to dis-
tinguish between these hypotheses (Lan et al., 2021).

Different CH4 sources have distinct δ13C signatures over
large spatial scales, and different sinks consume 12CH4 and
13CH4 at slightly different rates, imposing different signals
on atmospheric δ13C (Miller, 2004). Therefore, atmospheric
δ13C measurements can help constrain and refine the CH4
budget. In an earlier publication, we described the simulation
of atmospheric CH4 and δ13C using the model TM5 (Krol
et al., 2005) and its use for evaluating competing hypothe-
ses about renewed CH4 growth since 2007 (Lan et al., 2021).
In this work, we construct and apply a variational inversion
framework based on TM5 to assimilate CH4 and δ13C mea-
surements and estimate space- and time-varying emissions of
CH4 disaggregated by source type. With this framework, we

perform atmospheric inversions from 1997 to 2016 to infer
large-scale methane emissions from different sources, assess
the added value of δ13C measurements compared to tradi-
tional CH4-only inversions, and investigate the possible fac-
tors behind the post-2007 growth in atmospheric CH4.

Several previous studies have used the information pro-
vided by δ13C measurements to infer mechanisms behind the
behavior of atmospheric methane over the past 2 decades.
However, many of these studies approximated the global
atmosphere as a small number of connected boxes, with
homogeneous emissions and chemistry in each box (e.g.,
Schwietzke et al., 2016; Schaefer et al., 2016; Nisbet et al.,
2016, 2019; Worden et al., 2017; Zhang et al., 2021b). They
were therefore susceptible to biases inherent in box models
(Naus et al., 2019) and were unable to use the information
contained in spatial gradients of atmospheric CH4 and δ13C.
Moreover, by construction, box models have to simplify the
complexity of δ13C source signatures, transport variability,
and loss processes and cannot extract information from spa-
tial gradients in atmospheric measurements. In Sect. 4.3, we
explore some of the limitations of box models and their dif-
ferences from a 3D model by comparing our conclusions
to those from the recently published work of Zhang et al.
(2021b), which used a box model in combination with atmo-
spheric CH4 and δ13C data to infer causes behind the post-
2007 growth in atmospheric CH4. Some studies have used
3D atmospheric circulation models to estimate CH4 emis-
sions consistent with observed δ13C (e.g., Bousquet et al.,
2006; Rice et al., 2016). However, they have generally used
globally uniform δ13C source signatures, when in reality sig-
natures of some of the most important sources such as wet-
lands and fossil fuels have strong latitudinal gradients and
spatial variations. In this study, we confront our best estimate
of spatiotemporally varying methane emissions and source
signatures with a newly constructed multi-laboratory dataset
of atmospheric CH4 and δ13C measurements in the TM5-
4DVAR framework. Our technique is analogous to a recently
submitted paper by Thanwerdas et al. (2022), and in Sect. 4.4
we discuss the similarities and differences between our meth-
ods.

2 Method

2.1 Formulation of the mass balance equations

The atmospheric mass balance of 12CH4 can be written as

d
dt

12C=
∑
s

12Fs−
∑
l

12kl ×
12C×[l]

=

∑
s

12Fs−
12C

∑
l

Ll, (1)

where Fs denotes the surface flux from source category s,
and l denotes species contributing to chemical loss, namely
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Figure 1. Global average CH4 (blue circles, left axis) and δ13C (red
diamonds, right axis) from NOAA marine boundary layer (MBL)
and other background sampling sites. The gray box denotes the pe-
riod from 1999 to 2006 when the atmospheric CH4 burden was rel-
atively stable, in contrast to the periods of growth before and after.
Regular δ13C measurements started at NOAA background sites in
1998, which is the first year with an estimate of the global δ13C.
The selection of marine boundary layer sites and the construction of
global averages are described in detail by Masarie and Tans (1995).

Cl, OH and O(1D). We classify all sources into three isotopi-
cally distinct source categories, namely pyrogenic, fossil, and
microbial CH4. While the upland soil sink of methane is in-
cluded in the sources in conventional methane modeling, for
reasons described in Sect. 2.4 we have modeled it as a fourth
loss mechanism. The combination 12kl×[l] can be denoted as
a loss rate or inverse lifetime Ll due to species l. For 13CH4,
we can write a corresponding equation,

d
dt

13C=
∑
s

13Fs−
13C

∑
l

αlLl, (2)

where αl = 13kl/
12kl . Using the definition of δ and denoting

the atmospheric isotope ratio (signature of source s) as δa
(δs), respectively, we can substitute 13C= 12Crstd(δa+1) and
13Fs =

12Fsrstd(δs + 1) and get

12C
d
dt
δa =

∑
s

(δs − δa) 12Fs−
12C(δa+ 1)

∑
l

εlLl, (3)

where εl = αl − 1 and rstd = 0.0112372 is a predefined stan-
dard ratio1 (Craig, 1957). While Eqs. (1) and (3) are math-
ematically complete descriptions of the 12CH4 and 13CH4
budgets, they are not the most convenient form for construct-
ing a dual-tracer CH4 and δ13C inversion. This is because it

1There is no single unique value of rstd in the literature. Cur-
rently, rstd = 0.011180 (Zhang and Li, 1990) is used by most mea-
surement laboratories, while values of 0.011117 (Malinovsky et al.,
2019) and 0.011125 (Fleisher et al., 2021) have also been reported
recently. However, the true value of rstd impacts neither our formu-
lation nor our results, as long as a single value is used consistently.

is total CH4 that is measured and not the two isotopologues
separately. We therefore construct an alternate formulation in
terms of δ′ = (13CH4/CH4)/rstd−1, which can be related to
the more traditional δ = (13CH4/

12CH4)/rstd− 1 by

δ′ =
1+ δ

1+ rstd(1+ δ)
− 1, (4)

δ =
1+ δ′

1− rstd(1+ δ′)
− 1. (5)

In terms of this δ′, the mass balance equations become

d
dt
C =

∑
s

Fs−C
∑
l

Ll + rstdC(δ′a+ 1)
∑
l

Ll(1−αl), (6)

d
dt
Cδ′a =

∑
s

δ′sFs−Cδ
′
a

∑
l

αlLl +C
∑
l

Ll(1−αl)

− rstdC(δ′a+ 1)
∑
l

Ll(1−αl), (7)

where C = 12CH4+
13CH4 and Fs =

12Fs+
13Fs are total

methane moles and fluxes, respectively. This reformulation
of 13CH4 abundance in terms of total carbon is similar to
that by Tans et al. (1993). In Eq. (6), if we consider the
coefficients of any Ll , then the second term supplies C ∼
1800 ppb, while the third term supplies rstdC(δ′a+ 1)(1−
αl)∼ 0.086 ppb, approximating rstd = 0.01, δ′a =−0.05 and
αl = 0.995. In Eq. (7), with the same approximations, the
coefficients of Ll in the last three terms are respectively
89.5, 9, and 0.086 ppb. So in both equations, we ignore
rstdC(δ′a+ 1)

∑
lLl(1−αl), leading to

d
dt
C '

∑
s

Fs−C
∑
l

Ll, (8)

d
dt
Cδ′a '

∑
s

δ′sFs−Cδ
′
a

∑
l

αlLl +C
∑
l

Ll(1−αl). (9)

In this formulation, the two tracers to be simulated are to-
tal CH4 (which is measured) and an artificial tracer Cδ′a. All
measurements of δ13C are converted to δ′a before assimila-
tion. Note that the tracer Cδ′a does not have any surface flux
of its own. There is “production” at the surface proportional
to the CH4 surface flux and loss in the atmosphere. The loss
reactions of Eqs. (8) and (9) are coupled, and the loss of the
tracers from time t to t + δt is calculated by solving the dif-
ferential equation to give

C(t + δt)= C(t)e
−δt

∑
l

Ll
, (10)

Cδ′(t + δt)=
[
C(t)+Cδ′(t)

]
e
−δt

∑
l

αlLl

−C(t)e
−δt

∑
l

Ll
. (11)

2.2 Inversion framework

We use the TM5-4DVAR inversion framework (Meirink
et al., 2008), which has been used to estimate surface fluxes
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Table 1. Parameters for constructing the prior flux error covariance.

Source type f λ (km) τ (months)

Microbial 1.2 500 2
Fossil 1.5 700 6
Pyrogenic 1.0 300 1

of CO, CO2, and CH4 (Hooghiemstra et al., 2011; Bergam-
aschi et al., 2013; Krol et al., 2013; Basu et al., 2013, 2014)
in single-tracer inversions, as well as source-specific CO2
fluxes in multi-tracer inversions (Basu et al., 2020, 2016; Ma
et al., 2021). At the heart of the framework is the TM5 of-
fline tracer transport model (Krol et al., 2005) and its adjoint,
driven by ECMWF ERA-Interim reanalysis winds and run
globally at 3◦× 2◦ with 25 vertical layers defined by sigma–
pressure hybrid coordinates. Two tracers are simulated in
TM5: total methane or C of Eq. (8) and the artificial tracer
Cδ′a of Eq. (9). Measurements of CH4 are directly compared
to modeled values of C, while measurements of δ13C are first
converted to δ′a and then to Cδ′a by multiplying with values
of CH4 mole fractions measured in the same air samples.

TM5-4DVAR minimizes a cost function J as a function of
surface fluxes x (the set of all Fs of Sect. 2.1) by balancing
fits to atmospheric observations y with deviations from the
prior fluxes x0,

J (x)=
1
2

(Hx− y)TR−1(Hx− y)+
1
2

(x− x0)B−1(x− x0), (12)

where H is the transport, chemistry, and observation oper-
ator connecting surface fluxes with atmospheric measure-
ments, and R and B are the error covariances of Hx− y
and prior fluxes, respectively. Our formulation of R contains
both the analytical measurement uncertainty and a model
representativeness error proportional to local tracer gradi-
ents (Meirink et al., 2008). For each source type (pyrogenic,
fossil, and microbial), the diagonal elements of B per time
step and lateral grid cell are proportional to the prior flux,
or f × x0. Off-diagonal elements of B are constructed as-
suming an exponential decay of the prior error correlation
in space and time with source-specific scales λ and τ , re-
spectively. The values of f , λ, and τ for the different source
types are given in Table 1. While there is no unique way
of specifying these parameters, our choices yield reasonable
1σ prior uncertainties in global total microbial, fossil, and
pyrogenic emissions of ∼ 25 Tg yr−1 (∼ 7 %), ∼ 30 Tg yr−1

(∼ 17 %), and∼ 2 Tg yr−1 (∼ 6 %), respectively. The 1σ un-
certainty in the annual global total CH4 emission comes to
∼ 40 Tg yr−1 (∼ 7 %) with these choices. The cost function
J of Eq. (12) is minimized over 50 iterations by a conjugate
gradient minimizer utilizing the Lanczos algorithm (Lanc-
zos, 1950; Courtier et al., 1998).

In TM5-4DVAR, we calculate J (x) of Eq. (12) with TM5
and ∂J/∂x with its adjoint. A traditional variational estima-
tion would require us to run the forward and adjoint models

multiple times over the entire period over which we want
to estimate fluxes. However, these model runs require a sig-
nificant amount of time, and iterations must be performed
in succession. For example, at our 3◦× 2◦ resolution, TM5
simulates a decade in 8 h. So to perform an inversion over
2 decades with 50 iterations (one iteration is one forward and
one adjoint model run), it would take 8×2×2×50= 1600 h
or 67 d just for the model runs, not counting time spent in
the computing queue. This is impractical given the need to
do tests required of any new inversion system. Therefore, we
split up our target period into several inversions that were
run in parallel as shown in Fig. 2a. A single forward run
from 1984 to 2017 produced initial C and Cδ′a fields for
all inversions. This forward run was identical to scenario
C_WL+ of Lan et al. (2021) and matched the long-term at-
mospheric CH4 and δ13C trends over that period. Six 5-year
inversions were run simultaneously with 2 years of overlap
(red bars) between inversions, starting in 1997, 2000, 2003,
2006, 2009, and 2012. After all six inversions finished, the
fluxes from the middle 3-year period of each inversion (blue
bars) were considered for analysis. For simulating prior and
posterior mole fractions, fluxes from the non-overlapping pe-
riods (1997–2001, 2001–2004, 2004–2007, . . . 2013–2017)
were stitched together and a single forward run was done
with those fluxes.

2.3 Prior fluxes and δ13C source signatures

The prior fluxes and their δ13C source signatures for the dif-
ferent categories of methane emissions are described in detail
as scenario C_WL+ in Lan et al. (2021). Briefly, the prior
fluxes are based on bottom-up emission estimates with ad-
justments to match global atmospheric CH4 increases and to
satisfy the global mass balance of δ13C over 1984–2017. For
biomass burning or pyrogenic emissions, we use the Global
Fire Emission Database (GFED) 4.1s for 1997–2016 (van
der Werf et al., 2017) and estimates from the Reanalysis
of Tropospheric chemical composition (RETRO) project be-
fore 1997 (Schultz et al., 2008). Other anthropogenic emis-
sions are based on the EDGAR 4.3.2 inventory (Janssens-
Maenhout et al., 2019). We use natural fossil emissions re-
ported by Etiope et al. (2019). Emission estimates from wild
animals and termites are adopted from Houweling et al.
(1999) and Sanderson (1996), respectively. Wetland emis-
sions and upland soil consumption of methane are estimated
by a process-based model (Zhuang et al., 2004; Liu et al.,
2020), after which the soil sink is modeled as a first-order
loss process as explained in Sect. 2.4.

The δ13C source signatures used in our study are mainly
spatially resolved maps based on the Global δ13C Source
Signature Inventory 2020 for coal, oil and gas (ONG),
biomass and biofuel burning, ruminant and wild animal
sources (Sherwood et al., 2021; Lan et al., 2021), spatial
maps for geological seeps (Etiope et al., 2019), and wetland
sources (Ganesan et al., 2018). Globally averaged values are

Atmos. Chem. Phys., 22, 15351–15377, 2022 https://doi.org/10.5194/acp-22-15351-2022



S. Basu et al.: Estimating methane emissions from δ13C−CH4 15355

Figure 2. A schematic of the time splitting of our inversions. Red bars denote spin-up and spin-down periods, and blue bars denote periods
from which fluxes were considered in our analysis. Panel (a) denotes the time splitting used in most of our inversions as described in Sect. 2.2,
whereas panel (b) denotes the time splitting used specifically with climatological priors as described in Sect. 3.4. In the splitting scheme
in (a), each inversion spans 5 years, and the entire time span is covered with six inversions running simultaneously, starting from initial fields
produced by a 1984–2017 model run with prior fluxes. In the splitting scheme in (b), each inversion spans 6 years, and the entire span is
covered with four inversions. However, except for the 1997–2003 inversion, all other inversions are started from the optimized mole fraction
fields at the end of year 5 of the previous inversion, and therefore the inversions cannot be run in parallel.

used for waste, landfills, termites, rice, and other energy and
industry, given insufficient data to develop spatial distribu-
tions for their δ13C signatures (Lan et al., 2021).

The sum of the bottom-up methane emission estimates de-
scribed above is not consistent with top-down estimates of
global total emissions based on observed atmospheric CH4
growth and estimated loss, which requires a 46 Tg yr−1 in-
crease in the annual global emission in 2016 compared to
the 1999–2006 quasi-stable period. In addition, the δ13C
mass balance requires 167 Tg yr−1 emissions from fossil
sources (including natural geological seeps) to be consis-
tent with modeled sinks and the δ13C source signatures de-
scribed above. Therefore, we (i) scale the ONG emissions
from EDGAR 4.3.2 uniformly using annual scaling factors to
reach a total of 167 Tg yr−1 from all fossil sources, (ii) im-
pose a linear trend on wetland emissions to achieve an in-
crease of 46 Tg yr−1 in total 2016 emissions compared to
1999–2006, and (iii) adjust emissions from agricultural and
waste sectors to match the year-on-year global CH4 growth
rate derived from marine boundary layer observations (Dlu-
gokencky et al., 2011). This ensures that our global CH4 and
13CH4 budgets approximate the long-term trends in atmo-
spheric CH4 and δ13C over 1984–2017.

2.4 Methane loss mechanisms and fractionation

Atmospheric methane has four loss mechanisms: atmo-
spheric oxidation by OH and Cl throughout the atmosphere,
destruction by O(1D) in the stratosphere, and surface up-
take by upland soils. In all our inversions, these sinks are
prescribed and not optimized. Monthly climatological CH4
loss rates in the stratosphere due to OH, Cl, and O(1D) were
constructed from a run of the ECHAM5/MESSy1 chemistry
transport model (Steil et al., 2003; Jöckel et al., 2006). Loss
due to tropospheric Cl is simulated using a recent model-
derived estimate of tropospheric Cl (Hossaini et al., 2016).
For tropospheric OH, we use the monthly OH climatology
of Spivakovsky et al. (2000) after scaling by 0.9 to match
the declining atmospheric abundance of methyl chloroform
in the early 2000s (Montzka et al., 2011).

Table 2. Fractionation parameters for CH4 loss.

Loss reaction C D (K) Reference

Loss to OH 1.0039 0.00 Saueressig et al. (2001)
Loss to Cl 1.0430 6.46 Saueressig et al. (2001)
Loss to O(1D) 1.0130 0.00 Saueressig et al. (2001)
Soil sink 1.0215 0.00 King et al. (1989)

In most CH4 inversions, upland soil sinks are folded into
the net wetland flux. However, the soil sink fractionates
strongly between 12CH4 and 13CH4 (King et al., 1989),
and therefore we keep it separate from wetland fluxes. We
model the soil sink as a first-order reaction at the surface,
in which the loss rates of 12CH4 and 13CH4 in the low-
est model layer are d12C/dt =−kssFss

12C and d13C/dt =
−αsskssFss

13C, respectively. Fss is the prior soil sink map
from the Terrestrial Ecosystem Model (TEM), and kss is an
arbitrary constant tuned to a value such that in a forward run
with prior fluxes, the global total soil sink matches the prior
total.

The fractionation between 12C and 13C for each of the loss
reactions is modeled as k12/k13 = 1/α = CeD/T (Saueressig
et al., 2001), where T is the air temperature in Kelvin. The
soil sink fractionation is cast in a similar form for conve-
nience. Coefficients C and D that we used are tabulated in
Table 2.

2.5 CH4 and δ13C measurements

To maximize the spatiotemporal coverage of in situ CH4 and
δ13C data, we have developed a new database by harmoniz-
ing measurements from NOAA/INSTAAR with those from
30 other laboratories around the world (Lan et al., 2021).
All CH4 data have been quality-checked and converted to a
common CH4 scale, namely the World Meteorological Or-
ganization (WMO) X2004A scale maintained at NOAA’s
Global Monitoring Laboratory (Dlugokencky et al., 2005).
For data not on the WMO X2004A scale, we applied lab-
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specific scale multipliers estimated based on (i) comparisons
of measurements of common air samples during the WMO/I-
AEA Round Robin Comparison Experiment (Crotwell et al.,
2020) and (ii) comparisons of co-located atmospheric mea-
surements made by NOAA and other laboratories. We con-
structed the uncertainty in the assimilated CH4 measure-
ments from a combination of (i) measurement repeatability
of a single sample (hereafter called the single measurement
precision), (ii) lab-specific long-term reproducibility based
on analyzer type and sampling frequency reported in the liter-
ature, and (iii) each lab’s realization of the calibration scale.
If a scale conversion was needed to bring measurements onto
the WMO X2004A scale, the mole fraction uncertainty due
to the scale multiplier uncertainty was added in quadrature.
The final uncertainties are typically less than 9 ppb for all
CH4 measurements.

We used δ13C data from the Institute for Arctic and Alpine
Research (INSTAAR) as well as other isotope laborato-
ries making precise measurements of atmospheric methane
with isotope ratio mass spectrometers. The INSTAAR δ13C
data were measured in a subset of air samples collected
from NOAA’s Global Greenhouse Gas Reference Network
(GGGRN). Because different labs have independent ties to
primary reference materials which do not agree, we calcu-
lated offsets to bring the δ13C data onto the INSTAAR re-
alization of the Vienna Pee Dee Belemnite (VPDB) scale
(Miller et al., 2002). These offsets were based on measure-
ments of cylinders, flasks filled from cylinders, or co-located
sample data, and are all described in Umezawa et al. (2018).
When there was not a direct comparison, e.g., between IN-
STAAR and TU or INSTAAR and NIPR, we used compar-
isons between each of these labs and the Institute for Ma-
rine and Atmospheric research Utrecht (IMAU). Each com-
parison had an uncertainty associated with it, and these were
combined in quadrature to account for uncertainty in the off-
set correction. The total uncertainty in assimilated δ13C mea-
surements was typically less than 0.15 ‰. The final database
of assimilated CH4 and δ13C measurements is available at
https://doi.org/10.15138/64w0-0g71 (Lan et al., 2022).

With the following exceptions, we assimilate all the obser-
vations from this database including marine boundary layer
sites, surface and tower sites over continents (Andrews et al.,
2014), and vertical profiles from routine aircraft measure-
ments (Sweeney et al., 2015). Intermittent aircraft profiles
such as from the HIPPO (Wofsy, 2011) and ATom (Thomp-
son et al., 2022) campaigns are not assimilated. CH4 data
from flasks taken aboard routine flights between Japan and
Australia as part of the CONTRAIL program have been as-
similated (Machida et al., 2008; Matsueda et al., 2015). A
subset of the CONTRAIL flasks was also analyzed for δ13C
(Umezawa et al., 2012), which were not assimilated. For con-
tinental tower sites with multiple intake heights, only data
from the highest intake are considered in inversions to min-
imize local influence. For sites with continuous CH4 ana-
lyzers, the CH4 data are averaged hourly, and only hourly

averages between 11:00 and 16:00 local solar time are as-
similated; these are the times when planetary boundary layer
heights are likely to be best represented by transport models.
For continuous CH4 analyzers on mountain tops, we only
assimilate hourly averages between 00:00 and 05:00 local
solar time to avoid possible up-slope contamination. Site-
specific statistical filtering based on a nonparametric curve
fitting routine (Thoning et al., 1989) is further applied, with
the exception of vertical profiles, to remove large outliers
with potential local or other contamination. The number of
CH4 and δ13C measurements assimilated each year is sum-
marized in Table 3, and their locations are plotted in Fig. 3.

2.6 Uncertainty estimation and sensitivity tests

The uncertainty of surface emission estimates is a combina-
tion of random and systematic uncertainties. Random uncer-
tainties are associated with components of the inversion sys-
tem whose errors are assumed to be zero on average. In the
formulation of the cost function (12), the prior flux x0 is as-
sumed to have a probability density function (PDF) centered
on the true flux with variance around the truth given by the
prior covariance matrix B. Similarly, the model–observation
mismatch Hx–y is assumed to have a PDF centered around
the mismatch between the true atmospheric mole fraction and
true fluxes propagated through an unbiased transport model,
with variance around this mean given by R. The random un-
certainty in the optimal estimate is given by B̂, where

B̂−1
=
∂2J

∂x2 =H
TR−1H +B−1. (13)

Variational inversion systems such as TM5-4DVAR can
construct a low-rank approximation of B̂ during the opti-
mization. However, for large state vectors the B̂ thus con-
structed is an overestimation of the true posterior uncertainty
(Meirink et al., 2008; Bousserez et al., 2015). We therefore
construct an estimate of B̂ by performing an ensemble of
100 independent inversions for each of the 5-year inversions
of Fig. 2a, with prior fluxes and observations perturbed ac-
cording to the covariances specified by B and R, respec-
tively. With 100 ensemble members, our estimate of B̂ is
expected to be within 10 % of the exact analytical solution
for B̂ (Bousserez et al., 2015). Furthermore, our ensemble of
inversions allows us to compute any posterior covariance and
correlation between estimated fluxes, such as between large
regions or different CH4 source types.

Systematic uncertainties are associated with aspects of the
inversion system that are assumed to be fixed and perfectly
known in principle but might in fact be biased in practice. In
our inversion system, such aspects include, but are not lim-
ited to, atmospheric transport and chemistry, isotope source
signatures, and the wetland inundation maps used to con-
struct the prior wetland emissions. Because the posterior co-
variance estimate does not include systematic errors, we ex-
plore the impact of such errors by performing inversions with
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Table 3. The number of CH4 and δ13C observations assimilated in our inversions broken down by year.

Year CH4 δ13C Year CH4 δ13C Year CH4 δ13C

1997 9075 0 2004 24 669 1178 2011 66 307 1914
1998 9236 457 2005 36 077 742 2012 74 957 1842
1999 9981 371 2006 36 707 1163 2013 70 785 1592
2000 33 514 537 2007 44 056 1042 2014 81 433 2171
2001 16 514 256 2008 51 138 990 2015 84 900 2576
2002 19 497 925 2009 53 243 1875 2016 81 126 2941
2003 20 191 1070 2010 66 930 1413 2017 57 977 2337

Figure 3. Locations of assimilated CH4 and δ13C measurements. The symbol sizes represent the number of measurements between 1997
and 2017 assimilated from each location. Overlapping symbols over some of the locations are due to multiple agencies measuring at those
locations.

different realizations of potentially biased inputs in the fol-
lowing sensitivity tests.

2.6.1 Tropospheric chlorine

The magnitude and distribution of the Cl sink in the tropo-
sphere are uncertain, with estimates as high as 13–37 Tg yr−1

based primarily on Southern Hemisphere background ob-
servations (Allan et al., 2007). However, more recent stud-
ies have found a more limited role of tropospheric Cl as a
methane oxidant (Gromov et al., 2018). Consequently, most
CH4 inverse models neglect tropospheric Cl as a methane ox-
idant. However, due to the strong isotopic fractionation in the
CH4+Cl reaction, Cl plays an important role in determining
atmospheric δ13C (Strode et al., 2020; Lan et al., 2021). It is
therefore important to test the sensitivity of our conclusions
to the imposed tropospheric Cl sink within the range of real-
ism. The Cl estimate by Hossaini et al. (2016) we use in this
study is on the higher side of the range posited by Gromov
et al. (2018). We perform an inversion with the tropospheric
Cl field reported by Wang et al. (2021) as an alternative lower
specification. In order to keep the global CH4 lifetime un-
changed between the two scenarios of tropospheric Cl, we
scale the tropospheric OH field by 0.9 and 0.92, respectively,
when we use the Cl fields of Hossaini et al. (2016) and Wang
et al. (2021). Since the two scenarios lead to slightly different

sink fractionation in the atmosphere, prior ONG and rumi-
nant fluxes are adjusted to match the long-term atmospheric
δ13C trend for both cases.

2.6.2 OH fractionation

We use chemical fractionation factors reported by Sauer-
essig et al. (2001) since they provide factors for all atmo-
spheric sink processes from a consistent set of laboratory
measurements. While these are the most recent and gener-
ally accepted, for CH4 oxidation by OH another set of coef-
ficients (C = 1.0054, D = 0) have previously been reported
by Cantrell et al. (1990). To the best of our knowledge, this
earlier result has not been refuted in the literature, nor is
there any independent evidence supporting one set of coef-
ficients over another. Instead, the most recent evaluation of
atmospheric reaction rates (Burkholder et al., 2019) recom-
mends using the Saueressig et al. (2001) rates with increased
uncertainty in the OH fractionation to include Cantrell et al.
(1990) as a possibility. Since the sink fractionation plays a
significant role in determining atmospheric δ13C, we perform
an additional inversion with the OH fractionation of Cantrell
et al. (1990) to gauge its impact. Since the two OH fraction-
ation factors lead to different sink fractionation in the atmo-
sphere, prior ONG and ruminant fluxes are adjusted to match
the long-term atmospheric δ13C trend for both cases.
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2.6.3 δ13C source signatures

In principle, it is possible to estimate both CH4 fluxes and
δ13C source signatures in a dual-tracer inversion (Thanwer-
das et al., 2022). However, this makes the problem nonlin-
ear and the inversion convergence slow. It is also difficult to
construct a prior covariance for δ13C source signatures since
much of the uncertainty stems from extrapolating a limited
number of δ13C signature measurements to the entire domain
of CH4 sources, resulting in errors that are systematic and
non-Gaussian. Therefore, we explore the impact of δ13C sig-
nature uncertainty on our results by running inversions with
alternate specifications of δ13C signature maps as follows.

Source signature maps for biomass burning were calcu-
lated by multiplying C3 and C4 signatures of −26.7 ‰ and
−12.5 ‰, respectively (Cerling et al., 1998), with the C3 /C4
fraction for each 1◦× 1◦ latitude–longitude grid cell (Lan
et al., 2021). For ruminants and wild animals, C3 and C4
signatures were taken to be −54.5 ‰ and −67.8 ‰, respec-
tively, from the Global δ13C Source Signature Inventory
2020 (Sherwood et al., 2021; Lan et al., 2021). In this way,
the C3 /C4 vegetation distribution determines the source sig-
natures of both biomass burning and ruminant emissions.
Our default inversion averages the C3 /C4 distributions of
Still et al. (2003) and its modified version as used by Ran-
derson et al. (2012). To explore the uncertainty from the as-
sumed C3 /C4 map, we perform two additional inversions
with δ13C source signature maps derived separately from
the two individual C3 /C4 distributions. In addition, country-
level ruminant emission signatures were compiled by Chang
et al. (2019), including their temporal changes due to shifting
ruminant diet and due to the downward trend in atmospheric
δ13CO2 that is photosynthesized by the vegetation. We use
the ruminant CH4 source signatures of Chang et al. (2019)
in a third inversion. The three instances of source signatures
related to the C3 /C4 distribution described here were signif-
icantly different, requiring us to adjust the prior flux appor-
tionment to meet our goal of matching long-term CH4 and
δ13C trends. Specifically, we changed the prior fossil CH4
emissions from the default of 167 to 158 Tg yr−1 for the in-
versions using δ13C signatures derived from Still et al. (2003)
and Chang et al. (2019). For the inversion using δ13C signa-
tures derived from Randerson et al. (2012), we adjusted the
prior fossil emission to 175 Tg yr−1. In all cases, this was
achieved by globally scaling the ONG and ruminant emis-
sions to achieve long-term CH4 and 13CH4 mass balance.

For the global maps of ONG and coal emission signatures,
our default inversion assumes time-invariant maps over the
study period. However, considering the rapid development
of US shale gas production and a shift in production from
conventional to shale gas in the past decades, we estimate
that the mean US ONG signature (production-weighted mean
of shale and conventional gas) increased by 2.7 ‰ from 2006
to 2016 (Lan et al., 2021). We incorporate this in an alternate

specification of fossil CH4 source signatures and perform an
inversion with this new map.

Finally, our default inversion setup uses the latitude-based
source signature specification of Ganesan et al. (2018) for
wetland emissions. Over the past several years we have im-
plemented carbon isotopes in the TEM land surface model
(Zhuang et al., 2004), making it possible to derive process-
based δ13C wetland source signatures consistent with wet-
land emissions (IsoTEM, Oh et al., 2022). We perform an
inversion with wetland source signatures from the IsoTEM
model as an alternative to our default wetland source signa-
tures.

2.6.4 Wetland inundation extent

Wetland inundation extent is a leading driver of uncertainty
in bottom-up estimates of wetland CH4 emissions and there-
fore in the global CH4 budget. We explore this uncertainty
by performing inversions with prior wetland CH4 fluxes de-
rived from the TEM model (Zhuang et al., 2004) driven by
two different inundation maps. Our default setup uses a time-
varying or dynamic inundation map based on the satellite-
based Surface WAter Microwave Product Series (SWAMPS,
Schroeder et al., 2015) combined with the Global Lakes and
Wetlands Dataset (GLWD, Lehner and Döll, 2004; Poulter
et al., 2017). In addition, we also drive the TEM model with
the static inundation map of Matthews and Fung (1987),
in which case meteorology is the only source of seasonal
and interannual variation of prior wetland emissions. These
two inundation maps produce significantly different atmo-
spheric CH4 and δ13C gradients (scenarios C_WL+ and
Q_static_WL of Lan et al., 2021) in a forward run and there-
fore serve as a robust test of our inversion results with differ-
ent inundation extents.

2.6.5 Initial δ13C gradients

Large-scale gradients of atmospheric δ13C take significantly
longer to respond to changes in emissions compared to gra-
dients of CH4 (Tans, 1997), requiring multi-decade spin-ups
for models trying to simulate atmospheric δ13C (Lan et al.,
2021). Inverse models, on the other hand, take significantly
less time to be spun up since fluxes during the spin-up pe-
riod are modified to fit observed atmospheric δ13C. The exact
spin-up duration required depends on the accuracy of the ini-
tial modeled δ13C gradients and the inversion setup. To test
if a 1-year spin-up for our inversions as depicted in Fig. 2a
is sufficient, we perform two additional inversions with dif-
ferent starting δ13C large-scale gradients. Specifically, of the
flux scenarios simulated by Lan et al. (2021), we choose sce-
narios H_mean_sig and Q_static_WL, which produced the
flattest and steepest north–south gradients in δ13C, respec-
tively (see Lan et al., 2021, Fig. 5). We perform inversions
starting from CH4 and δ13C fields provided by forward sim-
ulations of those scenarios at each of the starting points in
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Fig. 2a. The resultant spread in fluxes provides an estimate
of the sensitivity of our setup to erroneous initial δ13C gradi-
ents.

3 Results

3.1 Fit to atmospheric CH4 and δ13C data

Both the CH4-only and the CH4+ δ
13C inversions fit the at-

mospheric CH4 data, while only the latter is consistent with
atmospheric δ13C data. This is demonstrated both at sur-
face sites from which data were assimilated and data from
aircraft campaigns that were withheld for validation. Fig-
ure 4 shows that both inversions fit the observed CH4 time
series at three NOAA baseline observatories. However, de-
spite starting from realistic atmospheric CH4 and δ13C fields,
the CH4-only inversion moves progressively farther from ob-
served δ13C with time at those same locations, as demon-
strated in Fig. 5. Only the CH4+ δ

13C inversion fits both at-
mospheric CH4 and δ13C data. This is also demonstrated in
Fig. 6, which compares modeled δ13C to δ13C measured by
the HIPPO and ATom aircraft campaigns, and from regular
flights between Japan and Oceania as part of the CONTRAIL
program. ATom and HIPPO campaigns sampled primarily
background air over the oceans at multiple latitudes and alti-
tudes, and neither CH4 nor δ13C data from those campaigns
were assimilated. CONTRAIL primarily sampled the marine
background at multiple altitudes as well, except for a small
number of samples taken during takeoff and touchdown in
Japan. CH4 flask samples from CONTRAIL were assimi-
lated in both inversions, but their δ13C measurements were
not assimilated. The CH4-only inversion compares far less
favorably to the δ13C measurements than the joint inversion.
Therefore, it is reasonable to conclude that our CH4-only
inversion, and very likely most traditional CH4-only inver-
sions, does not yield a CH4 emission distribution consistent
with atmospheric δ13C observations. We therefore expect our
CH4+ δ

13C inversion to provide more accurate emission es-
timates and source partitioning than our CH4-only inversion.

3.2 Large-scale fluxes from CH4 and CH4+δ13C
inversions

The top row of Fig. 7 shows the global total annual emissions
from two inversions, a CH4-only or “traditional” methane in-
version without δ13C data, and a joint CH4+ δ

13C inversion
developed in this work. The shaded regions in Fig. 7 denote
2σ random errors derived from 100-member Monte Carlo
ensembles of inversions described in Sect. 2.6. Annual av-
erages of the emissions and random errors are summarized
in Table 4. Since many methane studies calculate emissions
between and outside the ±30◦ latitude band, in Table 4 we
report those numbers as well for ease of comparison. The
global total emission from all categories is unaffected by the
addition of δ13C data, since δ13C does not place any addi-

tional constraint on the total CH4 emission. However, the
partitioning between microbial and fossil sources is changed
significantly with the addition of δ13C data. Based on com-
parison to atmospheric data as noted in Sect. 3.1, we expect
the source partitioning from our CH4+ δ

13C inversion to be
more accurate compared to our traditional CH4-only inver-
sion.

Figure 7 also shows the total and source-disaggregated
CH4 emissions from our CH4 and CH4+ δ

13C inversions
over three latitude bands; the tropics are bounded between
23.5◦ S and 23.5◦ N. Relative to the prior, tropical (extrat-
ropical) total emissions are adjusted upward (downward) by
both inversions, and there is little sensitivity of the tropi-
cal versus extratropical partitioning to the assimilation of
δ13C data. In the northern extratropics, the partitioning of
CH4 emissions between the different source types does not
change significantly with the addition of δ13C data. However,
in the tropics the inversion with δ13C data shows significantly
higher fossil (and lower microbial) emissions than the inver-
sion without δ13C data. Fossil CH4 emissions in the southern
extratropics are significantly different for most years in the
presence of δ13C data, but similarly significant differences do
not exist for the other source types. Finally, our estimate of
pyrogenic emissions does not change significantly in Fig. 7
in the presence and absence of δ13C.

3.3 Systematic errors in emission estimates

As explained in Sect. 2.6, we estimate possible biases in
our flux estimates by running the inversion with different
choices of non-optimized input. The spread in annual emis-
sions due to alternate specifications of atmospheric chemistry
(tropospheric chlorine of Sect. 2.6.1 and OH fractionation of
Sect. 2.6.2) is shown in Fig. 8. Analogous spreads due to dif-
ferent specifications of δ13C source signatures (Sect. 2.6.3),
wetland inundation maps (Sect. 2.6.4), and initial atmo-
spheric δ13C fields (Sect. 2.6.5) are shown in Fig. 9. Note
that the y-axis ranges in Figs. 8 and 9 are different. The aver-
age spread in annual emissions from different latitude bands
and source types is summarized in Table 5 for each sensitiv-
ity test. The average of the annual posterior uncertainties as
depicted in Fig. 7 is also provided in Table 5 as “MC-derived
(2σ )” for reference, with the caveat that 2σ uncertainties are
not directly comparable to the range across a few inversions.

Most of the sensitivity tests have little impact on the global
total CH4 emission, and the spread in the total CH4 emission
from different latitude bands is generally smaller than the
posterior uncertainty of our base inversion. However, by far
the largest source of error in partitioning the total emission
into fossil and microbial sources comes from our represen-
tation of atmospheric chemistry, namely the distribution of
tropospheric chlorine and the kinetic isotope effect of CH4
destruction by OH. Unless the uncertainty in these two fac-
tors can be reduced, our ability to use δ13C measurements to
partition different source types will be seriously hampered.
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Figure 4. Observed (gray circles) and posterior modeled (colored symbols) CH4 time series at three NOAA baseline observatories. Inversions
both with and without δ13C data fit the CH4 data equally well.

Figure 5. Observed (gray circles) and posterior modeled (colored symbols) δ13C time series at three NOAA baseline observatories. The
inversion with δ13C data fits the observations throughout the inversion period, but the inversion without δ13C data – a traditional CH4
inversion – drifts away from the observations with time. Note that both inversions were started with the same CH4 and δ13C fields in 1997,
but by the time δ13C data were available in mid-1998 they had already drifted apart, leading to the apparent initial offset in the plots above.

The uncertainty arising from our limited knowledge of δ13C
source signatures, to the extent represented by the different
signature maps used, is lower than the uncertainty due to at-
mospheric chemistry. Lastly, the uncertainty due to an in-
correct specification of the initial atmospheric δ13C field is
minimal, in line with our expectation that an inversion will
rapidly correct for it by adjusting emissions during its spin-
up period. However, we note here that the “incorrect” initial
fields we constructed for the last test still satisfied the global
δ13C mass balance by construction. The sensitivity to an in-
correct initial condition will likely be higher if the initial field
does not satisfy global δ13C mass balance.

3.4 Attribution of the post-2007 methane growth

As discussed earlier (Fig. 1 and discussion in Sect. 1), the at-
mospheric methane burden has been steadily growing since
2007 after a period of quasi-stability during 1999–2006.
We use our CH4+ δ

13C inversion to ask whether the addi-
tion of δ13C data can provide information on the sources of
the additional methane. Figure 7 suggests that the trend in
CH4 emissions comes largely from microbial emissions in a
CH4+ δ

13C inversion. However, it is possible that this attri-
bution to microbial emissions comes from our prior – which
had a trend in the microbial emissions and a temporally flat
fossil contribution – instead of the atmospheric data. To as-
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Figure 6. Modeled minus observed δ13C as a function of latitude and altitude from the ATom (top), HIPPO (middle), and CONTRAIL
(bottom) aircraft campaigns. Mismatches are shown for the prior flux, the CH4-only inversion, and the dual-tracer CH4+ δ

13C inversion.
Altitudes have been binned in 1 km bins, while latitudes have been binned either in 10◦ (ATom, HIPPO) or 5◦ (CONTRAIL) bins. The
rightmost panels show the number of samples averaged per bin.

sess the robustness of our inferred microbial and fossil emis-
sion trends, we perform a second set of inversions with the
following modifications.

1. We construct climatological prior fluxes and source sig-
natures by averaging our prior emissions and signatures
from 2000 to 2006. Neither the resulting priors nor the
source signatures have any time trend.

2. Since the methane budget from climatological priors
is no longer in balance with the atmospheric growth,

we cannot use the overlapping inversions of Fig. 2a to
run multiple periods in parallel. Instead, we run four
6-year inversions in sequence, spanning 1997–2003,
2002–2008, 2007–2013, and 2012–2018, following the
scheme shown in Fig. 2b. The first inversion used the
same initial field in 1997 as our default inversion. Every
successive inversion used the previous inversion’s fifth
year mole fraction field as an initial condition. The last
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Figure 7. Total and source-specific annual emissions of CH4 globally and from three latitudinal bands. “Tropics” in this context refers to
the region between 23.5◦ N and 23.5◦ S, while the northern and southern extratropics are to the north and south, respectively. The shaded
regions denote 2σ prior and posterior error bars.

Table 4. Annual averages of CH4 emissions between 1999 and 2016 as well as their 2σ uncertainties shown in Fig. 7 and three additional
zonal bands (in Tg yr−1). The CH4-only and CH4+δ13C inversions of Fig. 7 have been abbreviated to CH4 and “joint”, respectively. Note
that (a) the 2σ uncertainties tabulated are the averages of the uncertainties across 18 years, not the uncertainties in the 18-year average
emissions, and (b) zeroes below are due to rounding to the nearest integers, not because the concerned quantities are exactly zero.

Source type Total Microbial Fossil Pyrogenic

Inversion Prior CH4 Joint Prior CH4 Joint Prior CH4 Joint Prior CH4 Joint

Globe 577± 79 576± 4 576± 4 383± 52 407± 25 374± 13 167± 59 141± 25 173± 13 28± 3 28± 3 30± 3
Northern extratropics 318± 68 273± 10 274± 10 188± 39 164± 21 168± 14 120± 55 99± 22 96± 13 10± 2 10± 2 10± 2
Tropics 221± 31 271± 10 269± 11 163± 27 216± 14 184± 13 41± 15 38± 11 66± 10 17± 3 16± 2 19± 2
Southern extratropics 38± 12 32± 4 32± 4 32± 11 27± 5 22± 5 6± 4 4± 3 10± 3 1± 0 1± 0 1± 0
North of 30◦ N 254± 59 247± 9 247± 9 145± 31 138± 19 147± 13 101± 50 101± 20 92± 13 8± 1 8± 1 8± 1
30◦ S–30◦ N 302± 43 319± 10 319± 11 219± 37 259± 16 221± 14 63± 22 40± 15 76± 13 20± 3 19± 2 22± 2
South of 30◦ S 21± 8 10± 4 11± 4 18± 7 10± 4 6± 4 3± 2 0± 2 4± 2 0± 0 0± 0 0± 0

year of each inversion is discarded in the end, and the
first 5 years’ fluxes are stitched together and analyzed.

The posterior uncertainties of the emissions derived from this
modified setup are calculated by performing a Monte Carlo
suite of 100 inversions as described in Sect. 2.6. The Monte
Carlo runs follow the geometry of Fig. 2b as well, with the
ith inversion (i = 1 to 100) of each period initialized from

the fifth year mole fraction field of the ith inversion of the
previous period. This allows us to calculate not only annual
uncertainties but also uncertainties in long-term averages.

To study the transition around 2007, we considered two
periods: 2000–2006 and 2008–2014. Average total and
source-specific emissions over the two periods are shown in
Fig. 10, as is the change in the average emissions between the
two periods. The prior fluxes do not change between the two
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Figure 8. Total and source-specific annual emissions of CH4 globally and from three latitudinal bands as in Fig. 7. The shaded regions denote
the spread (max to min) of annual emissions from sensitivity tests described in Sect. 2.6.1 and 2.6.2. A stronger OH fractionation makes the
atmosphere heavier, requiring a larger (smaller) fraction of microbial (fossil) emissions to match the same observations. A smaller chlorine
sink makes the atmosphere lighter, requiring a smaller (larger) fraction of microbial (fossil) emissions to match the same observations. That
is, a stronger OH fractionation and a smaller chlorine sink affect the fossil–microbial partitioning in opposite ways, resulting in the structure
seen here.

Table 5. Average annual Monte Carlo-derived random uncertainty and possible bias in CH4 emissions, separated by source type (Tot: total,
Mic: microbial, Fos: fossil, Pyr: pyrogenic) and latitude bands as in Fig. 7. For each source type and region, the mechanism behind the largest
possible bias has been demarcated by highlighting the bias in bold. The MC-derived numbers are 2σ posterior uncertainties, and all other
numbers represent the range between maximum and minimum estimates. All numbers are in teragrams (Tg) of CH4 per year.

Region Globe N. extratropics Tropics S. extratropics

Source type Tot Mic Fos Pyr Tot Mic Fos Pyr Tot Mic Fos Pyr Tot Mic Fos Pyr

MC-derived (2σ ) 3.8 13.1 13.5 2.9 9.5 13.7 12.9 1.5 10.7 12.9 10.4 2.3 4.3 5.0 2.9 0.2

Tropospheric chlorine 0.6 26.3 25.9 0.2 4.8 20.1 15.1 0.2 3.4 7.3 10.6 0.2 1.6 1.4 0.3 0.0
OH fractionation 1.5 42.1 41.4 0.8 1.7 10.5 11.9 0.1 3.0 29.2 26.1 0.6 1.3 2.5 3.4 0.0
Source signatures 1.1 16.3 16.2 1.0 1.8 8.8 8.2 0.2 4.1 16.3 12.3 1.2 3.5 2.1 2.6 0.0
Wetland inundation 1.0 9.3 10.1 1.3 3.5 8.9 10.6 0.6 3.7 4.6 2.3 1.1 2.5 2.1 0.7 0.0
Initial δ13C 0.1 0.5 0.4 0.0 0.1 0.4 0.4 0.0 0.1 0.4 0.4 0.0 0.1 0.2 0.1 0.0

periods, and therefore the estimated change must be driven
by the atmospheric observations. Both the CH4-only and the
CH4+ δ

13C inversions estimate a change in the total emis-
sion of 27.1± 0.6 Tg yr−1 to match the increase in the at-
mospheric burden. However, while the CH4-only inversion
attributes ∼ 70 % of that to fossil CH4 emissions and only
∼ 29 % to microbial emissions, the addition of δ13C data

switches the balance to ∼ 15 % fossil and ∼ 85 % microbial
emissions. This change in the allocation of the methane emis-
sion in the presence of δ13C data is significant compared to
the uncertainties in the changes as depicted in Fig. 10. The
contribution of pyrogenic emissions to the change is small in
both inversions, and its change between the two inversions
is not significant compared to its uncertainty. This is consis-
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Figure 9. Total and source-specific annual emissions of CH4 globally and from three latitudinal bands as in Fig. 7. The shaded regions
denote the spread (max to min) of annual emissions from sensitivity tests described in Sect. 2.6.3, 2.6.4, and 2.6.5.

tent with the downward trend in the global average δ13C in
Fig. 1, since microbial sources are the lightest of the three
source types.

Geographically, the change between the two periods is
driven almost equally by the tropics and the northern extra-
tropics (Fig. 11). In the tropics, the addition of δ13C data
results in higher microbial emissions in both periods. The
change between the two periods is also attributed to mi-
crobial emissions, unlike a CH4-only inversion, which at-
tributes the change primarily to fossil methane. In the north-
ern extratropics, although the presence of δ13C data points
to an increase in microbial emissions between the two peri-
ods, the relative apportionment of the increase between fos-
sil and microbial emissions does not differ significantly from
the CH4-only emission if we consider the respective uncer-
tainty estimates. Therefore, the largest contribution to the
global increase in microbial emissions between the two peri-
ods (Fig. 10) comes from the tropics.

It is worth noting here that a change in emission strengths
is not the only possible mechanism for an increase in atmo-
spheric CH4; a reduction in the sink strength could also in-
duce a positive trend in atmospheric CH4 post-2007. How-
ever, Lan et al. (2021) have shown that the changes in sinks
proposed so far in the literature to explain the post-2007 CH4

growth are not consistent with the observed δ13C trend post-
2007. We therefore do not consider those alternatives here.

3.5 Separating microbial and fossil emissions

The CH4 observations assimilated in a CH4-only inversion
constrain the total CH4 emission, and any source disaggrega-
tion relies on spatiotemporal separation of emissions as en-
coded in the prior emissions and their uncertainties. Since the
two largest CH4 source types (microbial and fossil) have dif-
ferent δ13C source signatures, assimilating δ13C observations
should provide additional information to separate the two
sources compared to a CH4-only inversion. We can evaluate
this additional information by looking at the posterior corre-
lation between microbial and fossil emissions both globally
and regionally. Posterior correlations between global annual
microbial and fossil CH4 emissions, calculated from our 100-
member ensemble of independent inversions as described in
Sect. 2.6, are shown in Fig. 12. Error bars on the correla-
tions shown in Fig. 12 represent the 95th percentile range
of 20 000 evaluations of the correlation by randomly sam-
pling the 100-member inversion ensemble with replacement
(Efron and Tibshirani, 1994).

For all the years shown in Fig. 12, a CH4-only inversion
results in a strong negative correlation between global mi-
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Figure 10. Change in global CH4 emissions between the periods 2000–2006 and 2008–2014, total (top left) and disaggregated by source
type. The gray bars denote prior emissions, and the colored bars denote two inversions, one with and the other without assimilated δ13C
data. For each source type, the first two columns show the average emission over the two periods in question, and the third column shows
the change between the two periods. The 1σ error bars are derived from a 100-member Monte Carlo ensemble of inversions following the
configuration of Fig. 2b.

Figure 11. Similar to Fig. 10, but disaggregated into different latitude bands. As in Fig. 7, “tropics” refers to the region between 23.5◦ S and
23.5◦ N. Pyrogenic emissions have not been plotted because of their small contribution in all latitude bands.

crobial and fossil emissions, consistent with the idea that at-
mospheric CH4 measurements constrain the total CH4 bud-
get much better than individual source types. The addition
of δ13C data reduces this negative correlation, implying that
δ13C provides additional information to disentangle differ-
ent CH4 source types. The degree of disentanglement, repre-
sented by the reduction in the negative correlation, is deter-
mined by the δ13C measurement coverage in a particular year
and atmospheric transport connecting the emissions to those
measurements. The correlation reduction is limited in our in-
versions by the relative sparsity of δ13C measurements; even
in the most recent 2012–2017 inversion period, only 2.8 % of
CH4 measurements have corresponding δ13C measurements,
overwhelmingly in locations far removed from significant
CH4 emissions (Fig. 3). Having more δ13C measurements
in general, and specifically closer to emissive regions, should
allow further disentangling of the different CH4 source types.

Over smaller regions, only the northern extratropics and
Asia show significant decorrelation between annual fossil

and microbial emissions (Fig. 12b and c) with the addition of
δ13C data. While several other regions show similar reduc-
tions, the reductions are typically not significant compared
to the 95th percentile error bars. The significant decorrela-
tion seen for northern extratropical and Asian emissions may
be because most δ13C measurements are in the northern ex-
tratropics and downwind of Asia in the Pacific. To see simi-
lar significant decorrelation over other regions we will likely
need increased δ13C coverage closer to those regions. Al-
though Fig. 3 shows some δ13C measurements over North
America and Europe, the majority of those measurements
are from the background air sampling sites Niwot Ridge and
Jungfraujoch, respectively, and therefore do not contribute
to significant decorrelation of fossil and microbial emissions
from those continents.
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Figure 12. Posterior correlation between global annual microbial and fossil CH4 emissions (a) as well as over the northern extratropics (b)
and Asia (c) for the two inversions of Fig. 7.

4 Conclusions and discussion

We have constructed a variational atmospheric inversion sys-
tem capable of assimilating CH4 and δ13C measurements to
estimate source-specific methane emissions within the TM5-
4DVAR framework. We have assimilated CH4 and δ13C
measurements from a multi-agency air sampling network
in this framework to estimate fossil, microbial, and pyro-
genic emissions of atmospheric CH4 globally. We have de-
rived Bayesian uncertainty estimates for our emissions (ran-
dom error) and investigated the impact of biases from non-
optimized aspects of our inversion (systematic error). In
Sect. 4.1 we summarize the main lessons learned from our
work. In Sect. 4.2 to 4.5 we compare our work and results
with several other estimates in the literature. In Sect. 4.6, we
outline several planned additions and improvements to our
framework in the future. Finally, in Sect. 4.7 we present ar-
eas of progress that we think are required in order to better
use atmospheric δ13C data to disentangle the methane bud-
get.

4.1 Enumerated conclusions

First, Figs. 5 and 6 show that our inversion assimilating only
CH4 does not yield a CH4 emission distribution consistent
with atmospheric δ13C. This is very likely true of CH4 in-
versions in general, since they have no constraints forcing
them to match atmospheric δ13C gradients and trends. Start-
ing from a prior emission distribution consistent with atmo-
spheric δ13C trends does not ensure that the posterior emis-
sion estimates will remain consistent. Our CH4-only inver-
sion started from a prior that reproduced the global mean at-
mospheric δ13C trend (scenario C_WL+ of Lan et al., 2021),
yet the posterior deviated from it as shown in Figs. 5 and 6.
We conclude that the only way to guarantee a posterior emis-
sion distribution consistent with both atmospheric CH4 and
δ13C data is to assimilate them simultaneously.

Second, given an atmospheric sink scenario, our cur-
rent observational coverage allows us to estimate the global
total CH4 emission with a 2σ random uncertainty of ∼
3.8 Tg yr−1, which is less than 1 % of the total emission.
Microbial, fossil, and pyrogenic emission uncertainties are

around 3.5 %, 8 %, and 10 %, respectively, at the global scale.
Given these posterior uncertainties, there are significant dif-
ferences between inversions with and without δ13C data in
the apportionment of the total CH4 emission between micro-
bial and fossil sources both globally and in the tropics (Fig. 7
and Table 4). In both regions, the inclusion of δ13C data in
an inversion results in a significantly higher proportion of
fossil emissions compared to microbial emissions, which we
consider realistic since it matches both atmospheric CH4 and
δ13C data (Figs. 4 and 5). Pyrogenic emissions are relatively
insensitive to the inclusion of δ13C data.

Third, we tested the sensitivity of our results to several fac-
tors that can lead to biases or systematic errors, as detailed in
Sect. 2.6. This included different maps of the δ13C isotopic
source signatures, static and dynamic maps of the wetland
inundation extent, different initial δ13C fields, different frac-
tionation factors for the CH4+OH oxidation mechanism, and
different fields of tropospheric Cl. The last two factors had by
far the largest impacts on the large-scale apportionment be-
tween microbial and fossil emissions, even though their im-
pact on the total CH4 budget was nil or negligible. With the
OH fractionation of Cantrell et al. (1990), the global micro-
bial emission increases to 414 Tg yr−1 and the fossil emis-
sion drops to 131 Tg yr−1. With the lower estimate of tro-
pospheric Cl from Wang et al. (2021), the global microbial
emission decreases to 345 Tg yr−1, while the fossil emission
increases to 199 Tg yr−1. Since some CH4 inversions in the
literature do not simulate a tropospheric Cl sink of CH4, we
tested the impact of this limiting case as well. In the absence
of a tropospheric Cl sink, the global microbial emission drops
further to 331 Tg yr−1 and the fossil emission increases to
213 Tg yr−1. Most of these shifts in the global partitioning
are accompanied by shifts in the latitudinal partitioning. All
of these are significant revisions to the partitioning of Ta-
ble 4, suggesting that the ability of atmospheric δ13C mea-
surements to partition the total CH4 emission into different
source types, at least over large regions, is limited by our
knowledge of these two critical chemical processes. The un-
certainty in our knowledge of δ13C source signatures, long
considered a limitation on the use of δ13C data, is almost
never a leading driver of uncertainty in Table 5, although it is
usually more significant than either inundation extent or the
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initial δ13C field. Finally, our tests suggest that the impact of
an incorrect initial δ13C field can be ameliorated by a rela-
tively short spin-up of 1 year in an inversion, in contrast to a
multi-decadal spin-up necessary for a forward model run.

Fourth, atmospheric δ13C data strongly suggest that the
rise in microbial emissions is the primary driver of the post-
2007 growth in atmospheric CH4. While a CH4-only in-
version starting from priors without a time trend attributes
∼ 70 % of the growth to fossil emissions, the addition of δ13C
data shifts that to microbial emissions being responsible for
∼ 85 % of the growth. Since the latter inversion is consistent
with atmospheric δ13C data while the former is not (Fig. 5),
we consider a majority microbial contribution to the post-
2007 growth to be more realistic. A disaggregation of the
growth by latitude bands suggests that a significant majority
of the increase in tropical methane emissions is due to mi-
crobial and not fossil emissions. Moreover, although some
of the sensitivity tests of Sect. 2.6 lead to different partition-
ing between microbial and fossil emissions, they all suggest
a steeper trend in microbial compared to fossil emissions in
Figs. 8 and 9.

Fifth, the ability of δ13C data to disentangle different CH4
source types can be quantified by the reduction in the poste-
rior correlation between emissions from those sources owing
to the addition of δ13C data compared to a CH4-only inver-
sion. Considering the two largest source types of methane
(microbial and fossil), we see significant reductions in their
posterior correlation over the globe as well as the northern
extratropics and Asia. The degree of decorrelation, however,
is limited, and we do not see significant decorrelation over
other regions. We hypothesize that this is not a limitation
of our understanding of δ13C but rather of its limited obser-
vational coverage. Even in the most recent years less than
3 % of assimilated CH4 measurements were accompanied
by δ13C measurements, almost exclusively from background
sites. It is very likely that an increase in the observational
coverage of δ13C, preferably close to source regions, will
improve the capability of δ13C measurements to distinguish
between different CH4 source types.

Sixth, while it is difficult to compare our emission bud-
get directly with GCP due to different partitioning schemes,
we note that our fossil fuel emissions for both the 2000–
2009 and 2008–2016 periods are higher than the GCP top-
down and bottom-up emissions. However, our estimate of
the change in fossil fuel emissions between the two periods
is significantly lower than the GCP estimates. Concurrently,
our estimate of the change in microbial emissions over the
same time is significantly higher than the GCP top-down es-
timate. Both of these discrepancies are driven by atmospheric
δ13C data, since our CH4-only inversion provides changes
that are consistent with GCP estimates. We therefore con-
clude that the microbial and fossil emission change estimates
in the GCP budget are consistent with atmospheric CH4 data
but not with δ13C data. Finally, our pyrogenic emission esti-

mates are consistent with or close to the GCP estimates for
both periods.

4.2 Comparison to the GCP methane budget

The Global Carbon Project (GCP) periodically publishes top-
down and bottom-up budgets of methane emissions from
a suite of models. However, a meaningful comparison be-
tween our emissions and the 2020 GCP budget (Saunois
et al., 2020) is not straightforward. The GCP bottom-up
(BU) budget for 2008–2017, with 737 Tg yr−1 emissions
and 625 Tg yr−1 sinks, significantly overestimates the atmo-
spheric growth rate. This is primarily due to an overesti-
mate of both microbial (159 Tg yr−1 freshwater sources) and
fossil (45 Tg yr−1 geologic sources) methane in the GCP
budget, making a direct comparison with our microbial and
fossil estimates meaningless. The GCP top-down (TD) es-
timates do not provide a fossil–microbial split of “other
natural” emissions, also making a direct comparison with
our estimates difficult. However, it is possible to calculate
emissions for certain GCP categories from our inversions
for some limited comparisons. For the period 2000–2009,
we compare directly by computing the 2000–2009 aver-
age from our inversions shown in Fig. 7. However, since
our inversions stop in 2016 and Table 3 of Saunois et al.
(2020) reports the 2008–2017 average, we first calculate
the 2008–2016 mean from the GCP budget using their re-
ported 2008–2017 mean and their 2017 emissions. For com-
puting the GCP means quoted here, we use the spreadsheet
at https://doi.org/10.18160/GCP-CH4-2019 in Saunois et al.
(2020), which may result in small differences from the num-
bers quoted in Table 3 of Saunois et al. (2020) due to round-
ing.

Our estimate of fossil fuel CH4 emissions is significantly
higher than GCP estimates, consistent with earlier work by
Schwietzke et al. (2016) on δ13C-based source apportion-
ment. Subtracting 35 Tg yr−1 of geologic emissions from our
fossil emission estimates, we arrive at 137±2 Tg yr−1 of fos-
sil fuel emissions during both the 2000–2009 and 2008–2016
periods, which is significantly higher than the GCP BU (TD)
estimates of 111 and 127 Tg yr−1 (99 and 109 Tg yr−1), re-
spectively. Recent measurements of 14CH4 in ice cores sug-
gest that geologic methane emissions are much lower than
we have assumed, with an upper 95th percentile confidence
limit of 5.4 Tg yr−1 and mean of 1.6 Tg yr−1 (Hmiel et al.,
2020). If true, this would push our fossil fuel emission esti-
mates even higher to 170±2 Tg yr−1, indicating a significant
underestimate in the GCP budget.

Assuming that methane emissions from geological seeps
do not change significantly over decadal timescales, we esti-
mate a change of 0± 2 Tg yr−1 in fossil fuel CH4 emissions
from 2000–2009 to 2008–2016. This is markedly different
from the BU (TD) GCP budget, which estimates an increase
of 16 Tg yr−1 (10 Tg yr−1) between the two periods. While
our baseline estimates for the two periods may be influenced
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by systematic biases (Sect. 2.6), the change between the two
periods is relatively robust. With the alternate specification
of tropospheric chlorine (Wang et al., 2021) and alternate
fractionation due to the OH oxidation (Cantrell et al., 1990),
which are the two biggest sources of bias in source appor-
tionment by δ13C, the change in our fossil fuel emission es-
timate between the two periods is 1 and −1.7 Tg yr−1, re-
spectively, which is well within our uncertainty estimate of
2 Tg yr−1 and significantly lower than both the GCP BU and
GCP TD estimates. The GCP BU (TD) estimate of an in-
crease of 16 Tg yr−1 (10 Tg yr−1) between the two periods is
closer to our estimate of 8.4± 5.6 Tg yr−1 from a CH4-only
inversion, which is not consistent with δ13C data.

For reasons mentioned above, we cannot directly compare
our microbial emission estimates to GCP emission estimates.
However, if we assume that methane from termites, wild ani-
mals, and oceans does not change over decadal timescales,
we can compare the change in the GCP TD estimate of
wetlands, agriculture, and waste from 2000–2009 to 2008–
2016 with the change in microbial emissions in our inver-
sion estimates. The GCP TD budget estimates a change of
12.6 Tg yr−1 between those two periods compared to our es-
timate of 26±2 Tg yr−1 from a joint δ13C and CH4 inversion
and of 18± 6 Tg yr−1 from a CH4-only inversion. Thus, the
change in microbial emissions in the GCP TD budget is at the
lower end of but consistent with our estimate from a CH4-
only emission, while it is not consistent with our budget after
incorporating δ13C data. We cannot perform a similar anal-
ysis with the GCP BU budget because freshwater emissions
cannot be assumed to be static over decadal timescales.

Finally, our pyrogenic emission estimates for both the
2000–2009 and 2008–2016 periods are 30±0.6 Tg yr−1, with
a change of 0.3±0.5 Tg yr−1. These are close to the GCP BU
(TD) estimates of 31 and 30 Tg yr−1 (29 and 31 Tg yr−1), re-
spectively. Neither the GCP budgets nor our inversion show
significant changes in pyrogenic methane emissions between
the two periods.

4.3 Comparison with Zhang et al. (2021b)

Zhang et al. (2021b) derive sector-specific changes in
methane emissions from a two-box model by first creating
an ensemble of emission scenarios consistent with known
emissions of methane and their uncertainties, then compar-
ing the resultant hemispheric mean CH4 and δ13C in the at-
mosphere with measurements. Based on the ensemble mem-
bers that agree with hemispheric mean CH4 and δ13C time
series, they come up with sector-specific emission changes.
We note here that according to Figs. 1b and 2a of Zhang et al.
(2021b), none of their choices fit the atmospheric δ13C data
very well. We hypothesize that this is due to both the biases in
their bottom-up emission estimates, which could not be suffi-
ciently corrected due to tight assumed uncertainties in them,
and the inability of a box model to interpret spatial gradients
of CH4 and δ13C. Specifically, Fig. 1b of Zhang et al. (2021b)

shows that none of the ensemble members can reproduce the
recent downward trend in δ13C. Therefore, their estimated
fractional contribution of microbial (fossil) emissions to the
recent growth in CH4 is likely to be too low (high).

Table 6 summarizes the changes in methane emissions
from the “quasi-stable” period of 2000–2006 to two later
periods during the renewed growth, 2007–2012 and 2013–
2017. For both the periods, we estimate significantly smaller
contributions from fossil emissions compared to Zhang et al.
(2021b). While the microbial contributions look similar in
magnitude, they constitute a smaller fraction of the total
change for Zhang et al. (2021b). Lastly, while Zhang et al.
(2021b) estimate a downward trend in pyrogenic emissions,
we do not estimate a trend significantly different from zero.
To summarize, we estimate a larger (smaller) influence of in-
creasing microbial (fossil) emissions behind the recent CH4
growth, which is likely to be more accurate because it bet-
ter reproduces the observed δ13C trend in the atmosphere
(compare Fig. 5 here with Fig. 1b of Zhang et al., 2021b).
We cannot separate the anthropogenic from natural micro-
bial contributions in our framework, and we note that such
a separation by Zhang et al. (2021b) relies on their modeled
wetland fluxes and not on atmospheric CH4 or δ13C data.

4.4 Comparison with Thanwerdas et al. (2022)

Thanwerdas et al. (2022) describe an alternative variational
inversion framework using the LMDz-SACS model to as-
similate CH4 and δ13C measurements. We find it heartening
that others have decided to tackle this complicated problem.
Since they reserve decadal dual-tracer inversions for future
work, we will compare their technique with ours to highlight
the similarities and differences. The biggest difference lies
in the decision of Thanwerdas et al. (2022) to optimize δ13C
source signatures compared to our choice of keeping them
fixed for a specific inversion. While δ13C source signatures
are uncertain for many methane sources, we explain our rea-
sons for not optimizing them in Sect. 2.6.3. Instead, we ex-
plore the impact of source signature uncertainty with differ-
ent constructions of the source signature map as detailed in
Sect. 2.6.3. In the end, at least for large geographical regions,
the uncertainty from source signatures did not prove to be a
leading uncertainty (Table 5). The second major difference
between the two inversion frameworks lies in the construc-
tion of the prior CH4 fluxes. While Thanwerdas et al. (2022)
use a prior that approximately matches the atmospheric CH4
growth rate, we construct our priors to match both the CH4
growth rate and the δ13C trend over 2 decades. We suspect
this and the linearity of our formulation due to not optimiz-
ing source signatures to be the reasons why our inversion re-
quired a shorter spin-up time compared to Thanwerdas et al.
(2022).

There are also a few differences in implementation be-
tween the two frameworks. Most notably, Thanwerdas et al.
(2022) estimate the posterior uncertainty as the spread be-
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Table 6. Comparison of the attribution of the recent growth of atmospheric CH4 between Zhang et al. (2021b) and this work. The numbers
show the change in emissions from a baseline period of 2000–2006 to two different periods, 2007–2012 and 2013–2017. All numbers are in
teragrams (Tg) of CH4 per year. Uncertainties in the Zhang et al. (2021b) estimates were obtained by personal communication with Zhen
Zhang.

Source type
2007–2012 2013–2017

Zhang et al. (2021b) This work Zhang et al. (2021b) This work

Total 31.7± 9.0 23.1± 0.8 45.3± 10.2 41.6± 0.7

Microbial 23.9± 5.1 25.5± 3.1 29.0± 1.9 32.3± 3.2
Fossil 10.5± 7.2 −2.5± 3.5 17.5± 10.0 9.2± 3.5
Pyrogenic −2.8± 0.3 0.0± 0.7 −1.2± 0.2 0.1± 0.8

tween different inversion configurations, correctly stating
that an evaluation of the posterior covariance matrix would
require significantly more computing resources. We evalu-
ate that posterior covariance matrix for both CH4+ δ

13C and
CH4-only inversions and present both types of uncertainty,
namely the systematic uncertainty as the spread between
multiple inversion configurations and the random (Bayesian)
uncertainty as the spread of an ensemble of 100 independent
inversions. The configurations we explore for the systematic
uncertainty are also different from Thanwerdas et al. (2022)
and include alternate specifications of the Cl oxidant and the
isotopic discrimination of the CH4+OH reaction. We find
the latter two to be the most significant drivers of uncertainty
for partitioning CH4 emissions using δ13C data.

While our implementation of the inversion is different
from Thanwerdas et al. (2022), our goals are very similar. We
look forward to long-term inversions of CH4 and δ13C data
using LMDz-SACS so that we may compare and contrast
with our results presented here and figure out how best to
use isotopic measurements to solve the atmospheric methane
puzzle.

4.5 Comparison with other top-down studies using CH4
and δ13C

In addition to the publications compared in detail above,
some others have used combinations of CH4 and δ13C ob-
servations to infer sector-specific sources of methane and the
causes behind the recent increase, either in 2D (Thompson
et al., 2018) or 3D (McNorton et al., 2018) atmospheric mod-
els. In terms of attributing the recent growth of CH4, the
most significant difference between our work and either of
those studies is that our inferred change in biomass burn-
ing emissions is smaller. For example, our GFED 4.1s prior
has a reduction of 1.35 Tg yr−1 in pyrogenic emissions from
2003–2006 to 2007–2015 (van der Werf et al., 2017). This is
changed to a reduction of 0.81 Tg yr−1 by our CH4+ δ

13C
inversion (Fig. 7) and to a reduction of 0.19± 0.72 Tg yr−1

when we start from a prior without trends (Fig. 10). This
suggests that the estimate of reduced pyrogenic emissions
is driven primarily by its presence in the prior and not by

δ13C data, which are sparse near regions with large fire emis-
sions. To contrast, McNorton et al. (2018) infer a reduction
of 2.9 Tg yr−1 in pyrogenic emissions between the same pe-
riods, allowing for a larger increase in fossil emissions to bal-
ance CH4 and δ13C trends. Finally, we note that even though
the INV_FIXED inversion of McNorton et al. (2018) with
climatological priors allows for variations in OH and is there-
fore not directly comparable to our analogous inversion, their
INV_FIXED estimates no reduction in pyrogenic emissions
(Table 6 of McNorton et al., 2018). This supports our hypoth-
esis that a reduction in pyrogenic emissions is driven primar-
ily by the prior and not by atmospheric δ13C data.

In agreement with our estimates, Thompson et al. (2018)
also attribute the majority of the growth between 2007
and 2014 to microbial and not fossil sources. They infer a
3± 2 Tg yr−1 reduction in pyrogenic emissions during that
period compared to a reduction of 0.58 Tg yr−1 inferred
by our CH4+δ13C inversion (0.50± 1.66 Tg yr−1 reduction
if we start with a climatological prior). We note that our
prior pyrogenic emission for 2014 is 3.45 Tg yr−1 higher
than 2007, and a CH4-only inversion estimates an increase
of 1.65 Tg yr−1 between the two years (Fig. 7); therefore,
even the small reduction we estimate must be driven by
δ13C data. However, since this reduction is smaller than the
3±2 Tg yr−1 estimated by Thompson et al. (2018), our fossil
emission increase is also smaller to balance the δ13C trend.
Finally, Thompson et al. (2018) do not estimate a significant
role of the chemical sink behind the recent CH4 growth, con-
sistent with our previous work (Lan et al., 2021).

4.6 Future work

While we feel confident in the CH4 emission estimates re-
ported here, there are several areas which we plan to explore
and improve in future work.

4.6.1 Alternate OH

The atmospheric CH4 budget is determined by the balance
between its sources and sinks, the latter primarily driven by
the OH radical. While there have been some efforts to opti-
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mize atmospheric OH in concert with CH4 emissions (e.g.,
Zhang et al., 2018, 2021a; Yin et al., 2021), we do not think
in situ CH4 samples provide sufficient information to con-
strain the sink independently. Moreover, estimates of OH
abundance and variability over the past decades, either from
CH4 inversions (Yin et al., 2021) or otherwise (Bousquet
et al., 2005; Montzka et al., 2011; Nicely et al., 2018), are
consistent with a limited role of OH variability in recent
trends in atmospheric CH4. This is why, similar to the vast
majority of CH4 inversions, we have chosen to keep the OH
sink fixed to a field consistent with observed trends and gra-
dients of methyl chloroform (MCF, Spivakovsky et al., 2000;
Patra et al., 2014, 2020). Nonetheless, we acknowledge that
our knowledge of atmospheric OH is imperfect and uncer-
tain, and in future work we plan to explore alternate spec-
ifications of OH that are consistent with our knowledge of
atmospheric chemistry and MCF trends and gradients.

4.6.2 Alternate optimizer and source signature
uncertainty

Errors in the specification of the δ13C source signatures can
have a significant impact on the inferred methane emissions
(Thanwerdas et al., 2022). While we have explored alternate
specifications, it is possible that the true uncertainty in δ13C
source signatures is larger than the range we have explored.
Optimizing the δ13C source signatures with a realistic prior
covariance structure may yield larger but more realistic er-
ror bounds on source-specific methane emissions. We plan
to explore that option in the future, which will require an al-
ternate to the conjugate gradient optimizer (Lanczos, 1950)
we currently use. We have tested the M1QN3 optimizer used
by Thanwerdas et al. (2022) and have found its convergence
to be slow and inefficient for our system. Therefore, we plan
to explore and implement alternate optimizers that can work
efficiently on nonlinear problems in order to have the option
of estimating δ13C source signatures. Concurrently, we will
work on a more complete characterization of the δ13C source
signature uncertainty, which will be required in order to de-
rive a prior error covariance matrix for δ13C.

4.6.3 OSSEs

We have tested the ability of existing δ13C observations to in-
fer mechanisms behind the recent CH4 growth and separate
different CH4 source types, and we found that the ability to
distinguish fossil from microbial emissions – as reflected by
the posterior correlation between them – is limited at policy-
relevant scales (Sect. 3.5). We strongly suspect that this is
a limitation of the existing δ13C observational coverage and
not of the inversion technique. If we consider expanding the
δ13C measurement network to improve that ability in the fu-
ture, we need to quantify the added value of different expan-
sion strategies. We plan to do this with observation system
simulation experiments (OSSEs) simulating different obser-

vational networks, as we have done for 14C of CO2 in the
past (Basu et al., 2016).

4.6.4 Satellite CH4 retrievals

Several satellites have been launched by various space agen-
cies in the past decades to estimate atmospheric CH4 from
space, and several more are slated to go up over the next
decade. As the technique to use δ13C in CH4 inversions ma-
tures, we hope to eventually add satellite CH4 data to such
inversions to provide stronger regional constraints.

4.7 Future needs

While our effort to quantify source-specific methane emis-
sions from atmospheric δ13C measurements has yielded sev-
eral significant results, it has also uncovered areas for further
progress. First, Fig. 3 shows a lack of δ13C data over the
tropics and close to source regions. This is due to the histor-
ical choice of preferentially measuring δ13C at background
sites and the general lack of tropical samples. More δ13C
measurements in historically under-sampled regions would
let us better separate tropical emissions and attribute conti-
nental emissions to specific sources. Second, while the soil
sink has a small impact on CH4-only studies, its impact on
δ13C studies is large owing to the strong fractionation. Re-
cent studies have suggested that the soil sink may be under-
estimated in current biogeochemical models (Oh et al., 2020)
and may have trends due to a changing climate (Ni and Groff-
man, 2018; Murguia-Flores et al., 2021), which are both as-
pects that need better characterization. Third, our knowledge
of the OH fractionation of 13CH4 and the distribution of tro-
pospheric Cl is a source of significant uncertainty in parti-
tioning methane sources using δ13C data (Sect. 3.3). There
is a wide range of estimates for OH fractionation in the lit-
erature (Rust and Stevens, 1980; Cantrell et al., 1990; Sauer-
essig et al., 2001; Whitehill et al., 2017) and an analogously
wide range of distributions of tropospheric Cl (Allan et al.,
2007; Hossaini et al., 2016; Gromov et al., 2018). The un-
certainty in both of these needs to be reduced in order to use
δ13C data more effectively. Finally, while we have ruled out a
sink-only explanation for the recent growth of methane (Lan
et al., 2021), a small contribution from sink variations is pos-
sible. Since direct measurements of OH are few and far be-
tween and atmospheric levels of MCF are too low for quanti-
fying recent variations in OH, we need alternate ways of sep-
arating source and sink influences. One possibility is to use
measurements of δD in methane to constrain the sink (Quay
et al., 1999; Sowers, 2006; Whiticar and Schaefer, 2007). We
plan to explore the potential of δD measurements in future
work.
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