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Abstract. Improving the estimates of CO2 sources and sinks over India through inverse methods calls for a
comprehensive atmospheric monitoring system involving atmospheric transport models that make a realistic ac-
counting of atmospheric CO2 variability along with a good coverage of ground-based monitoring stations. This
study investigates the importance of representing fine-scale variability in atmospheric CO2 in models for the
optimal use of observations through inverse modelling. The unresolved variability in atmospheric CO2 in coarse
models is quantified by using WRF-Chem (Weather Research and Forecasting model coupled with Chemistry)
simulations at a spatial resolution of 10 km× 10 km. We show that the representation errors due to unresolved
variability in the coarse model with a horizontal resolution of 1◦ (∼ 100 km) are considerable (median values of
1.5 and 0.4 ppm, parts per million, for the surface and column CO2, respectively) compared to the measurement
errors. The monthly averaged surface representation error reaches up to ∼ 5 ppm, which is even comparable
to half of the magnitude of the seasonal variability or concentration enhancement due to hotspot emissions.
Representation error shows a strong dependence on multiple factors such as time of the day, season, terrain het-
erogeneity, and changes in meteorology and surface fluxes. By employing a first-order inverse modelling scheme
using pseudo-observations from nine tall-tower sites over India, we show that the net ecosystem exchange (NEE)
flux uncertainty solely due to unresolved variability is in the range of 3.1 % to 10.3 % of the total NEE of the
region. By estimating the representation error and its impact on flux estimations during different seasons, we
emphasize the need to take account of fine-scale CO2 variability in models over the Indian subcontinent to better
understand processes regulating CO2 sources and sinks. The efficacy of a simple parameterization scheme is
further demonstrated to capture these unresolved variations in coarse models.
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1 Introduction

Accurate assessment of the sources and sinks of CO2 is es-
sential in planning and implementing mitigation strategies
for greenhouse gas emissions and associated climate change.
However, estimations of CO2 fluxes contain significant un-
certainties, which increase even more with finer spatial scales
such as those required for the climate change mitigation poli-
cies at regional and national levels (e.g. Ciais et al., 2014; Li
et al., 2016; Cervarich et al., 2016). By using atmospheric
CO2 concentration measurements, the CO2 fluxes can be es-
timated by a multi-constrained observation–modelling ap-
proach, often referred to as a top-down approach or in-
verse modelling (Enting, 2002). For about 2 decades, these
top-down approaches have been widely used to understand
the modifications in the carbon cycle through natural and
anthropogenic-induced environmental changes (Bousquet et
al., 2000; Schimel et al., 2001; Rödenbeck et al., 2003; Patra
et al., 2005). In addition to the observations, the inverse mod-
elling system makes use of an atmospheric transport model
(forward model), which determines the distribution of CO2
concentration. Thereby, the inverse optimization approach
derives the surface fluxes that are consistent with the mea-
sured concentration. The United Nations Framework Con-
vention on Climate Change (UNFCCC) has acknowledged
the increasing capability of inverse modelling to systemati-
cally monitor greenhouse gas (GHG) concentrations (Berga-
maschi et al., 2018).

Most of the inverse modelling systems rely on global at-
mospheric transport models with a coarse horizontal reso-
lution (often greater than 1◦) (Rödenbeck et al., 2003; Pe-
ters et al., 2007; Rödenbeck et al., 2018a, b; Inness et al.,
2019). These global data assimilation systems play an impor-
tant role in the study of continental or subcontinental fluxes
at annual or sub-annual scales. However, the regional estima-
tion of fluxes using global models is hindered by the inability
of these transport models to represent the observed CO2 vari-
ability. The observed variability, as seen from the spatial and
temporal distribution of atmospheric CO2, is highly corre-
lated with the space and timescales of weather systems (Para-
zoo et al., 2011). This explains the presence of large model–
data mismatches in regions where mesoscale circulation is
predominant (Ahmadov et al., 2007). Wind speed, wind di-
rection, and the height of the planetary boundary layer (PBL)
are the critical variables that determine the atmospheric CO2
variability. Strong wind normalizes other small-scale varia-
tions in observed concentration due to mixing. In such cases,
the CO2 variability is expected to be dominated by the vari-
ations in background concentration; hence, the predictability
can be higher during these conditions (Sarrat et al., 2007).
The height of the PBL is an essential variable since the at-
mospheric CO2 is subjected to rapid mixing up to this al-
titude. Hence, for a given location with a negative gradient
in CO2 vertical distribution, an overestimation of the PBL

height leads to an underestimation of CO2 concentration, and
vice versa (Gerbig et al., 2008).

Another important variable that impacts the CO2 variabil-
ity is the heterogeneous topography. Variations in topogra-
phy influence the transport of the tracers. When the small-
scale orographic details are not adequately represented in the
models, they can lead to representation errors in CO2 simula-
tions as large as 3 ppm (parts per million) at scales of 100 km
(Tolk et al., 2008; Pillai et al., 2010). Horizontal gradients in
CO2 concentrations can go up to values of 30 ppm within a
spatial scale of 200 km, depending on the land surface het-
erogeneity (van der Molen and Dolman, 2007). Furthermore,
variations in land use patterns between neighbouring regions
can cause considerable variability in the CO2 surface fluxes.
Thus, a proper representation of land use patterns is also im-
portant in terms of simulating CO2 variability. Previous stud-
ies based on airborne measurements reported that transport
models need a spatial resolution smaller than 30 km to be
able to represent CO2 spatial variability in the continental
boundary layer (Gerbig et al., 2003). Significant efforts have
been invested in deriving fluxes by taking into account these
fine-scale variations (e.g. Gerbig et al., 2003; Lauvaux et al.,
2009a; Carouge et al., 2010; Pillai et al., 2011, 2012; Broquet
et al., 2013) over North American and Eurasian domains in
the past decade. However, there still exists lower confidence
in estimates over other regions where there is a lack of both
advanced modelling systems at relevant spatiotemporal res-
olutions and good coverage of ground-based monitoring sta-
tions.

In the context of the Indian subcontinent, the inverse-based
estimation of fluxes at fine scales is essentially new; hence,
many questions remain. A number of monitoring sites mea-
suring atmospheric greenhouse gases have become available
in India during the last decade (Tiwari et al., 2011; Lin et al.,
2015; Nomura et al., 2021). Aside from the ongoing progress
in augmenting observational data streams, it remains chal-
lenging to assimilate these data for deducing process-specific
information effectively (e.g. McKain et al., 2012; Bréon et
al., 2015; Pillai et al., 2016). The limitation of coarse global
models in representing observations over the Indian subcon-
tinent is reflected in the analysis made by Patra et al. (2011).

The seasonally reversing South Asian monsoon system is
a prominent meteorological phenomenon affecting the In-
dian subcontinent, which is also expected to influence the
terrestrial–atmosphere flux exchanges. Various studies have
demonstrated the role of Indian monsoon circulations on re-
gional atmospheric transport by strong southwesterly winds
during the summer monsoon (June to September) and by
northeasterly winds during the winter monsoon (October
to November; e.g. Goswami and Xavier, 2005; Krishna-
murthy and Shukla, 2007). Monsoon convection transports
the boundary layer air into the upper troposphere. Subse-
quently, air parcels are slowly uplifted by diabatic heating
to higher altitudes (e.g. Vogel et al., 2019). An accurate
representation of convective vertical transport is very chal-
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lenging and an important source of uncertainty in current
transport models (Willetts et al., 2017). Note that the Asian
summer monsoon anticyclone (ASMA) active during the In-
dian summer monsoon period plays a key role in uplifting
trace gases to the upper troposphere and lower stratosphere
(e.g. Park et al., 2007). Moreover, a significant component
of flux variations can arise from biospheric fluxes (Schimel
et al., 2014), which is influenced by variables such as rain-
fall, radiation, and temperature (Chen et al., 2019). Several
studies showed that the monsoon system substantially im-
pacts vegetation growth, generating distinct spatiotemporal
patterns of the biogenic fluxes (e.g. Gadgil, 2003; Valsala and
Maksyutov, 2013; Ravi Kumar et al., 2016; Kunchala et al.,
2022). It is noteworthy that the cropping patterns over India
have a strong dependence on seasons and are mainly deter-
mined by dry and wet seasons for nearly 65 % to 70 % of the
country’s area, except over the northeastern and southwest-
ern (Western Ghats) regions of India. In India, wet-season
crops (kharif crops cultivated from June to November), in-
cluding rice, millets, and maize, mainly depend on monsoon
rain. Dry-season crops (rabi crops, e.g. wheat, barley, and
mustard, cultivated from November to April) are less water-
dependent and primarily rely on irrigation (DAC/MA, 2015).
Therefore, employing higher-resolution modelling over the
Indian subcontinent is desirable to better account for fine-
scale variations generated by both mesoscale transport pro-
cesses and surface flux patterns.

This study focuses on accounting for unresolved sub-grid-
scale variability when employing current generation global
models. The assimilation of observations in an inverse frame-
work requires the characterization of these error structures at
relevant scales that can be utilized to retrieve the source–sink
distribution over India. The main objectives of this paper are
to describe and quantify the expected spatiotemporal vari-
ability in atmospheric CO2 that is not resolved by the current
generation global models, quantify to what extent these vari-
ations cause uncertainty in flux estimations, and assess how
these uncertainties can be minimized by modelling the sub-
grid variations in the global models. Specifically, we address
the following questions: (1) how good is the level of agree-
ment among global transport models that are used in current
generation inversion systems for predicting atmospheric CO2
concentrations over the Indian subcontinent? (2) How large
are the variations in atmospheric CO2 that are unresolved by
global and regional models, which operate at different spa-
tial scales from 4◦× 4◦ to 0.5◦× 0.5◦? (3) What is the role
of seasonal changes in generating different patterns in these
sub-grid variations in CO2? (4) How much is the uncertainty
in the inverse-based flux estimation caused by these unre-
solved variations in the coarse models when utilizing a given
network of surface observations over the domain? (5) How
effectively can we capture the key aspects of the variabil-
ity and account for it in flux estimations? Information from
observations can be better utilized if we improve the atmo-
spheric transport models to resolve the observed variabil-

ity as accurately as possible. As a result, the data assimila-
tion system gains significantly (e.g. with increasing weights
on observations and performing minimal data filtering) from
this for improving the flux estimates.

In this article, we present results based on the analy-
ses of high-resolution simulations at a spatial resolution of
10 km× 10 km for the months of July and November 2017.
The year 2017 was characterized by neutral Indian Ocean
Dipole conditions over the Indian Ocean with the beginning
of a mild La Niña over the Pacific by the end of the year
(NOAA/ESRL, 2022a, b). The month of July represents a
monsoon period when both biospheric and convective ac-
tivity are strong. July is also characterized by strong low-
pressure system activity over the Bay of Bengal, which re-
sults in large rainfall over central India (Krishnamurthy and
Ajayamohan, 2010). In contrast, the month of November is
more representative of post-monsoon wintertime over the In-
dian subcontinent. We quantify the expected sub-grid vari-
ability using our high-resolution simulations. We have also
utilized optimized CO2 products at global scales to provide
a more comprehensive overview of the typical mismatch
among the existing model simulations over the Indian sub-
continent even at monthly and annual scales. These inter-
model mismatches arise due to various reasons such as dif-
ferences in input datasets (e.g. prior fluxes), transport, and
model configuration. Part of these mismatches can also arise
due to the inability of coarse-resolution global models to sim-
ulate the sub-grid-scale processes which can lead to represen-
tation errors; thus, there is uncertainty in inverse estimations.
By designing a pseudo-surface observation network over the
domain, we investigate the impact of these unresolved varia-
tions on the regional flux estimations and assess how a sim-
ple parameterization scheme can help to reduce these errors
in the global model. To our knowledge, until now, there is no
comprehensive published study of this kind over the Indian
subcontinent assessing the magnitude and impact of tempo-
ral and spatial variability exhibited by atmospheric CO2.

The outline of the paper (see Fig. S1 in the Supplement) is
as follows: Sect. 2 describes our modelling system, data, and
the methods used for reporting intermodel mismatches and
quantifying the sub-grid-scale variability CO2. In Sect. 3, we
present our analysis, demonstrating the impact of unresolved
sub-grid-scale variability on CO2 flux estimation over India.
Finally, we discuss the implications of our findings in Sect. 4,
highlighting possible ways forward to yield an improved es-
timation of CO2 budgets over India.

2 Data and methodology

In the following subsections, we describe our high-resolution
modelling system (Sect. 2.1), the existing optimized global
CO2 simulations used in the study (Sect. 2.2), the quantifi-
cation of the representation error (Sect. 2.3), and the ob-
servation system simulation experiment (OSSE) designed
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to estimate the impact of the derived sub-grid-scale varia-
tions in flux estimations over India via inverse optimization
(Sect. 2.4).

2.1 WRF-Chem-GHG modelling system

We use the modelling system WRF-Chem-GHG in which
the Weather Research and Forecasting model (coupled with
Chemistry) version 3.9.1.1 (Skamarock et al., 2008) is cou-
pled with the greenhouse gas module (WRF-Chem-GHG;
Beck et al., 2011) that is implemented as part of the WRF-
Chem distribution (WRF-Chem; Grell et al., 2005). For sim-
ulating the atmospheric transport, the model uses fully com-
pressible Eulerian non-hydrostatic equations on an Arakawa
C staggered grid, conserving mass, momentum, and scalars
(Skamarock et al., 2008). In the WRF-Chem-GHG (hereafter
referred to as WRF-GHG), we use the passive tracer chem-
istry option to simulate changes in CO2 mixing ratios asso-
ciated with surface fluxes and atmospheric transport. We uti-
lize a biospheric model and emission inventory data to sim-
ulate atmospheric CO2 enhancements associated with bio-
genic and emission fluxes, as described in Sect. 2.1.1 and
2.1.2. Table 1 summarizes the model configuration, including
physics parameterizations and input data used in this study.

The model domain covers a region spanning from 65 to
100◦ E and 5 to 40◦ N, configured in a Lambert conformal
conic (LCC) projection with 307× 407 grid points. The spa-
tial resolution of the grid is 10 km× 10 km, and the model
time step is 60 s. We have used a model output with a tempo-
ral resolution of 1 h for this study. The simulations are per-
formed using 39 vertical levels, with the model top at 50 hPa
and 10 levels within the lowest 2 km. WRF-GHG simulations
are performed for the entire months of July and November
2017. Implementation of the WRF-GHG system over the In-
dian subcontinent enables us to customize it according to the
domain features and build a state-of-the-art modelling sys-
tem, which eventually estimates CO2 fluxes through regional
inverse systems. The potential of the WRF-GHG model in
simulating the fine-scale spatial variability was also estab-
lished in previous studies (Ahmadov et al., 2009; Pillai et al.,
2011; Park et al., 2018).

2.1.1 Representation of biospheric fluxes

We use the Vegetation Photosynthesis and Respiration Model
(VPRM) in the modelling system to calculate net ecosystem
exchange (NEE) representing the biospheric fluxes (Mahade-
van et al., 2008). VPRM is a diagnostic biosphere model,
which utilizes the following remote sensing products: En-
hanced Vegetation Index (EVI) and Land Surface Water In-
dex (LSWI) derived from reflectance data of the Moderate
Resolution Imaging Spectroradiometer (MODIS), in addi-
tion to meteorological data, namely solar radiation and air
temperature. In this study, these hourly NEE calculations are
performed within WRF-GHG and simultaneously with the

meteorology simulations in which NEE is calculated as a
sum of gross ecosystem exchange (GEE) and ecosystem res-
piration (Reco). VPRM, in this case, uses the meteorologi-
cal data provided by WRF-GHG. VPRM uses the SYNMAP
vegetation classification (using the tile approach; Jung et al.,
2006) together with EVI and LSWI from MODIS surface re-
flectance data at a resolution of 1 km and 8 d. We aggregate
these indices specific to different vegetation types onto the
LCC projection for the entire domain at the model’s spatial
resolution. A number of studies have used VPRM for other
regions around the world in which derived NEE shows good
prediction skills for hourly to monthly timescales (Ahmadov
et al., 2009; Pillai et al., 2011; Liu et al., 2018; Park et al.,
2018).

2.1.2 Representation of emission fluxes

Anthropogenic CO2 emission fluxes are prescribed from
the Emissions Database for Global Atmospheric Research
(EDGAR) dataset, version 6.0, provided at a horizontal res-
olution of 0.1◦× 0.1◦ (Crippa et al., 2021). We disaggregate
the available annual emission data into hourly emissions us-
ing the temporal distribution CO2 profiles (Steinbach et al.,
2011; Kretschmer et al., 2014). To represent biomass burning
emission, we have used data from the Global Fire Assimila-
tion System (GFAS) with a spatial resolution of 0.1◦× 0.1◦

and a temporal resolution of 1 d. GFAS is based on satel-
lite data, which provides the fire emissions by assimilating
fire radiative power (FRP) observations from MODIS instru-
ments (Kaiser et al., 2012). All these flux data are gridded
and projected to WRF-GHG’s model domain.

2.1.3 Initial and boundary conditions

Meteorological and chemical initial and boundary conditions
are required in WRF-GHG to account for the initial state and
inflow or background flow. The initial and lateral boundary
conditions for the meteorological variables include horizon-
tal wind components, pressure, specific humidity, and sea
surface temperature (SST). These fields and other necessary
surface initialization fields are obtained from the ERA5 re-
analysis dataset of the European Centre for Medium-Range
Weather Forecasts (ECMWF) and extracted at a horizontal
resolution of 25 km and a temporal resolution of 1 h (Hers-
bach et al., 2020). The initial and lateral boundary conditions
of CO2 tracers are obtained from the Copernicus Atmosphere
Monitoring Service (CAMS) global greenhouse gas forecast
products (currently in development; see Massart et al., 2016;
Agustí-Panareda et al., 2019). Namely, we have used the
dry-air mole fractions of CO2 from the CAMS greenhouse
gas experiment analysis (gqiq), with a temporal resolution of
6 h, horizontal resolution of 0.5◦× 0.5◦ (original resolution
9 km× 9 km), and 137 vertical levels. Note that the CAMS
product at 9 km× 9 km resolution is in the developmental
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phase and not yet available to the general public (contact
anna.agusti-panareda@ecmwf.int for more information).

We have utilized a simulation strategy to update the initial
meteorological conditions to take advantage of assimilated
meteorological fields from ECMWF. The model is reinitial-
ized each day with ECMWF assimilated data at the model
starting time of 12:00 UTC (day+ 0) and runs for 30 h until
18:00 UTC of the next day (day+ 1). The first 6 h are con-
sidered to be the meteorological spin-up, and the remaining
24 h (from day+ 0, 18:00 UTC to day+ 1, 18:00 UTC) are
used for the analysis. The initialization of CO2 is done at the
beginning of the first hour of the model simulation, which is
at 00:00 UTC (e.g. Ahmadov et al., 2012; Pillai et al., 2011).

2.2 Global model products

We have used optimized products at global scales to exam-
ine the differences in the representation of CO2 variability
over the Indian subcontinent at monthly and annual scales.
These global model outputs are derived from inverse model
simulations, which estimate the source–sink distributions of
CO2 and then generate three-dimensional CO2 concentra-
tion fields that are consistent with the optimized posterior
fluxes. Four global inverse modelling products – Carbon-
Tracker, CarboScope, LSCE v18r3, and LSCE FT18r1 –
available for the year 2017 are used for our analysis (see Ta-
ble 2 for more details). The Laboratoire des Sciences du Cli-
mat et l’Environnement (LSCE) model version v18r3 (here-
after LSCE) utilizes surface observations, and the model ver-
sion FT18r1 (hereafter LSCE FT) uses satellite retrievals
from the Orbiting Carbon Observatory (OCO-2) for the op-
timization of CO2 fluxes (Chevallier et al., 2005, 2010;
Chevallier, 2013). All of these above models differ in terms
of the model formulations and configuration (e.g. transport
and the employed inversion methodology), observational
datasets that were assimilated (e.g. data from surface mon-
itoring stations, aircraft missions, ship cruises, AirCore bal-
loon soundings, and the satellite’s total column retrievals),
prior datasets, and spatiotemporal resolutions. None of these
products used ground-based observations from the Indian
subcontinent for their optimization, which raises concerns
about the reliability of the optimized flux estimations over
the region. Hence, it can be assumed that part of the inter-
model differences in predicting the variability is related to
the paucity of the CO2 observations over the region. To rep-
resent the daytime, we have used the concentration fields for
the local time (LT) ranging from 11:30 to 16:30 LT from all
these models for the analysis.

2.3 Quantification of spatial variability

For quantifying the spatial variability due to sub-grid-scale
processes that cannot be resolved by the coarse-resolution
models, we follow the approach as described in Pillai et
al. (2010). The term “representation error” indicates the mis-

match between the scales of model simulations and obser-
vations collected (Pillai et al., 2010; Janjić et al., 2017). In
other words, the representation errors arise due to unresolved
scales not captured by the model. Here we calculate the
representation errors in the coarse-resolution models, which
can be resolved by implementing a high-resolution model at
10 km resolution. It is assumed that the high-resolution sim-
ulation captures the majority of the sub-grid-scale variabil-
ity, even though it cannot be expected to resolve all observed
variability. Most of the current global model simulations are
performed at coarse resolutions of several degrees. But, with
the recent advancement in computational capacity and nu-
merical techniques, a horizontal resolution of 1◦× 1◦ is quite
likely achievable for the global data assimilation systems.
For estimating the representation error in a coarse model with
a typical spatial resolution of 1◦× 1◦, we have calculated the
standard deviation of the CO2 dry-air mole fraction simu-
lated by the WRF-GHG model within the coarse grid boxes
of 1◦× 1◦ as follows:

σCO2(tot) =

√√√√ 1
n− 1

n∑
j=1

(
mj −m

)2
, (1)

where m= 1
n

n∑
j=1

mj . n is the number of 10 km boxes in-

side the coarser grid cell of 1◦× 1◦, m is the CO2 dry-air
mole fraction corresponding to 10 km boxes, and m is the
average within the coarser grid cell. So, the estimated val-
ues represent the sub-grid-scale variability within the coarse
model grid cell with a horizontal resolution of 1◦× 1◦. The
representation errors are calculated at corresponding verti-
cal model levels to represent the impact of surface influ-
ence and mesoscale transport adequately, as predicted by the
high-resolution model. As mentioned before, we assume that
the high-resolution simulations represent the realistic dis-
tribution of CO2. Furthermore, we assume that the coarse-
resolution model also has a terrain-following vertical coor-
dinate system and also has the same vertical grid spacing of
high-resolution model. As spaceborne instruments measure
total columns rather than near-surface concentrations, we ex-
tend the analysis to the column-averaged dry-air mole frac-
tion (XCO2) as measured by the satellite instrument, i.e. m
represents either CO2 at a given model level or XCO2. In
order to assess the dependence of the representation errors
in the horizontal resolution of the employed model, we have
computed representation errors for multiple resolutions rang-
ing from 0.5◦× 0.5◦ to 4◦× 4◦, in addition to 1◦× 1◦, which
would encompass the resolutions of both present and near-
future global inverse modelling systems.

The surface representation errors are calculated using the
model simulations from the second model level (mean height
is∼ 200 m from sea level) to avoid the inconsistency that can
be generated from inputting emission fluxes at the first model
level. Representation errors are calculated separately for day-
time (11:30 to 16:30 LT) and nighttime (23:30 to 04:30 LT)
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to account for the difference in sub-grid-scale process dur-
ing these times. The representation error presented in Eq. (1)
varies from one model time step to the next. In order to ob-
tain a typical (average) representation error, we compute the
monthly average representation error (σCO2 ) using Eq. (2).

σCO2 =
1
T

T∑
t=1

σCO2(tot) , (2)

where T is the total number of simulations in a month
during daytime or nighttime. Furthermore, we have calcu-
lated the representation error (σCO2(mon)

) using Eq. (3), which
describes the systematic component of representation error
and provides important constraints for inversions using both
ground-based and satellite observations over India.

σCO2(mon)
=

√√√√ 1
n− 1

n∑
j=1

(
Mj −M

)2
, (3)

where M = 1
n

n∑
j=1

Mj . n is the number of 10 km boxes inside

the coarser grid cell of 1◦× 1◦, Mj is the monthly averaged
CO2 dry-air mole fraction at a 10 km spatial scale, and M
is the corresponding average within the coarser grid cell of
1◦. The difference between Eqs. (1) and (3) is that we use
monthly averaged CO2 concentration values in Eq. (3) in-
stead of hourly values as in Eq. (1). Both July and November
are used to understand the differences in the variability dur-
ing summer and winter.

Due to the paucity of adequate ground-level observations
over India, satellite observations play an essential role in the
estimation of CO2 fluxes via inverse modelling (e.g. Philip
et al., 2022). Satellite observations can provide the column-
averaged CO2 (XCO2) concentration with a precision of 1 to
1.5 ppm (O’Dell et al., 2012; Wunch et al., 2017; Liang et
al., 2017). In order to utilize these satellite observations, the
transport models being used in the inverse estimation must be
highly accurate. Since satellite footprints are smaller (∼ 2–
20 km2) than the current model grid size (> 100 km), using
these measurements for optimization via inverse modelling
introduces spatial representation errors and associated uncer-
tainties in the inferred fluxes. Note that the spatial biases of a
few 10ths of parts per million in column-averaged CO2 can
potentially alter even the annual subcontinental fluxes in the
range of 10ths of a gigaton of carbon fluxes (Chevallier et al.,
2007; Miller et al., 2007; Chevallier et al., 2010). To quan-
tify these systematic transport errors when representing satel-
lite measurements in inverse models, we calculate the spatial
representation errors for XCO2 that coarse inverse modelling
would suffer from using highly precise and accurate satellite
measurements.

We have selected monsoon (July) and post-monsoon
(November) periods for our analysis to identify the sea-
sonal differences in the sub-grid variability over India.

In July, many low-pressure systems were active in the
monsoon trough region (India Meteorological Department,
IMD, weather reports; https://mausam.imd.gov.in, last ac-
cess: 20 November 2020). In general, tropical cyclones in
the Asian monsoon region can cause fast uplift of air masses
into the upper troposphere and lower stratosphere (e.g. Li et
al., 2021), which may increase the modelling error due to
the misrepresentation of the associated convective activity
that is only parameterized in global models. The presence
of enhanced biospheric activity during July can reduce the
CO2 concentration in the lower troposphere (e.g. Patra et al.,
2011). Also, the strong vertical and horizontal mixing due to
the monsoon circulation dilutes the CO2 concentration in the
atmosphere during July compared to November. The convec-
tive activity associated with the Indian summer monsoon was
absent during November; however, the convection caused by
synoptic systems such as tropical cyclones was still present.
Such a low-pressure system activity was found over the Bay
of Bengal and over the Lakshadweep area (≈ 8◦ N, 74◦ E)
from 22 November onwards. One of these low-pressure sys-
tems in the Bay of Bengal further developed and intensified
as a deep depression and moved to the southeastern Ara-
bian Sea and evolved into a severe cyclonic storm (Ockhi)
by 30 November.

2.4 Estimation of representation-error-induced flux
uncertainty using pseudo-surface measurements

In order to quantify the impact of representation errors in flux
estimations when utilizing surface measurements, we have
devised the following strategy. We used nine CO2 surface
monitoring sites representing various geographical regions
in India (Fig. 1). Not all of these observation stations are
currently fully operational or have continuous measurements.
We have performed an observation system simulation exper-
iment (OSSE) using high-resolution CO2 simulations gener-
ated by the WRF-GHG model for each of these stations. We
focus on the biospheric flux component (NEE). The simu-
lated values of coarse models to compare with the observa-
tions are obtained from the nine grid cells of the coarse model
covering these sites. The pseudo-observations for these sites
correspond to the values simulated by the WRF-GHG model
at one of the fine grid cells contained in one cell of the coarse
model. Since there are 100 fine grid cells per coarse grid
cell, 100 different time series are generated, and 100 corre-
sponding inversions are performed to obtain robust results.
For deducing the contribution of the representation error to
the biospheric flux uncertainty, we have made the follow-
ing assumptions: (1) the hourly WRF-GHG simulations at
10 km (∼ 0.1◦) spatial scale represents actual variations in
CO2 mixing ratios of the measurement site, (2) there are no
model or observation errors other than representation error,
(3) the model captures the spatial and temporal patterns of
fluxes correctly, and (4) the contribution from other surface
fluxes and background mixing ratio (in ppm) is known. As a
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Figure 1. The WRF-GHG model domain used in this study, show-
ing the topography. The CO2 monitoring sites over India used for
the OSSE experiments are marked. Not all these observation sta-
tions are currently fully operational. The colour scale is restricted
to 5000 m for a better visualization of terrain details over the Indian
subcontinent.

first-order simplification for the inversion, we assume that the
footprints of each observation site span a radius of 200 km
around the site based on our analysis using the Stochastic
Time-Inverted Lagrangian Model (STILT; Lin et al., 2003).
STILT footprints indicate that 50 % of the sensitivity of a site
to fluxes over India is located in a region that has about the
same area as a circle with a radius of 200 km. For nine sta-
tions, this footprint area covers around 35 % of the total area
of India. The STILT is driven with ECMWF IFS (Integrated
Forecasting System) meteorological fields and the trajecto-
ries are calculated based on 100 virtual particles that are re-
leased for each time interval and location. The residence time
of the particles in the surface layer is weighted by the atmo-
spheric density to derive the footprints of each location.

In our inversion set-up, we have used the hourly biospheric
contribution of the atmospheric CO2 mixing ratios simulated
by WRF-GHG over the coarse grid cell of 1◦× 1◦ surround-
ing the location of each measurement site as OSSE observa-

tions (mi,j (t)).

yi,j (t)≡mi,j (t)=Hi,j (t) ·F (λ) , (4)

where H is the transport operator, and F (λ) is the flux model
in which a subset of parameters λ out of total model parame-
ters p will be optimized in the inversion. Here, i (i = 1 to 9)
represents the nine observation sites and j (j = 1 to 100) is
the number of WRF-GHG pixels inside the coarser grid cell
of 1◦× 1◦.

The modelled biospheric CO2 signal (mi) for the inversion
is given by the following:

mi(t)=mi,j (t)+ εi,j (t). (5)

The modelled values deviate from the observations by a rep-
resentation error εi,j (t). Since the modelled values (mi) cor-
respond to the mean of the 100 fine grid cells, the simulated
values at site i are given as follows:

mi(t)=
1

100

100∑
1
mi,j (t). (6)

Here, F (λ) is taken as being linearly dependent on λ; hence,
it can be expressed as follows:

F (λ)=8 ·λ, (7)

where 8 is the biospheric flux (NEE) distribution over the
region.

In the inversion, we retrieve the monthly NEE by utilizing
hourly mi,j (t) and mi(t) over a month. For OSSE and uncer-
tainty flux estimation, we use the VPRM-derived NEE fluxes
as the “true” fluxes (see Sect. 2.1.1). By using this inverse
modelling design, we require the performance of 100 inver-
sions per site, each of which uses a realization of the repre-
sentation error to estimate the corresponding realization of
the resulting uncertainty in the retrieved fluxes.

Both the observation and simulation vector have 6480
(= 9× 30× 24) elements for a month having 30 d, and the
state vector has nine elements corresponding to scaling fac-
tors of fluxes for that month over regions around the nine
sites (see Fig. 1). In other words, each site has been assigned
with one scaling factor for NEE, and there is a total of nine
scaling factors for a given month. We use a unit vector λ
as the prior scaling factor. The prior uncertainty is neglected
here, as the expected impact of the representation error in the
retrieved fluxes is significantly smaller than the typical prior
uncertainties assumed in Bayesian inversions (on the order
of 50 %–100 % for biospheric fluxes). Hence, neglecting this
prior uncertainty does not have a large impact on our results.
The inversion retrieves optimized scaling factors λretr.

We have performed 100 inversions per site, and the scaling
factors are retrieved by minimizing the cost function for each
observation station as follows:

J
(
λi,j

)
=

1
T

T∑
t=1

(
mi,j (t)−mi(t)λi,j

)2
, (8)
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where T is the number of observations for a month. Minimiz-
ing these cost functions results in an optimized estimate of
scaling factors λretr, which is a vector of scaling factors with
nine elements (λretr,i) for each of the 100 inversion cases.

By this inverse design, the deviation of posterior fluxes
from the true fluxes over India is thus the uncertainty in re-
trieved fluxes, Srep, that arises solely due to the contribution
from the representation error. The standard deviation of the
scaling factors from these 100 inversions (σ λretr ) are used to
retrieve flux uncertainty. Srepis obtained as follows:

Srep =

√√√√ K∑
k=1

(
Sλretr,k8true,k

)2
, (9)

where 8true is the monthly VPRM biospheric flux (NEE)
over the Indian region, and k is the number of pixels
(33 141 pixels) over the Indian region. Here, Sλretr has the
dimension of Indian region at a 10 km spatial resolution and
is defined in such a way that all the grid cells (at 10 km spa-
tial resolution) other than the grid cells within the influence
region (200 km radius around the station) of each station is
given with zero values (21 335 pixels) and the grids in the
influence region of each station (11 806 pixels) is given with
the corresponding values of σ λretr,i . In this way, the approach
does not depend on Eqs. (1) to (3) but shows the impact of
difference between mj and m on retrieved fluxes.

Any temporal correlations in the representation error are
not considered for this experiment. We have performed the
inversion separately for daytime and nighttime values to
identify the impact of diurnal variations in representation er-
rors in flux uncertainty. Note that, by following the above
inversion design and assumptions, there is a high likelihood
of underestimating the impact of the modelling error in flux
estimations, since we have not considered other sources of
uncertainties such as model transport uncertainty and inap-
propriate prior assumptions. Thus, the quantification of flux
uncertainty using this approach may be considered to be the
lower bound of the uncertainty (i.e. the minimum flux uncer-
tainty one may expect while estimating fluxes using a model
with a grid cell of 1◦× 1◦ and nine stations with the repre-
sentativeness of 200 km).

3 Results and discussions

3.1 Agreement among global models

We first analyse the level of agreement among current-
generation global transport models in simulating CO2 con-
centration over the Indian subcontinent. Note that a mere
agreement among the coarse models does not guarantee a
good model performance over the region due to their plau-
sibly large model errors in common and interdependency in
terms of data sources. We restrict this analysis to daytime-
only values, since different processes control the variability

in CO2 concentration at daytime and nighttime, and simulat-
ing nighttime variability is more complicated than the day-
time (Lauvaux et al., 2009a). For a consistent comparison
among global models, all the products are sampled at the
same time for the region spanning from 67 to 98◦ E and 7
to 38◦ N. Figure 2a depicts the annual vertical profiles of
CO2 concentration, showing models’ discrepancy in simu-
lating the vertical gradients in concentration values including
the boundary layer and the free troposphere. A notable differ-
ence is observed in the simulation of the gradient within the
boundary layer. The magnitude and the height up to which
this positive gradient is observed are different for these mod-
els. LSCE (both versions) has the largest positive gradient
among these models (∼ 1 ppm). It shows the maximum con-
centration at around 700 m height and then a decrease in con-
centration. CarbonTracker also shows this positive gradient
in the surface layers up to a height of 900 m. But the gradient
is much smaller compared to the other two models. Among
these four models, CarboScope does not exhibit this tendency
in the lower atmosphere. Its concentration decreases linearly
from the surface as the height increases.

The seasonal variability in CO2 uptake through photosyn-
thesis, release through ecosystem respiration, and vertical
transport is seen when analysing the monthly averaged CO2
concentration profiles over the Indian subcontinent (Figs. 2b
and 3). Comparatively lower surface CO2 concentrations are
found during months with an active biosphere (June to Octo-
ber) than the rest of the period, owing to the higher ecosystem
productivity over the Northern Hemisphere and particularly
over the Indian subcontinent in response to the availability of
monsoon rainfall. Also, the presence of strong southwesterly
monsoon winds from June to September may result in bring-
ing CO2-depleted air from the Southern Hemisphere and
thereby lowering the CO2 concentration over the domain.
While comparing the seasonal maximum (May) and mini-
mum (September) of CO2 concentrations measured at the
Mauna Loa Observatory (MLO) located in Hawaii, Fig. 2b
shows a temporal shift of around 1 month for exhibiting the
seasonal maximum (April) and minimum (August) CO2 con-
centrations. This temporal shift is attributed to the differen-
tial impacts of anthropogenic and terrestrial ecosystem ac-
tivities on atmospheric concentration in addition to the long-
distance transfer of atmospheric carbon dioxide to a remote
location (Nomura et al., 2021). MLO observations are gen-
erally representative of global mean CO2 due to the min-
imal influence of terrestrial ecosystems and anthropogenic
activities at this remote location. The seasonal variation in
monthly averaged CO2 seen over the Indian subcontinent is
mostly dominated by terrestrial carbon fluxes, i.e. net ecosys-
tem exchange (NEE) as seen from the VPRM simulations
(see Fig. S2) and as, e.g., in Tiwari et al. (2013).

Furthermore, we see a CO2 vertical profile with a small
vertical gradient (∼ 0.5 ppm within an altitude range of
∼ 500 to 4000 m) from June to October (Fig. 3). This is likely
linked to the increased convective activities associated with
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Figure 2. Comparison of global models over the model domain during daytime (11:30 to 16:30 LT) in 2017. (a) Annually averaged vertical
profiles of CO2 concentration in the lower troposphere. (b) Time series of monthly averaged CO2 concentration at surface (∼ 100 m above
surface).

Figure 3. Comparison of average monthly vertical profiles of CO2 concentration from global atmospheric transport models over the model
domain during daytime (11:30 to 16:30 LT) in 2017. Panels show data for the respective months, as indicated at the top of each panel.
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the monsoon. The strong vertical gradient in the surface lev-
els as simulated by the LSCE model during the monsoon pe-
riod is little plausible given the strong vertical mixing ex-
pected due to the presence of strong wind and convection.
The considerable intermodel variation in monthly averaged
CO2 concentration profiles, as predicted by different global
models, is problematic as it indicates significant uncertain-
ties in flux estimations over India. Part of this discrepancy
can come from the coarse-resolution global model’s inabil-
ity to represent transport processes like convection and ver-
tical mixing, in addition to the strength and distribution of
anthropogenic sources and ecosystem activities, that operate
at fine scales. The extent of this unresolved variability in ex-
isting global models is further explored in Sect. 3.2. The spa-
tial distribution of CO2 concentration shows structural dif-
ferences among these models (see Fig. S3), which indicates
a substantial knowledge gap in models for representing at-
mospheric CO2 variability over the Indian subcontinent. As
a consequence, the country’s carbon budget estimations in-
ferred via inverse modelling can be unreliable.

3.2 Representation errors in global transport models

The spatiotemporal variability in representation error and the
influence of various factors in creating this variability are ex-
amined here. The larger the variations that are caused due to
sub-grid processes within the grid box of 1◦× 1◦, the larger
the representation error. The derived seasonal differences
in structural patterns of the sub-grid variability facilitate to
(1) quantify what would be typical representation errors as-
sociated with incorporating observations from different sea-
sons into atmospheric models, (2) determine what drives the
seasonality in sub-grid variability and ultimately, and (3) de-
sign a possible parameterization of representation error with
a seasonal component in the inverse modelling framework,
as well as identify periods or seasons in which the use of this
parameterization would be valid to improve our estimations
of CO2 fluxes. Furthermore, the seasonal spatial variability
analysis of column averages can provide useful information
to gap-fill the satellite-based products over India when large
data gaps are present, which can be utilized for applications
that do not demand high-precision observations (e.g. Ham-
merling et al., 2012).

3.2.1 Spatiotemporal patterns

Representation errors in the surface CO2 concentrations of
a global model at a spatial resolution of 1◦× 1◦ for July
and November are shown in Fig. 4. The representation er-
ror at 1◦× 1◦ spatial scale reaches values ranging from 0.5
to 5 ppm, which are comparable to the magnitude of vari-
ability at hotspot emission regions or half of the seasonal
variability in CO2 over the region (see Fig. 2b). The median
representation error is 1.2 ppm at the surface, which is con-
siderably larger than the measurement errors. In the case of

high-accuracy in situ measurements, the typical uncertainty
for CO2 measurements is of the order of 0.1 ppm (Andrews et
al., 2014; Zellweger et al., 2016). A remarkable feature is the
presence of very high representation error over the North-
eastern and Western Ghats regions, where biosphere activ-
ity is very prominent. The heterogeneous distribution of bio-
sphere fluxes generates significant sub-grid-scale variability
that leads to high representation error. Also, we can find high
representation error along the foothills of the Himalayas. In
addition to the complex terrain, the region over the Ganges
basin is characterized by increased anthropogenic activity,
which contributes to a larger representation error surrounding
in this region. High representational error is also found in the
coastal regions, ranging from 2 to 5 ppm (median of 4 ppm),
due to the temporal covariance between the coastal meteo-
rology and exchange fluxes. The CO2 fluxes from coastal
regions can be transported over the ocean and accumulated
in the shallow boundary layer over the ocean. The shallow
boundary layer is a characteristic of the marine atmosphere
due to less vertical mixing as compared to land regions. Hor-
izontal CO2 gradients can also be generated by the influ-
ence of highly varying biospheric fluxes under different ad-
vection patterns at the boundary between land and ocean. A
similar mechanism is applicable to mountain regions, where
the temporal covariance of mountain–valley circulation and
respired CO2 fluxes are regulated by atmospheric radiation.
The terrain-following coordinates, as used in the model, may
also result in spurious tracer concentration gradients over the
steep mountain terrain (Beck et al., 2020; Skamarock et al.,
2021; Park et al., 2019). Though the mesoscale models are
expected to perform better in simulating CO2 variations over
the complex terrain than the coarse models (e.g. Engelen et
al., 2002; Gerbig et al., 2003; Ahmadov et al., 2007; Corbin
et al., 2008; Lauvaux et al., 2009b; Pillai et al., 2011; Uebel et
al., 2017; Agustí-Panareda et al., 2019), they may also suf-
fer from the inadequate representation of complex weather
features and associated variability. We can also find indi-
vidual cells with high representation errors associated with
point emission sources such as cities, mining sites, and coal-
fired power plants at different parts of the domain. The daily
variations in surface representation errors are small (within
a month), although there exists a clear distinction between
daytime and nighttime values (figure not shown). The night-
time representation error is higher (e.g. a median value of
1.5 ppm for surface during November) compared to the day-
time representation error (e.g. a median value of 1.1 ppm for
surface during November) throughout the analysed domain.
This is expected due to the coupling between nocturnal shal-
low transport and different flux processes accentuating lo-
cal effects. During the nighttime, photosynthesis is absent,
and respiration is the major biospheric activity, leading to an
increase in CO2 concentration in the atmosphere. The large
heterogeneity in flux distribution that is mostly from respired
CO2 fluxes, the shallow boundary layer processes, and the
weak nocturnal turbulence cause CO2 to be accumulated lo-
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cally near the surface with large variations. Compared to
July, we find higher representation error in November owing
to the wintertime transport with decreased vertical mixing
and heterogeneous biospheric uptake (see Fig. 4).

In the case of XCO2, the magnitude of sub-grid-scale vari-
ability is much smaller than that of surface CO2 (Fig. 5), but
it follows a similar spatial pattern. This confirms the dom-
inance of surface-level processes in causing sub-grid vari-
ability in column averages. The sub-grid-scale variability in
XCO2 reaches up to 2 ppm in some parts of the region, espe-
cially where there are high variations in topographic features
or point emission sources. The estimated column representa-
tion errors over these regions are thus capable of causing sig-
nificant biases in the satellite inferred CO2 fluxes as regional
biases of a few 10ths of parts per million in column-averaged
CO2 can create a bias of a few 10ths of a gigaton of carbon
fluxes (Chevallier et al., 2007). Also, the representation error
for a large part of the domain is found to be above 0.5 ppm,
which is around half of the typical precision of current satel-
lite measurements. Note that the representation error reported
here is different from satellite measurement errors (e.g. spec-
troscopic retrieval error or sampling biases) and tends to be
systematic in nature.

Figure 6 shows the statistical distribution of the repre-
sentation error (σCO2 ) sampled over India, during July and
November, separated by daytime and nighttime. July shows
a median surface representation error of 0.9 and 1.1 ppm
during daytime and nighttime, respectively, while Novem-
ber shows a median value of 1.1 and 1.4 ppm for daytime
and nighttime, respectively. In July, 95 % of the representa-
tion error is less than 2.1 ppm for daytime (3.9 ppm for night-
time), while it is 3 ppm for daytime (4.2 ppm for nighttime)
for November. For the column average, median values for
representation error are 0.3 and 0.4 ppm for July daytime and
November daytime, respectively.

To further reduce the effect of random error that might be
introduced by short-term weather phenomena, the represen-
tation errors (σCO2(mon)

) are calculated from the monthly aver-
aged CO2 field and are denoted as a systematic error (Fig. 6).
Uncorrelated errors are expected to decrease when averag-
ing over a sufficiently long period. As expected, the median
values of the systematic representation errors are smaller for
all cases, showing the effect of random errors. Especially for
November, when the cyclonic event was present, the values
of the systematic errors (in the 95th percentile) for the sur-
face CO2 are considerably lower than total errors, reducing
from 3 ppm (daytime) and 4.2 ppm (nighttime) to 2.2 ppm
(daytime) and 3 ppm (nighttime). In the case of column CO2,
this reduction is from 1.1 ppm (daytime) and 0.9 ppm (night-
time) to 0.8 ppm (daytime) and 0.7 ppm (nighttime) in the
95th percentile. In contrast to surface representation error
(Fig. 6a), median values of nighttime representation errors
are found to be slightly lower than the daytime representa-
tion error for the column average (Fig. 6b). To assess the de-

pendence of representation error in possible horizontal res-
olutions of the global models, we have further derived the
representation errors for different spatial resolutions between
0.5◦ and 4◦. As expected, we see reductions in representa-
tion errors for both surface and column-averaged CO2 with
the increasing horizontal resolution of the model (see Figs. 7
and S4). During July, the median surface representation er-
ror reduced from 1.6 ppm (2 ppm) to 0.6 ppm (0.7 ppm) dur-
ing the daytime (nighttime), while increasing the horizon-
tal resolution from 4◦ to 0.5◦. This increment in the spa-
tial resolution has also resulted in similar error reductions
in November during which the median of surface represen-
tation error shows a reduction from 2.4 ppm (2.8 ppm) to
0.7 ppm (0.9 ppm) during daytime (nighttime). In the case of
the column-averaged values, the median representation er-
ror decreased from 0.7 ppm (0.6 ppm) to 0.25 ppm (0.2 ppm)
during the July daytime (nighttime) and from 0.95 ppm
(0.9 ppm) to 0.25 ppm (0.2 ppm) during the November day-
time (nighttime). The spatial distribution of the representa-
tion errors for a model with a horizontal grid resolution of
0.5◦× 0.5◦ (e.g. regional models) is provided in Figs. S5 and
S6. On average, we find a ∼ 33 % to 36 % decrease in day-
time representation errors for both months when increasing
the model grid resolution from 1 to 0.5◦. There exists a simi-
lar spatial pattern of representation errors for both resolutions
of 0.5 and 1◦. Though our results indicate a reduction in the
representation error for regional models with a typical reso-
lution of 0.5◦, compared to global models with 1◦ spatial res-
olution, the emission hotspots and point sources are still pro-
nounced with high sub-grid-scale variability, especially dur-
ing nighttime. The above analyses indicate that the sub-grid
variability alone can produce significantly higher errors com-
pared to the measurement errors (e.g. 0.1 ppm as per World
Meteorological Organization standards for surface measure-
ments), which necessitates a proper treatment of these errors
in models for the optimal estimation of CO2 fluxes.

3.2.2 Vertical distribution

Figure 8 shows the vertical profile of representation error dis-
tribution within different altitude bins. We find that the max-
imum representation error is in the surface layer, and most
of the higher values are found to be within the lowest 4–
6 km bins. Also, sub-grid-scale variability decreases sharply
with increasing altitude. This dominance of the variability
in the surface concentration can be explained by surface
flux heterogeneity influencing mole fractions in lower atmo-
spheric layers (PBL), as described in van der Molen and Dol-
man (2007) and Pillai et al. (2010). There is a slight increase
in the representation error in the upper tropospheric levels
near the 12 to 14 km altitude range. This may be associated
with the presence of strong circulations in the upper tropo-
sphere and lower stratosphere, such as subtropical westerly
jets or the Asian summer monsoon anticyclone (e.g. Chan-
dra et al., 2017).
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Figure 4. Monthly averaged values of representation error estimated for surface CO2 concentration (second model level; mean height is
∼ 200 m from sea level) over the region 8 to 37◦ N and 68 to 96◦ E during 2017. (a) July daytime (11:30 to 16:30 LT). (b) July nighttime
(23:30 to 04:30 LT). (c) November daytime. (d) November nighttime.

3.3 Influence of terrain heterogeneity and flux variability
on representation errors

Here we explore the factors influencing the size and patterns
of the representation error in coarse models. For this, statisti-
cal relationships between the representation error and possi-
ble explanatory variables are examined for both surface and
column-averaged CO2. Identifying these factors influencing
representation errors and quantifying their local effects al-
low us to further investigate on how these biases in retrieved
fluxes can be minimized in global models (see Sect. 3.5).

We find a significant influence of terrain heterogeneity on
the representation error, which is evident from the spatial
maps in Figs. 4 and 5, where the largest sub-grid-scale vari-
ations are found in the Himalayan regions. Spatial variations
in topography produce mesoscale circulation patterns and
corresponding variations in atmospheric CO2 at fine scales.
At the same time, there is a plausible additional error in
global model simulations related to the insufficient resolu-

tion of vertical grids necessary to account for different sur-
face influences (e.g. mountain vs. valley). This effect of the
coarse vertical resolution is excluded in our representation
error estimates by preserving the vertical grids used for the
high-resolution simulations. To further explore the impor-
tance of using the high-resolution topography data to rep-
resent the CO2 variability, we analyse the dependence of ter-
rain variations (as derived from the standard deviation of the
terrain height) on the distribution of the representation error.
We have estimated the statistical dependence (R2) of the rep-
resentation error in topographic variability within the corre-
sponding global climate models’ grids to understand the rela-
tion between them. Topographic variability within a 1◦× 1◦

spatial box is estimated as being the standard deviation of to-
pography (m) for all 10 km× 10 km boxes within the larger
grid and is denoted as σtopo. Bins are created based on the val-
ues of this topographic variability, in which different points
from different parts of the domain are binned together on the
basis of their standard deviation of topography. Each bin is
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Figure 5. Monthly averaged values of representation error estimated for column-averaged CO2 concentration over the region 8 to 37◦ N and
68 to 96◦ E during 2017. (a) July daytime (11:30 to 16:30 LT). (b) July nighttime (23:30 to 04:30 LT). (c) November daytime. (d) November
nighttime.

created with a size of 50 m variation in terrain height. The lin-
ear fit is estimated between the average value of topographic
variability within a bin and the average value of the represen-
tation error in the corresponding points in the bin. Our results
show that the terrain heterogeneity alone can explain about
20 %–48 % (R2

= 0.20 to 0.40) of the surface representation
errors over the domain. In a similar way, we have estimated
the influence of topographic variability on the representation
error in the column-averaged model simulations. It is found
that topography alone can explain 45 %–52 % (R2

= 0.45 to
0.52) of the representation errors in the column-averaged
simulations.

Furthermore, we estimate the statistical relationship (R2)
between the surface flux heterogeneity and representation er-
ror. The surface representation error is strongly linked to the
biosphere flux variability, and the relationship between het-
erogeneity in biospheric surface flux (as derived from the
standard deviation of VPRM-derived NEE fluxes, denoted as
σbio) and representation errors depends on the time of the day

and season. During daytime, when there is strong ecosystem
activity, the dependence of representation error (σCO2 ) on
σbio of surface and column CO2 is found to be ∼ 75 %–80 %
and ∼ 66 %–74 %, respectively. σbio explains about 62 % of
the surface CO2 variability and 48 % of the column variabil-
ity during the July nighttime. However, σCO2 and σbio are less
correlated (23 % for surface and 19 % for column) during the
November nighttime. The diurnal difference in the depen-
dence of representation error in σbio can be explained by the
increased magnitude and spatial variability in daytime bio-
spheric fluxes in the growing season (primarily due to photo-
synthesis activities) compared to nighttime fluxes. Moreover,
poor vertical mixing under the stable nocturnal atmospheric
conditions with more advection and drainage flow reduces
the influence of surface fluxes on spatial variability in mix-
ing ratios. The dependence of the representation error in the
anthropogenic flux heterogeneity (as derived from the stan-
dard deviation of EDGAR fluxes, denoted as σant) is found to
be negligible, except for the nighttime (13 %–30 %). We find
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Figure 6. Variability in derived representation error over India in July and November 2017 (both during daytime and nighttime). Boxes
indicate the central 50 %, the bar across the box is the median value, and the whiskers indicate the values between the 5th and 95th percentiles.
Individual data points shown are the outliers. (a) Representation error estimated for the surface CO2. (b) Representation error estimated for
the column-averaged CO2.

Figure 7. Variability in derived surface representation error over India for different horizontal resolutions. Boxes indicate the central 50 %,
the bar across the box is median value, and the whiskers indicate the value between the 5th and 95th percentiles. Individual data points shown
are the outliers. (a) Representation error estimated for July daytime. (b) July nighttime. (c) November daytime. (d) November nighttime.
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Figure 8. Variability in the representation error over India with altitude for July and November 2017. (a) July daytime, (b) July nighttime,
(c) July full time, (d) November daytime, (e) November nighttime, and (f) November full time. Median values are plotted with black curves,
and the shaded region indicate the 25th to 75th percentiles of data.

a smaller influence of seasonality on the relationship between
anthropogenic surface flux heterogeneity and representation
errors (see Table S1). Similar to the above analysis with σbio,
the combined effect of atmospheric stability and flux hetero-
geneity can explain the diurnal differences in the relationship
between σant and σCO2 .

In the case of the variability in monthly averages, we see
that σCO2(mon)

is well explained by σbio during the daytime
(see Table S2), as expected. A similar strong correlation
can be seen between σCO2(mon)

and σbio (23 %–69 %) dur-
ing nighttime for surface variability in CO2, while there ex-
ists only a lesser dependence of the nocturnal column CO2
variability on local fluxes. This shows the decoupling of the
mixing ratios in other parts of the column from the surface
during the night, due to less vertical mixing, combined with
more drainage flow in the nocturnal boundary layer, which
reduces the effect of surface flux variability on the column
CO2 variability.

In general, the above analysis underlines the need for us-
ing digital elevation models (DEMs) at a high resolution to
take into account the terrain-induced mesoscale atmospheric
flows adequately in atmospheric transport models. Further-

more, the results indicate the importance of utilizing high-
resolution surface fluxes in atmospheric CO2 simulations.

3.4 Estimation of NEE flux uncertainty due to
representation error

By following the assumptions and approach as given in
Sect. 2.4, we have estimated the NEE flux uncertainty re-
sulting from the representation errors. The results based
on the OSSEs for nine observation sites are given in Ta-
ble 3. The scaling factors, which are calculated separately
for each site by adjusting the prior fluxes using pseudo-
observations, are applied to the VPRM monthly fluxes. The
total NEE flux for India estimated by VPRM for July and
November are −373.3 and −417.1 Mt CO2 per month, re-
spectively. The flux uncertainties over India that arise solely
due to the contribution from the representation error are es-
timated to be 38.59 (daytime observations) to 30.14 Mt CO2
per month (nighttime observations; 10.33 % to 8.07 %) for
July and 18.42 (daytime observations) to 13.34,Mt CO2 per
month (nighttime observations; 4.4 % to 3.1 %) for Novem-
ber, while utilizing data from nine observation stations. The
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spatial representativeness of measurement stations used in
this study is assumed to cover only 35 % of the country’s
total area (see Sect. 2.4). Consequently, the impact of repre-
sentation error in flux uncertainty, as reported in this study, is
an underestimation when measurements from more region-
ally representative sites or a dense observation network are
utilized in inversions. The maximum flux uncertainty was
found for July due to the enhanced biosphere activity and
unresolved convection activities. The estimated uncertainties
are considerable for the carbon budget assessment, especially
given that these errors arise solely from the global models’
representation error. Note that calculated representation error
does not include other transport error sources such as advec-
tion, convection, or vertical mixing.

3.5 Possible treatment of representation error in the
global model

The simplest possible way to minimize the uncertainty in the
flux estimation using a coarse model is to construct a parame-
terization model that can account for the representation error
using explanatory variables. For this, we create a multivariate
model to capture spatial patterns in the representation error.
Employing this parameterization in a global model would
thus redefine the likelihood of better estimates (improving
the state of knowledge) with a variance greater than that of
the measurement error in the inverse framework by minimiz-
ing the modelling error. The multivariate linear model, with
explanatory variables that includes sub-grid variations in ter-
rain (σtopo), biospheric (σbio) and anthropogenic (σant) fluxes,
remarkably captures the derived column representation error
all over the Indian region during the July daytime, with a R2

value of 0.96 (Fig. 9). The difference between the modelled
and derived representation error is found to be well below
0.5 ppm in most parts of the domain. Similarly, we have mod-
elled the surface representation error using the linear model
with these three explanatory variables and found that the pro-
posed model could capture the derived surface representation
error well (R2

= 0.89) with a deviation of less than 1 ppm in
most of the regions (see Fig. S7 and Tables S1 and S2). More
work is needed to demonstrate the extent of applicability of
this method to minimize the flux uncertainties while utilizing
actual observations. Nevertheless, the above finding provides
a possibility for a parameterization that can be further devel-
oped in inverse models or data assimilation systems, which
defines the degrees of freedom for describing the posterior
states. Applying this parameterization scheme to the specific
problem requires a high-resolution map of the terrain and
prior information on anthropogenic and biogenic fluxes as
the uncertainties in the topography and surface fluxes can
significantly impact flux estimation. The caveat of this lin-
ear model is that the uncorrelated spatial variability in the
prior and true states of the fluxes is ignored in the present
form, which cannot be the case for the real inverse problems.
This assumption obviously hampers the system in achieving

the maximum reduction in uncertainty, and further study is
needed to refine this model from a practical perspective. We
emphasize, however, that the above parameterization does
not require a high-resolution simulation of transport, which
has high computational costs.

4 Conclusion

Given the upcoming availability of atmospheric observations
over India, significant effort is required to critically enhance
the modelling capabilities to derive carbon budgets over In-
dia within the definite confidence intervals and at scales rel-
evant to the ecosystem and countrywide policy-making. The
misrepresentation of mesoscale transport phenomena and un-
resolved flux variations in modelling systems operating on
coarse grids hinders the optimal utilization of observations.
In this context, the present study quantifies the spatial vari-
ability in atmospheric CO2 mixing ratio over India that is
not resolved by the coarse models and assesses their impact
on flux estimations. We demonstrate the potential of a sim-
ple parameterization scheme to model these unresolved vari-
ations in the coarse models for minimizing the uncertainty in
retrieved fluxes.

A large spread among existing global model simulations in
representing the monthly averaged CO2 concentration pro-
files indicates a considerable knowledge gap in the estima-
tions of fluxes even at a monthly scale. It can be argued that
a significant part of these differences arises due to the lack
of observational constraints over India, which leads to a pos-
sible compensatory model artefact over this region in order
to match the global mass constraint. At the same time, it is
also expected that the spatial variability in the observed at-
mospheric CO2 mole fractions can be large, so that these
coarse models fail to represent them adequately. For instance,
we find that the unresolved variations (representation error)
in global models with a spatial resolution of 1◦× 1◦ can be
∼ 1.5 ppm on average for the surface CO2, which is even
larger than the currently reported differences between global
models (∼ 1 ppm). Similarly, the average representation error
estimated for the column-averaged CO2 is ∼ 1.1 ppm. These
estimated values are larger than the corresponding measure-
ment errors, which cause the inverse optimization to infer a
state that is not close to the truth, as is required in the regional
CO2 budget for various applications.

Coastal areas and mountains have particularly high rep-
resentation errors (≈ 4 ppm for surface CO2). Emission
hotspots can also lead to significant CO2 variability near
the surface as large as ≈ 8 ppm. Larger values are typically
associated with the nocturnal shallow boundary layer dy-
namics and the stronger respiration signal with considerable
flux variability. These findings are consistent with Pillai et
al. (2010), which show that there exist spatial differences in
the sub-grid variability for both surface and column CO2.
Although the magnitude of the sub-grid variability in the
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Table 3. Flux uncertainty over India calculated from the OSSE experiments using a pseudo-observation network of surface observations.
The time filter indicates the time of the data sampled for estimation of the scaling factors. A full day is 24 h in each day, daytime is from
11:30 to 16:30 LT, and nighttime is from 23:30 to 04:30 LT. Note: the fraction of uncertainty to the total NEE is given in parentheses.

Month Time filter True flux, aggregated over India Flux uncertainty Srep (Mt CO2 per month)
K∑
k=1

8true (Mt CO2 per month) (%)

July Daytime observations −373.31 38.59 (10.33)
July Nighttime observations 30.14 (8.07)
July Full-day observations 23.20 (6.21)

November Daytime observations −417.12 18.42 (4.4)
November Nighttime observations 13.34 (3.1)
November Full-day observations 13.48 (3.2)

Figure 9. Monthly averaged values of representation error estimated for column-averaged CO2 concentration during the July daytime
(11:30 to 16:30 LT) in 2017. (a) Representation error derived from WRF-GHG simulations, as explained in Sect. 2.3. (b) Representation
error calculated from the multivariate linear model, as described in Sect. 3.5. (c) Difference between panels (a) and (b).

total column is significantly smaller than the variability at
the surface, the spatial pattern remains similar for both, ow-
ing to the dominance of surface heterogeneity in topogra-
phy and fluxes. With the underlying assumptions, the total
uncertainty in optimized fluxes solely due to the unresolved
sub-grid variations is estimated to be 3.1 % to 10.3 % of the
total NEE, while utilizing pseudo-data from nine observa-
tion stations over India. Increasing the spatial and temporal
resolutions of the transport models can generally capture the
mesoscale features and associated CO2 gradients, thereby re-
ducing the representation error. Increasing the model resolu-
tion from 1 to 0.5◦ has shown an improvement in captur-
ing variability with representation error reduction of 33 %
and 36 % for summertime and wintertime, respectively. By
showing the existence of the unresolved variability in 0.5◦

resolution with a similar spatial pattern of the error as of
1◦ spatial resolution, we demonstrate the need for a much

finer resolution than 0.5◦ for representing the atmospheric
CO2 variability over India. However, merely increasing the
resolution without having a realistic representation of terrain
heterogeneity and flux (both natural and anthropogenic) vari-
ability would not be beneficial. The uncertainties in the high-
resolution fluxes can worsen the model’s skills, whose effect
would not be more pronounced at coarser resolutions due to
the diffusive nature of fluxes, as seen in Agustí-Panareda et
al. (2019).

A parameterization scheme with explanatory variables of
sub-grid variations in terrain, biospheric, and anthropogenic
fluxes is shown to capture a considerable fraction of ex-
pected representation error in the global model. The pro-
posed method is easy to implement in the coarse models, as it
does not require computationally expensive transport simula-
tions at high resolution. As we see a significant dependence
of the distribution of sub-grid variability on terrain varia-
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tions, our results reinforce the requirement for using high-
resolution DEMs in the atmospheric transport models. The
biosphere flux variability explains about 62 % to 80 % of the
surface representation errors over the Indian region, indicat-
ing the need for using precise high-resolution surface fluxes.

Overall, we show that the mesoscale transport mechanisms
and flux variability contribute to fine-scale CO2 variations
that the current-generation models cannot resolve. Our find-
ings indicate that the models need to be critically improved to
capture mesoscale variations associated with horizontal and
vertical transport and fine-scale flux variability to maximize
the potential of highly precise and accurate measurements.
Our results provide a baseline for overcoming the shortcom-
ings mentioned above and account for the realistic distribu-
tion of atmospheric CO2 to improve the estimation of surface
fluxes through inverse modelling.
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