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Abstract. The concentration of atmospheric ions affects the total aerosol particle number concentrations in the
atmosphere as well as atmospheric new particle formation via ion-induced nucleation, ion—ion recombination,
and effects on condensational growth. In this study, we investigate the concentrations and long-term trends of
atmospheric ions in a boreal forest environment using 16 years of cluster ion (0.8-2 nm) and intermediate ion
(2-7 nm) measurements and characterize the most important factors that explain those trends. We found that the
median concentration of cluster ions in a boreal forest was 710 cm ™3, the median concentration of 2—4 intermedi-
ate ions was 14 cm™3 , and the median concentration of 4—7 nm intermediate ions was 9 c¢m™3. The concentrations
of both cluster and intermediate ions have been increasing over the 16-year measurement period, with cluster ion
concentrations increasing by about 1% yr~! and intermediate ion concentrations increasing 1.7 %-3.9 % yr~!.
The increase in cluster ion concentrations can be best explained by the decrease in the coagulation sink caused by
larger aerosol particles. Meanwhile, the dependence of intermediate ion concentrations on meteorological con-
ditions is evident, but ionization sources and the coagulation sink do not seem to explain the increasing trend.
This is likely because the dynamics of intermediate ions are more complicated, so that ionization sources and the
coagulation sink alone cannot directly explain the variation. Season-specific analysis of the ion concentrations
suggests that while the coagulation sink is the limiting factor for the ion concentrations in spring and summer,
the dynamics are different in autumn and winter. Based on our findings, we recommend that a more compre-
hensive analysis is needed to determine if the increase in ambient ion concentrations, increasing temperature,
and changing abundance of condensable vapors makes ion-mediated and ion-induced nucleation pathways in the
boreal forest more relevant in the future.
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1 Introduction

Atmospheric ions are produced via the ionization of air
molecules (Rutherford, 1897), and primary ions are typi-
cally formed from nitrogen and oxygen due to their abun-
dance in the atmosphere (Israél, 1970). The three main atmo-
spheric ionization sources are radon decay, terrestrial gamma
radiation, and cosmic rays (Eisenbud and Gesell, 1997;
Mironova et al., 2015; Bazilevskaya et al., 2008). Anthro-
pogenic sources of ionizing radiation come mostly from ra-
diation leaks from nuclear power plants and nuclear weapon
detonations (WHO, 1968). The charge can then be neutral-
ized by ion—ion recombination, lost to a foreign surface, or
transferred to other charged or neutral molecules, clusters,
or aerosol particles (Seinfeld and Pandis, 1998; Tammet et
al., 2006). Of the charged particles, cluster ions (0.8-2nm)
exist in the atmosphere all the time (Venzac et al., 2007,
2008; Mirme et al., 2010). Intermediate ions (2-7 nm) are
typically formed by the propagation of charge onto initially
neutral particles of the same size (Tammet et al., 2013) or
through ion-mediated nucleation (Hirsikko et al., 2011). All
ion diameters mentioned here and further in the text are mo-
bility diameters. Ions of this size are typically generated by
atmospheric new particle formation (NPF), snowfall, or rain
(Manninen et al., 2010; Kerminen et al., 2018; Leino et al.,
2016).

Atmospheric ions are the carriers of electric charge in the
atmosphere. The ability for air to conduct electricity was first
discovered by Richmann (1751) and Coulomb (1785), and
Faraday (1834) proposed an explanation for this by suggest-
ing that neutral molecules are ionized. Early results focused
on understanding the charging of air molecules and aerosols
in specific charge events, such as thunderstorms and electri-
fication of clouds (Canton, 1753; Franklin, 1751). It was not
until after the discovery of radioactivity by Wilhelm Ront-
gen, Henri Becquerel, and Marie and Pierre Curie that the
ionization of neutral air ions in fair weather conditions was
successfully explained (Carlson and De Angelis, 2011; De
Angelis, 2014; Wilson, 1895, 1899). Air ions were then sub-
sequently used to measure radioactivity as well as air quality
(Misaki et al., 1972a, b, 1975; Tuomi, 1989; Israelsson and
Knudsen, 1986; Retalis and Pitta, 1989).

The phenomenon of atmospheric ions was historically
studied in the field of atmospheric electricity (Israél, 1970)
because measuring atmospheric ions and their flow allows
for the measurement of the conduction current in the atmo-
sphere (Harrison and Carslaw, 2003; Wilson, 1921). How-
ever, in the past 30 years, the relevance of atmospheric ions
and aerosols has been recognized, and the role of charged
aerosols in both cloud processes and NPF has been debated
(Dickinson, 1975; Arnold, 1980; Nadytko et al., 2003, Kul-
mala and Tammet, 2007; Enghoff and Svensmark, 2008).
The current view is that ions can contribute to both the for-
mation (Kirkby et al., 2011, 2016) and growth of small par-
ticles (Lehtipalo et al., 2016; Leppd et al., 2011; Stolzenburg
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et al., 2020; Svensmark et al., 2017), but the overall signif-
icance of ion-induced nucleation in the present-day atmo-
sphere is rather limited, at least in the continental boundary
layer (Manninen et al., 2010; Kulmala et al., 2013; Dunne et
al., 2016).

Despite the increased interest in atmospheric ion concen-
tration in the past decades, there has been relatively little re-
search on how atmospheric ion concentrations have changed
over time. Hirsikko et al. (2011) compared ion concentration
measurements around the world in different environments.
Their study included measurements from several different
time periods, but no analysis of the long-term changes in
concentrations was done. Other studies have investigated the
diurnal and seasonal cycles of atmospheric ions based on a
few years of data at best (Chen et al., 2016, Manninen et al.,
2009) or have been focused on characterizing the charged
aerosol size distribution (Hdrrak, 2001). Long-term trends of
atmospheric ions and their characteristic properties have not
been properly assessed.

In this study, we investigate the long-term trends of atmo-
spheric cluster (0.8-2 nm) and intermediate (2—7 nm) ions in
the boreal forest and attempt to characterize the main drivers
behind these trends. We use 16 years of cluster and interme-
diate ion concentration data from the SMEAR II station in
Hyytidld, Finland, as well as ionization rates calculated from
gamma and radon measurements and cosmic ray models.

2 Materials and methods

The data used in this study are from the SMEAR 1I
station (Hari and Kulmala, 2005) in Hyytidld, Finland
(61°50'00.0” N, 24°17’00.0” E; 181 ma.s.l.). The station is
considered a rural background station, with the largest urban
settlement, Tampere, located about 60 km to the southwest.
Scots pine forest surrounds the station. The station hosts
a comprehensive set of long-term measurements, including
aerosol, radiation, and meteorological measurements used in
this study. The location of the ion measurements and the ra-
diation measurements used to calculate the ionization rates
is shown in Fig. 1. The measurement locations are between
45 and 125 m apart from each other at the site. The Balanced
Scanning Mobility Analyzer (BSMA; Tammet, 20006) is at
location A. The radiation measurements are currently located
at site C but were at site B prior to 2019. Figure 2 and Ta-
ble 1 show the data availability of all the variables used in
this study, which includes the ion concentrations as well as
their most important sources and sinks. Temperature and rel-
ative humidity are included as the most relevant meteorolog-
ical variables.
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Figure 1. The locations of the ion size distribution measurement at site A (BSMA) and the radiation measurements at site C (at site B prior

to 2019) and their distances from one another (© Google Maps 2022).
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Figure 2. Time periods when data are available for variables we
used in our analysis. IR is the cosmic ray ionization rate, g is the
gamma ionization rate, /IR is the radon ionization rate, RH is relative
humidity, T is temperature, and CS is the condensation sink. BSMA
is the ion spectrometer used in the study.

2.1 Measurements
2.1.1 Balanced Scanning Mobility Analyzer

The Balanced Scanning Mobility Analyzer (BSMA; Tam-
met, 2006) is a differential aspiration condenser with two
parallel aspiration condensers connected as a balanced ca-
pacitance bridge. Because this eliminates the electrostatically
induced current, the BSMA can continuously scan through
a mobility range of 0.023-3.2cm?V~!s~!, which corre-
sponds to a mobility diameter range of 0.82 to 8.3 nm in Mil-
likan diameters. The inlet flow rate is set to 2400 Ipm (liters
per minute) to reduce ion losses in the inlet. The time resolu-
tion of the instrument is around 10 min, which is the time it
takes to complete one full scan of the mobility range. We uti-
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lized the particle size distribution up to 7 nm in size because
our interest was in small and intermediate ions.

2.1.2 lon sources and sinks

We have calculated the ionization rates from gamma radia-
tion and radon decay using the method prescribed by Chen
et al. (2016) and used the modeled cosmic ray ionization
rate from http://cosmicrays.oulu.fi/CRII/CRILhtml (last ac-
cess: 17 September 2022) and calculated the relevant ion-
ization rate at the atmospheric depth relevant to our station
by interpolation (Kulmala et al., 2010). Other sources such
as traffic emissions, power lines, rain, and lightning strikes
can produce cluster and intermediate ions (Eisele 1989a, b;
Haverkamp et al., 2004; Tammet et al., 2009), but we es-
timate that their effects are minor in the long term at our
site because the durations of these events are in general quite
short, and the measurement site is not in the vicinity of major
power lines or traffic.

The main sink for cluster and intermediate ions is their
coagulation with preexisting particles. The concentration of
atmospheric cluster ions can be expressed as a balance equa-
tion:

dn )

E:q—CoagSw—an 1

in which n is the cluster ion concentration, ¢ is the rate of
air molecule ionization, CoagS is the coagulation sink coef-
ficient (Kulmala et al., 2001), and « is the ion—ion recombi-
nation coefficient. The coagulation sink coefficient describes
the rate at which cluster ions are lost via coagulation to larger
particles, and this rate can be up to 2 times higher than the
corresponding rate of neutral clusters of the same size (Mah-
fouz and Donahue, 2021). The dynamics of the intermediate

Atmos. Chem. Phys., 22, 15223-15242, 2022


http://cosmicrays.oulu.fi/CRII/CRII.html

15226

ions are more complicated, as their concentration is depen-
dent largely on the growth of smaller aerosols, which in turn
is dependent on other factors such as meteorological condi-
tions and the abundance of condensable vapors (Kerminen et
al., 2018).

For sub-10nm particles, the condensation sink (CS) can
be used as a good estimate for the changes in the coagula-
tion sink (CoagS) (Dal Maso et al., 2002). It is not necessary
to know the absolute value of the coagulation sink because
we are only attempting to gauge how the coagulation sink
changes over time. As Lehtinen et al. (2007) show, the coag-
ulation sink and CS are directly linked, and it can therefore
be used to evaluate changes in the coagulation sink. The CS
was calculated in this study by integrating over the aerosol
size distribution as presented in Kulmala et al. (2001) from
a combined particle number size distribution between 3 nm
and 20 pm derived from the measurement with a differential
mobility particle sizer (DMPS) and an aerodynamic particle
sizer (APS).

2.1.3 Meteorological variables

Temperature and relative humidity (RH) data used in this
study were acquired from the smartSMEAR portal (https:
/lsmear.avaa.csc.fi/ last access: 17 September 2022; Junninen
et al., 2009) with a 1s time resolution averaged to monthly
or annual resolution, depending on our needs. Temperature
and RH are typical indicators of the overall conditions in the
ambient air, as changes in RH are linked to changes in cloud
cover (Dada et al., 2017) and precipitation. BSMA as an in-
strument is also sensitive to changes in humidity (Tammet,
2006), and therefore it is monitored in this study. Tempera-
ture is linked to the growing season and biological activity
in the surrounding forest (Nieminen et al., 2014), which af-
fects the atmospheric composition and availability of vapors
for particle formation and growth, but it can also have a di-
rect effect on the ion-enhanced particle formation processes
(Laakso et al., 2002; Curtius et al., 2006; Yu, 2010; Kiirten
et al., 2016).

2.2 Data verification

Prior to trend analysis, time series need to be verified for con-
sistency and breakpoints. Instrument upgrades, relocations,
inlet changes, and such can cause breakpoints in which the
time series has a discontinuity due to changes in instrument
calibration, detection limit, activation probability, or sizing.
Therefore, it is important to detect these breakpoints and,
if possible, homogenize the time series before attempting
trend analysis. The most common way to determine whether
a time series has a breakpoint is visually (Collaud Coen et
al., 2020), but care must be taken when looking for break-
points in ion concentrations that include multichannel instru-
ments and/or are interpolated to a specific size range from
the initial inverted number size distribution. This is because
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the summing or interpolation can hide possible breakpoints.
We investigated our measured ion number size distributions
for the breakpoints in two ways, visually and by making sure
the signal variance of the instruments remained steady over
the measurement period.

The visual inspection of the BSMA time series revealed no
notable breakpoints in the time series. This was further sup-
ported by the channel-by-channel signal of the time series,
in which the variance for each channel remained steady over
the entire measurement period (see Appendix, Fig. A1). The
variance increased slightly over time due to the instrument
getting older, but this was not a notable change. However,
the variance of the signal increased significantly as RH in-
creased towards 100 (Fig. A2), and we therefore excluded
data points where the RH was over 80.

The sparsity of the in situ radiation measurements makes it
difficult to detect breakpoints, but visual inspection revealed
no breakpoints in the data. However, missing data periods in
the radiation data can possibly hide breakpoints, and changes
due to the change in the measurement location cannot be con-
clusively dismissed. The condensation sink and meteorolog-
ical data time series did not exhibit any visually noticeable
breakpoints.

2.3 Size selection

Ions are traditionally split according to their size into small,
intermediate, and large ions (Hirsikko et al., 2011). Cluster
ions, also called small ions, are typically smaller than 2 nm,
while intermediate ions are between 2 and 7 nm, and large
ions are larger than that (Hirsikko et al., 2011; Horrak et al.,
2000, 2003). We chose to use three size ranges in our anal-
ysis: one for the cluster ions (0.8-2nm) and two for the in-
termediate ions (2—4 and 4-7 nm). We split the intermediate
ions into two size ranges because earlier studies have shown
that the 2—4 nm ion concentration is typically the most sensi-
tive to NPF (Leino et al., 2016), while depending on growth
rate, it can take several hours for the newly formed particles
to reach 4 nm.

2.4 Trend analysis and multiple linear regression
analysis

When investigating trends from atmospheric time series, it
is important to account for autocorrelation which exists in
most atmospheric variables. For time series that we could
reasonably assume to be monotonic in trend, we used the
3PW algorithm described in Collaud Coen et al. (2020) to re-
move the autocorrelation before applying the Mann—Kendall
(MK) test with seasonality correction (Hirsch et al., 1982)
on the prewhitened time series. The 3PW method removes
the autocorrelation typically present in atmospheric time se-
ries and then uses the MK test on the prewhitened data to
determine the statistical significance of the trend. The trend-
free prewhitening (TFPW) method data are used to test for

https://doi.org/10.5194/acp-22-15223-2022
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Table 1. The variables used to explain the variance in cluster and intermediate ion concentrations. Coverage is defined as the number of data

points available in the time period given.

Measurement device

If calculated, definition in

Variable Time period  Coverage
Ton size distribution (0.82-7nm)  2005-2021 90 %
Condensation sink 2005-2021 96 %

2004-2021 97 %
2004-2021 98 %
2004-2021 77 %
2004-2015 100 %
2004-2019 100 %

Temperature

Relative humidity

Radon ionization rate
Gamma ionization rate
Cosmic ray ionization rate

BSMA
DMPS
Pt100 inside custom shield -
Rotronic MP102H RH sensor
Description in Chen et al. (2016)
Description in Chen et al. (2016)
Modeled

Kulmala et al. (2001)

Chen et al. (2016)
Chen et al. (2016)
Usoskin and Kovaltsov (2006)

significance due to their high test power. The yearly trend
is then calculated using Sen’s slope (Gilbert,1987) on the
variance-corrected trend-free prewhitened data (VCTFPW)
and presented as an annual change. The VCTFPW method
produces an unbiased slope estimate, making it appropriate
for this analysis (Wang et al., 2015).

We also calculated the dynamic regression for each time
series, including those that could not be assumed to be mono-
tonic, using a dynamic linear model (Laine, 2020). The
model used assumes a trend and years as well as half-year
seasonal variation and monthly medians, which were calcu-
lated from the data. The structural parameters of the model
were calculated using Markov chain—-Monte Carlo methods.

Finally, we tested the effect of various factors on the con-
centration of cluster and intermediate ions in the atmosphere
using multiple linear regression from the MATLAB Statistics
and Machine Learning toolbox.

3 Results

3.1 Cluster and intermediate ion concentrations

In this section we present and analyze the time series of clus-
ter and intermediate ion concentrations in the boreal forest.

The median concentrations and variability of ions mea-
sured with BSMA are presented in Table 2 and as violin plots
in Fig. 3. Negative and positive ion concentrations are very
similar to one another, with the exception that the 4—7 nm
negative ion concentrations are more spread out, with higher
concentrations being more common (Fig. 3). This might sug-
gest that more negative particles are created by ion-induced
nucleation than positive particles or that the negative ions
grow faster to the 4-7 nm size bin before being neutralized
or lost.

Our measured concentrations agree well with concentra-
tions reported by previous studies. Komppula et al. (2007)
reported mean cluster ion concentrations in Hyytidld to be
typically around 840cm™3 for positive ions and 770 cm ™3
for negative ions when measured with the air ion spectrom-
eter (AIS) (Mirme et al., 2007) and Hirsikko et al. (2005)
reported the monthly mean values to be between 600 and
800cm™3 for both polarities, measured with the BSMA.

https://doi.org/10.5194/acp-22-15223-2022

Leino et al. (2016) reported intermediate ion concentrations
at Hyytiili to be between 1 and 25cm™> for negative ions
measured with a neutral cluster and air ion spectrometer
(NAIS), and Manninen et al. (2009) reported median 1.8—
3 nm ion concentrations measured with the same instrument
to be between 1 and 10cm 3, with the negative ion con-
centration being slightly higher. Hirsikko et al. (2005) re-
ported the intermediate ion concentrations measured with the
BSMA to be between 0 and 25cm™>. The concentrations
measured by the BSMA in this study are very similar when
averaged over the whole time period of 2004-2021.

3.2 Trend analysis
3.2.1 Long-term trends

The long-term ion concentration trends are shown in Fig. 4
and Table 3. We observe a slight positive trend of 1 % an-
nual change for the cluster ion concentration in both polar-
ities, corresponding to a median increase of 7.1 cm™3 yr—!.
The trends are very similar in both polarities and within the
confidence limits for each other. For the intermediate ions,
the BSMA time series exhibits a positive trend of around
3.5%-3.9 % yr~! for 24 nm ions in both polarities (median
increase of 0.55cm™ yr~!) and a positive trend of around
1.7 %—1.9 % yr~" for 4-7nm ions in both polarities (median
increase of 0.17 cm™3 yr1).

Out of the three main ionization sources (radon, gamma,
and cosmic ray ionization), radon and gamma ionization
rates exhibit generally decreasing trends before 2015 (Fig. 5,
Table 3), which would suggest that cluster ion concentrations
should be decreasing during this period. However, our obser-
vations do not follow this. The main sink for cluster and in-
termediate ions, the sink from larger aerosol particles, which
is described here by the CS (see Sect. 2.1.3.), also exhibits a
decreasing trend. Therefore, the competing influence of the
decreasing trends will be further analyzed in Sect. 3.2.3. to
identify the most important factor to the ion concentrations
in the boreal forest. Unfortunately, there is a large fraction of
missing ionization rate data in the later part of the analyzed
time period. Radon and cosmic ray ionization rates exhibit
multi-year sinusoidal behavior, and we do not list a trend for

Atmos. Chem. Phys., 22, 15223-15242, 2022
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Figure 3. Measured ion concentrations. Negative polarity is on the left in blue, and positive polarity is on the right in orange. The cluster ion
(0.8-2 nm) concentrations are in (a), and intermediate ion concentrations are in (b) and (c), 2—4 and 4—7 nm, respectively. The white dot is
the median concentration, and the whiskers mark the location of the 95th and 5th percentile data points.

Table 2. Descriptive statistics of the ion measurements dataset between 2005 and 2021.

Ton concentration (cm—3)  5th percentile  25th percentile Median  75th percentile  95th percentile
0.8-2nm (—) 350 560 710 860 1100
2-4nm (—) 1.5 6.7 14 27 97
4-7nm (—) 0.0 3.4 9.2 21 110
0.8-2nm (+) 380 580 720 850 1100
2—4nm (+) 2.0 7.4 14 26 72
4-7nm (+) 0.0 3.0 8.0 18 89

Table 3. The relative change in ion concentration for BSMA for
2004-2020. The relative changes per year have been calculated
from Sen’s slopes. The values in brackets are the confidence in-
tervals for the trend at a 90 % level.

(%oyr—1) 2004-2020
0.8to2nm (—) 1.1 (0.6 to 1.7)
2to4nm (—) 39(19to06.1)
4to 7nm (—) 1.9 (0.1 to 3.5)
0.8 to 2nm (+) 0.9 (0.4t01.3)
2to4nm (+) 3.4(091t05.9)
4to 7nm (+) 1.7 (—=0.3t0 3.5)
CS —1.9(-3.3to0 —0.6)
T —0.8(—=3.7t02.2)
RH —0.4 (—4.9t04.3)
IRadon -
Igamma —1.0(—1.8to —0.4)
Icr -

Atmos. Chem. Phys., 22, 15223—-15242, 2022

them here. This is expected for the cosmic ray ionization rate,
but the reason for the changes in radon ionization rate is un-
clear. Temperature and relative humidity both exhibit no sig-
nificant trends (Fig. 5).

3.2.2 Seasonal cycle

We investigated the annual variability in the ion concentra-
tions by calculating the median seasonal cycle of the ions in
both polarities (Fig. 6) and ion sources and sinks as well as
T and RH (Fig. 7). Cluster ions (0.8-2 nm) in both polarities
have an annual maximum in the late autumn in October and a
local maximum in spring in May. Chen et al. (2016) and Hir-
sikko et al. (2005) observed similar maxima for cluster ions
in a boreal forest. The 2—4 nm intermediate ion concentra-
tion has an annual maximum in spring in May in both polar-
ities, which coincides with the known annual maximum for
NPF event frequency (Nieminen et al., 2014). The negative
2—4 nm ion concentration has a second, smaller maximum
in September, coinciding with the second annual maximum
in NPF event frequency (Nieminen et al., 2014). This is in
good agreement with the result that 2—4 nm ions in particular
are good indicators for NPF events (Leino et al., 2016). The

https://doi.org/10.5194/acp-22-15223-2022
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Figure 4. The time series of the cluster and intermediate ion concentrations. The relative changes per year have been calculated from Sen’s
slopes. The values in brackets are the confidence intervals for the trend at a 90 % level.

fall maximum is not clearly observed in the positive 2—4 nm
ion concentration. This may suggest that there is different
chemistry involved in autumn NPF than in spring, but further
analysis of this is outside the scope of the paper. The 4—7 nm
ion concentration in both polarities has an annual maximum
in March and a second local maximum in September, which
matches the maxima observed by Leino et al. (2016) for 2—
7 nm ions.

CS has an annual maximum in the summer (Fig. 7a),
which has been suggested to suppress NPF during the sum-
mer (Buenrostro Mazon et al., 2016; Nieminen et al., 2014).
The annual minimum is in December, with a local mini-
mum in March. This roughly follows the seasonal behavior
of CS reported previously (Lyubovtseva et al. (2005); Vana
et al., 2016). Temperature has a maximum in the summer
(Fig. 7b) as expected, while RH has a minimum in the sum-
mer (Fig. 7c; Lyubovtseva et al., 2005; Hirsikko et al., 2005).
The radon ionization rate has an annual maximum in Febru-
ary and a second local maximum in September (Fig. 7d). This
has been connected to changes in the mixing layer depth in
Chen et al. (2016). The gamma ionization on the other hand
has a local minimum in February and March (Fig. 7e), which
coincides with the typical maximum snow depth at the sta-
tion, which suppresses gamma radiation from the soil (Chen
et al., 2016). Finally, the cosmic radiation ionization rate re-
mains practically constant (Fig. 7f), as its changes are known
to occur in an 11-year period, and a median annual value
should appear fairly constant.

https://doi.org/10.5194/acp-22-15223-2022

3.2.3 Multiple linear regression

We investigated the reasons behind the variations in ion con-
centrations by fitting a simple multivariate linear regression
model. Our assumption was that cluster and intermediate ion
concentration variation is caused by the interplay of their
sources and sinks. Additionally, concentrations can be mod-
ulated by the prevailing meteorological conditions, which are
connected to atmospheric air composition and ion processes.
The degrees of freedom in the model were adjusted to reflect
the number of explanatory variables included. The explana-
tory variables used are listed in Table 1.
We defined our linear model as

Nion = wCS + BIr + y I+ 6T + ORH+ ulcr + ¢, 2)

where w, B, y, §, 0, and u are model coefficients, and ¢ is
the error estimate.

The Belsley collinearity test revealed that Icr exhibited
multicollinearity with RH. We therefore eliminated Icg from
the model and redefined it as

Nion =wCS + BIr + yIy+ 8T 4+ ORH + ¢. 3)

The model assumes that the inputs are normally dis-
tributed and independent and that the variance of the factors
is roughly proportional. To account for this, each factor was
normalized by using the formula

X —min(x)
Xnorm = T v “4)
max (x) — min (x)
where xporm 1S the normalized data, x is the original data,
min(x) is the minimum value of the data, and max(x) is the

Atmos. Chem. Phys., 22, 15223—-15242, 2022
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Figure 5. The time series of main sources and sinks as well as temperature and relative humidity. The relative changes per year have been
calculated from Sen’s slopes. The values in brackets are the confidence intervals for the trend at a 90 % level.

maximum value of the data. The normalized data were then
input into the model. The residuals of the models were nor-
mally distributed, and we concluded that the model is usable
for our analysis. The coefficients of the models are listed in
Table Al in the Appendix.

The percentage of variability explained by each explana-
tory variable is presented in Fig. 8. Our model explains be-
tween 34 % and 52 % of the variance in the ion concentra-
tions. About 25 % of the cluster ion concentration variabil-
ity is explained by changes in CS, which corroborates the
assumption in the previous chapter that the decrease in CS
could be the main reason for the observed negative trend in
ion concentrations. The second most important factor was
temperature. Intermediate ion concentrations, both 2—4 and
4-7 nm, are best explained by a combination of sources and
meteorological variability. However, the combination is dif-
ferent for negative and positive ions. The chemical composi-
tion of the negative and positive ions is known to be different
(Luts et al., 2011; Ehn et al., 2011), and it is possible that
humidity as well as chemical differences in condensable va-
pors can cause differences in the dynamics of the negative
and positive ions. It is clear that we are not capturing all of
the long-term variance with the model.

However, because of strong seasonal effects in ion pro-
cesses, the variation of ion concentrations could be domi-
nated by different factors in different seasons. For this reason,
we also investigated how these factors explained the varia-
tion in ion concentrations in different seasons. In Figs. A3—
A6 (See Appendix) we show the amount of variability ex-
plained by our selected variables when isolating the different
seasons.

Atmos. Chem. Phys., 22, 15223-15242, 2022

The different seasons each have some characteristics that
are not directly visible in the variation of the entire time se-
ries. In spring, the variation in cluster ion concentrations is
most strongly explained by CS, about 25%. Radon ionization
rate explains a further 15 %—18 % of the variance in spring.
For summer, radon ionization rate explains about 40% of the
variation, while other factors in our model fail to explain
much of the variation. In autumn, RH explains 13 %—40 % of
the variation in cluster ion concentrations, while ion sources
and sinks contribute less to the variation. Radon ionization
rate, however, does contribute roughly 34 % to the negative
cluster ion concentration variance. Our chosen variables fail
to explain the changes in cluster ion concentrations in winter
well. Gamma and radon ionization rates explain about 20 %—
30 % of the variation cluster ion concentrations in winter. The
fraction of variance explained in autumn and winter suggests
that our chosen variables are not ideally suited to explaining
the variance in those seasons. Other factors such as the abun-
dance of relevant chemical vapors to grow the ions into the
size ranges considered here may be more important during
these seasons.

The intermediate ion variation in spring is in general ex-
plained best by the radon ionization rate and RH. Tempera-
ture has the least effect in spring and summer. Summer and
autumn intermediate ion concentration variation is explained
by meteorology. RH explains 7 %—47 % of the variance in
intermediate ion concentration in the summer, while in the
autumn RH explains 62 %—-68 % of the variation, but we fail
to capture a large portion of the variation. In winter, the varia-
tion in intermediate ion concentration is explained by a com-
bination of radon and gamma ionization rates and tempera-
ture, likely linked to varying snow depth and its suppressive

https://doi.org/10.5194/acp-22-15223-2022
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Figure 8. The amount of variation explained by our chosen explanatory variables for each size range and polarity for BSMA. The symbol
(—) denotes negative polarity, (4) a positive polarity, and (£) the sum of both polarities. The bolded red values are statistically significant

(p < 0.05).

effect on the ionization rates (Chen et al., 2016). However,
the wintertime values are not statistically significant.

We also analyzed the seasonal variation using median con-
centrations calculated for each month. By calculating the me-
dian monthly concentrations of our data, we have a median
yearly cycle for each factor from which we can investigate
how much of the seasonal variation in ion concentration is
explained by our model (Fig. 9). The variance in cluster ion
concentration in the negative polarity is explained by a com-
bination of CS (35 %) and temperature (36 %). Meanwhile,
in the positive polarity the variation is best explained by CS
(28 %) and I (14 %), but the values are not statistically sig-
nificant. The variance in intermediate ion concentrations is
explained in both polarities by a combination of I, and the
meteorological variables 7 and RH. The 2—4 nm intermedi-
ate ion concentrations are particularly dependent on the vari-
ance in RH. This can be explained by the tendency of NPF
events to occur during clear-sky and thus low-RH days (Dada
et al., 2017). The dependency is clearer in the seasonal vari-
ation because the seasonal RH variation is larger than its in-
terannual variation.

All in all, the effect of ionization rates on the trends and
the variability of ion concentrations were surprisingly low. It
could be that although the ionization rates control the pro-
duction of primary ions, the measured concentrations, even
in the smallest size bin studied here, depend largely on the
factors affecting ion dynamics and growth to large enough
sizes to be detected by our instruments, which in turn depend
on multiple other factors such as air composition (Chen et
al., 2016).

Atmos. Chem. Phys., 22, 15223-15242, 2022

4 Discussion and conclusions

In this work we have presented a 16-year-long time series of
ion concentrations at SMEAR 1I station in southern Finland.
Using this unique dataset, we investigated long-term trends
of cluster and intermediate ion concentrations in the atmo-
sphere at a boreal forest. A connection between the steadily
increasing ambient cluster ion concentrations and decreas-
ing CoagsS, estimated in this analysis with CS, appears clear.
The decreasing CoagsS is likely due to an overall decreasing
level of anthropogenic aerosols in boreal forest (Luoma et al.,
2019), but possible changes in the air mass origins cannot be
easily dismissed and were not investigated here. Although
some trends were evident in the ambient ionization sources
as well, they did not explain the overall trend of the ambient
cluster ion concentrations.

The reasons for the rise of ambient intermediate ion con-
centration are more complex. This is to be expected, as the
dynamics of 2-7 nm aerosols are much more complicated,
not only dependent on formation and loss, but also ion—ion
recombination, ion—aerosol attachment, and ion growth (Kul-
mala et al., 2013). And because growth is dependent on many
factors, such as the availability of condensable vapors and
favorable meteorological conditions, the dependencies will
not be as simple (Kerminen et al., 2018). The connection to
meteorological conditions is evident in our analysis as well,
whereas the season-specific analysis of variation suggests
that while our chosen variables appear to be the limiting fac-
tors during the summer and spring months, other factors may
be more important to the intermediate ion concentration in
autumn and especially winter. These factors include bound-

https://doi.org/10.5194/acp-22-15223-2022
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ary layer dynamics and the abundance of condensable vapors
(Hao et al., 2018, 2021; Kirkby et al., 2011; Almeida et al.,
2013; Vakkari et al., 2015).

Our analysis has several sources of uncertainty worth not-
ing. As mentioned previously, because the BSMA data with
RH above 80 % were excluded, our analysis does not include
any possible dynamics related to precipitation, which also is
known to produce intermediate ions. Therefore, NPF events
are likely overrepresented in the data. Additionally, we are
missing 3 years of radon ionization rate data and 5 years of
gamma ionization data. This makes comparing trends over
the entire time period difficult and introduces uncertainty in
our interpretation of the results. Also, for detailed studies on
the ion balance and transfer of charge from primary ions to
cluster ions, the measurements of primary ion size distribu-
tion below 0.8 nm would be needed (Chen et al., 2016). In-
crease in ion concentrations can mostly be attributed to a de-
creasing CS. The changes in the ionization rates explain the
observed trend to a lesser degree. It is possible that this is
simply because the ion sink is the dominant limiting factor
to the formation of cluster and intermediate ions. However,
several open questions remain. Although studies indicate that
the neutral pathway dominates NPF in the boreal forest, the
role of ions is not totally clear (Wagner et al., 2017). Ion-
induced nucleation can be significant in certain conditions,
e.g., when the sulfuric acid concentration is low (Rose et al.,
2018; Yan et al., 2018; Gagné et al., 2010). Additionally, ion—
ion recombination can create neutral aerosols. It is possible
that ions are especially important in the initial stages of NPF,
which is difficult to measure with current instrumentation. It

https://doi.org/10.5194/acp-22-15223-2022

will have to be determined in the future whether the number
of aerosols produced by ion—ion recombination (Kontkanen
et al., 2013; Franchin et al., 2015) is affected by the changes
in ion concentrations. It can be speculated that the increas-
ing ion concentrations, decreasing concentrations of sulfuric
acid in boreal forest (Nieminen et al., 2014), and increasing
temperatures will make the ion-induced or ion-mediated NPF
pathways more important in future. A more comprehensive
analysis of this is needed.

Atmos. Chem. Phys., 22, 15223-15242, 2022
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Figure A1. Moving variance of the concentration time series of the BSMA size channels. The symbol n indicates the number of closest data
points used for the calculation of the variance at each point. The time resolution is the time resolution of the instrument, which is 12 min.
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Figure A2. The standard deviation of ion concentrations measured by BSMA in different RH conditions.
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Table A1. The coefficients of the multiple linear regression model used in the study.

w B y 8 0 £
Long-term
0.8to2nm (—) 0.61 —0.28 0.033 0.085 0.12 0.03
2to4nm (—) 0.52 —0.15 —0.06 —0.17 0.13 —0.15
4to 7nm (—) 0.011 —0.10 0.012  —0.0003 0.05 0.11
0.8 to 2nm (+) 0.82 —0.28 0.074 0.02 0.06 —0.10
2 to 4nm (+) 0.43 —0.04 —0.02 —0.10 0.13 —-0.20
4to 7nm (+) —0.079 —0.25 0.28 0.071 0.15 0.14
0.8 to 2nm (£) 0.72 —0.28 0.054 0.055 0.092 —0.037
2 to4nm (£) 0.49 —0.11 —0.04 —0.16 0.14 —0.17
4 to 7nm (£) —0.052 —0.23 0.18 0.032 0.13 0.18
Seasonal
0.8to2nm (—) 0.88 —0.52 0.18 0.28 0.26 —0.14
2to4nm (—) 4.01 —1.22 0.30 —1.58 0.80 —1.69
4to7nm(—) 2.51 —1.21 0.18 —1.45 0.86 0.009
0.8 to 2nm (+) 0.94 —0.40 0.16 0.31 0.14 —0.23
2 to 4nm (+) 2.37 —0.39 0.26 —0.62 0.47 —1.41
4to 7nm (+) 2.13 —1.08 0.28 —1.35 0.95 —0.0009
0.8 to 2nm (+) 0.94 —0.47 0.17 0.28 0.21 —0.19
2 to 4nm (£) 342 —0.84 0.23 —1.26 0.65 —1.60
4to 7nm (+) 242 —1.11 0.13 —1.65 0.98 0.14
Spring
0.8to2nm (—) 0.83 —-0.25 0.17 0.19 0.12 —-0.33
2to4nm (—) 0.75 —0.34 —0.44 —0.18 0.09 0.18
4to7nm (—) —0.35 —0.38 —0.54 0.17 0.14 1.42
0.8 to 2nm (+) 1.05 —0.27 0.16 0.10 0.09 —-0.42
2 to 4nm (+) 0.85 —0.09 —0.14 —-0.27 0.11 —0.38
4to 7nm (4) —-0.49 —0.51 —0.11 0.25 0.47 1.32
0.8 to 2nm (+) 0.95 —0.26 0.16 0.15 0.10 —0.38
2 to 4nm (+) 0.82 —0.29 —0.25 —0.20 0.12 —0.11
4 to 7nm (£) —0.63 —0.66 —0.29 0.30 0.48 1.76
Summer
0.8 to 2nm (—) 0.96 —-0.49 —-0.39 —0.16 0.26 0.26
2to4nm (—) 0.56 —0.35 0.095 —0.11 —0.05 0.20
4to7nm (—) —0.19 0.067 —0.10 0.10 —0.36 0.97
0.8 to 2nm (+) 1.25 —0.33 0.44 —0.19 —0.55 0.15
2 to 4nm (+) 0.34 —0.41 0.21 —0.02 0.12 0.10
4to 7nm (4) 0.12 —0.49 0.38 —-0.17 0.29 0.28
0.8 to 2nm (+) 1.16 —0.42 0.43 —0.18 —043 0.19
2 to 4nm (+) 0.36 —0.31 0.17 —0.073 —0.01 0.17
4 to 7nm (%) —0.021 —-0.14 0.15 —0.071 —0.078 0.47
Autumn
0.8to 2nm (—) 1.01 —0.16 —-0.17 0.37 —0.01 —0.56
2to4nm (—) 0.028 —0.16 —0.023 0.072 0.21 0.12
4to7nm (—) 0.29 —0.025  0.0095 —0.036 —0.027 —0.17
0.8 to 2nm (+) 1.69 —0.26 —0.068 0.030 —0.027 —0.92
2 to 4nm (+) —0.83 —0.12 —0.11 0.23 0.38 0.97
4to7nm (+) 0.54 0.36 0.37 —0.60 —0.15 —0.15
0.8 to 2nm (+) 1.47 —0.24 —0.11 0.19 —0.011 —0.85
2 to 4nm (+) —0.66 —-0.31 —0.075 0.17 0.45 0.92
4 to 7nm (%) 0.55 0.30 0.29 —0.54 —0.15 —0.14
Winter

0.8 to2nm (—) 0.75 -0.24 -0.030 —0.062 0.0007 0.095

2to4nm (—) 0.83 -0.12 —0.13 -0.27 0.006 —0.18
4 to 7nm (—) —1.57 0.29 0.28 0.78 0.062 0.93
0.8 to 2nm (+) 0.27 —-0.12  —0.038 —0.025 —0.0068 0.54
2 to4nm (+) 1.00 —0.17 -0.29 —0.44 —-0.019 —0.093
4 to 7nm (+) —0.52 0.23 0.47 0.98 0.071 —0.36
0.8 to 2nm (£) 0.42 —-0.15 —-0.052 —0.037 —0.0031 0.40
2 to4nm (%) 0.63 —0.15 —0.23 —0.35 —0.006 0.11
4 to 7nm (£) —0.99 0.23 0.38 0.90 0.067 0.22
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Rz, spring variation explained by predictors
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Figure A3. The amount of variation explained by our chosen explanatory variables for each size range and polarity. The data points selected
are only between March and May and represent changes in springtime concentrations. The symbol (—) denotes negative polarity, (4) a
positive polarity, and (£) the sum of both polarities. The bolded red values are statistically significant (p < 0.05).
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Figure A4. The amount of variation explained by our chosen explanatory variables for each size range and polarity. The data points selected
are only between June and August and represent changes in summertime concentrations. The symbol (—) denotes negative polarity, (+) a
positive polarity, and (£) the sum of both polarities. The bolded red values are statistically significant (p < 0.05).
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Figure A5. The amount of variation explained by our chosen explanatory variables for each size range and polarity. The data points selected
are only between September and November and represent changes in autumn concentrations. The symbol (—) denotes negative polarity, (+)

a positive polarity, and (£) the sum of both polarities. The bolded red values are statistically significant (p < 0.05).
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