

Supplement of

Constraining the particle-scale diversity of black carbon light absorption using a unified framework

Payton Beeler and Rajan K. Chakrabarty

Correspondence to: Rajan K. Chakrabarty (chakrabarty@wustl.edu) and Payton Beeler (beelerpayton@wustl.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Data from field and laboratory experiments

Cappa, et al. 2012.

The mixing state of internally mixed BC aggregates measured by Cappa *et al.* 2012 (1) was found by first fitting a power-law function to mean R_{BC} as function of photochemical age (-log([NO_x]/[NO_y])), which is shown in figure 1(a). The fitted equation is given by:

$$R_{BC} = (12.215 \pm 0.396) \left(-\log\left(\frac{[NO_x]}{[NO_y]}\right) \right)^{0.554 \pm 0.067}.$$
(S1)

10 Mass absorption cross-section of BC (MAC_{BC}) at wavelength (λ) of 532 nm is then calculated from figure S-17 of Cappa *et al.* 2012, which shows MAC_{BC} enhancement (E_{abs}) as a function of photochemical age. Photochemical age was converted to R_{BC} using equation S1, and E_{abs} was converted to MAC_{BC} using the reported value for MAC_{BC} of pure BC (7.75 m²/g). The morphology of particles from this study was inferred using lognormal fits of the size distributions given in figure S-13 of Cappa *et al.* 2012. The single particle BC mass was then calculated assuming BC density of 1.8 g/cm³ (2).

15

Saliba, et al. 2016.

Measured MAC_{BC} as a function of BC mixing state was taken from Figure 4 of Saliba *et al.* 2016 (3). The mixing state was then converted from organic to black carbon mass ratio (OA:BC) to R_{BC} using:

(S2)

$$20 \quad R_{BC} = OA:BC.$$

The morphology of particles from this study was inferred using lognormal fits of the size distributions given in figure S9 of Saliba *et al.* 2019. The single particle BC mass was then calculated assuming BC density of 1.8 g/cm^3 (2).

25 Xie, et al. 2019.

Measured E_{abs} as a function of R_{BC} was taken from Figure 1a of Xie *et al.* 2019 (4). enhancement was converted to MAC_{BC} using a reference MAC_{BC} value of 6.55 m²/g at $\lambda = 630$ nm, given that the authors state that the thermodenuder-derived E_{abs} was well correlated with E_{abs} calculated using reference MAC_{BC} (4).

30 Cui, et al. 2016.

Measured E_{abs} as a function of BC mixing state was taken from Figure 5c of Cui *et al.* 2016 (5). The mixing state was converted from organic to elemental carbon ratio (OC/EC) to R_{BC} using:

$$R_{BC} = OC/EC.$$
 (S3)

35

Absorption enhancement was converted to MAC_{BC} using MAC_{BC} of pure BC = $4.02 \text{ m}^2/\text{g}$ at $\lambda = 678 \text{ nm}$, given in figure 2 of Cui *et al.* 2016 (5).

Denjean, et al. 2020.

Measured E_{abs} as a function of BC mixing state was taken from Figure 2 of Denjean *et al.* 2020 (6). Absorption enhancement was 40 converted to MAC_{BC} using MAC_{BC} of pure BC = 7.7 m²/g at λ = 550 nm. The morphology of particles from this study was inferred using lognormal fits of the size distributions given in figure 1 of Denjean *et al.* 2020. The average mass was then calculated assuming BC density of 1.8 g/cm³ (2).

Zanatta, et al. 2018.

45 Average MAC_{BC} and R_{BC} were found using reported values for average coating thickness, coating density, and MAC_{BC} in Zanatta et al. 2018 (7). The morphology of particles from this study was inferred using reported size distributions given in Table 2 of Zanatta *et al.* 2018. The single particle BC mass was then calculated assuming BC density of 1.8 g/cm³ (2).

Liu, et al. 2015.

50 Measured MAC_{BC} as a function of BC mixing state was taken from Figure S2 of Liu *et al.* 2015 (8). We utilize MAC_{BC} derived using standardized major axis at $\lambda = 781$ nm in order to avoid potential influence of absorbing coatings on MAC_{BC}. The morphology of particles from this study was inferred using the limits of BC diameter given in Figure 1d of Liu *et al.* 2015. The single particle BC mass was then calculated assuming BC density of 1.8 g/cm³ (2).

55 Cappa, et al. 2019.

Measured MAC_{BC} as a function of BC mixing state was taken from Figure S4 and S6 of Cappa *et al.* 2019 (9). We analyze measurements of MAC_{BC} at $\lambda = 532$ nm only.

Shiraiwa, et al. 2010.

60 Measured E_{abs} as a function of BC mixing state was taken from Figure 2 of Shiraiwa *et al.* 2010 (10). The mixing state was converted from the ratio of total particle diameter to black carbon diameter using BC density of 1.8 g/cm³ and coating density of 1.2 g/cm³ (2). The morphology of particles from this study was inferred using reported BC core diameter.

Zhang, et al. 2018.

65 Measured E_{abs} as a function of BC mixing state was taken from Figure S3 of Zhang *et al.* 2018 (11). The mixing state was converted from organic to elemental carbon mass ratio to R_{BC} using equation S3. Absorption enhancement was converted to MAC_{BC} using MAC_{BC} of pure BC = 4.7 m²/g at λ = 880 nm. The morphology of particles from this study was inferred using the reported range of BC core diameters (100-150 nm).

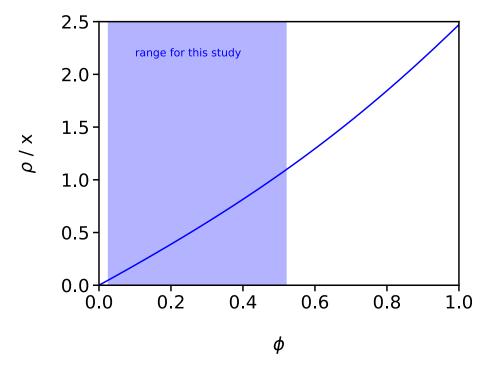


Figure S1: Size parameter normalized phase shift parameter of black carbon as a function of monomer packing fraction. The shaded area represents the range of monomer packing fraction for aggregates in this study.

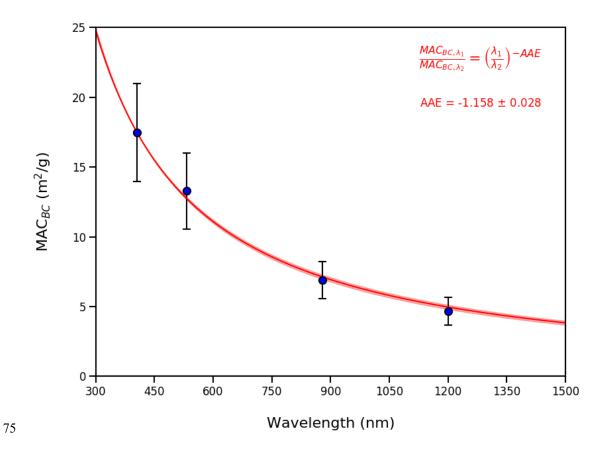


Figure S2: Data used to calculate AAE for fractal BC aggregates with $\rho_{BC} \leq 1$, error bars show one standard deviation. Solid line shows fitted equation given in figure, error of AAE is reflective of 95% confidence interval.

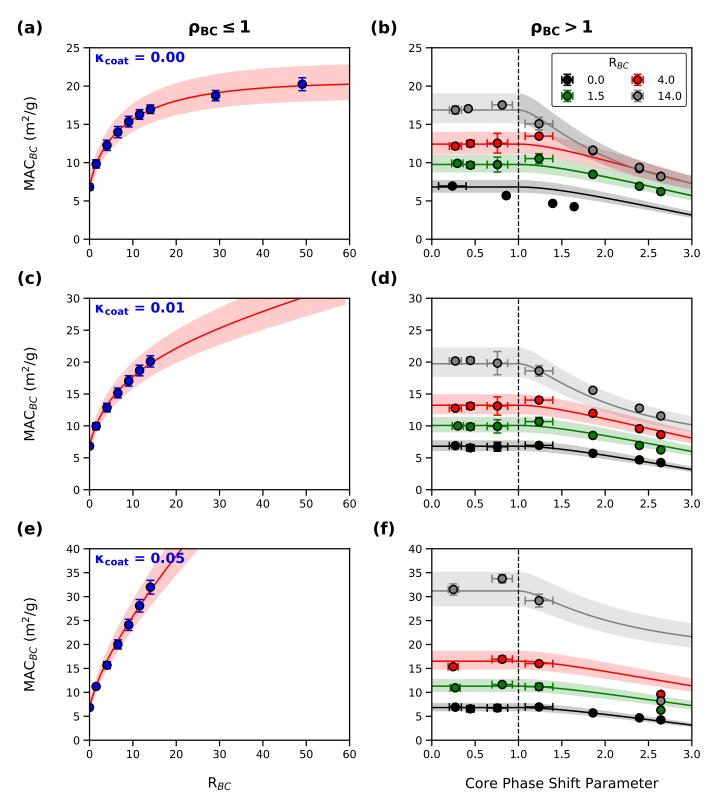


Figure S3: MAC_{BC} as a function of RBC and ρ_{BC} with shaded areas representing the range of MAC_{BC} assuming BC density of 1.6 g/cm³ - 1.8 g/cm³.