

Supplement of

Evaluation of isoprene nitrate chemistry in detailed chemical mechanisms

Alfred W. Mayhew et al.

Correspondence to: Jaqueline F. Hamilton (jacqui.hamilton@york.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Description of SMPS Instrument

Two scanning mobility particle sizer (SMPS) instruments measured particle size distributions at 15 min time resolution, with one long SMPS with an inlet flowrate of 0.3 L min-1 (TSI 3080 EC, 3082 long DMA, 3775 CPC, TSI, USA) and one nano SMPS with an inlet flowrate of 1.5 L min-1 (3082 EC, 3082 nano DMA, 3776 CPC, TSI, USA) measuring the ranges 14–615 and 4–65 nm respectively. A particle size magnifier (A10, Airmodus, FN) linked to a CPC (3775, TSI, USA) measured the sub-3 nm size fraction with an inlet flowrate of 2.5 L min-1. The PSM was run in stepping mode, operating at four different saturator flows to vary the lowest size cut-off of particles that it will grow (this cut-off is technically a point of 50 % detection efficiency) of < 1.30, 1.36, 1.67, and 2.01 nm. The instrument switched between saturator flows per 2.5 min, giving a sub2.01 nm size distribution every 10 min. The data were treated with a moving-average filter to account for jumps in total particle count, and due to the similar behaviour of the two upper and two lower size cuts, these have been averaged to two size cuts at 1.30 and 1.84 nm. No drying was performed on the inlet air.

Table S1. Summary of the properties of each mechanism used in this work. Note that the statistics for the "Caltech Mechanism" and "FZJ Mechanism" apply to the mechanisms in the form used in this work, i.e. with the incorporated MCM subset for non-isoprene VOCs and with RO₂ reactions lumped as described in the main text for the Caltech Mechanism.

Property	MCM	Caltech Mechanism	FZJ Mechanism
Number of Reactions	10371	10435	11046
Number of Species	3443	3589	3730
Number of INO ₂ Isomers	1	4	8
Number of IPN Isomers	1	4	4
Number of ΣIPN Isomers	6	11	13
Number of IHN Isomers	5	8	8
Number of ΣIHN Isomers	9	12	12
Number of ICN Isomers	1	3	3
Number of ΣICN Isomers	1	3	3
Number of C ₄ H ₇ NO ₅ Isomers	4	4	4
Number of ΣC ₄ H ₇ NO ₅ Isomers	10	10	10

Table S2. List of VOCs (and their names in the MCM) constrained to measured concentrations in the models. The "Measurement(s) Used" column indicates which instrument's measurements were used to constrain each species in model runs: proton transfer mass spectrometry (PTR), selected ion flow tube mass spectrometry (SIFT), and dual-channel gas chromatography with flame ionization detection (DC-GC).

Compound	MCM Name	Measurement(s) Used	Compound	MCM Name	Measurement(s) Used
isoprene	C5H8	DC-GC, SIFT, PTR	ethane	C2H6	DC-GC
monoterpenes	APINENE,	SIFT, PTR	propane	C3H8	DC-GC, SIFT
	LIMONENE				
ethene	C2H4	DC-GC, SIFT	n-butane	NC4H10	DC-GC
propene	C3H6	DC-GC, SIFT,	i-butane	IC4H10	DC-GC
trans-2-butene	TBUT2ENE	DC-GC	n-pentane	NC5H12	DC-GC
1-butene	BUT1ENE	DC-GC	i-pentane	IC5H12	DC-GC
i-butene	MEPROPENE	DC-GC	n-hexane	NC6H14	DC-GC
cis-2-butene	CBUT2ENE	DC-GC	n-heptane	NC7H16	DC-GC
trans-2-pentene	TPENT2ENE	DC-GC	n-octane	NC8H18	DC-GC

cis-2-pentene	CPENT2ENE	DC-GC	benzene	BENZENE	DC-GC, SIFT, PTR
1,3-butadiene	C4H6	DC-GC, SIFT	ethylbenzene	EBENZ	DC-GC, SIFT, PTR
acetylene	C2H2	DC-GC, SIFT	propylbenzene	PBENZ	SIFT, PTR
methanol	СНЗОН	DC-GC, SIFT	toluene	TOLUENE	DC-GC, SIFT, PTR
ethanol	C2H5OH	DC-GC, SIFT	o-xylene	OXYL	DC-GC

Table S3. Deposition rates used in the models depending on functionality. All values are taken from Nguyen et al. 2015.

Functionality	Deposition Velocity (cm s ⁻¹)
H2O2	5.2
HNO3	3.8
03	0.1
Organic Hydroperoxide (R-OOH)	1.8
Organic Nitrate (R-ONO2)	2.0
Formic Acid and All Carboxylic Acids (R-COOH)	1.0
Oxidised Volatile Organic Compound (OVOC)	1.2

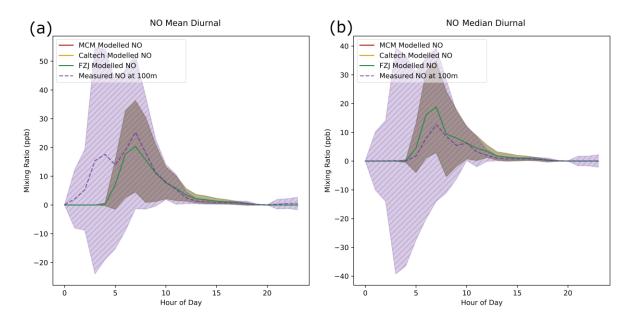


Figure S1. Measured NO at 100m and modelled NO in each model. The mean values (a) show a peak before sunrise due to large spikes in the measurements in the morning on some days, so the median diurnal (b) is also shown.

Figure S2. Measured and modelled MVK+MACR mixing ratios. Each line shows the mean value for each dataset, with the shaded area indicating one standard deviation above and below the mean.

Figure S3. Impact on MVK+MACR (a), $\Sigma C_4 H_7 NO_5$ (b), ΣIHN (c), ΣICN (d), and ΣIPN (e) of varying the ventilation rate used in each model by 0.5 times and 2 times from the base mixing lifetime.

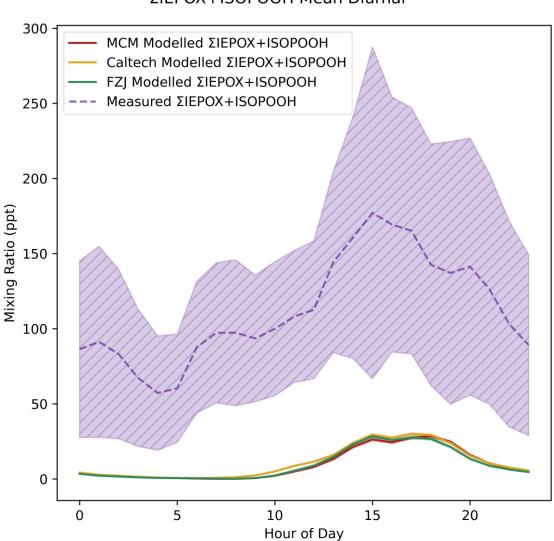


Figure S4. Measured and modelled Σ IEPOX+ISOPOOH mixing ratios. Each line shows the mean value for each dataset, with the shaded area indicating one standard deviation above and below the mean.

ΣIEPOX+ISOPOOH Mean Diurnal

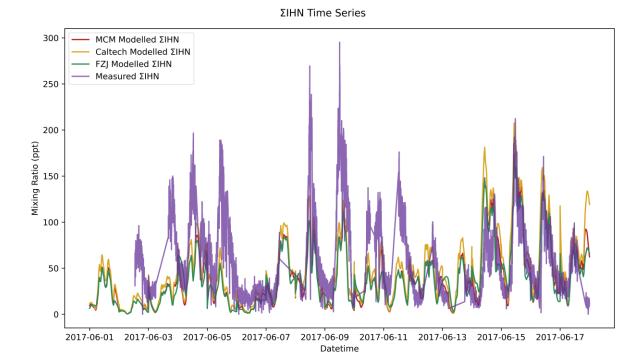


Figure S5. Time series for measured and modelled Σ IHN.

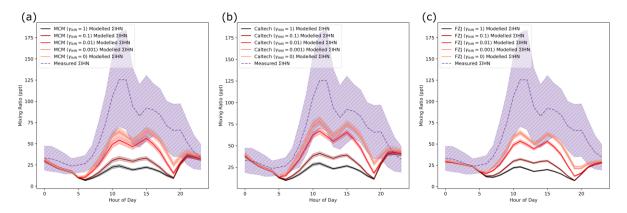


Figure S6. Measured and modelled Σ IHN mixing ratios for models using a range of γ_{IHN} values to account for the hydrolysis of 1,2-IHN. The mechanisms used in each model are as follows: (a) MCM, (b) Caltech Mechanism, (c) FZJ Mechanism. Each line shows the mean value for each dataset, with the shaded area indicating one standard deviation above and below the mean.

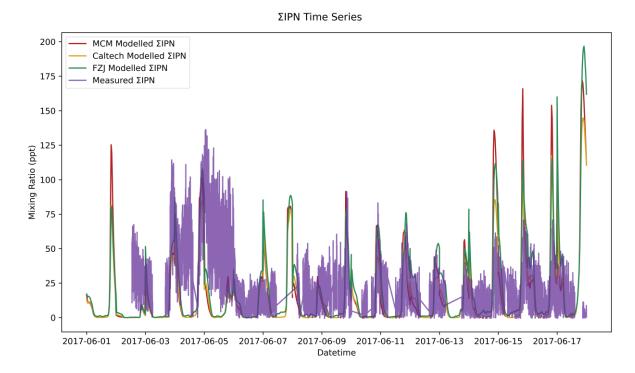


Figure S7. Time series for measured and modelled Σ IPN.

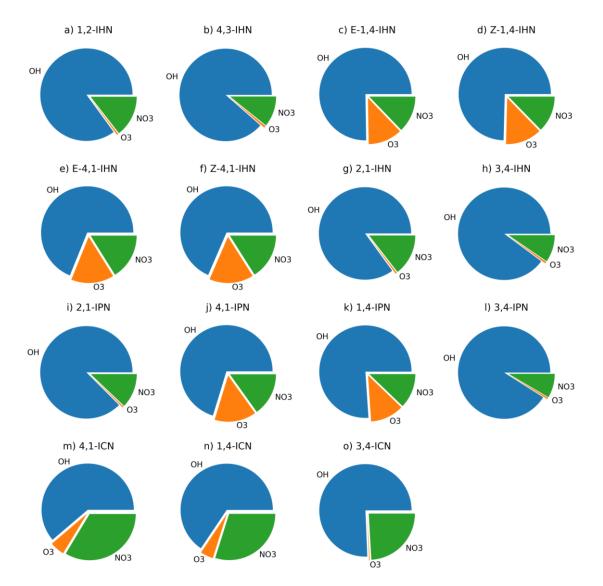
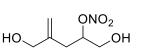
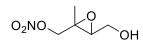




Figure S8. Proportional contribution of OH, O_3 , and NO_3 to the night-time chemical loss (between 20:00 and 05:00) of IHN (a-h), IPN (i-l), and ICN (m-o) isomers. The loss rates are calculated using measured OH, O_3 , and NO_3 concentrations and the rate constants listed in Wennberg et al. 2018.

 O_2NO ОH ÓН

C51NO3

C524NO3

ISOP1N23O4OH

ISOP1N253OH4OH

Figure S9. Structures of the three isomers of IPN that collectively comprise the majority of Σ IPN ($C_5H_9NO_5$) in the models.

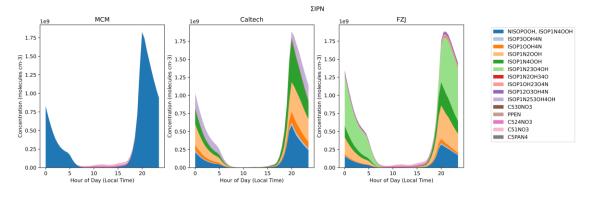
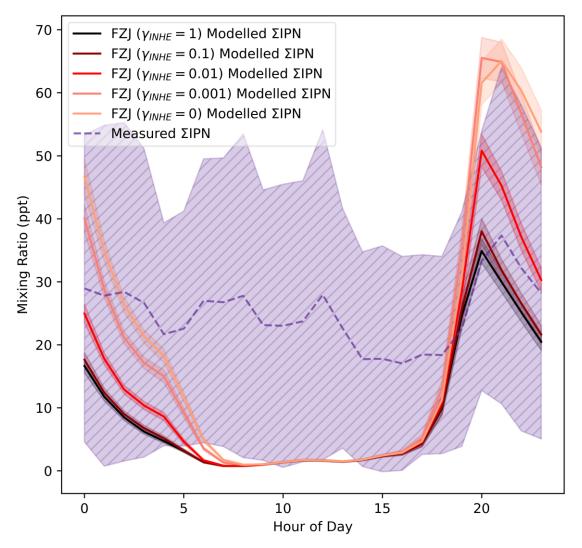



Figure S10. Isomer composition of the modelled ΣIPN.

ΣIPN Mean Diurnal

Figure S11.Measured and modelled Σ IPN mixing ratios for FZJ models using a range of γ_{INHE} values to account for the reactive uptake of INHE. Each line shows the mean value for each dataset, with the shaded area indicating one standard deviation above and below the mean.

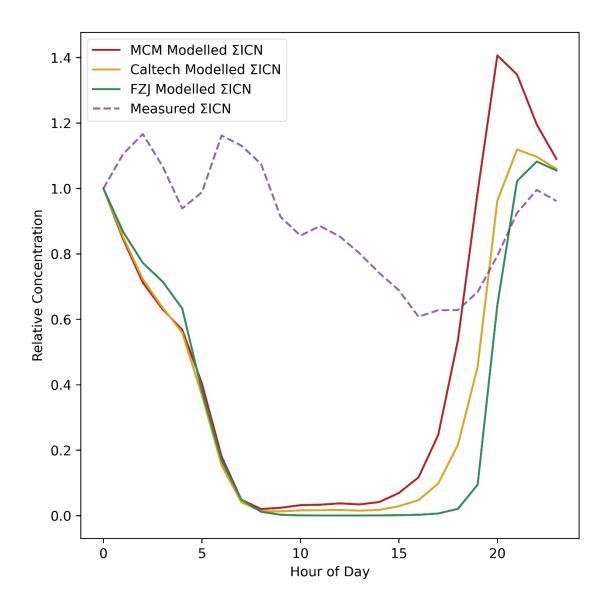


Figure S12. Measured and modelled ICN relative to the concentration at 00:00.

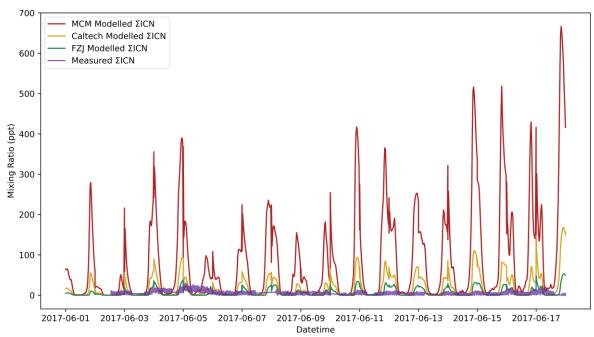


Figure S13. Time series for measured and modelled ΣICN.

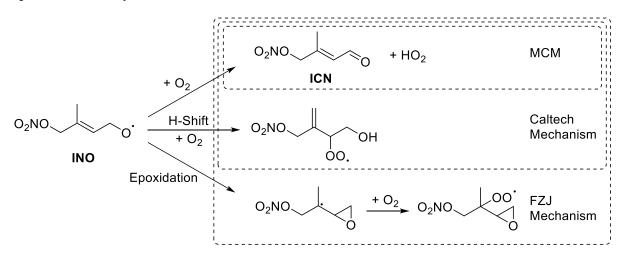


Figure S14. Examples of INO loss routes in each of the three mechanisms. Only one isomer is shown here, other isomers are present in the Caltech and FZJ Mechanisms. Additional reaction pathways are also possible in the Caltech and FZJ Mechanisms.

ΣC4H7NO5 Time Series

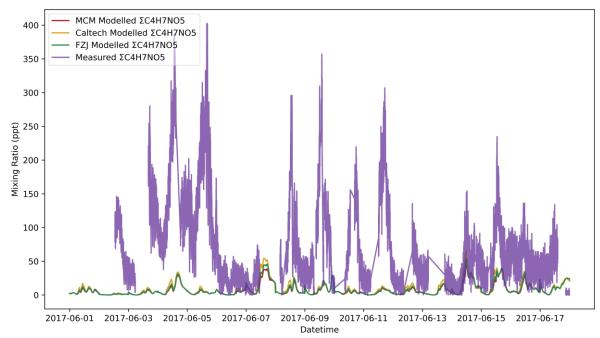


Figure S15. Time series for measured and modelled $\Sigma C_4 H_7 NO_5$.

Specie	es Group	Structure Wennberg et al. 2018 Nomenclature	MCM Name	Caltech Mechanism Name	FZJ Mechanism Name	
ΣΙΗΝ	IHN	O2NO OH	2,1-IHN	-	ISOP1N2OH	ISOP1N2OH
		HOONO2	1,2-IHN	ISOPBNO3	ISOP10H2N	ISOP10H2N
		ONO2	3,4-IHN	ISOPDNO3	ISOP3N4OH	ISOP3N4OH
			4,3-IHN	ISOP34NO3	ISOP3OH4N	ISOP3OH4N
		O ₂ NO OH	E-4,1-IHN	ISOPCNO3	ISOP1N4OHt	EISOP1N4OH
		HOONO2	E-1,4-IHN	ISOPANO3	ISOP10H4Nt	EISOP10H4N
		O ₂ NO OH	Z-4,1-IHN	-	ISOP1N4OHc	ZISOP1N4OH
			Z-1,4-IHN	-	ISOP1OH4Nc	ZISOP10H4N
			-	MPRKNO3	MPRKNO3	MPRKNO3

Table S4. Glossary of nitrate species and their names

Species Group		Structure	Wennberg et al. 2018 Nomenclature	MCM Name	Caltech Mechanism Name	FZJ Mechanism Name
			-	MIPKBNO3	MIPKBNO3	MIPKBNO3
		O ONO ₂	-	DIEKBNO3	DIEKBNO3	DIEKBNO3
			-	C4CHOBNO3	C4CHOBNO3	C4CHOBNO3
ΣΙCΝ		0 ONO2	1,4-ICN	NC4CHO	ISOP1CO4N	ISOP1CO4N
		O2NO	4,1-ICN	-	ISOP1N4CO	ISOP1N4CO
		ONO ₂	3,4-ICN	-	ISOP3CO4N	ISOP3CO4N
ΣΙΡΝ	IPN	02NO OOH	2,1-IPN	-	ISOP1N2OOH	ISOP1N2OOH
		ONO ₂	3,4-IPN	-	ISOP3OOH4N	ISOP3OOH4N
		02NO OOH	4,1-IPN	NISOPOOH	ISOP1N4OOH	ISOP1N4OOH
		HOOONO2	1,4-IPN	-	ISOP1OOH4N	ISOP1OOH4N
		ONO2 OH	-	C530NO3	-	C530NO3

Specie	s Group	Structure	Wennberg et al. 2018 Nomenclature	MCM Name	Caltech Mechanism Name	FZJ Mechanism Name
			-	PPEN	PPEN	PPEN
			-	C524NO3	-	C524NO3
			-	C51NO3	C51NO3	C51NO3
		O ONO2	-	C5PAN4	C5PAN4	C5PAN4
		O ₂ NO OH	-	-	ISOP1N253OH4OH	-
		O2NO OH	-	-	ISOP1N23O4OH	ISOP1N23O4OH
		O ₂ NO OH	-	-	ISOP1N2OH34O	ISOP1N2OH34O
		HO O ONO2	-	-	ISOP10H2304N	ISOP10H2304N
			-	-	ISOP12O3OH4N	ISOP12O3OH4N
ΣC ₄ H ₇ NO ₅	C ₄ H ₇ NO ₅	O O2NO OH	-	HMVKANO3	MVK3OH4N	HMVKANO3

Species Group	Structure	Wennberg et al. 2018 Nomenclature	MCM Name	Caltech Mechanism Name	FZJ Mechanism Name
		-	MVKNO3	MVK3N4OH	MVKNO3
		-	MACRNO3	MACR2N3OH	MACRNO3
		-	MACRNB	MACR2OH3N	MACRNB
	O2NO OH	-	MPRNO3CO2H	MPRNO3CO2H	MPRNO3CO2H
	HOO ONO2	-	NBUTDBOOH	NBUTDBOOH	NBUTDBOOH
		-	CO3C4NO3OH	CO3C4NO3OH	CO3C4NO3OH
		-	PBN	PBN	PBN
		-	PIPN	PIPN	PIPN
	ONO ₂ OOH	-	NBUTDAOOH	NBUTDAOOH	NBUTDAOOH